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Abstract

An ascent sequence is a sequence a1a2 · · · an consisting of non-negative integers
satisfying a1 = 0 and for 1 < i 6 n, ai 6 asc(a1a2 · · · ai−1)+1, where asc(a1a2 · · · ak)
is the number of ascents in the sequence a1a2 · · · ak. We say that two sets of patterns
B and C are A-Wilf-equivalent if the number of ascent sequences of length n that
avoid B equals the number of ascent sequences of length n that avoid C, for all
n > 0. In this paper, we show that the number of A-Wilf-equivalences among triples
of length-3 patterns is 62. The main tool is generating trees; bijective methods are
also sometimes used. One case is of particular interest: ascent sequences avoiding
the 3 patterns 100, 201 and 210 are easy to characterize, but it seems remarkably
involved to show that, like 021-avoiding ascent sequences, they are counted by the
Catalan numbers.

Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

An ascent, short for ascent index, in an integer sequence s1s2 · · · sm is an index 1 6 j 6
m − 1 such that sj < sj+1. An ascent sequence a1a2 · · · an is one consisting of non-
negative integers satisfying a1 = 0 and for all i with 1 < i 6 n, ai 6 asc(a1a2 · · · ai−1)+ 1,
where asc(a1a2 · · · ak) is the number of ascents in the sequence a1a2 · · · ak. For example,
the sequence 0102321401 is an ascent sequence, whereas 0104 is not. Bousquet-Mèlou,
Claesson, Dukes, and Kitaev [2] connected ascent sequences to (2 + 2)-free posets. Since
then, ascent sequences have been considered in a series of papers where connections to
many other combinatorial structures have been found (see, for example, [4–7,9–11] as well
as [8, Section 3.2.2]).

Let a = a1a2 · · · an be any sequence and τ = τ1 · · · τm be any pattern, that is, a word
in {0, . . . , ℓ}m which contains each letter 0, 1, . . . , ℓ for some m > 1, ℓ > 0. We say the
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sequence a contains τ if a has a subsequence that is order isomorphic to τ , that is, there
is a subsequence af(1), af(2), . . . , af(m), where 1 6 f(1) < f(2) < · · · < f(m) 6 n, such
that af(i)Xaf(j) if and only if τiXτj, for all X ∈ {<,>,=} and 1 6 i, j 6 m. Otherwise,
a is said to avoid τ . For instance, the ascent sequence 01013043351 has two occurrences
of the pattern 110, namely, the subsequences 110 and 331, but avoids the pattern 3120.
We denote the set of all ascent sequences that avoid a list of patterns τ (1), . . . , τ (s) by
An(τ

(1), . . . , τ (s)) or An({τ (1), . . . , τ (s)}). We say that two sets of patterns P and Q are
A-Wilf-equivalent, denoted P

a∼ Q, if |An(P )| = |An(Q)| for every n.
There are 13 patterns of length 3: 000, 001, 010, 100, 011, 101, 110, 012, 021, 102,

120, 201, and 210. The number of A-Wilf-equivalence classes among single patterns of
length 3 is 9 [7]. The number of A-Wilf-equivalence classes among pairs of patterns of
length 3 is 35 [1]. The main result of this paper can be formulated as follows.

Theorem 1. The number of A-Wilf-equivalence classes among triples of length-3 patterns

is 62.

Section 2 describes generating trees, their succession rules, and the candidate Wilf
classes. Table 1 in Section 2 lists all the candidate Wilf classes and either gives the
corresponding succession rules for the generating trees or a reference to Section 3, which
mostly uses bijective methods. The most difficult case, Class 61, is treated by both
generating tree and bijective methods.

