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Abstract

We completely characterize point–line configurations with Θ(n4/3) incidences
when the point set is a section of the integer lattice. This can be seen as the main
special case of the structural Szemerédi-Trotter problem. We also derive a partial
characterization for several generalizations: (i) We rule out the concurrent lines
case when the point set is a Cartesian product of an arithmetic progression and an
arbitrary set. (ii) We study the case of a Cartesian product where one or both sets
are generalized arithmetic progression. Our proofs rely on deriving properties of
multiplicative energies.

Mathematics Subject Classifications: 52C10

1 Introduction

The Szemerédi–Trotter theorem [20] is a central result in discrete geometry. It is an
unusually helpful result, which is used in combinatorics, theoretical computer science,
harmonic analysis, number theory, model theory, and more (for a few examples, see
[2, 3, 4, 6]). Since this central result has been known for over 40 years, it is surprising
that not much is known about the structural problem. That is, not much is known about
characterizing when this result is tight. A recent work of Silier and the second author
introduced a new approach for addressing this structural problem [17]. In the current
work, we further develop this approach, obtaining structural results in several special
cases.

Throughout this paper, we work in R2. Consider a point set P and a set of lines L.
A pair (p, ℓ) ∈ P × L is an incidence if the point p is on the line ℓ. Let I(P ,L) be the
number of incidences in P × L.
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Theorem 1 (Szemerédi–Trotter). Every finite point set P and finite set of lines L satisfy1

I(P ,L) = O(|P|2/3|L|2/3 + |P|+ |L|).

In the bound of Theorem 1, the cases where the linear terms dominate are considered
as non-interesting. For example, the term |P| dominates when the number of points
is larger than the square of the number of lines. The important term in the bound of
Theorem 1 is |P|2/3|L|2/3. The structural Szemerédi–Trotter problem asks to characterize
the sets of points and lines that form Θ(|P|2/3|L|2/3) incidences.2 Even after decades of
work, it is difficult to make conjectures about such sets. Below, we highlight some main
open questions as problems.

When studying the structural Szemerédi–Trotter problem, it is common to assume
that |P| = |L| = n, for simplicity. In this case, we consider sets with Θ(n4/3) incidences.
For n ∈ N, we set [n] = {1, 2, . . . , n}. Erdős showed how to obtain Θ(n4/3) incidences when
P = [n1/2] × [n1/2]. Decades later, Elekes [10] showed how to obtain Θ(n4/3) incidences
when P = [n1/3]× [n2/3]. Recently, it was shown in [17] how to obtain Θ(n4/3) incidences
when P = [nα] × [n1−α], for every 1/3 ⩽ α ⩽ 1/2. This infinite family of constructions
includes the constructions of Erdős and Elekes.

When considering the above, one might conjecture that the point set must be a Carte-
sian product of arithmetic progressions. We can distort such a Cartesian product by ap-
plying projective transformations, replacing a fraction of the points, and applying other
simple transformations. Recently, Guth and Silier [11] introduced a configurations with
Θ(n4/3) incidences where the point set is not a Cartesian product of arithmetic progres-
sions, also after various simple transformation. Instead, the point set is a Cartesian
product A × A, where A is a generalized arithmetic progression of dimension two (for a
definition, see (1) below). In a personal communication, Max Aires showed us how to
obtain constructions with generalized arithmetic progressions of any constant dimension.
See also Currier [5].

Problem 2. Consider a set P of n points and a set L of n lines, such that I(P ,L) =
Θ(n4/3). Must P be a Cartesian product of constant-dimension generalized arithmetic
progressions, possibly after a simple transformation?

As far as we know, the first non-straightforward properties of configuration with
Θ(n4/3) incidences were derived by Solymosi [18]. However, most works on this prob-
lem are inspired by earlier related studies of Elekes [7, 8, 9].

Silier and the second author [17] proved the following structural result for Cartesian
products. Here E×(S) stands for the multiplicative energy of S. For a discussion of
additive and multiplicative energies, see Section 2.

Theorem 3.
(a) For 1/3 < α < 1/2, let A,B ⊂ R satisfy |A| = nα and |B| = n1−α. Let L be a set of
n lines in R2, such that I(A×B,L) = Θ(n4/3). Then at least one of the following holds:

1For the meaning of O(·) and related notation, see the part titled “Asymptotic notation” at the bottom
of the current section.

2Some authors refer to this as the the inverse Szemerédi–Trotter problem.
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• There exists 1−2α ⩽ β ⩽ 2/3 such that L contains Ω(n1−β/ log n) families of Θ(nβ)
parallel lines, each with a different slope.

• There exists 1− α ⩽ γ ⩽ 2/3 such that L contains Ω(n1−γ/ log n) disjoint families
of Θ(nγ) concurrent lines, each with a different center.

In either case, all the lines in these families are incident to Θ(n1/3) points of A×B.

(b) Assume that we are in the case of Ω(n1−β/ log n) families of Θ(nβ) parallel lines.
There exists n2β ⩽ t ⩽ n3β such that, for Ω(n1−β/ log2 n) of these families, the additive
energy of the y-intercepts is Θ(t). Let S be the set of slopes of these families. Then

E×(S) · t = Ω(n3−α/ log12 n).

In [17], part (a) of the theorem does not mention that all lines are incident to Θ(n1/3)
points of A×B. This property is immediate from the first line of the proof of that theorem
and is important for the current work. With this property in mind, we say that a line is
proper with respect to P if it is incident to Θ(n1/3) points of P . When the point set is
clear from the context, we say that the line is proper and omit the point set. Intuitively,
part (b) of Theorem 3 states that, either the slopes have a high multiplicative energy or
the y-intercepts have a high additive energy.3

Theorem 3 is based on tools and ideas from other related works [14, 15]. Recently, Katz
and Silier [12] introduced a very different approach for studying the structural Szemerédi-
Trotter problem. So far, the results that were produced by the two approaches do not
overlap. For another recent related structural result, see [13].

Our results. We provide a stronger characterization of configurations with Θ(n4/3)
incidences, in several of the main special cases. We say that a Cartesian product A ×
B is a lattice if both A and B are arithmetic progressions. Until recently, all known
configurations with Θ(n4/3) incidences were lattices. We completely characterize this
case. We define the set N of natural numbers as not including zero. For i, j ∈ N, let
gcd(i, j) denote the greatest common divisor of i and j.

Theorem 4. For a fixed 1/3 ⩽ α ⩽ 1/2, let L be a set of n lines such that I([nα] ×
[n1−α],L) = Θ(n4/3). Fix k ∈ N so that every proper line is incident to more than n1/3/k
points and to less than kn1/3. Then

• Any concurrent family of proper lines in L is of size O(n1/3).

• The set L contains Θ(n1/3) parallel families, each of Θ(n2/3) proper lines.

