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Abstract

We consider four examples T = (T (n, k))0⩽k⩽n of combinatorial triangles (Pas-
cal, Stirling of both types, Euler) : through saddle-point asymptotics, their Pascal’s
formulas define four vector fields, together with their field lines that turn out to be
the conjectured limit of sample paths of four well known Markov chains. We prove
this asymptotic behaviour in three of the four cases. Our results lead to a new proof
of Koršunov’s formula for the enumeration of accessible complete deterministic au-
tomata, and to the design of an efficient rejection method for the random generation
of this class of automata.

Mathematics Subject Classifications: 05A10,05A19,60F17,60J10

1 Introduction

1.1 Pascal’s formulas and transition probabilities

Set S = {(n, k) ∈ N2, 0 ⩽ k ⩽ n}, S̊ = {(n, k) ∈ N2, 0 < k < n}, and S⋆ = S\ {(0, 0)}.
Besides Pascal’s triangle, many other combinatorial triangles

T = (T (n, k))(n,k)∈S

of interest satisfy a recursion formula similar to Pascal’s formula, i.e. of the following
form, for (n, k) ∈ S⋆ :

T (n, k) = a(n, k)T (n− 1, k − 1) + b(n, k)T (n− 1, k), (1)

with the convention that either (n, k) ∈ S or T (n, k) = 0. For instance, relation (1) holds
true for the following triangular arrays :

• for Pascal’s triangle, if (a, b)(n, k) = (1, 1) ;
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• for Stirling numbers of the first kind, if (a, b)(n, k) = (1, n− 1) ;

• for Stirling numbers of the second kind, if (a, b)(n, k) = (1, k) ;

• for Eulerian numbers, if (a, b)(n, k) = (n− k, k + 1).

In view of (1), for (n, k) ∈ S⋆, consider

(p0(n, k), p1(n, k)) =

(
b(n, k)T (n− 1, k)

T (n, k)
,
a(n, k)T (n− 1, k − 1)

T (n, k)

)
(2)

as some transition probabilities from (n, k) to (n− 1, k), resp. to (n− 1, k − 1).

Definition 1. For each of these four triangular arrays, the transition probabilities

(pε(n, k))(ε,(n,k))∈{0,1}×S⋆ ,

together with the initial state (m, ℓ), define a Markov chain W = (Wk)0⩽k⩽m.

For the sake of brevity, the Markov chains, as well as their transition probabilities,
related to the four combinatorial triangles, are denoted by (W(Pa), p

(Pa)
ε ), (W(S1), p

(S1)
ε ),

(W(S2), p
(S2)
ε ), (W(E), p

(E)
ε ), respectively. We shall see later that their terminal state Wm

is always the origin.

1.2 Aim of the article

In this article we shall see that these four Markov chains are closely related to well-
studied (to varying degrees) combinatorial stochastic processes (see e.g. [Pit06]) : the
simple random walk, the chinese restaurant process, the coupon collector problem and
the one-dimensional internal DLA, respectively. In each of these combinatorial stochastic
processes, one of the main focuses, if not the main focus, is the study of a random
process X = (Xn)n⩾0 that fits the following description : X0 = 0, and, for n ⩾ 0,
Yn+1 = Xn+1 − Xn is a Bernoulli random variable. Consider the time reversal W of X,
defined below, and its renormalization wm.

Definition 2. For a given m ⩾ 1, set

Wn = (m− n,Xm−n) ∈ S, 0 ⩽ n ⩽ m,

wm(t, ω) = m−1X⌊mt⌋(ω) ∈ S, 0 ⩽ t ⩽ 1,

Then W = (Wn)0⩽n⩽m is called the time reversal of X. Note that, by definition, Wn =
(0, 0) if and only if n = m.

For some history about time reversal of Markov processes, see e.g. the notes at the end
of [CW05, Ch. 10], or [Kol35]. In this section, we give a simple combinatorial description
of W , in terms of the Pascal formula of each triangle. This description is well known for
the simple random walk, while it seems largely overlooked, as far as we know, for the
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other triangles, perhaps because the ratios in relation (2) are easily tractable only in the
case of the Pascal’s triangle. The proof of this combinatorial description is then given in
Section 2. In Section 1.3, we provide simulations of wm that support the results of Section
1.4. The main results of the article, Theorem 8 and Theorem 9, are given in Section 1.4
: relying on results from analytic combinatorics by [Goo61] and [Ben73], Theorem 8
details the asymptotic behaviour of the transition probabilities of (2). Theorem 9 then
states the convergence of wm to the solutions of some ODEs related to the asymptotic
transition probabilities obtained in Theorem 8. The decomposability of the combinatorial
structures enumerated by the four triangles has a striking consequence on the structure
of the solutions : their sets are invariant by positive homotheties. Finally, in Section
1.5.1, we sketch a simple probabilistic proof of an old result by Koršunov [Kor78] about
the enumeration of accessible complete deterministic automata (ACDA) with k letters
and n vertices, using Theorem 9 and a nice combinatorial bijection due to Bassino and
Nicaud [BN06]. In turn, in Section 1.5.2, Proposition 5 and Theorem 9 provide an efficient
rejection method for the random generation of ACDAs. Note that, similarly, Propositions
4 and 7 provide elegant algorithms for the random generation of a permutation with a
prescribed number of cycles, or with a prescribed number of descents. Section 3 is devoted
to the proof of Theorem 8 and Section 4 is devoted to the proof of Theorem 9. Section 5
contains some trite computations that would have disrupted the thread of arguments in
the previous sections.

1.2.1 Simple random walk

Assume that (Yi)i⩾1 is a Bernoulli process, i.e. a sequence of i.i.d. Bernoulli random
variables with parameter p ∈ (0, 1), so that X is the simple random walk. Then

Proposition 3. The distribution of the time reversal of X does not depend on p. More
precisely, for any (m, ℓ) ∈ S⋆,

((Wn)0⩽n⩽m | W0 = (m, ℓ))
(d)
=
(
(W(Pa)

n )0⩽n⩽m | W(Pa)
0 = (m, ℓ)

)
.

This result goes back at least to the introduction of the concept of sufficiency by Fisher
around 1920 [Sti73]. We recall its proof in Section 2. In the next cases, the Bernoulli
random variables Yi are not i.i.d. .

1.2.2 Chinese restaurant process

In the Chinese restaurant process with (0, θ) seating plan, defined at Section 2 (see also,
e.g., [Pit06, Ch. 3]), let Xn denote the number of occupied tables after the arrival of
the nth customer. The increments (Yn)n⩾1 of the stochastic process X are thus Bernoulli
random variables.

Proposition 4. The distribution of the time reversal of X does not depend on θ. More
precisely, for any (m, ℓ) ∈ S⋆,

((Wn)0⩽n⩽m | W0 = (m, ℓ))
(d)
=
(
(W(S1)

n )0⩽n⩽m | W(S1)
0 = (m, ℓ)

)
.
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1.2.3 Coupon collector’s problem

Consider the coupon collector’s problem with N different items. Let Xn denote the
number of different items in the collection after the nth step. Again, the increments
(Yn)n⩾1 of the stochastic process X are Bernoulli random variables, and :

Proposition 5. The distribution of the time reversal of X does not depend on N . More
precisely, for any (m, ℓ) ∈ S⋆,

((Wn)0⩽n⩽m | W0 = (m, ℓ))
(d)
=
(
(W(S2)

n )0⩽n⩽m | W(S2)
0 = (m, ℓ)

)
.

Remark 6. As a consequence, in the three previous cases, given the data (Xn)0⩽n⩽m, Xm

(or W0) are sufficient statistics for the parameters p, θ or N , respectively.

1.2.4 One-dimensional Internal Diffusion Limited Aggregation

Finally, in the one-dimensional Internal Diffusion Limited Aggregation process (or iDLA),
let Xn denote the number of particles settled to the right of the origin after the release of
the nth particle. Then

Proposition 7. For any (m, ℓ) ∈ S⋆, the distribution of the time reversal of X is given,
for any (m, ℓ) ∈ S⋆, by

((Wn)0⩽n⩽m | W0 = (m, ℓ))
(d)
=
(
(W(E)

n )0⩽n⩽m | W(E)
0 = (m, ℓ)

)
.