2 Generating trees

Let P be any set of patterns such that the length of each pattern is at least two. Define
A(P ) = ∪∞

n=0An(P ). We will construct a pattern-avoidance generating tree T (P ) (see
[12]) for the class of pattern-avoiding ascent sequences A(P ). Starting with the root 0
which stays at level 1, we construct in a recursive manner the non-root nodes of the
tree T (P ) such that the nth level of the tree consists of exactly the elements of An(P )
arranged so that the parent of an ascent sequence a1 · · · an ∈ An(p) is the unique ascent
sequence a1 · · · an−1 ∈ An−1(P ). The children of a1 · · · an−1 ∈ An−1(P ) are obtained from
the set {a1 · · ·an−1an | an = 0, 1, . . . , asc(a1 · · · an−1)+1} by applying the pattern-avoiding
restrictions of the patterns in P . We arrange the nodes from the left to the right so that
if a = a1 · · ·an−1i and a

′ = a1 · · · an−1i
′ are children of the same parent a1 · · · an−1, then

a appears on the left of a′ if i < i′. Figure 1 presents the first few levels of T ({011}).
Clearly, the cardinality of An(P ) equals the number of nodes in the nth level of T (P ).

For a given set of patterns P . Let T (P ; a) denote the subtree consisting of the ascent
sequence a as the root and its descendants in T (P ). For any a, a′ ∈ T (P ), we say that
the subtrees T (P ; a) and T (P ; a′) are isomorphic, and write T (P ; a) ∼= T (P ; a′), if these
subtrees are isomorphic in the sense of plane (ordered) tree. We define an equivalence
relation on the set of nodes of T (P ) as follows. Let a and a′ be two nodes in T (P ),
we say that a is equivalent to a′, denoted by a ∼ a′, if and only if T (P ; a) ∼= T (P ; a′).
Define V [P ] to be the set of all equivalence classes in the quotient set T (P )/ ∼. We will
represent each equivalence class [v] by the label of the unique node v which appears on
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Figure 1: First four levels of T ({011})

the tree T (P ) as the left-most node at the lowest level among all other nodes in the same
equivalence class. Let T [P ] be the same tree T (P ) where we replace each node a by its
equivalence class label.

Example 2. Let P = {000, 001, 021}. The generating tree T [P ] has a root a0 and satisfies
the following rules

am  bm, cm, am+1, cm  bm,

where am = 01 · · ·m, bm = am0, and cm = amm. To show that, we need to verify
the succession rules of the generating tree. The children of am are amj, where j =
0, 1, . . . , m + 1, so am has only three children bm, cm, am+1 in T [P ]. Note that any child
of bm contains a pattern in P , so there are no children for bm in T [P ]. Also, any child
of cm that avoids P is cm0. But it is not hard to see a = cm0v ∈ An(P ) if and only if
a′ = am0v ∈ An−1(P ) by removing the second occurrence of the letter m in a. Thus,
am  bm, cm, am+1 and cm  bm.

The basic outline of the generating tree method is the following.

(1) Let P be any set of patterns and let D be any positive number (here we use D = 8).

(2) We find the first D levels of the generating tree T (P ).

(3) By (2), we guess all the succession rules of T (P ).

(4) Based on (3), we try to prove these succession rules (for instance, see Example 2). If
we fail, then we increase D by 1 and go back to Step (2). Otherwise, the succession
rules of the generating tree T [P ] are found.

Let L be the set of all triples of patterns of length-3. A candidate class is a maximal
subset C of L such that for any P, P ′ ∈ C, |An(P )| = |An(P

′)|, for all n = 1, 2, . . . , 11.
Table 2 in the Appendix shows all the 62 candidate classes of L. A candidate class is
called trivial if it contains exactly one triple, otherwise, it is called nontrivial. Clearly, any
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A-Wilf equivalence class is contained in a candidate class. There are 35 trivial candidate
classes and 27 nontrivial candidate classes of triples of length-3 patterns.

To prove Theorem 1, we show that the 27 nontrivial candidate classes of triples of
length-3 patterns are indeed 27 A-Wilf equivalences. To establish this, we use the gener-
ating tree method as described above. Table 1 describes all these 27 nontrivial candidate
classes including the corresponding succession rules of the generating trees and explicit
formulas (if they exist) for the generating function.

Table 1: Rules of generating trees for ascent sequences avoiding a triple of length-3 pat-
terns.