• The slopes of the Θ(n1/3) parallel families are a constant portion of{
±s/t : s, t ∈ N, gcd(s, t) = 1, t = Θ(nα−1/3), s ⩽ t · n1−2α

}⋃
{
±s/t : s, t ∈ N, gcd(s, t) = 1, s = Θ(n2/3−α), t ⩽ s/n1−2α

}
.

3Intuitively and not rigorously, a set with a large additive energy behaves similarly to an arithmetic
progression. A set with a large multiplicative energy behaves similarly to a geometric progression.
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• The y-intercepts of a parallel family with slope s/t are a constant portion of the set{
j − i · s

t
: i ∈ [t], j ∈ [n1−α − sn1/3/k], or i ∈ [nα − tn1/3/k], j ∈ [s]

}
.

Every lattice can be transformed to the form [nα] × [n1−α], with a translation and
scaling along the axes. Such transformations maintain lines and incidences. When α <
1/3, the number of incidences is o(n4/3). The second bullet of Theorem 4 states that,
in the case of a lattice, there are no large concurrent families of proper lines. We are
not aware of any configuration that satisfies the concurrent case of Theorem 3(a). It is
tempting to conjecture that this case should be removed from Theorem 3(a).

Problem 5. Can the case of many concurrent families be removed from the statement
of Theorem 3(a)?

Theorem 4 also states that, in the case of a lattice, there are always Θ(n1/3) families
of Θ(n2/3) parallel lines. In the context of Theorem 3(a), we have that β = 2/3 and that
the logarithm can be removed from the bounds of the theorem. This is also the case in
all of the constructions that we are aware of.

Problem 6. In Theorem 3(a), do we always have β = 2/3? Can we always remove the
logarithms from the bounds?

We also study natural generalizations of the lattice case. First, we say that a Cartesian
product A×B is a half-lattice if at least one of A and B is an arithmetic progression. We
prove the following result for half-lattices.

Theorem 7. Consider 1/3 < α < 1/2 and B ⊂ R such that |B| = n1−α. Then the
concurrent case of Theorem 3(a) cannot occur with the half-lattice [nα]×B.

Every half-lattice can be transformed to the form [nα]×B with a translation, scaling,
and possibly switching the axes. To prove Theorem 7, we require a basic property of mul-
tiplicative energy. Surprisingly, we could not find any results regarding such a property.
Posting this question online did not help either, so we ended up proving it on our own.

Theorem 8. Let α, ε > 0. Let A ⊂ R \ {0} satisfy |A| = n.

(a) We have that
E×(A, [nα]) = O(n1+α+ε).

(b) For every x ∈ Q, we have that

E×(A, [nα] + x) = O(n1+α+ε + n2).

(c) For every x ∈ R \Q, we have that

E×(A, [nα] + x) = O(n1+α + n2).
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Our final result requires a few more definitions. A generalized arithmetic progression
of dimension d is defined as{

a+
d∑

j=1

kjbj : kj ∈ N and 0 ⩽ kj ⩽ nj − 1 for every 1 ⩽ j ⩽ d

}
, (1)

where a, b1, . . . , bd ∈ R are fixed. The size of this a generalized arithmetic progression is
n1 · n2 · · ·nd. Note that an arithmetic progression is a generalized arithmetic progression
of dimension one. The set of y-intercepts in Theorem 4 is the union of two generalized
arithmetic progressions of dimension two.

The sum set of a set A ⊂ R is

A+ A = {a+ a′ : a, a′ ∈ A}.

As explained in more detail in Section 2, a set that satisfies |A + A| = Θ(|A|) is a con-
stant portion of a constant-dimension generalized arithmetic progressions. In all known
point–line configurations with Θ(n4/3) incidences, the point set is a Cartesian product of
generalized arithmetic progressions of a constant dimension. Equivalently, the point set
is A×B where |A+ A| = Θ(|A|) and |B +B| = Θ(|B|).

We say that a Cartesian product A × B is a generalized lattice if both A and B are
constant-dimension generalized arithmetic progressions. We say that a Cartesian product
A× B is a generalized half-lattice if one of A and B is a constant-dimension generalized
arithmetic progression. We now state our results for generalized lattices and generalized
half-lattices.

Theorem 9. For 1/3 < α < 1/2, let A,B ⊂ R satisfy |A| = nα and |B| = n1−α. In the
following, we only consider lines that are proper with respect to A×B.

(a) If A×B is a generalized lattice, then every concurrent family is of size O(n1/3 log n).

(b) If |B +B| = O(|B|) then every concurrent family is of size O(n1/3+α/2 log1/2 n).

(c) If |A+ A| = O(|A|) then every concurrent family is of size O(n5/6−α/2 log1/2 n).

Theorem 9 states that large concurrent families cannot occur in additional main cases.
For example, part (a) implies that the concurrent case of Theorem 3(a) cannot occur with
generalized lattices. Part (b) of Theorem 9 implies that the concurrent case cannot occur
when |B +B| = O(|B|) and α < 4/9.

In Section 2, we study additive and multiplicative energies and prove Theorem 8. In
Section 3, we study lattices and prove Theorem 4. Finally, in Section 4 we study our
lattice generalizations and prove Theorem 7 and Theorem 9.

Asymptotic notation. Throughout this work, we rely on the following asymptotic
notation. For a more detailed explanation, see for example [16, Appendix A].

• The expression f(n) = O(g(n)) means “f(n) is asymptotically at most g(n).” For-
mally, there exist a, b ∈ R such that f(n) ⩽ a · g(n) for every n ⩾ b.
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• The expression f(n) = Ω(g(n)) means “f(n) is asymptotically at least g(n).” For-
mally, g(n) = O(f(n)).

• The expression f(n) = Θ(g(n)) means “f(n) is asymptotically the same as g(n).”
Formally, f(n) = O(g(n)) and f(n) = Ω(g(n)).

• The expression f(n) = o(g(n)) means “f(n) is asymptotically smaller than g(n).”
Formally, for every a ∈ R there exists b ∈ R such that f(n) ⩽ a · g(n) for every
n ⩾ b.

• The expression f(n) = ω(g(n)) means “f(n) is asymptotically larger than g(n).”
Formally, g(n) = o(f(n)).

Acknowledgments. Part of the research work on this project was done as part of
the 2021 NYC Discrete Math REU, funded by NSF award DMS-2051026. We thank the
anonymous referee for helping to make this work more readable.

2 Energies

In this section, we define additive and multiplicative energies, and then prove Theorem
8. The additive energy of a finite set A ⊂ R is

E+(A) = |{(a, b, c, d) ∈ A4 : a+ b = c+ d}|.