Note that, in the case of the Euler triangle, there exists an almost perfect analog to
the previous statements, in which some parameter plays the same rôle as p, θ or N , but we
were not able to remove some serious bottlenecks in the proofs. More precise definitions,
references and proofs related to these four stochastic processes are to be found in Section
2.

1.3 Simulations

The behaviour of W(Pa) is well understood since forever. Quite recently, [AC19] gave
a rather precise analysis of W(S2) , with combinatorial analysis of finite automata as a
motivation, see Section 1.5. In this article, we aim to improve and extend some of these
results and proofs.

In this section, in order to surmise the behaviour of the four time-reversed Markov
chains, we present the result of some simulations. For each case, the figures below show
sample paths starting at (m,mt) with t ∈ {0.05, ..., 0.95} and m = 500 :

the electronic journal of combinatorics 32(1) (2025), #P1.38 4



Figure 1: Pascal’s triangle.
Figure 2: Stirling numbers of the

second kind.

Figure 3: Stirling numbers of the first
kind.

Figure 4: Eulerian numbers.

Now, in order to compare the four combinatorial triangles, we show the average of 100
sample paths for each triangle, for m = 1000 and t ∈ {0.05, ..., 0.95} :
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Figure 5: Pascal’s triangle.
Figure 6: Stirling numbers of the

second kind.

Figure 7: Stirling numbers of the first
kind.

Figure 8: Eulerian numbers.

In the first two cases, the smooth nature of these averaged paths is not unexpected
due to old, and more recent, fluid approximation results, see [AC19] or the next sections.
This article aims for a global explanation of the asymptotic behaviour of the four Markov
chains exhibited by these simulations, see Theorem 8 below.

1.4 Asymptotics of sample paths, and field lines of vector fields

Combinatorial analysis, see [Goo61] or [Ben73], yields that,
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Theorem 8. In each of the four cases, there exists a function φ : (0,+∞) → [0, 1] such
that, for any positive number λ∞, when (m, ℓ) → +∞ and limm/ℓ = 1 + λ∞,

lim p1(m, ℓ) = φ(λ∞).

At the end of this section, the function φ is described for each of the four cases.
As a direct consequence of Theorem 8, one expects a fluid approximation of the previ-

ous Markov chains by a special family of curves : let (x, γλ(x))0⩽x⩽n be the field line going
through the point (1, 1/(1 + λ)) for the vector field (1, φ(−1 + x/y)), or, equivalently, let
γλ denote the solution of the ODE

y′ = φ

(
x− y

y

)
(3)

that satisfies y(1) = 1/(1 + λ). For (m, ℓ) ∈ S̊, set

λ(m, ℓ) =
m− ℓ

ℓ
,

often abridged in λ, and let P(m,ℓ) denote the probability distribution of the Markov chain
W starting from (m, ℓ). For the sake of brevity, the notation γλ(m,ℓ) is abridged in γm,ℓ

and denotes the solution of the ODE (3) that satisfies y(1) = ℓ/m. So far we have a
complete proof of the fluid approximation of these Markov chains only in the first three
cases :

Theorem 9. In the first three cases, for any η ∈ (0, 1/2) and any λ∞ > 0, when (m, ℓ) →
+∞ and limλ(m, ℓ) = λ∞,

limP(m,ℓ)

(
sup
0⩽t⩽1

(|wm(t)− γλ∞(t)|) ⩾ m−η + |λ(m, ℓ)− λ∞|
)

= 0.

Note that the special form of the ODE (3) entails that the set of field lines is invariant by
positive homotheties. Also, note that almost sure convergence of wm to γλ∞ with respect
to ∥.∥∞ would be a direct consequence of the bounds obtained in the proof of Theorem
9, if the stochastic processes wm were embedded in the same probability space.

Theorem 9 seems to hold true for Eulerian numbers, according to our simulations (see
Section 1.3), but this remains an open question. For Stirling numbers of the first kind,
Theorem 9 seems to be new, as far as we know. For Stirling numbers of the second kind,
Theorem 9 is a vastly improved version of a result that appeared in [AC19]. In [AC19],
the proof relies mainly on Wormald’s method [War19], and on uniform bounds for

m |p1(m, ℓ)− φ (λ(m, ℓ))| ,
on domains that approach S̊ as well as possible. These uniform bounds follow from a
careful asymptotic analysis of T (m, ℓ), that should have some interest in itself. However
the proof given in the next pages is much simpler, if only because we obtained an explicit
form for the solutions of the four ODEs.

Our choice of four combinatorial triangles may seem arbitrary, and we confess it is
: for instance, Bell’s triangle or Delannoy’s triangle also have Pascal’s formulas, but of
a slightly different form. We do not know if the approach of this article still produces
results for Bell’s triangle or Delannoy’s triangle, in spite of these slight differences.

the electronic journal of combinatorics 32(1) (2025), #P1.38 7



1.4.1 Description of the limit rate

• Pascal’s triangle. Observe that, for all (m, ℓ) ∈ S⋆,

p1(m, ℓ) =
ℓ

m
,

so that

φPa(λ) =
1

1 + λ
.

Relation (3) reduces to y′ = y/x, with the linear functions as solutions, as expected.

• Stirling numbers of the first kind. For λ > 0, set

φS1(λ) = 1− ζS1(λ), (4)

where ζS1(λ)is the unique solution, in (0, 1), of

ζS1
(ζS1 − 1) ln(1− ζS1)

= 1 + λ. (5)

Relation (3) reduces to

y =
xy′ ln(y′)

y′ − 1
. (6)

Then, for x ⩾ 0,

γλ(x) =
1− ζS1(λ)

ζS1(λ)
ln

(
1 + x

ζS1(λ)

1− ζS1(λ)

)
. (7)

• Stirling numbers of the second kind. For λ > 0, set

φS2(λ) = e−ζS2(λ), (8)

where ζS2(λ) is the unique positive solution of

ζS2(λ)

1− e−ζS2(λ)
= 1 + λ. (9)

Relation (3) reduces to

y =
x(y′ − 1)

ln(y′)
. (10)

Then, for x ⩾ 0,

γλ(x) =
1− e−x ζS2(λ)

ζS2(λ)
. (11)

Incidentally, the solution ζS2 also has an expression in terms of the Lambert function,
see [AC19].
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• Eulerian numbers. For λ > 0, set

φE(λ) = 1− ζE(λ)

(1 + λ)(eζE(λ) − 1)
. (12)

where ζE(λ) the unique solution, in R, of

1

1 + λ
=

1

1− e−ζE(λ)
− 1

ζE(λ)
. (13)

Then, for λ ⩾ 0 and for x ⩾ 0,

γλ(x) = x

(
1

1− e−xζE(λ)
− 1

xζE(λ)

)
(14)

is the solution of

y′ = φE

(
x− y

y

)
. (15)

that satisfies γλ(1) = 1/(1 + λ).

For the solutions γλ of the three last ODEs, basic algorithms failed us, so we had
to resort to guessing, with the help of combinatorial and probabilistic arguments
detailed in the proof of Theorem 9 (see Section 4).

1.5 Enumeration and random generation of accessible complete deterministic
automata

The initial motivation for this article is the study of accessible complete deterministic
automata (ACDAs) (see [BN06, AC19] for definitions). ACDAs have nice properties of
minimality, as observed in [CP05] : empirically, either, very often, an ACDA is minimal
with respect to the regular language L it recognizes, or it has typically at most one or
two additional states, once compared with the minimal automata that recognizes L. Let
ak,n denote the number of ACDAs with k letters and n vertices. According to Koršunov
[Kor78, Kor86], for any given k ⩾ 2,

ak,n ∼ ck

{
kn+ 1

n

}
n!, (16)

in which

ck = 1− k e−ζS2(k−1), (17)

and ζS2 is defined by (9). In this Section, following [BN06, AC19], we sketch a probabilistic
proof of Koršunov’s formula, that relies on Theorem 9. The arguments in the proof,
namely Proposition 5 and Theorem 9, are also crucial in the design of an efficient rejection
method for the random generation of ACDAs, see Section 1.5.2.
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1.5.1 Enumeration