Beginning of Table 1
Class B triple Rules of T (B) GB(x)/Reference
2 {000,001,012} 0  00, 01; 01  010, 011; 011  010

{000,010,012} 0  00, 01; 00  01; 01  011 x + 2x2 + 2x3 + x4

3 {000,001,010} am  bm, am+1, where am = 01 · · ·m,
bm = amm

{000,001,011} am  bm, am+1, where am = 01 · · ·m,
bm = am0

{000,010,011} a0  b0, a1; am  am+1; bm  bm+1,
where am = 01 · · ·m, bm = 0am

{001,010,011} a0  00, a1; am  am+1; 00  00, where
am = 01 · · ·m

{001,010,012}
{001,011,012} 0  00, 01; 00  00; 01  01

{010,011,012} am  am+1, 01, where am = 0m
x(1+x)
1−x

4 {000,012,101} 0  00, 01; 00  001; 01  010, 001;
001  010

{000,012,110} 0  00, 01; 00  001; 01  001, 011;
001  011

x + 2x2 + 3x3 + 2x4

5 {000,012,021}
{000,012,100}
{000,012,102}
{000,012,120}
{000,012,201}
{000,012,210} 0  00, 01; 00  001; 01  001, 001;

001  0011
x + 2x2 + 3x3 + 3x4

6 {000,011,102} am  bm, am+1; cm  cm+1, where
am = 01 · · ·m, bm = am0, cm = 0am
(b0 = c0)

{000,011,120} a0  b0, a1; a1  b1, a2; am  am+1;
bm  bm+1, where am = 01 · · ·m,
bm = 0am

{001,011,100} am  bm, am+1; b0  b0, where
am = 01 · · ·m, bm = 0am

{001,011,120} am  bm, am+1; bm  bm, where
am = 01 · · ·m, bm = 0am

{001,012,100} 0  00, 01; 00  00; 01  010, 01
{001,012,110} 0  00, 01; 00  00; 01  010, 010;

010  010

{011,012,100} am  am+1, 01; 01  010, where am = 0m x + 2x2 + 3x3

1−x

7 {000,001,021} a0  c0, a1; am  cm, bm, am+1;
bm  cm, where am = 01 · · ·m,
bm = amm, cm = am0

{000,001,120} a0  c0, a1; am  bm, cm, am+1;
bm  cm, where am = 01 · · ·m,
bm = amm, cm = am(m − 1)

x + 2x2 + 3x3 + 4x4

1−x

8 {000,001,110} am  (bm)m+1, am+1, where
am = 01 · · ·m, bm = am0

{000,011,021}
{000,011,100}
{000,011,101}
{000,011,110}
{000,011,201}
{000,011,210} am  bm, am+1; bm  bm+1, where

am = 01 · · ·m, bm = 0am
{001,010,021}
{001,010,100}
{001,010,101}
{001,010,102}
{001,010,110}
{001,010,120}
{001,010,201}
{001,010,210} am  bm, am+1; bm  bm, where

am = 01 · · ·m, bm = amm
{001,011,021}
{001,011,101}
{001,011,102}
{001,011,110}
{001,011,201}
{001,011,210} am  bm, am+1; bm  bm, where

am = 01 · · ·m, bm = am0
{001,012,021}
{001,012,101}
{001,012,102}
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Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{001,012,120}
{001,012,201}
{001,012,210} 0  00, 01; 00  00; 01  010, 01;

010  010
{010,011,021}
{010,011,100}
{010,011,101}
{010,011,102}
{010,011,110}
{010,011,120}
{010,011,201}
{010,011,210} am  am+1, bm,1; bm,j  bm,j+1, where

am = 0m and bm,j = 0m12 · · · j
{010,012,021}
{010,012,100}
{010,012,101}
{010,012,102}
{010,012,110}
{010,012,120}
{010,012,201}
{010,012,210}
{011,012,021}
{011,012,101}
{011,012,102}
{011,012,110}
{011,012,120}
{011,012,201}
{011,012,210} am  am+1, 01; 01  01, where am = 0m x