Additive energy is a central object in additive combinatorics. In some sense, it measures
how A behaves under addition. It is not difficult to show that |A|2 < E+(A) ⩽ |A|3.
Intuitively, a large additive energy implies that there exists a large subset A′ ⊂ A that
satisfies |A′ + A′| = O(|A′|). For a more rigorous statement and many additional details
about additive energy, see for example [22].

Recall that generalized arithmetic progressions were defined in (1). The following is a
variant of Frieman’s theorem over the reals.

Theorem 10. Let A ⊂ R be a finite set with |A+ A| ⩽ k|A| for some constant k. Then
A is contained in a generalized arithmetic progression of size at most c · |A| and dimension
at most d. Both c and d depend on k but not on |A|.

Intuitively, Theorem 10 implies that a large E+(A) implies that a large subset of A is
a constant portion of a constant-dimension generalized arithmetic progression. Alterna-
tively, after removing some noise from it, A is a constant portion of a constant-dimension
generalized arithmetic progression.

A generalized geometric progression of dimension d is defined as{
a ·

d∏
j=1

b
kj
j : kj ∈ N and 0 ⩽ kj ⩽ nj − 1 for every 1 ⩽ j ⩽ d

}
,

where a, b1, . . . , bd ∈ R are fixed. The multiplicative energy of a finite set A ⊂ R is

E×(A) = |{(a, b, c, d) ∈ A4 : a · b = c · d}|.
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Similarly to the above, a large E×(A) implies that a large subset of A is a constant portion
of a constant-dimension generalized geometric progression.

The following result is by Solymosi [19].

Lemma 11. Every finite A ⊂ R satisfies E×(A) = O(|A+ A|2 log |A|).

The multiplicative energy of two sets A,B ⊂ R is defined as

E×(A,B) = |{(a, a′, b, b′) ∈ A2 ×B2 : a · b = a′ · b′}|.

As a first step towards proving Theorem 8(a), we show that it suffices to consider sets
of nonzero integers. For A ⊂ R and x ∈ R, we set xA = {x · a : a ∈ A}.

Lemma 12. Consider a finite A ⊂ R \ {0} and n ∈ N. Then there exists B ⊂ Z \ {0}
such that |B| = |A| and

E×(A, [n]) ⩽ E×(B, [n]).

Proof. We set m′ = maxa,a′∈A |a/a′| and m = max{⌈m′⌉, 10}. For a, b ∈ R, we write a ∼ b
if there exist s, t ∈ N such that s

t
· a = b. We claim that, if a quadruple (a1, a2, b1, b2) ∈

A2 × [n]2 contributes to E×(A, [n]), then a1 ∼ a2. Indeed, by definition such a quadruple
satisfies that a1 · b1 = a2 · b2 and b1, b2 ∈ N.

It is not difficult to verify that ∼ forms an equivalence relation. We denote the
equivalence classes of the elements of A under ∼ as A1, . . . , Ak. In particular, these k sets
are disjoint and A =

⋃k
j=1Aj. For each j ∈ [k], we arbitrarily fix aj ∈ Aj. Combining the

above leads to

E×(A, [n]) =
k∑

j=1

E×(Aj, [n]) =
k∑

j=1

E×
(

1

aj
Aj, [n]

)
⩽ E×

(
k⋃

j=1

(
m10(j−1)

aj
Aj

)
, [n]

)
.

For the second and third transitions above, we note that multiplying all elements of
a finite S ⊂ R by the same nonzero number does not affect E×(S, [n]). Indeed, this does
not change whether (a, b, c, d) ∈ S × [n]× S × [n] satisfies a · b = c · d.

We set C =
⋃k

j=1

(
m10(j−1)

aj
Aj

)
, so the above states that E×(A, [n]) ⩽ E×(C, [n]). We

note that |A| = |C| and C ⊂ Q \ {0}. Let d be the common denominator of all elements
of C. We set B = dC, to obtain that E×(A, [n]) ⩽ E×(B, [n]), that |A| = |B|, and that
B ⊂ Z \ {0}.

For m ∈ N and k ∈ Q, we set

r[m]/[m](k) =

∣∣∣∣{(x, y) ∈ [m]2 :
x

y
= k

}∣∣∣∣
r
(2)
[m]/[m] (k) =

∣∣∣{(x, y, z, w) ∈ [m]4 :
x · y
z · w

= k
}∣∣∣ . (2)

The following lemma states that r
(2)
[m]/[m] cannot be large.
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Lemma 13. Let s, t, k ∈ N satisfy gcd(s, t) = 1 and max(s, t) = k. Then, for every
ε > 0, we have that

r
(2)
[m]/[m]

(s
t

)
= O

(
m2+ε

k

)
.

In the bound of Lemma 13, the parameter ε is fixed while m is asymptotically large.

Proof of Lemma 13. Without loss of generality, we assume that s ⩽ t. For every x, y, z, w
∈ [m] that satisfy x·y

z·w = s
t
, there exist s1, s2, p, q, t1, t2, p

′, q′ ∈ [m] such that

x = s1 · p, y = s2 · q, s1 · s2 = s,

z = t1 · p′, w = t2 · q′, t1 · t2 = t, and p · q = p′ · q′.

There exists c ∈ R that satisfies the following for every n ∈ N: The number of divisors
of n is at most nc/ log logn (see for example [21, Section 1.6]). Since s ⩽ x · y and x, y ⩽ m,
we have that s ⩽ m2. The number of possible values for s1 is at most the number of
divisors of s, which is at most mc/ log logm = O(mε/4). After choosing s1, the value of s2 is
fixed. Symmetrically, there are O(mε/4) possible values for t1 and then t2 is fixed.

We have that
p · q = p′ · q′ = z · w/t = O(m2/k).

Thus, there are O(m2/k) possible values for p · q. For each value p · q, the above bound on
the number of divisors implies that there are O(mε/4) possible values for p and O(mε/4)
possible values for p′. Combining the above leads to a total of O(m2+ε/k) possible values
for s1, s2, p, q, t1, t2, p

′, q′. This in turn implies O(m2+ε/k) possible values for x, y, z, w.

For every positive rational number k, there exist unique s, t ∈ N that satisfy gcd(s, t) =
1 and k = s/t. We denote these numbers as s(k) and t(k). For every integer 1 ⩽ a ⩽
n/max(s(k), t(k)), setting x = a · s(k) and y = a · t(k) gives that x/y = k. Thus,

r[m]/[m](k) =
⌊ m

max(s(k), t(k))

⌋
. (3)

Consider a finite A ⊂ R\{0} and m ∈ N. Let (a1, a2, b1, b2) ∈ A2×[m]2 be a quadruple
that contributes to E×(A, [m]). Since a1 · b1 = a2 · b2 is equivalent to a2/a1 = b1/b2, we
have that

E×(A, [m]) =
∑

(a,b)∈A2

r[m]/[m]

(a
b

)
. (4)

We now prove Theorem 8 in the special case where α = 1.