According to [BN06], there exists a bijection between the set of ACDA with k letters and
n vertices and a subset Ak,n of the set Ωkn+1,n of surjections from [[kn + 1]] to [[n]]. Thus
(16) states that the ratio #Ak,n/#Ωkn+1,n converges to ck with n. But an element ω of
Ωkn+1,n can be seen as the history of a coupon collector process such that the collection
of n items is complete at step kn+ 1. If, for a random element ω ∈ Ωkn+1,n, we set

Xm(ω) = Card (ω([[m]])) , 1 ⩽ m ⩽ kn+ 1,

and if (Y,W ) are defined accordingly, then W has the same distribution as W(S2) under
P(kn+1,n). As a consequence, in the notations of Section 1.4,

P(kn+1,n)(Ak,n) =
#Ak,n

#Ωkn+1,n

=
ak,n{

kn+1
n

}
n!
, (18)

and Koršunov’s formula can be rephrased as

lim
n

P(kn+1,n)(Ak,n) = ck. (19)

Now, according to [BN06], Ak,n is the set of elements ω ∈ Ωkn+1,n such that

∀ℓ ∈ [[0, n− 1]], Xℓk+1(ω) ⩾ ℓ+ 1,

or, equivalently,
∀ℓ ∈ [[0, kn]], k Xℓ(ω) ⩾ ℓ. (20)

Relation (20) is the condition usually required from a breadth first search walk to insure
the connexity of the underlying graph : here this condition insures the accessibility of the
automata. Note that here (m, ℓ) = (kn+ 1, n), thus :

λ∞ = lim
n
λ(kn+ 1, n) = k − 1.

We shall now sketch the argument, taken from [AC19], which shows, with the help of
Theorem 9, that Υn = Ak,n satisfies

lim
n

P(kn+1,n)(Υn) = 1− ck = k e−ζS2(k−1).

If ω is to belong to Ak,n, then wkn+1(ω) is required to stay above the line y = x/k. But
according to (7), for n large, wkn+1(ω) is close to the corresponding concave limit field
line,

γk−1(t) =
1− e−ζS2(k−1)t

ζS2(k − 1)
,

that crosses the line y = x/k only at its endpoints (0, 0) and (1, 1/k). Thus, ac-
cording to Theorem 9, except for an exponentially small probability, the sample path
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{(ℓ,Xℓ), 0 ⩽ ℓ ⩽ kn+ 1} crosses the line y = x/k only close to its endpoints. The proba-
bility that such a crossing occurs close to (0, 0) is O(n−2), see [AC19, Proposition 2]. As
a consequence, P(kn+1,n)(Υn) has the same asymptotic behaviour as the probability that
the sample path {(ℓ,Xℓ), 0 ⩽ ℓ ⩽ kn+ 1} crosses the line y = x/k close to its endpoint
(kn + 1, n). Close to this endpoint, as a consequence of Theorem 8, the sample path
has approximately the same transition probabilities as a simple random walk with step
distribution (

1− e−ζS2(k−1)
)
δ0 + e−ζS2(k−1)δ−1,

thus the sample path and the simple random walk have essentially the same probability
of crossing the line close to the endpoint. Note that if the simple random walk crosses
the line y = x/k at all, it crosses that line close to the endpoint. Thus P(kn+1,n)(Υn)
converges to the probability pk that the simple random walk crosses the line y = x/k at
all. Finally, as follows for instance from the Pollaczek-Khinchine formula (cf. Corollary
6.6 of [Asm03], or cf. Proposition 3 of [AC19]), pk = 1− ck. In [AC19], the authors turn
these heuristics into a proof of Koršunov’s formula.

1.5.2 Random generation

Once a random element ω ofAk,n has been produced, the random ACDA is easily recovered
from ω with the help of the bijection described in [BN06]. We propose to produce a random
element of Ωkn+1,n, and to reject it if it does not belong to Ak,n. This direct generation
of a random element ω of Ωkn+1,n, with the help of Proposition 5, saves an average of

nkn+1{
kn+1
n

}
× n!

≃
√

eζS2(k−1)−1−ζS2(k−1)

eζS2(k−1)−1
enJ(ζS2(k−1))

steps, compared with the (admittedly clumsy) rejection algorithm in which, at each step,
a random mapping ω from [[kn+1]] to [[n]] is produced, and the random mapping is rejected
unless it is a surjection. Here J is a positive and decreasing function of k discussed in
Section 5.2 of [AC19].

According to Proposition 5, the time reversal W of X has the same distribution as
W(S2), so the first step of our rejection algorithm is the precomputation of the triangle({

m

ℓ

})
0⩽ℓ⩽m⩽kn+1

,

in order to obtain the transition probabilities of W(S2). As a very cheap second step,
given the transition probabilities, one can proceed to the generation of the sample path,
W (ω) = (Wt(ω))0⩽t⩽kn+1, of the Markov chain. At this stage, one can check if ω belongs to
Ak,n directly by inspection of W (ω), with the help of (20), without recovering completely
ω itself, and one can stop the generation of the sample path as soon as (20) is violated.
Then one obtains the sample path of X(ω) = (Xt(ω))0⩽t⩽kn+1 by time reversal. The cost
of rejections caused by (20) is discussed in the next paragraph. In the last step ω is
recovered from X(ω) as follows: ω(1) is drawn uniformly from [[n]], and, recursively, ω(t)
is drawn uniformly from ω([[t− 1]]) if Yt(ω) = 0 and from [[n]]\ω([[t− 1]]) if Yt(ω) = 1.
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Besides the explicit description of the distribution of W given by Proposition 5, time
reversal has another benefit : in general, either (20) is violated by ω for some t ⩾ kn −
O (n1−η), or ω ∈ Ak,n. Actually, due to [AC19], Proposition 2, and due to Theorem 9, the
third case, i.e. (20) is violated by Xt(ω) only for some t ⩽ kn −O (n1−η), occurs with a
probability O (n−2). Thus, in most cases, due to time reversal, the rejection takes place in
the early stages of the generation of W (ω), at a cost smaller than O (n1−η) = O

(
n1/2+ε

)
,

once η = 1/2 − ε is chosen arbitrarily in (0, 1/2). It follows that the average cost of the
generation of a sample path of W that satisfies (20) is essentially the cost O (kn+ 1) of
the final, successful attempt.

Remark 10. Similarly, Propositions 4 and 7 provide elegant algorithms for the random
generation of a permutation of m objects containing exactly ℓ cycles, or having exactly ℓ
descents : a first step, as above, is the precomputation of the triangles([

t

k

])
0⩽k⩽t⩽m

or

(〈
t
k

〉)
0⩽k⩽t⩽m

,

in order to obtain the transition probabilities of W(S1) or W(E). This allows for the cheap
generation of a sample path of W that starts from (m, ℓ), and one gets the sample paths
of X and Y at once. Then one runs an avatar of the random permutation process of
Remark 12 in which :

• if W is a copy of W(S1) starting from (m, ℓ), for 1 ⩽ t ⩽ m, the insertion of t in a
random list of elements of [[t−1]] takes place at the end if Yt(ω) = 1, and at any of the
remaining t−1 positions if Yt(ω) = 0. One recovers the random permutation ω with
ℓ cycles from the final random list of elements of [[m]] using the first fundamental
transformation of Foata and Schützenzerger, see [Lot97, Chap. 10.2] ;

• if W is a copy of W(E) starting from (m, ℓ), for 1 ⩽ t ⩽ m, the insertion of t in
a random list of elements of [[t − 1]] takes place at an ascent of this list (or at the
beginning of the list) if Yt(ω) = 1, at a descent or at the end if Yt(ω) = 0. Then the
final random list of elements of [[m]] is a random permutation ω with ℓ descents.

2 Time reversal and Markov property of the reversed process

In this section, we prove Propositions 3, 4, 5 and 7. The notations Xn, Yn, Wn are defined
at Section 1.2.

2.1 Time reversal

As already known at least since Kolmogorov, see [Kol35, (7)], a time-reversed Markov
process is still an (eventually inhomogeneous) Markov process. Let us recall the basic facts
that we need here : if hk denotes the probability distribution of Xk and if X = (Xk)k⩾0

is an inhomogeneous Markov chain with kernels (Qk)k⩾0, i.e.

Qk,i,j = P (Xk+1 = j |Xk = i) ,
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then

Proposition 11. W = (Wn)0⩽n⩽m is a Markov chain with state space S and with kernel
P defined on S⋆ by

P(n,i),(n−1,j) =
hn−1(j)Qn−1,j,i

hn(i)
.