(1−x)2

10 {000,001,100}
{000,001,101}
{000,001,102}
{000,001,201} am  bm,0, . . . , bm,m, am+1;

bm,j  bm,0, . . . , bm,k−1, where

am = 01 · · ·m, bm,j = amj
{000,010,021}
{000,010,100}
{000,010,101}
{000,010,102}
{000,010,110}
{000,010,120}
{000,010,201}
{000,010,210} See [3]

14 {001,021,100} a0  c0, a1; c0  c0;
am  bm, cm, am+1; cm  bm, cm, where
am = 01 · · ·m, bm = am0, cm = amm

{001,021,110} a0  b0, a1; am  (bm)2, am+1;
bm  bm, where am = 01 · · ·m, bm = am0

{001,021,120} a0  b0, a1; b0  b0; a1  010, b1, a2;
b1  010, b1; am  bm, am+1; bmrubm,
where am = 01 · · ·m, bm = amm

{001,100,110} am  (bm)m, cm, am+1; cm  cm, where
am = 01 · · ·m, bm = am0, cm = amm

{001,100,120} a0  b0, a1; b0  b0; am  cm, bm, am+1;
bm  cm, bm, where am = 01 · · ·m,
bm = am(m − 1), cm = amm

{001,110,120} a0  00, a1; 00  00; am  (bm)2, am+1;
bm  bm, where am = 01 · · ·m,
bm = am(m − 1)

{011,100,102} am  am+1, bm,1; bm,j  cm, bm,j+1 ,

where am = 0m, bm,j = am1 · · · j,
cm = 01 · · ·m0

{011,100,120} am  am+1, bm,1; bm,1  cm, bm,2;
cm  bm+1,2; bm,j  bm,j+1, where

am = 0m, bm,j = am1 · · · j, cm = am10
{011,102,120} am  am+1, bm,1; bm,1  010, bm,2;

010  010; bm,j  bm,j+1, where

am = 0m, bm,j = am1 · · · j
{012,100,101} am  am+1, 01; 01  010, 01, where

am = 0m

{012,100,110} am  am+1, 01; 01  010, 010;

010  0101; 0101  0101, where am = 0m

{012,101,110} am  am+1, 01; 01  010, 010; 010  010,

where am = 0m

x(1+x2)

(1−x)2

15 {001,021,101}
{001,021,102}
{001,021,201}
{001,021,210} a0  b0, a1; am  bm, cm, am+1;

bm  bm; cm  bm, cm, where
am = 01 · · ·m, bm = am0, cm = amm

{001,100,210} am  (bm)m, cm, am+1;

cm  (bm)m, cm, where am = 01 · · ·m,
bm = am0, cm = amm

{001,101,110}
{001,102,110}
{001,110,201}

{001,110,210} am  (bm)m+1, am+1; bm  bm, where
am = 01 · · ·m, bm = am0

{001,101,120}
{001,102,120}
{001,120,201}
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Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{001,120,210} a0  b0, a1; b0  b0;
am  cm, bm, am+1; cm  cm;
bm  cm, bm, where am = 01 · · ·m,
bm = am(m − 1), cm = amm

{011,021,100}
{011,100,101}
{011,100,110}
{011,100,201}
{011,100,210} am  am+1, bm,1; bm,j  cm,j , bm,j+1;

cm,j  cm,j+1, where am = 0m,

bm,j = 0m12 · · · j, cm,j = 0m102 · · · j
{011,021,102}
{011,101,102}
{011,102,110}
{011,102,201}
{011,102,210} am  am+1, bm,1; bm,j  cj , bm,j+1;

cm  cm, where am = 0m,
bm,j = 0m12 · · · j, cm = 01 · · ·m0

{011,021,120}
{011,101,120}
{011,110,120}
{011,120,201}
{011,120,210} am  am+1, bm,1; bm,1  cm+1,1, bm,2;

bm,j  bm,j+1, where am = 0m,

bm,j = 0m12 · · · j
{012,021,100}
{012,100,102}
{012,100,120}
{012,100,201}
{012,100,210} am  am+1, 01; 01  010, 01; 010  0101;