Lemma 14. Consider A ⊂ R such that |A| = n, and let ε > 0. Then

E×(A, [n]) = O(n2+ε).
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Proof. If 0 ∈ A then the number of quadruples of A2 × [n]2 that contribute to E×(A, [n])
and include 0 is n2. We may thus remove 0 ∈ A without affecting the statement of the
lemma. Then, by Lemma 12, we may assume that A ⊂ Z \ {0}.

In each quadruple that contributes to E×(A, [n]), either both elements of A are positive
or both are negative. If most of E×(A, [n]) comes from quadruples with negative elements
of A, then we multiply all elements of A by −1. This does not change the value of
E×(A, [n]). Either way, we then remove fromA all of the negative elements. This decreases
E×(A, [n]) by at most half, which does not affect the asymptotic size of E×(A, [n]). We
now have that A ⊂ N and that |A| ⩽ n.

By (4), the Cauchy–Schwartz inequality, and (2), we obtain that

E×(A, [n]) =
∑
a1∈A

∑
a2∈A

r[n]/[n]

(
a1
a2

)

⩽

(∑
a1∈A

1

)1/2

·

(∑
a2∈A

(∑
a3∈A

r[n]/[n]

(
a2
a3

))2)1/2

= n1/2 ·

(∑
a1∈A

∑
(a2,a3)∈A2

r[n]/[n]

(
a1
a2

)
r[n]/[n]

(
a1
a3

))1/2

= n1/2 ·

( ∑
(a2,a3)∈A2

∑
a1∈A

r[n]/[n]

(
a1
a2

)
r[n]/[n]

(
a3
a1

))1/2

⩽ n1/2 ·

( ∑
(a2,a3)∈A2

r
(2)
[n]/[n]

(
a3
a2

))1/2

. (5)

For the final transition above, recall that r
(2)
[n]/[n]

(
a3
a2

)
is the number of solutions to x·y

z·w =

a3/a2 with x, y, z, w ∈ [n]. In the transition, we consider a subset of these solutions, where
x/z = a1/a2 and y/w = a3/a1.

To have that r
(2)
[n]/[n](a3/a2) > 0, we must have that max(s(a3/a2), t(a3/a2)) ⩽ n2. We

may thus rewrite (5) as

E×(A, [n]) ⩽ n1/2 ·

(
2 logn∑
j=0

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

r
(2)
[n]/[n]

(
a3
a2

))1/2

.

Lemma 13 implies that

E×(A, [n]) ⩽ n1/2 ·

(
2 logn∑
j=0

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

O

(
n2+ε

2j

))1/2

. (6)
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Studying (6). We consider the case where

logn∑
j=0

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

O

(
n2+ε

2j

)
⩽

2 logn∑
j=logn

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

O

(
n2+ε

2j

)
. (7)

That is, the case where large values of j dominate the bound of (6). In this case,

E×(A, [n]) = n1/2 ·O

(
2 logn∑
j=logn

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

n2+ε

2j

)1/2

= n1/2 ·O

(
2 logn∑
j=logn

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

n1+ε

)1/2

= n1/2 ·O

( ∑
(a2,a3)∈A2

n1+ε

)1/2

= n1/2 ·O
(
n3+ε

)1/2
= O(n2+ε).

It remains to consider the case where (7) is false. Applying (4) and then (3) leads to

E×(A, [n]) =
∑

(a,b)∈A2

r[n]/[n]

(a
b

)
=

∑
(a,b)∈A2

⌊ n

max(s(a
b
), t(a

b
))

⌋

= Θ

 ∑
(a,b)∈A2

n

max(s(a
b
), t(a

b
))

 = Θ

( ∑
0⩽j⩽logn

∑
(a,b)∈A2

2j⩽max(s(a
b
),t(a

b
))<2j+1

n

2j

)
. (8)

In the above, removing the floor function increases the amount by less than n2. This is
allowed since, by definition, E×(A, [n]) ⩾ 2n2 − n.

By (6), recalling that we are in the case where (7) is false, and (8), we obtain that

E×(A, [n]) = n1/2 ·O

(
logn∑
j=0

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

n2+ε

2j

)1/2

= n1+ε/2 ·O

(
logn∑
j=0

∑
(a2,a3)∈A2

2j⩽max(s(
a3
a2

),t(
a3
a2

))<2j+1

n

2j

)1/2

= O
(
n1+ε/2 · E×(A, [n])1/2

)
.

Rearranging the above leads to E×(A, [n])1/2 = O
(
n1+ε/2

)
. Squaring both sides completes

the proof of this case.
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We are now ready to prove Theorem 8. We first recall the statement of this result.

Theorem 8. Let α, ε > 0. Let A ⊂ R \ {0} satisfy |A| = n.

(a) We have that
E×(A, [nα]) = O(n1+α+ε).

(b) For every x ∈ Q, we have that

E×(A, [nα] + x) = O(n1+α+ε + n2).

(c) For every x ∈ R \Q, we have that

E×(A, [nα] + x) = O(n1+α + n2).

Proof. (a) By applying (4) and then (3), we obtain that

n1−α · E×(A, [nα]) = n1−α ·
∑

(a,b)∈A2

r[nα]/[nα]

(a
b

)
=

∑
(a,b)∈A2

n1−α ·
⌊ nα

max(s(a
b
), t(a

b
))

⌋
⩽

∑
(a,b)∈A2

n

max(s(a
b
), t(a

b
))

⩽
∑

(a,b)∈A2

⌊ n

max(s(a
b
), t(a

b
))

⌋
+ |A|2 = E×(A, [n]) + n2.

Rearranging and then applying Lemma 14 leads to

E×(A, [nα]) ⩽
E×(A, [n]) + n2

n1−α
= O(n1+α+ε).

(b) There exist unique p, q ∈ Z that satisfy gcd(p, q) = 1, p > 0, and x = p/q. We
define

r̂(y) =
∣∣{(b1, b2) ∈ [nα]2 : y = (b1 + p/q)/(b2 + p/q)

}∣∣ .
Then, E×([nα] + p/q, A) =

∑
a1,a2∈A r̂(a1/a2).

We note that r̂(y) > 0 only when y is rational. Consider s, t ∈ N and b1, b2 ∈ [nα], so
that gcd(s, t) = 1 and

s

t
=

b1 + p/q

b2 + p/q
, or equivalently

s

t
=

b1q + p

b2q + p
. (9)

We first assume that s, t ̸= 1. By the above, there exists k ∈ N such that b1q+ p = ks
and b2q + p = kt. This implies that p ≡ ks mod q. Since gcd(p, q) = 1, we get that
gcd(s, q) = 1, which in turn implies that q has a multiplicative inverse modulo s. Then,
b1q + p = ks leads to b1 ≡ −pq−1 mod s. Since b1 ∈ [nα], we conclude that the number
of possible values for b1 is at most 1 + ⌊nα/s⌋. A symmetric argument shows that there
are at most 1 + ⌊nα/t⌋ possible values for b2.