Proof. First, since (0, 0) is only reached, eventually, at time m, there is no need to define
P(0,0),(.,.). Also, P is a probability kernel due the Chapman-Kolmogorov equations for (hn)
and (Qn). Then,

P ((Xk)0⩽k⩽m = (xk)0⩽k⩽m) = h0(x0)
m−1∏
k=0

Qk,xk,xk+1
,

thus, provided that xm = ℓ,

P ((Xk)0⩽k⩽m = (xk)0⩽k⩽m | Xm = ℓ) =
h0(x0)

hm(ℓ)

m−1∏
k=0

Qk,xk,xk+1
,

=
m−1∏
k=0

P(k+1,xk+1),(k,xk).

That is,

P ((Wk)0⩽k⩽m = (m− k, xm−k)0⩽k⩽m | W0 = (m, ℓ)) =
m−1∏
k=0

P(k+1,xk+1),(k,xk),

as expected.

Except for Eulerian numbers, hn(k) = T (n, k)θk/Tn(θ), or hn(k) = T (n, k)θk↓/Tn(θ),
in which Tn(θ) is a normalizing constant :

Tn(θ) =
n∑

k=0

T (n, k)θk, or Tn(θ) =
n∑

k=0

T (n, k)θk↓. (21)

For Eulerian numbers, hn(k) = T (n, k)/Tn(1) = T (n, k)/n!.

Remark 12. Note that Qn results from a natural growing mechanism with independent
steps, that is, a Markovian growth process, obtained as follows :

• by addition of an n + 1th letter, either a or b, at the end of a random word of
{a, b}n, in order to form an n+ 1-letters long word, for Pascal’s triangle,

• by addition of the image of n+1 to a random mapping from [[n]] to [[N ]], in order to
form a random mapping from [[n+ 1]] to [[N ]], for the the second Stirling triangle,
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• by random insertion of n + 1 in order to form a permutation on [[n + 1]], starting
from a permutation on [[n]], for the 2 other examples.

In each case, the added letter, or integer, is chosen independently of the previous history
of the growth process, hence the Markovian character of these growth processes. For the
sake of brevity, in this article, we call the last growth process the random permutation
process.

For these three nonhomogeneous Markov growth processes, there exist well studied
functionals that retain the Markov property, and whose one-dimensional distributions are
given by the rows of the corresponding combinatorial triangle :

• the sequence of counts of letter a, in the sequence of words defined previously,
forms one of the most studied Markov chain : the simple random walk, whose one-
dimensional distributions hn are binomial distributions, famously related to Pascal’s
triangle ;

• the sequence of number of cycles, derived from the random permutation process,
is an inhomogeneous Markov chain, related to the chinese restaurant process. Its
one-dimensional distributions hn have a simple expression in terms of the Stirling
numbers of the first kind ;

• the sequence of sizes of images, derived from the sequence of random mappings, is a
famous inhomogeneous Markov chain, related to the coupon collector problem : it is
the sequence of successive sizes of the collection. Its one-dimensional distributions
hn have a simple expression in terms of the Stirling numbers of the second kind ;

• the sequence of the number of descents, also derived from the random permutation
process, is an inhomogeneous Markov chain, related to the internal diffusion limited
aggregation process. Its one-dimensional distributions hn have a simple expression
in terms of Eulerian numbers.

Chapman-Kolmogorov equations for these Markov chains are derived from Pascal’s for-
mulas for corresponding triangles through renormalization : in our settings, Qn is defined
by (a, b) as follows

Qn,x,y = cn(θ)
(
b(n+ 1, y)1ly=x∈[[n]] + a(n+ 1, y) θ 1ly=x+1∈[[n+1]]

)
, (22)

in which cn(θ) denotes a normalizing factor Tn(θ)/Tn+1(θ), and θ = θx+1/θx should be
replaced, in the last factor of (22), with θ− x = θx+1↓/θx↓ in the case of Stirling numbers
of the second kind. For Eulerian numbers, θ = 1. Then, Pascal’s formulas appear as
special cases of the Chapman-Kolmogorov equation hn−1Qn−1 = hn, and relation (2) is
just a special case of Proposition 11.

Here, since Y is a sequence of Bernoulli random variables, Qn,xn,xn+1 ̸= 0 only if
εn+1 = xn+1 − xn belongs to {0, 1}, thus P(n,x),(n−1,y) ̸= 0 only if ε = x − y belongs to
{0, 1} : in this article, P(n,x),(n−1,x−ε) is abridged to pε(n, x).
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2.2 Simple random walk

Proof of Proposition 3. Here

T (n, k) =

(
n

k

)
, θ =

p

1− p
, Tn(θ) = (1 + θ)n

hn(k) =

(
n

k

)
pk(1− p)n−k, cn(θ) =

1

1 + θ
= 1− p.

Then, for instance,

P(n,i),(n−1,i−1) =
hn−1(i− 1)Qn−1,i−1,i

hn(i)

=

(
n−1
i−1

)
pi−1(1− p)n−i × p(
n
i

)
pi(1− p)n−i

=

(
n−1
i−1

)(
n
i

) = p1(n, i)

as expected.

2.3 Chinese restaurant process

Set θ ∈ (0,+∞). The chinese restaurant process, introduced in 1974 by Antoniak in
[Ant74], is defined as follows : when entering a metaphoric chinese restaurant, the first
customer seats at the first table. For n > 1, the nth customer seats at the kth (non-
empty) table with probability

cn,k

n−1+θ
(where cn,k is the number of customers seated at

this table), or at an empty table with probability θ
n−1+θ

. Let Xn denote the number of
non-empty tables after the arrival of the nth customer. For exemple, let us sample the
first 50 steps of the process, for θ = 1 :

Figure 11: A realization of the chinese restaurant process (here X50 = 6).

Proof of Proposition 4. In this example, (Yi)i⩾1 is a family of independent Bernoulli ran-
dom variables with respective parameters pi = θ/(i− 1 + θ). We have :

T (n, k) =

[
n

k

]
, Tn(θ) =

∑
k

T (n, k)θk = (θ)↑n, cn(θ) =
1

θ + n
.
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Thus the probability distribution of Xn is given, for n ⩾ 1, by:

hn(ℓ) = P(Xn = ℓ) =
θℓ

(θ)↑n

[
n

ℓ

]
1l1⩽ℓ⩽n,

see [Pit06, Section 3.1.3]. For instance,

Qn,k,k+1 =
θ

n+ θ
= cn(θ) a(n+ 1, k) θ.

and

p1(n, k) = P(n,k),(n−1,k−1) =
hn−1(k − 1)Qn−1,k−1,k

hn(k)

=

θk−1

(θ)n−1↑

[
n−1
k−1

]
× θ

n−1+θ[
n
k

]
θk

(θ)n↑

=

[
n−1
k−1

][
n
k

] ,
as expected.

2.4 Coupon collector’s problem

Let us recall the famous problem studied by Gauss and Laplace, among others : a collector
wants to complete a collection of N different items (denoted 1, ..., N). At each step,
he receives a coupon chosen uniformly from [[1, N ]]. The average time to complete the
collection is known to be NHN , where

HN =
N∑
k=1

1

k

is the Nth harmonic number. If Xn denotes the number of different items in the collection
after the nth step, then we call the graph of t 7→ X⌊t⌋ the completion curve.

Figure 9: Three completion curves for a
n = 20 items collection.

Figure 10: Three completion curves for
a n = 200 items collection.
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Proof of Proposition 5. See [AC19, Proposition 1], in which the proof is given for m = N .
It fits with the frame given at Section 2.1 as follows : set

T (n, k) =

{
n

k

}
, θ = N,

but consider a variant of Tn. Here :

Tn(θ) =
∑
k

T (n, k)θk↓ = Nn

hn(k) =

(
N

k

){
n

k

}
k!

1

Nn
=

{
n

k

}
Nk↓

Nn
, cn(θ) =

1

N
.

Then, for instance,

Qn,k,k+1 = a(n+ 1, k)
θk+1↓

θk↓
cn(θ) =

N − k

N
.

and

p1(n, k) = P(n,k),(n−1,k−1) =
hn−1(k − 1)Qn−1,k−1,k

hn(k)

=

{
n−1
k−1

}
Nk−1↓

Nn−1 × N−k+1
N{

n
k

}
Nk↓

Nn

=

{
n−1
k−1

}{
n
k

} ,

as expected.