0101  0101, where am = 0m

{012,021,101}
{012,101,102}
{012,101,120}
{012,101,201}
{012,101,210} am  am+1, 01; 01  010, 01; 010  010,

where am = 0m

{012,021,110}
{012,102,110}
{012,110,120}
{012,110,201}

{012,110,210} am  am+1, 01; 01  01, 011; 011  011,

where am = 0m

x(1−x+x2)

(1−x)3

16 {001,100,101}
{001,100,102}
{001,100,201} See [3]

21 {001,101,210}
{001,102,210}

{001,201,210} am  (bm)m, cm, am+1; bm  bm;

cm  (bm)m, cm, where am = 01 · · ·m,
bm = am0, cm = amm

x(1−2x+2x2)

(1−x)4

22 {000,021,101}
{000,021,110} See [3]

24 {000,101,102} See Subsection 3.1
{000,101,110} See Subsection 3.1
{001,101,102}
{001,101,201}
{001,102,201} am  bm,0, . . . , bm,m, am+1;

bm,j  bm,0, . . . , bm,j , where
am = 01 · · ·m, bm,j = amj

{010,021,100}
{010,021,101}
{010,021,102}
{010,021,110}
{010,021,120}
{010,021,201}
{010,021,210}
{010,100,101}
{010,100,102}
{010,100,110}
{010,100,120}
{010,100,201}
{010,100,210}
{010,101,102}
{010,101,110}
{010,101,120}
{010,101,201}
{010,101,210}
{010,102,110}
{010,102,120}
{010,102,201}
{010,102,210}
{010,110,120}
{010,110,201}
{010,110,210}
{010,120,201}
{010,120,210}
{010,201,210}
{011,021,101}
{011,021,110}
{011,021,201}
{011,021,210}
{011,101,110}
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Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{011,101,201}
{011,101,210}
{011,110,201}
{011,110,210}
{011,201,210} am  am+1, bm,1;

bm,j  bm,j+1, bm,j+1, where am = 0m,

bm,j = 0m12 · · · j
{012,021,102}
{012,021,120}
{012,021,201}
{012,021,210}
{012,102,120}
{012,102,201}
{012,102,210}
{012,120,201}
{012,120,210}
{012,201,210} am  am+1, 01; 01  01, 01, where

am = 0m

x
1−2x

28 {000,021,100}
{000,021,201}
{000,021,210} See Section 3.2

34 {000,100,101}
{000,101,201} See Section 3.3

41 {021,101,102} am  am+1, bm,1;
bm,j  cj , bm+1,j , bm,j+1; cm  cm,

where am = 0m, bm,j = 0m12 · · · j,
cm = 01 · · ·m0

{021,101,120} am  am+1, bm,1;
bm,1  cm, bm+1,1, bm,2;
bm,j  bm+1,j , bm,j+1;

cm  cm+1, bm,2, where am = 0m,

bm,j = 0m12 · · · j, cm = am10
{021,102,120} am  am+1, bm,1;

bm,1  010, bm+1,1, bm,2;
bm,j  bm+1,j , bm,j+1; 010  010, 0101;

0101  0101, 0101, where am = 0m,
bm,j = 0m12 · · · j

{100,102,120} am  am+1, bm,1;
bm,j  cj , bm+1,j , bm,j+1; cm  dm;

dm  dm, where am = 0m,
bm,j = 0m12 · · · j, cm = 01 · · ·m(m − 1),
dm = cmm

{101,102,110} am  010, a0, am+1; 010  010, where
am = 01 · · ·m

{101,102,120} 0  0, 01; 01  010, (01)2; 010  010

{102,110,120} 0  0, 01; 01  010, 0, 01; 010  010, 0101;
0101  0101

x(1−2x+2x2)

(1−2x)(1−x)2

42 {021,100,101}
{021,100,110}
{021,100,120}
{021,101,110}
{021,110,120} See Section 3.4

43 {100,101,110} am  ǫm, a0, am+1; ǫ  a0, where
am = 01 · · ·m

{100,101,120} 0  0, 01; 01  ǫ, (01)2; ǫ  0

{101,110,120} 0  0, 01; 01  010, 0, 01; 010  010, 0
x(1−x+x2)

1−3x+2x2
−x3

47 {021,102,201} ={021,102}
{021,102,210} ={021,102} See [1]