By (9), fixing the value of one of b1, b2 determines the value of the other. Thus, the
number of possible values for (b1, b2) is at most 1+⌊nα/max{s, t}⌋. Combining the above
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with (3), (4), and part (a) of the current theorem, leads to

E×([nα] + p/q, A) =
∑

a1,a2∈A

r̂(a1/a2) =
∑

a1,a2∈A
a1/a2∈Q

r̂(a1/a2)

⩽
∑

a1,a2∈A
a1/a2∈Q

(
1 +

⌊
nα

max{s(a1/a2), t(a1/a2)}

⌋)

⩽ |A|2 +
∑

a1,a2∈A
a1/a2∈Q

⌊
nα

max{s(a1/a2), t(a1/a2)}

⌋
= |A|2 + E(A, [nα]) = O(n2 + n1+α+ε).

The above analysis ignores the cases where s = 1 or t = 1. We first consider the
case where s = 1 and t > 1. In this case, the above analysis still implies that the
number of possible values for (b1, b2) is at most 1 + ⌊nα/t⌋. Thus, we still have that

r̂(a1/a2) ⩽ 1 +
⌊

nα

max{s(a1/a2),t(a1/a2)}

⌋
, as required for the above analysis. The case where

s > 1 and t = 1 is symmetric. Finally, when s = t = 1, we immediately have that

r̂(a1/a2) ⩽ 1 +
⌊

nα

max{s(a1/a2),t(a1/a2)}

⌋
= nα, as required.

(c) We define
r̃(y) = |{p, q ∈ [nα] : y = (p+ x)/(q + x)}| .

As before, a quadruple (a1, q+x, a2, p+x) ∈ (A×([nα]+x))2 contributes to E×(A, [nα]+x)
if and only if a1(p+ x) = a2(q + x). Thus, for fixed a1, a2 ∈ A, the number of quadruples
with first element a1 and third element a2 is r̃(a2/a1). This implies that

E×(A, [nα] + x) =
∑

a1,a2∈A

r̃(a2/a1).

Consider y ∈ R such that r̃(y) ⩾ 2. Then there exist p, p′, q, q′ ∈ [nα] such that
(p, q) ̸= (p′, q′) and

p+ x

q + x
= y =

p′ + x

q′ + x
.

Rearranging leads to

(p+ x)(q′ + x) = (p′ + x)(q + x), or equivalently x(p+ q′) + pq′ = x(p′ + q) + p′q.

Since x is irrational, we obtain that p + q′ = p′ + q and pq′ = p′q. Rearranging the
former leads to p− p′ = q− q′, which is nonzero since (p, q) ̸= (p′, q′). From pq′ = p′q, we
obtain that pq′−pq = p′q−pq, or equivalently p(q′−q) = q(p′−p). Since p−p′ = q−q′ ̸= 0,
we have that p = q. This in turn implies that y = (p+ x)/(p+ x) = 1. We conclude that
every y ̸= 1 satisfies r̃(y) ⩽ 1.

We define the indicator function

1x(y) =

{
1, exist p, q ∈ [nα] such that y = (p+ x)/(q + x) and p ̸= q,

0, otherwise.
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By definition, we have that r̃(1) = nα. Combining the above leads to

E×(A, [nα] + x) =
∑

a1,a2∈A

r̃(a2/a1) = |A| · nα +
∑

a1,a2∈A

1x(a2/a1) < |A| · nα + |A|2.

3 Lattices

In this section, we carefully characterize the configurations with Θ(n4/3) incidences where
the point set is a lattice. That is, we prove Theorem 4. Our proof technique heavily relies
on Euler’s totient function. The totient function of j ∈ N is

ϕ(j) = |{i ∈ [j] : gcd(i, j) = 1}|.

We also consider the following variant of the totient function. For m,n ∈ N, we define

ϕm(n) = |{a ∈ [m] : gcd(a, n) = 1}|.

For proofs and further discussion of the following results, see [1, Section 3]. For n ∈ N,
let w(n) denote the number of prime divisors of n.

Lemma 15. Let m,n ∈ N.

(a)
n∑

j=1

ϕ(j) = Θ(n2).

(b)
n∑

j=1

ϕ(j)

j
= Θ(n).

(c) ϕm·n(n) = m · ϕ(n).

(d) ϕm(n) =
m

n
· ϕ(n) +O(2w(n)).

(e)
n∑

r=1

2w(r) = O(n log log n).

We now recall the statement of Theorem 4.

Theorem 4. For a fixed 1/3 ⩽ α ⩽ 1/2, let L be a set of n lines such that I([nα] ×
[n1−α],L) = Θ(n4/3). Fix k ∈ N so that every proper line is incident to more than n1/3/k
points and to less than kn1/3. Then

• Any concurrent family of proper lines in L is of size O(n1/3).

• The set L contains Θ(n1/3) parallel families, each of Θ(n2/3) proper lines.
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• The slopes of the Θ(n1/3) parallel families are a constant portion of{
±s/t : s, t ∈ N, gcd(s, t) = 1, t = Θ(nα−1/3), s ⩽ t · n1−2α

}⋃
{
±s/t : s, t ∈ N, gcd(s, t) = 1, s = Θ(n2/3−α), t ⩽ s/n1−2α

}
.

• The y-intercepts of a parallel family with slope s/t are a constant portion of the set{
j − i · s

t
: i ∈ [t], j ∈ [n1−α − sn1/3/k], or i ∈ [nα − tn1/3/k], j ∈ [s]

}
.

Proof. Every axis-parallel line is incident to either nα, n1−α, or zero points of [nα]× [n1−α].
Thus, there are no proper axis-parallel lines. In our analysis, we focus on lines with
positive slopes. The analysis of the lines with negative slopes is symmetric.

Figure 1: For a lattice of size 10 × 11, a line is steep if its slope is larger than 11/10.
When s = 1 and t = 3, a line contains at most ⌈10/3⌉ = 4 points. When s = 2 and t = 1,
a line contains at most ⌈11/2⌉ = 6 points.

Slopes with at least one proper line. The slope of a line ℓ that is incident to two
points (a, b), (a′, b′) ∈ [nα] × [n1−α] is (b − b′)/(a − a′). This implies that all proper lines
have rational slopes. Since we focus on positive slopes, there exist unique s, t ∈ N such
that the slope of ℓ is s/t and gcd(s, t) = 1. We note that ℓ contains a point of the lattice Z2

every t columns and every s rows. This implies that the number of points of [nα]× [n1−α]
that are on ℓ is at most min(⌈nα/t⌉, ⌈n1−α/s⌉). We say that ℓ is steep if s/t > n1−2α. If ℓ
is steep then it contains at most ⌈nα/t⌉ points of [nα]× [n1−α]. Otherwise, ℓ contains at
most ⌈n1−α/s⌉ points of [nα]× [n1−α]. See Figure 1.