2.5 One-dimensional Internal Diffusion Limited Aggregation process

Diaconis and Fulton [DF91] introduced the internal Diffusion Limited Aggregation pro-
cess (iDLA). Lawler, Bramson and Griffeath [LBG92] coined the terminology iDLA, and
obtained an asymptotic shape behaviour. In the iDLA process, an aggregate of particles
on Zd is built as follows:

1. the first particle settles at the origin;

2. the next particles perform a symmetric random walk on Zd, starting from the origin,
and settle at the first empty site they encounter.

When d = 1, let Xn denote the number of particles settled to the right of the ori-
gin after the nth step. Then, according to [Mit20], the process (Xn)n is an inhomoge-
neous Markov chain with the same distribution as the sequence of number of descents
of the sequence of random permutations defined previously. Both processes have the
one-dimensional distribution below

P(Xn = k) = hn(k) =

〈
n
k

〉
n!

1l(n,k)∈S.



In the case of the one-dimensional iDLA we can stack successive aggregates upon one
another to form a space-time diagram. As with Figure 12, the longer it took to visit a
cell, the darker we color it.

Figure 13: Space-time diagram of
a one-dimensional iDLA.

Proof of Proposition 7. In this example, we have :

T (n, k) =

〈
n
k

〉
, Tn(1) =

∑
k

T (n, k) = n!, cn(1) =
1

n
.

Thus the probability distribution of Xn is given, for n ⩾ 1, by:

hn(ℓ) = P(Xn = ℓ) =
1

n!

〈
n
ℓ

〉
1l1⩽ℓ⩽n,

see [Pit06, Section 3.1.3]. For instance,

Qn,k,k+1 =
n− k

n+ 1
= cn(1) a(n+ 1, k).

and

p1(n, k) = P(n,k),(n−1,k−1) =
hn−1(k − 1)Qn−1,k−1,k

hn(k)

=

1
n−1!

〈
n− 1
k − 1

〉
× n−k

n〈
n
k

〉
1
n!

=

〈
n− 1
k − 1

〉
(n− k)〈

n
k

〉 ,
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as expected.

3 The limit vector field : proof of Theorem 8

One can see the set v of average jumps v(n, k), defined, for (n, k) ∈ S, by

v(n, k) = p0(n, k)× (−1, 0) + p1(n, k)× (−1,−1)

= (−1,−p1(n, k)) ,

as a kind of discrete vector field v on S, with slope p1(n, k) at point (n, k). As a conse-
quence, the convergence of the sample paths of the time-reversed Markov chains of Section
1.2 (see Theorem 9) should require a precise asymptotic analysis of

p1(n, k) =
a(n, k)T (n− 1, k − 1)

T (n, k)
,

and thus, of T (n, k).
Consider the generating functions Vk and Hn defined by

Vk(z) =
+∞∑
n=k

1

fn
T (n, k)zn, Hn(w) =

n∑
k=0

T (n, k)wk,

respectively. Here fn is either 1 or n! : since the two Stirling triangles enumerate sets
of labelled objects (cycles and sets, see [FS09, examples II.3 and II.4, page 99]) the
factor n! is due to the use of EGFs. Also, since we consider sets, not sequences, of k
objects, i.e. unordered collections, the generating function Vk contains a factor 1/k!. For
Pascal’s triangle and for Euler’s triangle, fn = 1. Except for Euler’s triangle, Vk exhibits
a factorisation A × Bk suitable for the saddle-point method for large powers (see [FS09,
Ch. VIII.8, p. 585]), while, for Eulerian numbers, Hn is approximately of the form Bn,
allowing the use of large deviations methods.

Due to these factorisations, the limit vector field depends only on the slope

y

x
=

1

1 + λ
,

and the function φ depends on B alone, in the first three cases through the saddle-point
equation

B′ (ζ)

B (ζ)
=

1 + λ

ζ
, (23)

obtained by optimisation of the function x → B(x)

x1+λ
on (0,+∞), see [FS09, Th. VIII.8,

p. 587]. For Eulerian numbers, φ depends on B through the Legendre transformation of
lnB, leading to the equation :

B′ (ζ)

B (ζ)
=

1

1 + λ
. (24)

Thus, in the four cases, φ is a simple function of ζ, while ζ is an implicit function of the
slope y/x.



Proof of Theorem 8. Except for Eulerian numbers, let ζ(λ) be defined implicitly by (23),
i.e. let ζ(.) be the inverse function of :

x −→ xB′ (x)

B (x)
− 1.

The Eulerian case is similar, but uses large deviations rather than saddle-point methods,
and will be handled separately. In the remaining three cases, recall that a(n, k) = 1, and
set :

1 + λ =
n

k
, ζ = ζ(λ), 1 + λ̃ =

n− 1

k − 1
, ζ̃ = ζ(λ̃).

For these three cases, the saddle-point method, see [FS09, Part B, Chap. VIII], leads to

T (n, k) ∼ fn
fk

(
B (ζ)

ζ1+λ

)k

g(n, k), (25)

in which g(., .) is some factor such that g(n, k) ∼ g(n − 1, k − 1). The invariance by
homothetie of the field lines results from the factorisation Vk = A × Bk and from the
Cauchy formula, that leads to the key role of the slope 1+λ in the asymptotic behaviour
(25), and is thus a consequence of the decomposability of the underlying combinatorial
structures.

The factor fn/fk matters only for the two Stirling triangles. As a consequence, for the
two Stirling triangles, we have

p1(n, k) ∼
a(n, k) k

n

ζ̃1+λ̃

B
(
ζ̃
)
B

(
ζ̃
)

ζ̃1+λ̃

ζ1+λ

B (ζ)

k

∼ 1

1 + λ

ζ1+λ

B (ζ)

(
ζ̃1+λ

ζ̃1+λ̃

)k
B

(
ζ̃
)

ζ̃1+λ

ζ1+λ

B (ζ)

k

∼ 1

1 + λ

ζ1+λ

B (ζ)
ζ(λ−λ̃)k,

the last step due to

lim
k

k ln

B
(
ζ̃
)

ζ̃1+λ

ζ1+λ

B (ζ)

 = 0. (26)

Actually, since ζ is solution of the saddle-point equation, the derivative of

x→ ln

(
B (x)

x1+λ

)
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vanishes at ζ, thus

ln

B
(
ζ̃
)

ζ̃1+λ

ζ1+λ

B (ζ)

 = o
(
ζ̃ − ζ

)
= o

(
λ− λ̃

)
,

but

λ− λ̃ =
n

k
− n− 1

k − 1
∼ −λ

k
,

entailing (26). Thus

p1(n, k) ∼
1

1 + λ

ζ

B (ζ)
.

Finally, for the two Stirling triangles, the saddle-point equation (23) gives

p1(n, k) ∼
1

B′ (ζ)
,

For Pascal’s triangle,
(
n
k

)
enumerates words with n letters, k among them being a’s and the

n−k others being b’s, thus Pascal’s triangle enumerates sequences (not sets) of unlabelled
objects1, for which one usually uses OGFs. As a consequence, fn = 1, and, compared
with the previous computation, we are rid of the factor n!/k! in T (n, k), and of the factor
k/n = 1/(1 + λ) in p1(n, k), thus we obtain

p1(n, k) ∼
ζ

B (ζ)
.

Before we turn to the case of Eulerian numbers, let us derive φ for each of the 3 first cases
:

• Pascal’s triangle :

Vk,Pa(z) =
∑
n⩾k

(
n

k

)
zn =

1

1− z

(
z

1− z

)k

,

BPa(z) =
z

1− z
,

p1(n, k) ∼
ζ

BPa (ζ)
= 1− ζ.

Here (23) can be written
1

1− ζ
= 1 + λ,

1A word with n letters, k among them being a’s and the n−k others being b’s, can be seen as a sequence
of k words of the form bma followed by a word of the form bm.
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thus φ(Pa)(k/n) = 1
1+λ

= k/n, that is :

p1(n, k) ∼
k

n
,

which is not a surprise, since it is well known that, actually, p1(n, k) =
k
n
.