{102,110,210} am  (010)m , a0, am+1; 010  010, 0101;
0101  0101, where am = 01 · · ·m

x(1−3x+4x2
−x3)

(1−2x)(1−x)3

49 {101,102,210}
{102,120,201}
{102,120,210} See Section 3.5

51 {101,120,201}
{101,120,210} See [1]

52 {021,100,201} ={021,100}
{021,100,210} ={021,100}
{021,110,201} ={021,110}
{021,110,210} ={021,110} See [1]

53 {021,101,201} ={021,101}
{021,101,210} ={021,101}
{021,120,201} ={021,120}
{021,120,210} ={021,120}
{100,101,210}
{101,102,201}
{101,110,201}
{101,110,210} See [1, 3]

55 {100,120,201}
{110,120,201} See Theorem 4

56 {100,120,210}
{110,120,210} See Theorem 3

61 {021,201,210} ={021} See [7]
{100,201,210}
{110,201,210} See Section 3.7

End of Table 1
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3 Classes not covered by Table 1

3.1 Class 24

From the results listed in Table 1, it remains to show first that

|An(000, 101, 102)| = |An(000, 101, 110)| = 2n−1.

For any word w = w1w2 · · ·wn and integer k, we define k + w as (w1 + k)(w2 +
k) · · · (wn + k). Let an = |An(000, 101, 102)|. Clearly, a1 = 1 and a2 = 2. So, from now
on, we assume that n > 3. Note that any ascent sequence π in An(000, 101, 102) can
be decomposed as either π = 0(1 + π′), π = 0(1 + π′′)0, or π = 00(1 + π′′) such that
π′ ∈ An−1(000, 101, 102) and π′′ ∈ An−2(000, 101, 102). Hence, an = an−1 + 2an−2 with
a0 = 1 and a1 = 2. By induction on n, we have an = 2n−1.

For the case An(000, 101, 110), based on a small modification of Proposition 15 in [1],
the ascent sequences of An(000, 101, 110) can be characterized as a generating tree with
a root (2) and the rules

(k) (1)k−1, (k + 1); (1) (2).

Let Ak(x) be the generating function for the number of nodes at level n in the subtree
with a root (k), where the root stays at level 1. Hence, A1(x) = x+ xA2(x) and Ak(x) =
x+(k−1)xA1(x)+xAk+1(x). Define A(x; v) =

∑

k>2Ak(x)v
k−2. Then A1(x) = x+xA2(x)

and
A(x; v) =

x

1− v
+

x

(1− v)2
A1(x) +

x

v
(A(x; v)−A2(x)).

By taking v = x, we have

A2(x) =
x

1− x
+

x

(1− x)2
A1(x).

Thus, from A1(x) = x+ xA2(x), we obtain that A2(x) =
x

1−2x
, as required.

3.2 Class 28

Since an ascent sequence begins with a 0, if it contains either 201 or 210, then it also
contains 021. Similarly, if an ascent sequence contains 100, then it also contains either
000 or 021. Hence,

{000, 021, 100} a∼ {000, 021, 201} a∼ {000, 021, 210}.

3.3 Class 34

Let τ = {000, 101}. Then ascent sequences avoiding τ can be characterized as the se-
quences of nonnegative integers (letters) that satisfy:

• letters appear at most twice, to avoid 000,
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• the first appearances of letters are consecutive nonnegative integers 0, 1, 2, . . . in
that order, to meet the ascent condition,

• for each repeated letter u, all entries between the two appearances of u are > u, to
avoid 101 and 000.

Here is a bijection from An(τ) to Mn, the Motzkin sequences of length n. Given a τ -
avoider, turn the first appearance of each repeated letter into a U , the second appearance
of each repeated letter into a D, and each nonrepeated letter into an F . For example,
w = 0102234453 ∈ A10(τ) becomes UFDUDUUDFD ; see Figure 2. The result is the

0 0

1

2 2 3

4 4 5

3
b

b b

b

b

b

b

b

b b

b

Figure 2: The Motzkin path UFDUDUUDFD

desired Motzkin path, with U representing an upstep (1, 1), F a flatstep (1, 0) and D a
downstep (1,−1). We leave the reader to verify that the itemized conditions above ensure
the result is a Motzkin path of length n. To reverse the map, given a Motzkin path, label
its weak-rise steps (U and F ) with 0, 1, 2, . . . left to right. Then give each downstep the
label already on its matching upstep, as in Figure 2. Read all the labels, left to right, to
get the corresponding τ -avoider.