We first consider slopes of proper non-steep lines. By the preceding paragraph, a
non-steep line with slope s/t (and gcd(s, t) = 1) is incident to at most ⌈nα/t⌉ points of
[nα]× [n1−α]. We thus have that nα/t > n1/3/k, or equivalently t < k · nα−1/3. We recall
that we are in the case where s ⩽ t · n1−2α = O(n2/3−α). Thus, the number of possible
slopes is at most

|possible s values| · |possible t values| = O
(
nα−1/3 · n2/3−α

)
= O(n1/3).

We next consider slopes of proper steep lines. By the above, a steep line with slope s/t
is incident to at most n1−α/s points of [nα]×[n1−α]. We thus have that ⌈n1−α/s⌉ > n1/3/k,
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or equivalently s < k · n2/3−α. Since we are in the case where s > t · n1−2α, we have that
t < s/n1−2α = O(nα−1/3). The number of possible slopes in this case is at most

|possible s values| · |possible t values| = O
(
n2/3−α · nα−1/3

)
= O(n1/3).

Since the analysis of the negative slopes is symmetric, the number of slopes that have
at least one proper line is O(n1/3). This implies that any concurrent family of proper
lines is of size O(n1/3). That is, in the context of Theorem 3, we are in the case of many
families of parallel lines.

Our next goal is to study all proper lines of a fixed slope s/t. In particular, we
characterize the slopes that have many proper lines. This will show that, to have Θ(n4/3)
incidences, L must contain Θ(n1/3) parallel families of size Θ(n2/3).

Non-steep slopes with many proper lines. We first assume that most incidences
are with non-steep lines. We fix s, t ∈ N with gcd(s, t) = 1 and s/t ⩽ n1−2α. In this case,
t ⩽ k ·nα−1/3 and a line with slope s/t is incident to at most ⌈nα/t⌉ points of [nα]× [n1−α].
We study the proper lines of slope s/t.

(a) (b)

Figure 2: (a) The lines of slope 1/3 that contain a point from the leftmost column of the
lattice. (b) When moving from leftmost column to one of the next t−1 leftmost columns,
some lines may be incident to one less point.

Let C be the leftmost column of [nα]× [n1−α] and consider all lines with slope s/t that
are incident to a point of C. See Figure 2(a). The lines that contain the s top points of
C are incident to one point of [nα] × [n1−α]. The lines that contain the next s highest
points of C are incident to two points of [nα]× [n1−α]. The lines that contain the next s
highest points are incident to three points, and so on. After s lines that are incident to
⌈nα/t⌉− 1 points, the remaining n1−α − s(⌈nα/t⌉− 1) lines are incident to ⌈nα/t⌉ points.

A line contains a point of Z2 every t columns. We may thus repeat the analysis of the
preceding paragraph for each of the t leftmost columns of [nα]×[n1−α] without considering
the same line twice. The only difference is that some lines may be incident to one point
less than their corresponding line from the analysis of C. See Figure 2(b).

Let R be the lowest row of [nα]× [n1−α] and consider all lines with slope s/t that and
are incident to a point of R. See Figure 3. The lines that contain the t leftmost points
of R are incident to one point of [nα]× [n1−α]. The lines that contain the next t leftmost
points of R are incident to two points of [nα] × [n1−α]. The lines that contain the next
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Figure 3: The lines with slope 1/3 that contain a point from the bottom row of the lattice.

t leftmost points are incident to three points, and so on. After s lines that are incident
to ⌈nα/t⌉ − 1 points, at most s lines are incident to ⌈nα/t⌉ points. A line contains a
point of Z2 every s rows. We may thus repeat the above analysis for the s bottom rows
of [nα] × [n1−α] without considering the same line twice. As before, some lines may be
incident to one point less than their corresponding line from the analysis of R.

Every line with slope s/t that is incident to at least one point of [nα]× [n1−α] contains
a point from the bottom s rows or from the t leftmost columns. Thus, the above analysis
includes all proper lines of slope s/t. We note that s · t lines are counted twice, once for
the s bottom rows and once for the t leftmost columns.

If t = o(nα−1/3) then nα/t = ω(n1/3). In this case, each of the t leftmost columns
contains s(kn1/3 − n1/3/k) points on proper lines with slope s/t. Similarly, each of the s
bottom rows contains t(kn1/3−n1/3/k) points on such lines. In total, there are Θ(s·t·n1/3)
proper lines with slope s/t. Since t = o(nα−1/3) and s ⩽ t · n1−2α, the number of such
lines is

Θ(s · t · n1/3) = O(t2 · n1−2α · n1/3) = o(n2/3).

By the above, when t = o(nα−1/3), every parallel family is of size o(n2/3). Since there
are O(n1/3) slopes with proper lines, such values of t lead to o(n4/3) incidences. We may
thus remove such lines from L and still have Θ(n4/3) incidences with non-steep lines of L.

We remain with the case where t = Ω(nα−1/3). Since t = O(nα−1/3), this is the case
where t = Θ(nα−1/3). In this case, the lines that contain ⌈nα/t⌉ points of [nα] × [n1−α]
are proper. Each of the s bottom rows contains nα − tn1/3/k points that are incident to
a proper line. Each of the leftmost t columns contains n1−α − sn1/3/k points that are
incident to such a line. By taking k to be sufficiently large, since t = Θ(nα−1/3), and since
s ⩽ t · n1−2α, the number of proper lines with slope s/t is

t · (n1−α − sn1/3/k) + s(nα − tn1/3/k) = Θ(tn1−α + snα) = Θ(n2/3).

We say that a slope is rich if there are Θ(n2/3) proper lines with this slope. By the
above, all slopes of the current case are rich. Since t = Θ(nα−1/3), we may set kt ∈ N such
that nα−1/3/kt ⩽ t ⩽ nα−1/3 · kt. After fixing a value for t, the number of valid values for
s is ϕt·n1−2α(t). By Lemma 15(c) and Lemma 15(a), the number of non-steep rich slopes
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is

nα−1/3·kt∑
t=nα−1/3/kt

ϕt·n1−2α(t) =
nα−1/3·kt∑

t=nα−1/3/kt

n1−2α · ϕ(t) = n1−2α ·
nα−1/3·kt∑

t=1

ϕ(t)− n1−2α ·
nα−1/3/kt∑

t=1

ϕ(t)

= Θ
(
n1−2α

(
n2α−2/3 · k2

t − n2α−2/3/k2
t

))
= Θ(n1/3).