• Stirling numbers of the first kind (unsigned)

Vk,S1(z) =
∑
n⩾k

[
n

k

]
zn

n!
=

1

k!
(− ln(1− z))k ,

BS1(z) = − ln(1− z),

p1(n, k) ∼
1

B′
S1 (ζS1)

= 1− ζS1.

Here (23) can be written

ζS1
(ζS1 − 1) ln(1− ζS1)

= 1 + λ, (27)

which defines ζS1 as smooth concave function of λ > 0, with values in (0, 1). Thus

φS1(k/n) = 1− ζS1
(
n
k
− 1
)
. (28)

Note that (27) is the equation to be solved when one wants to tune the parameter
ζ of a logarithmic probability distribution in order to obtain the expectation 1 + λ.

• Stirling numbers of the second kind

Here :

Vk,S2(z) =
∑
n⩾k

{
n

k

}
zn

n!
=

1

k!
(ez − 1)k ,

BS2(z) = ez − 1,

p1(n, k) ∼
1

B′
S2 (ζS2)

= e−ζS2 ,

and (23) can be written

ζS2
1− e−ζS2

= 1 + λ, (29)

see [AC19]. Thus

φS2(k/n) = e−ζS2(
n
k
−1).

Note that, according to Good [Goo61] and others, ζS2 is a smooth concave function
of λ > 0, with positive values. Note also that (29) is the equation to be solved when
one wants to tune the parameter ζ of a Poisson random variable conditioned to be
positive in order to obtain the expectation 1 + λ.
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For Eulerian numbers, though the computation of φE has a similar flavour, it presents
some notable differences. In order to sum up the asymptotic analysis of Eulerian numbers,
set, as done in [Ben73] :

t =
k

n
=

1

1 + λ
.

In [Ben73, page 97], the main tool is the approximation of Hn(e
s), the Laplace transform

of hn, by

BE(s)
n+1 = r(s)−n−1 =

(
es − 1

s

)n+1

.

In other terms, the key point in [Ben73] is that hn is approximately the distribution of
the sum of n+ 1 i.i.d. uniform random variables (Uk)0⩽k⩽n, each with Laplace transform
BE(s). This is reminiscent of Tanny’s representation of Eulerian numbers (cf. [Tan73]) :

hn (k) =

〈
n
k

〉
n!

= P (⌊U1 + U2 + · · ·+ Un⌋ = k) . (30)

Bender obtains the following asymptotic formula for

〈
n
k

〉
when (n, k) goes to infinity

〈
n
k

〉
n!

∼
(
BE(ζE)e

−ζEt
)n

g(n, k)

in which g(., .) is some factor such that g(n, k) ∼ g(n− 1, k − 1), and in which ζE is the
only real number such that

1

1 + λ
= t =

∂

∂ζE
ln

(
eζE − 1

ζE

)
=

eζE

eζE − 1
− 1

ζE
. (31)

One notices that ζE is the derivative of the Legendre-Fenchel transformation of the
cumulant-generating function of the uniform distribution, i.e. the unique solution of

∂

∂ζE
ln
(
BE(ζE)e

−ζEt
)
=
B′

E(ζE)

BE(ζE)
− t = 0. (32)
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As a consequence, for Eulerian numbers, we have

p1(n, k) ∼
a(n, k)

n

(
BE(ζ̃E)

n−1e−ζ̃E(k−1)

BE(ζE)ne−ζEk

)

∼ a(n, k)

n

eζ̃E

BE(ζ̃E)

(
BE(ζ̃E)

ne−ζ̃Ek

BE(ζE)ne−ζEk

)

∼ (1− t)eζE

BE(ζE)

(
BE(ζ̃E)e

−ζ̃Et

BE(ζE)e−ζEt

)n

∼ (1− t)eζE

BE(ζE)

the last step due to

lim
n

n ln

(
BE(ζ̃E)e

−ζ̃Et

BE(ζE)e−ζEt

)
= 0. (33)

Actually, since ζE is solution of (32), the derivative of

x→ ln
(
BE(x)e

−xt
)

vanishes at ζE, thus

ln

(
BE(ζ̃E)e

−ζ̃Et

BE(ζE)e−ζEt

)
= o

(
ζ̃E − ζE

)
= o

(
t− t̃

)
,

but

t− t̃ =
k

n
− k − 1

n− 1
∼ 1− t

n
,

entailing (33). Thus

p1(n, k) ∼
(1− t)ζEe

ζE

eζE − 1
=

λζE
(1 + λ)(1− e−ζE)

= φE(λ).

Note that :

ζE(1− t) = −ζE(t), φE(1− t) = 1− φE(t) =
tζE

eζE − 1
,

as expected from the relation

〈
n
k

〉
=

〈
n

n− k − 1

〉
.

4 Sample path convergence

This section is devoted to the proof of Theorem 9 for the first three triangles. For the sake
of completeness, we first give the well known proof of Theorem 9 for Pascal’s triangle.

the electronic journal of combinatorics 32(1) (2025), #P1.38 24



In the case of Stirling numbers of the second kind, a weaker form of Theorem 9 was
obtained in [AC19] at the price of a tedious proof using Wormald method and saddle-
point asymptotics. For the two Stirling triangles, these alternative, and simpler, proofs
are mere adaptations of the proof for Pascal’s triangle: we can see the Markov chain
W as a conditioned process with a parameter (p, θ or N) that we can chose arbitrarily.
Choosing the parameter equal to its maximum likelihood estimator knowing the terminal
point (m, ℓ) of the sample path2, which suggests the choices

p0 =
ℓ

m
, θ0 = m

1− ζS1(λ)

ζS1(λ)
, N0 =

⌈
m

ζS2(λ)

⌉
,

makes the probability of the condition Xm = ℓ as large as possible, that is

P(Xm = ℓ) = Θ(1/
√
m). (34)

The unconditional large deviation probabilities being exponentially small, relation (34)
entails that the conditional large deviation probabilities are exponentially small too. It
follows that the application t → m−1E

[
X⌊mt⌋

]
provides a good approximation for the

solutions γλ of the ODEs.
For Euler’s triangle, we think that Theorem 9 holds true too, but our proof is still

incomplete. In the case of Stirling triangles of both kind, we believe that the proofs given
in this section are new.

Proof of Theorem 9. Consider two probability distributions for the processes (W,X, Y )
defined at section 1.2. Under P(m,ℓ), W is a Markov chain starting from (m, ℓ), distributed
asW (with the same distribution asW(Pa),W(S1) orW(S2), in the three cases we consider),
and the processes (X, Y ) are distributed accordingly. On the other hand, under Pσ, (σ
standing for p, θ or N in the three cases we consider) (W,X, Y ) has the distribution
induced by the simple random walk X with parameter p, the chinese restaurant process
with parameter θ, or the coupon collector with parameter N , Y = (Yk)1⩽k⩽m being, in
each of these cases, a sequence of Bernoulli random variables. According to Propositions
3, 4 and 5, for any σ, and any set B in the relevant state space,

P(m,ℓ) ((W,X, Y ) ∈ B) = Pσ ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /Pσ (Xm = ℓ) (35)

= Pσ ({(W,X, Y ) ∈ B} ∩ {Xm = ℓ}) /Pσ (W0 = (m, ℓ)) .

Let ∥.∥∞ denote the supremum norm over the interval [0, 1], and set

Am = {∃n ∈ [[0,m]] s.t. ∥Wn − (m− n,E[Xm−n])∥1 ⩾ m1−η/
√
2} ,

= {∃n ∈ [[0,m]] s.t. |Xn − E[Xn]| ⩾ m1−η/
√
2} ,

Bm =
{
∥wm − γm,ℓ∥∞ ⩾ m1−η

}
.

Then, according to (35), for any σ,

P(m,ℓ)(Am) =
Pσ(Am ∩ {Xm = ℓ})

Pσ(Xm = ℓ)
⩽

Pσ(Am)

Pσ(Xm = ℓ)
. (36)

2Recall that the terminal point (m,Xm) is a sufficient statistic.
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In each of the three cases, Bm ⊂ Am for m large enough. On the other hand Pσ(Am)
decays exponentially for any σ : actually, we have, for all t > 0 and all n ∈ [[1,m]],

Pσ(|Xn − E[Xn]| ⩾ t) ⩽ 2 exp

(
−2t2

n

)
⩽ 2 exp

(
−2t2

m

)
. (37)

In particular, for any η ∈ (0, 1/2) and for t = m1−η/
√
2,

Pσ(|Xn − E[Xn]| ⩾ m1−η/
√
2) ⩽ 2 exp

(
−m1−2η

)
.