From the preceding characterization, after a descent in a τ -avoider, the next entry (if
present) is another descent bottom or a new left-to-right maximum. So τ -avoiders also
avoid 100 and 201; hence An(000, 100, 101) = An(000, 101, 201) = An(τ).

3.4 Class 42

In this section, we show that

|An(021, 100, 101)| = |An(021, 100, 110)| = |An(021, 100, 120)| = |An(021, 101, 110)|
= |An(021, 110, 120) = (n+ 2)2n−3,

for all n > 2.

3.4.1 Class 42.1: {021,100,101}

Since an ascent sequence begins with 0, avoiding 021 implies all descents are to 0; avoiding
100 then implies there is at most one descent, and the ascent condition and avoidance of
101 further imply that all entries after a descent v0 are> v. Consequently, a (021,100,101)-
avoider of length n is either a weakly increasing ascent sequence or, for some a > 1, k > 2,
has the form u1 . . . uk 0 v1 . . . vn−k−1 with (ui)

k
i=1 a weakly increasing ascent sequence that
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ends at uk = a and (vi − a− 1)n−1−k
i=1 another weakly increasing ascent sequence, possibly

empty. It follows that, for n > 1,

|An(021, 100, 101)| = 2n−1 +

n−1
∑

k=2

k−1
∑

a=1

(

k − 1

a

)

max(1, 2n−k−2) = max(1, (n+ 2)2n−3) .

3.4.2 Class 42.2: {021,100,110}

Avoiding 021 and 100 implies there is at most one descent, v0, and all later entries are
> v; avoiding 110 implies no descent can occur after two adjacent equal nonzero entries.
Consequently, a (021, 100, 110)-avoider of length n > 1 either has no descents or has the
form 0a12 . . . (b − 1)b 0 y where a > 1, b > 1, y has length c = n − a − b − 1 > 0
and (y1 − b, y2 − b, . . . , yc − b) ∈ Jc where Jn is the set of weakly increasing sequences
of nonnegative integers (ui)

n
i=1 such that all increases from one entry to the next in the

sequence (−1, u1, u2, . . . , un) are 0 or 1 except there may be a single jump of 2 (and
thus u1 may be 0 or 1). For example J2 = {00, 01, 02, 11, 12}. Due to the jump of 2, an
element of Jn can be viewed as a pair of weakly increasing ascent sequences whose lengths
sum to n, and so the counting sequence (|Jn|)n>0 is the convolution (1, 1, 2, 4, 8, . . . ) ∗
(1, 1, 2, 4, 8, . . . ) = (1, 2, 5, 12, 28, . . . ) = (Xn)n>0 with Xn := max(1, (n+ 3)2n−2) = ⌈(n+
3)2n−2⌉. Hence,

|An(021, 100, 110)| = 2n−1 +

n−2
∑

a=1

n−1−a
∑

b=1

Xn−a−b−1

= 2n−1 +

n−1
∑

k=2

(k − 1)Xn−k−1

= max(1, (n+ 2)2n−3) .

3.4.3 Class 42.3: {021,100,120}

As in Section 3.4.2, there is at most one descent, v0, and all later entries are > v, and then
avoiding 120 implies v = 1. Consequently, a (021, 100, 120)-avoider of length n > 1 either
has no descents or has the form 0a1b 0 y where a > 1, b > 1, y has length c = n−a−b−1
and (y1 − 1, y2 − 1, . . . , yc − 1) ∈ Jc, leading to the same count as in Section 3.4.2.