We conclude that there are Θ(n1/3) families of Θ(n2/3) proper parallel lines with non-
steep slopes. These lines lead to Θ(n4/3) incidences. Thus, L must contain a constant
portion of these lines. In other words, L contains Θ(n1/3) families of Θ(n2/3) proper
parallel lines with non-steep slopes.

Steep slopes with many proper lines. We now consider the case where most
incidences are with steep lines. This case can be studied in the same way as the case of
non-steep lines. Instead of repeating the same analysis, we focus on the changes required
for this case. We fix s, t ∈ N such gcd(s, t) = 1 and s/t > n1−2α. We recall that a line
with slope s/t is incident to at most ⌈n1−α/s⌉ points of [nα]× [n1−α]. We also recall that
a proper line with steep slope s/t satisfies that s ⩽ k · n2/3−α.

Figure 4: For steep lines, we expect more points on the bottom row to be incident to lines
that contain ⌈n1−α/s⌉ points, rather than points on the leftmost column.

The columns and rows [nα] × [n1−α] switch the roles that they had in the analysis
of the case of non-steep slopes. On the leftmost column, at most s points are on lines
with slope s/t that are incident to ⌈n1−α/s⌉ points of [nα]× [n1−α]. On the bottom row,
nα − t(⌈n1−α/s⌉ − 1) points are on lines with slope s/t incident to ⌈n1−α/s⌉ points of
[nα]× [n1−α]. See Figure 4.

We rearrange s/t > n1−2α as t < s/n1−2α. When s = o(n2/3−α), the number of proper
lines with slope s/t is

Θ(s · t · n1/3) = O(s2/n1−2α · n1/3) = o(n4/3−2α/n1−2α · n1/3) = o(n2/3).

By the above, when s = o(n2/3−α), every parallel family is of size o(n2/3). Since there
are O(n1/3) slopes with proper lines, such values of s lead to o(n4/3) incidences. We may
thus remove those lines from L while still having Θ(n4/3) incidences.

We now consider the case where s = Θ(n2/3−α). In this case, the lines that contain
⌈n1−α/s⌉ points of [nα]× [n1−α] are proper. Imitating the analysis of the non-steep case,
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each of the leftmost t columns contains n1−α− s ·n1/3/k proper lines with slope s/t. Each
of the bottom s rows contains nα − tn1/3/k points that are incident to such lines. By
taking a sufficiently large k, since s = Θ(n2/3−α), and since t < s/n1−2α, the number of
proper lines with slope s/t is

s · (nα − tn1/3/k) + t · (n1−α − s · n1/3/k) = Θ(snα + t · n1−α) = Θ(n2/3).

Since s = Θ(n2/3−α), we may set ks ∈ N such that n2/3−α/ks ⩽ s ⩽ n2/3−α · ks. After
fixing a value for s, the number of valid values for t is ϕs/n1−2α(s). By Lemma 15(d),
Lemma 15(e), and Lemma 15(a), the amount of steep rich slopes is

n2/3−α·ks∑
s=n2/3−α/ks

ϕs/n1−2α(s) =
n2/3−α·ks∑

s=n2/3−α/ks

(
ϕ(s)

n1−2α
+O(2w(s))

)

=
1

n1−2α
·

(
n2/3−α·ks∑

s=1

ϕ(s)−
n2/3−α/ks∑

s=1

ϕ(s)

)
+O

(n2/3−α·ks∑
s=1

2w(s) −
n2/3−α/ks∑

s=1

2w(s)

)

= Θ

(
n4/3−2α

n1−2α
(k2

s − 1/k2
s)

)
+O

(
n2/3−α(k2

s − 1/k2
s) log log n

)
= Θ(n1/3).

We conclude that there are Θ(n1/3) families of Θ(n2/3) proper parallel lines with steep
slopes. These form Θ(n4/3) incidences. Thus, L must contain a constant portion of these
lines. In other words, L contains Θ(n1/3) families of Θ(n2/3) proper parallel lines with
steep slopes.

This concludes the proof of the second and third bullets from the statement of the
theorem. Indeed, in both the steep and non-steep cases, we obtained that L contains
Θ(n1/3) families of Θ(n2/3) proper parallel lines. In the non-steep case, these slopes are a
constant portion of{

±s/t : s, t ∈ N, gcd(s, t) = 1, t = Θ(nα−1/3), s ⩽ t · n1−2α
}
.

In the steep case, these slopes are a constant portion of{
±s/t : s, t ∈ N, gcd(s, t) = 1, s = Θ(n2/3−α), t ⩽ s/n1−2α

}
.

The y-intercepts of a parallel family. It remains to prove the fourth bullet in the
statement of the theorem. We consider a rich slope s/t. Each proper line with slope s/t is
incident to a point from the t leftmost columns or from the s bottom rows of [nα]× [n1−α].
Such a line that is incident to the point (px, py) is defined by y = s

t
·x+py−px · st . That is,

the y-intercept is py − px · s
t
. By the above, if (px, py) is on one of the t leftmost columns,

then px ∈ [t] and py ∈ [n1−α − sn1/3/k]. If (px, py) is on one of the s bottom rows, then
px ∈ [nα − tn1/3/k] and py ∈ [s].

Simplifying the preceding paragraph, the set of y-intercepts is{
j − i · s

t
: i ∈ [t], j ∈ [n1−α − sn1/3/k], or i ∈ [nα − tn1/3/k], j ∈ [s]

}
.
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Assuming that k is sufficiently large, the total number of possible values for (px, py) is

Θ(tn1−α + snα) = Θ(n2/3).

The calculation depends on whether we are in the steep case or in the non-steep case.
Both cases repeat calculations that were already done above.

Recall that there exist Θ(n1/3) slopes for which L contains a parallel family of Θ(n2/3)
lines. Consider such a slope s/t. Since there are Θ(n2/3) possible y-intercepts and the
slope is rich, the y-intercepts of the slope must be a constant portion of all possible
options.

4 Half-lattices, generalized half-lattices, and generalized lattices

In this section, we prove our structural results for lattice generalizations. Most of the
technical work for these proofs is in Section 2, and here we add the final details. We begin
with the case of half-lattices. Recall that a Cartesian product A×B is a half-lattice if at
least one of A and B is an arithmetic progression.

Theorem 7. Consider 1/3 < α < 1/2 and B ⊂ R such that |B| = n1−α. Then the
concurrent case of Theorem 3(a) cannot occur with the half-lattice [nα]×B.

Proof. Consider a concurrent family of Θ(nγ) proper lines with center p ∈ R2. We denote
this set of concurrent lines as L and translate R2 so that p becomes the origin. Let A
be the set of x-coordinates of the half-lattice after the translation. Abusing notation, we
denote as B and L the sets obtained after the translation.