Thus

Pσ (Am) ⩽
m∑

n=1

Pσ(|Xn − E[Xn]| ⩾ m1−η/
√
2) ⩽ 2m exp

(
−m1−2η

)
. (38)

But, for a suitable choice σ0 of σ,

Pσ0(Xm = ℓ) = Θ

(
1√
m

)
. (39)

Finally, in each case, P(m,ℓ) (Bm) = O(m3/2e−m1−2η
) is a direct consequence of (36), (38)

and (39), and Theorem 9 follows.
Proof of Theorem 9 : Pascal’s triangle. Since Y is a sequence of independent

Bernoulli random variables with parameter σ = p ∈ (0, 1), Hoeffding’s inequality (37)
holds true for all t > 0 and all n ∈ [[1,m]], and Pp(Am) decays exponentially for any
p ∈ (0, 1) and any η ∈ (0, 1/2), due to (38). But (36) holds for σ0 = p̃ = ℓ/m too. For
this choice of σ0 = p̃, using Stirling formula, one finds

Pp̃(Xm = ℓ) =

(
m

ℓ

)(
ℓ

m

)ℓ(
m− ℓ

m

)m−ℓ

∼ 1√
2πp̃(1− p̃)

1√
m
.

For Pascal’s triangle, recall that γm,ℓ(t) = ℓt/m, thus, for mt ∈ [[0,m]], we have γm,ℓ(t) =
m−1Ep̃[Xmt] and, as a consequence,

Am =
{
sup {|wm(t)− γm,ℓ(t)| ,mt ∈ [[0,m]]} ⩾ m−η/

√
2
}
.

Now

0 ⩽ sup
t∈[0,1]

{|wm(t)− γm,ℓ(t)|} − sup
mt∈[[0,m]]

{|wm(t)− γm,ℓ(t)|} ⩽
ℓ

m2
⩽

1

m
,

so that, for m large enough, Bm ⊂ Am, and P(m,ℓ) (Bm) = O(m3/2e−m1−2η
). Since

∥γm,ℓ − γλ∞∥∞ ⩽ |λ(m, ℓ)− λ∞| ,
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it follows that

P(m,ℓ)

(
∥wm − γλ∞∥∞ ⩾ m−η + |λ(m, ℓ)− λ∞|

)
= O(m3/2e−m1−2η

).

Proof of Theorem 9 : Stirling numbers of the first kind. Here the parameter
is traditionally denoted θ, rather than σ, and under Pθ, (Yk)k⩾1 is a family of independent
Bernoulli random variables with respective parameters

pk =
θ

k − 1 + θ
.

Thus X = (Xn), that can be seen as the number of non-empty tables after the arrival of
the nth customer, as explained in Section 2.3, satisfies (36) and (37), due to Hoeffding’s
inequality. Note that, under Pθ,

Eθ[Xn] =
n∑

k=1

θ

k − 1 + θ
.

Also, as in (27), recall that for the choice

γm,ℓ(t) =
1− ζ

ζ
ln

(
1− ζ + t ζ

1− ζ

)
.

in which
ζ

(ζ − 1) ln(1− ζ)
=
m

ℓ
= 1 + λ,

we have γm,ℓ(1) = 1/1 + λ = ℓ/m. But, for the choice θ0 = m(1− ζ)/ζ,∣∣∣∣Eθ0

[
Xn

m

]
− γm,ℓ(n/m)

∣∣∣∣ ⩽ n2

m3

ζ

2(1− ζ)
⩽

ζ

m(1− ζ)
. (40)

Since γm,ℓ is a contraction,

0 ⩽ ∥wm − γm,ℓ∥∞ − sup
mt∈[[0,m]]

{|wm(t)− γm,ℓ(t)|} ⩽
1

m
,

thus Bm ⊂ Am provided that

m−η

√
2

+
ζ

m(1− ζ)
+

1

m
⩽ m−η,

that is, Bm ⊂ Am for m large enough. Relation (36) holds true for any σ = θ > 0, thus
it holds for σ = θ0 = (1− ζ)m/ζ too, but, using relation (13) in [Goo61], one finds

Pθ0(Xm = ℓ) =
θℓ0

(θ0)↑m

[
m

ℓ

]
1l1⩽ℓ⩽m,

∼ 1√
m

√
ln(1− ζ)

2π(1 + λ)(ζ + ln(1− ζ))
. (41)
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Due to (36), P(m,ℓ)(Am) = O(m3/2e−m1−2η
) and decays exponentially for η ∈ (0, 1/2) so

that, as expected,
lim
m

P(m,ℓ) (Bm) = 0.

Finally, ∥γλ − γµ∥∞ = |γλ(1)− γµ(1)| ⩽ |λ− µ| , thus

P(m,ℓ)

(
∥wm − γλ∞∥∞ ⩾ m−η + |λ(m, ℓ)− λ∞|

)
= O(m3/2e−m1−2η

).

Proof of Theorem 9 : Stirling numbers of the second kind. Here the parameter
is traditionally denoted by N , rather than σ : under PN , Xn is the number of different
coupons that have been collected after n draws with replacement in a collection of N
available coupons, and the processes (X, Y,W ) are distributed accordingly. Due to [MR95,
Ch. 4, Theorem 4.18 and pages 92-95], by Azuma-Hoeffding’s inequality, relations (37)
and (38) hold true3. Relation (36) holds true for any σ = N ⩾ ℓ, thus for N0 = ⌈m/ζ⌉
too, but, using relation (3) in [Goo61], one finds that

P⌈m/ζ⌉(Xm = ℓ) =
N0!N

−m
0

N0 − ℓ!

{
m

ℓ

}
so that

1

P⌈m/ζ⌉(Xm = ℓ)
= O(

√
m). (42)

Thus, P(m,ℓ)(Am) = O(m3/2e−ζm1−2η
) and decays exponentially for η ∈ (0, 1/2). Finally

let us check that Bm ⊂ Am for m large enough. Note that, under PN ,

EN [Xn] = N

(
1−

(
1− 1

N

)n)
,

so that ∣∣EN [Xn]−N
(
1− e−

n
N

)∣∣ ⩽ n

2N
. (43)

Also, as in (29), set
γm,ℓ(t) =

(
1− e−ζt

)
/ζ

in which

ζ

1− e−ζ
= 1 + λ =

m

ℓ
,

and set
m

ζ̃
=

⌈
m

ζ

⌉
= N0, so that 0 ⩽ ζ − ζ̃ ⩽

ζζ̃

m
.

3Note that Motwani and Raghavan provide a slightly sharper bound
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Actually, due to (43), for 0 ⩽ n ⩽ m,∣∣∣∣EN0 [Xn]

m
− γm,ℓ(n/m)

∣∣∣∣ ⩽ n

2N0m
+

∣∣∣∣N0

m

(
1− e

− n
N0

)
− γm,ℓ(n/m)

∣∣∣∣
⩽

n

2N0m
+

∣∣∣∣∣1− e−ζ̃n/m

ζ̃
− 1− e−ζn/m

ζ

∣∣∣∣∣
⩽

ζ̃

2m
+

1 + ζ̃

m
, (44)

Thus Bm ⊂ Am for m large enough, i.e. provided that

m−η

√
2

+
ζ̃

2m
+

1 + ζ̃

m
⩽ m−η.

Finally

0 ⩽ sup
t∈[0,1]

{|wm(t)− γm,ℓ(t)|} − sup
mt∈[[0,m]]

{|wm(t)− γm,ℓ(t)|} ⩽
1

m
,

so that, for m large enough,{
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ⩾ m−η

}
⊂ Am, (45)

and, as expected,

lim
m

P(m,ℓ)

(
sup
t∈[0,1]

|wm(t)− γm,ℓ(t)| ⩾ m−η

)
= 0.

Again ∥γλ − γµ∥∞ = |γλ(1)− γµ(1)| ⩽ |λ− µ| , thus

P(m,ℓ)

(
∥wm − γλ∞∥∞ ⩾ m−η + |λ(m, ℓ)− λ∞|

)
= O(m3/2e−m1−2η

).
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5 Appendix : proofs and computations.