We remove axis-parallel lines from L. Since L contains at most two such lines, this
does not affect the asymptotic size of L. If 0 ∈ B then we remove 0 from B. Since there
are no axis-parallel lines in L, this does not remove any incidences from (A × B) × L,
except possibly at the origin.

Fix a line ℓ ∈ L. Since ℓ is not axis-parallel, there exists s ∈ R \ {0} such that ℓ is
defined as y = s · x. Given two points (a, b), (a′, b′) ∈ A× B that are on ℓ, we have that
b = s · a and b′ = s · a′. Combining these equations leads to a · b′ = a′ · b. That is, the
quadruple (a, b′, a′, b) ∈ A×B × A×B contributes to E×(A,B).

Every point of (A×B) \ {p} is incident to at most one line of L. Thus, different lines
of L cannot lead to the same quadruple that contributes to E×(A,B). This leads to

E×(A,B) = Ω(|L| · n2/3) = Ω(nγ+2/3). (10)

We set ε = 1− 2α > 0. Then, Theorem 8 states that

E×(A,B) = O(n(1−α)(1+ε)+α + n2−2α) = O(n1+ε + n2−2α).

The relevant part of the theorem depends on the x-coordinate of p before the translation.
Combining this with (10) implies that γ ⩽ 4/3 − 2α. Since 1/3 < α < 1/2, we obtain
that γ < 1 − α. That is, a family of concurrent lines with point of concurrency p is of
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size o(n1−α). The concurrent case of Theorem 3(a) considers concurrent families of size
Ω(n1−α) and is thus impossible. To complete the proof, we note that the above holds for
every p ∈ R.

We next prove our results for generalized lattices and generalized half-lattices. The
proofs rely on the same ideas as the proof of Theorem 7. However, since we do not have a
variant of Theorem 8 for this case, we obtain weaker bounds. We recall that a Cartesian
product A×B is a generalized lattice if both A and B are constant-dimension generalized
arithmetic progressions.

Theorem 9. For 1/3 < α < 1/2, let A,B ⊂ R satisfy |A| = nα and |B| = n1−α. In the
following, we only consider lines that are proper with respect to A×B.

(a) If A×B is a generalized lattice, then every concurrent family is of size O(n1/3 log n).

(b) If |B +B| = O(|B|) then every concurrent family is of size O(n1/3+α/2 log1/2 n).

(c) If |A+ A| = O(|A|) then every concurrent family is of size O(n5/6−α/2 log1/2 n).

Proof. (a) Assume for contradiction that there exists a family L of k ·n1/3 log n concurrent
proper lines. We translate R2 so that the point of concurrency of L becomes the origin.
A translation does not affect incidences, |A+ A|, or |B +B|.

Let ℓ ∈ L be a non-axis-parallel line. There exists s ∈ R \ {0} such that ℓ is defined
as y = s · x. Given two points (a, b), (a′, b′) ∈ (A × B) \ {(0, 0)} that are on ℓ, we have
that b = s · a and b′ = s · a′. Combining these equations leads to a · b′ = a′ · b. That is, the
quadruple (a, b′, a′, b) ∈ A × B × A × B contributes to E×(A,B). Excluding the origin,
every pair of points on ℓ yield a different quadruple. Since ℓ is proper, it leads to Θ(n2/3)
such quadruples.

Every point of A× B \ {0} is incident to at most one line of L. Thus, different lines
of L cannot lead to the same quadruple that contributes to E×(A,B). This leads to

E×(A,B) = Ω(|L| · n2/3) = Ω(kn log n). (11)

For q ∈ R and a finite C ⊂ R, we define

rC(q) = |{(c, c′) ∈ C2 : c/c′ = q}|.

If 0 ∈ A or 0 ∈ B, then we remove 0 from those sets. These removals decrease E×(A,B)
by O(n2α + n2−2α). When 1/3 < α < 2/3, this decrease is asymptotically smaller than
the the lower bound of (11), so it is negligible. A quadruple (a, b′, a′, b) ∈ A×B ×A×B
that contributes to E×(A,B) satisfies a · b′ = a′ · b. Rearranging leads to a/a′ = b/b′. This
implies that

E×(A,B) =
∑
q∈R

rA(q) · rB(q). (12)

Lemma 11 implies that E×(A) = O(|A+A|2 log |A|) = O(n2α log n) and that E×(B) =
O(n2−2α log n). By the Cauchy-Schwarz inequality and applying (12) multiple times, we
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obtain that

E×(A,B) =
∑
q∈R

rA(q)rB(q) ⩽

(∑
q∈R

rA(q)
2

)1/2

·

(∑
q∈R

rB(q)
2

)1/2

= E×(A)1/2 · E×(B)1/2 = O
(
nα log1/2 n · n1−α log1/2 n

)
= O (n log n) . (13)

When k is sufficiently large, the above contradicts (11), so there is no family of k ·
n1/3 log n concurrent proper lines.

(b) We imitate the proof of part (a). In this case, (11) is replaced with

E×(A,B) = Ω(|L| · n2/3) = Ω(kn1+α/2 log1/2 n).

By definition, we have that E×(A) ⩽ |A|3 = n3α. Adapting (13) leads to

E×(A,B) = O
(
n3α/2 · n1−α log1/2 n

)
= O

(
n1+α/2 log1/2 n

)
.

We end up with the same contradiction as in part (a).
(c) We again imitate the proof of part (a). In this case, (11) is replaced with

E×(A,B) = Ω(|L| · n2/3) = Ω(kn(3−α)/2 log1/2 n).

By definition, we have that E×(B) ⩽ |B|3 = n3−3α. Adapting (13) leads to

E×(A,B) = O
(
nα log1/2 n · n(3−3α)/2

)
= O

(
n(3−α)/2 log1/2 n

)
.

We end up with the same contradiction as in part (a).
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[5] G. Currier, Sharp Szemerédi–Trotter constructions from arbitrary number fields,
arXiv:2304.04900.

[6] C. Demeter, Incidence theory and restriction estimates, arXiv:1401.1873.

[7] G. Elekes, On linear combinatorics i. concurrency — an algebraic approach. Combi-
natorica 17 (1997), 447–458.

the electronic journal of combinatorics 32(1) (2025), #P1.37 21

https://arxiv.org/abs/2304.04900
https://arxiv.org/abs/1401.1873


[8] G. Elekes, On linear combinatorics ii. structure theorems via additive number theory,
Combinatorica 18 (1998),13–25.

[9] G. Elekes, On linear combinatorics iii. few directions and distorted lattices, Combi-
natorica 19 (1999), 43–53.

[10] G. Elekes, Sums versus products in number theory, algebra and Erdős geometry, Paul
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