Note that in the 4 cases, γm,ℓ inherits from X the property of being an increasing con-
traction. Also, in Theorem 9, the assumption that (m, ℓ) → +∞ and limλ(m, ℓ) = λ∞ ∈
(0,+∞) entails that ζ = ζ(λ(m, ℓ)) and ζ̃ are ultimately bounded away from 0 and +∞.
For instance, this is needed for relation (45), that holds true when

m ⩾

(
4 + 3ζ̃

2−
√
2

)1/1−η

.

Proof of (7).

The relation

y′ = φS1

(
x− y

y

)
is equivalent to

1− y′ = ζS1

(
x− y

y

)
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or, by (5), to
1− y′

y′ ln(y′)
= −x

y
. (46)

Then, for x ⩾ 0, and the choice

y = a ln
(
1 +

x

a

)
, y′ =

a

a+ x

relation (46) holds, for it can be written

x

a ln(a/a+ x)
= −x

y
.

Then a is chosen in such a way that

1

1 + λ
= γλ(1) = a ln

(
1 + 1

a

)
,

that is, a = 1−ζS1(λ)
ζS1(λ)

, leading to

1

1 + λ
= γλ(1) =

1−ζS1(λ)
ζS1(λ)

ln
(
1 + ζS1(λ)

1−ζS1(λ)

)
= ζS1(λ)−1

ζS1(λ)
ln (1− ζS1(λ)) .

Proof of (11).

The relation

y′ = φS2

(
x− y

y

)
is equivalent to

− ln(y′) = ζS2

(
x− y

y

)
or, by (9), to

− ln(y′)

1− y′
=
x

y
. (47)

Then, for x ⩾ 0, and the choice

y =
1− e−ax

a
, y′ = e−ax,

relation (47) holds, for it can be written

ax

1− e−ax
=
x

y
.

Then a is chosen in such a way that

1

1 + λ
= γλ(1) =

1−ea

a
,

that is, a = ζS2(λ).
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Proof of (40).

This is a classic bound for Riemann sums.

Proof of (41).

According to [Goo61, Section4], [
m

ℓ

]
∼ m!

ℓ!

(ln(1− ζ))ℓ

ζm
√
2πκℓ

,

in which ζ is defined by (5), and

κ = −(1 + λ)2
ζ + ln(1− ζ)

ζ
.

Set α = (1− ζ)/ζ and ζ = 1/(1 + α), so that θ0 = αm. For 1 ⩽ ℓ ⩽ m ,

Pθ0(Xm = ℓ) =
θℓ0

(θ0)↑m

[
m

ℓ

]
∼ m!

ℓ!

(−αm ln(1− ζ))ℓ

ζm
√
2πκℓ

Γ(m(α + 1))

Γ(αm)

and, applying Stirling formula four times,

Pθ0(Xm = ℓ) ∼
(
−mαe ln(1− ζ)

ℓ

)ℓ(
αα

ζ(α + 1)1+α

)m
√

1 + α

2πακm

∼
(
−(1 + λ)e ln(1− ζ)α1+α(1+λ)

ζ1+λ(α + 1)(1+α)(1+λ)

)ℓ √
1 + α

2πακm

∼
(
−e(1 + λ) (1− ζ)(1+α)(1+λ) ln(1− ζ)

αλζ1+λ

)ℓ √
1 + α

2πακm
,

for α/(1 + α) = 1− ζ. Using (1 + α)(1 + λ) = 1/((ζ − 1) ln(1− ζ)), one obtains

Pθ0(Xm = ℓ) ∼
(
−eζ/(ζ−1)(1 + λ) ln(1− ζ)

αλζ1+λ

)ℓ √
1 + α

2πακm

∼ (−α(1 + λ) ln(1− ζ))ℓ
√

1 + α

2πακm

∼
√

1 + α

2πακm

∼ 1√
m

√
ln(1− ζ)

2π(1 + λ)(ζ + ln(1− ζ))
.
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Proof of (42).

Recall that, according to [Goo61, relation (3)],{
m

ℓ

}
∼ 1

2π

m!

ℓ!

(
eζ − 1

ζ1+λ

)ℓ √
π

vℓ
, (48)

in which ζ is defined by (9), and

v =
(λ+ 1)(ζ − λ)

2
.

Using (48), we prove that, for the choice N = ⌈m/ζ⌉,

P⌈m/ζ⌉(Xm = ℓ) =
N !N−m

N − ℓ!

{
m

ℓ

}
satisfies (42) :

1

P⌈m/ζ⌉(Xm = ℓ)
= O(

√
m).

First, set εm = ⌈m/ζ⌉ − m/ζ ∈ [0, 1). Then, with the help of

1

ζ
− 1

1 + λ
=
e−ζ

ζ
,

using Stirling formula twice,

N − ℓ!Nm

N !
∼ eℓ

(N − ℓ)N−ℓ

NN−m

√
N − ℓ

N

∼ e
m

1+λ

mm( 1
ζ
− 1

1+λ
)(1

ζ
− 1

1+λ
)m( 1

ζ
− 1

1+λ
)

mm( 1
ζ
−1) ζm(1− 1

ζ
)

√
1− ζ

1 + λ
ψ(m,λ),

∼

(
e
(
ζeζ
) 1

1−eζ

) m
1+λ√

ζeζ
mm(1− 1

1+λ
)√ζ

ζm(1− 1
ζ
)

ψ(m,λ),

in which ψ(m,λ) is defined by

ψ(m,λ) = e−ζεm

(
1 +

ζεm
m

)m(1− 1
ζ
)−εm−1/2(

1 +
ζεm
me−ζ

)me−ζ

ζ
+εm+1/2

∼ e−ζεm

(
1 +

ζεm
m

)m(1− 1
ζ
)(

1 +
ζεm
me−ζ

)me−ζ

ζ

,
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so that ψ(m,λ) is bounded away from 0 and +∞, since εm ∈ [0, 1). Finally, using Stirling
formula twice again,

N − ℓ!Nm

N !
{
m
ℓ

}
ψ(m,λ)

∼
2
(
e1+λ

(
ζeζ
) 1

1−eζ ζ1+λ

(1+λ)(eζ−1)

) m
1+λ√

(1 + λ)eζ

√
πvℓ

ζm(1− 1
ζ
)

∼ 2
(
e1+λ

(
ζeζ
) 1

1−eζ ζλe−ζ ζ
(1−ζ)(1+λ)

ζ

) m
1+λ

√
πvℓ

(1 + λ)eζ

∼ 2
(
e0ζ0

) m
1+λ

√
πvℓ

(1 + λ)eζ

∼ 2
√
πve−ζ

1 + λ

√
m,

so that (42) is satisfied.

Proof of (43).

∣∣∣∣N (1− (1− 1

N

)n)
−N

(
1− e−

n
N

)∣∣∣∣ = N

∣∣∣∣(1− 1

N

)n

− e−
n
N

∣∣∣∣
⩽ Nn

∣∣∣∣(1− 1

N

)
− e−

1
N

∣∣∣∣
⩽ Nn× 1

2N2
=

n

2N
,

the last inequality due to relation :

∀u ⩾ 0,
∣∣e−u − 1 + u

∣∣ ⩽ u2

2
.

Proof of (44).

This amounts to prove that, for 0 ⩽ x ⩽ 1,

A(x) =

∣∣∣∣∣1− e−ζ̃x

ζ̃
− 1− e−ζx

ζ

∣∣∣∣∣ ⩽ 1 + ζ̃

m
,

But
0 ⩽

m

ζ̃
− m

ζ
⩽ 1,
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thus

A(x) ⩽

∣∣∣∣∣1− e−ζ̃x

ζ̃
− 1− e−ζ̃x

ζ

∣∣∣∣∣+
∣∣∣∣∣1− e−ζ̃x

ζ
− 1− e−ζx

ζ

∣∣∣∣∣
⩽

1

m
+

1

ζ

∣∣∣e−ζ̃x − e−ζx
∣∣∣

⩽
1

m
+

1

ζ

∣∣∣ζ̃ − ζ
∣∣∣ ⩽ 1 + ζ̃

m
.
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