3.4.4 Class 42.4: {021,101,110}

Again, all descents are to 0 and no descent occurs after a nonzero letter has appeared
twice. Let k > 3 denote the position of the last 0 in a (021,101,110)-avoider w that is
not weakly increasing. Then, for some a ∈ [1, k − 2], w has the form 0 u 0 v where u, of
length k − 2, consists of one copy of each of 1, 2, . . . , a, in that order, interspersed with
k − 2 − a 0’s

((

k−2
a

)

choices
)

, and v − (a + 1) is a weakly increasing ascent sequence of
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length n− k > 0. Hence

|An(021, 101, 110)| = 2n−1 +

n
∑

k=3

k−2
∑

a=1

(

k − 2

a

)

max(1, 2n−k−1) = max(1, (n+ 2)2n−3) .

3.4.5 Class 42.5: {021,110,120}

A (021, 101, 110)-avoider of length n > 1 either has no descents or has the form 0a 1 0b y
where a > 1, b > 1, y has length c = n− a− b− 1 and (y1 − 1, y2 − 1, . . . , yc − 1) ∈ Jc,
leading to the same count as in Section 3.4.2.

3.5 Class 49

In this subsection, we show that

{101, 102, 210} a∼ {102, 120, 201} a∼ {102, 120, 210}.

3.5.1 Class 49.1: {101,102,210}

The restrictions here force an avoiding ascent sequence (wi)
n
i=1 to be either weakly in-

creasing or to have precisely one descent, say from wr = a to b ∈ [0, a− 1] and thereafter
to remain constant. Hence,

|An(101, 102, 210)| = 2n−1 +

n−2
∑

a=1

n−1
∑

r=a+1

a

(

r − 1

a

)

= (n− 1)2n−2 + 1 .

3.5.2 Classes 49:2-3: {102,120,201} and {102,120,210}

Ascent sequences avoiding 102 and 120 are treated using generating functions in [1, Propo-
sition 13]. Here is a direct count. These restrictions force an avoiding ascent sequence
(wi)

n
i=1 to be either weakly increasing or to have first descent of size 1 unit, say from wr = a

to a−1 and thereafter to be either a or a−1. Given r ∈ [2, n−1] and a ∈ [1, r−1], there
are

(

r−1
a

)

choices for (wi)
r
i=1 and 2n−r−1 choices to fill out the ascent sequence. Hence,

|An(102, 120)| = 2n−1 +
n−1
∑

r=2

r−1
∑

a=1

(

r − 1

a

)

2n−r−1 = (n− 1)2n−2 + 1 .

The above characterization shows that (102,120)-avoiding ascent sequences also avoid 201
and 210 and so An(102, 120, 201) = An(102, 120, 210) = An(102, 120).

3.6 Classes 55 and 56

A (weak) left to right maximum, LRmax for short, in an ascent sequence a = a1a2 · · · an is
an entry ai such that ai > aj for all j < i. If ai = m we say m is the value of the LRmax.
Thus for a = 011022111, the LRmax are a1, a2, a3, a5, a6 with values 0, 1, 1, 2, 2, respec-
tively. So any ascent sequence a ∈ An can be decomposed uniquely as m1π

(1) · · ·mkπ
(k),
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where m1, . . . , mk are all of the LRmax entries in a; thus 0 = m1 6 m2 6 · · · 6 mk 6 n−1
and mi > π(i) (entrywise). We call this the WLRmax decomposition of a (W for weakly).
There is another decomposition: say m1 < m2 < · · · < mk are the first occurrences
of the (distinct) LRmax values of an ascent sequence a. Then a can be decomposed
as m1π

(1)m2π
(2) · · ·mkπ

(k) for some k > 1 with mi > π(i) (entrywise) for 1 6 i 6 k.
This is the LRmax decomposition of a. For example, 00010113025110433 is an LRmax
decomposition with the first occurrence of each left to right maximum value bolded.

Theorem 3. We have {100, 120, 210} a∼ {110, 120, 210}.

Proof. Suppose a ∈ An and m1π
(1)m2π

(2) · · ·mkπ
(k) is the LRmax decomposition of a.

Then a ∈ An(100, 120, 210) if and only if the following hold

• m1 = 0 < m2 = 1 < m3 < · · · <mk 6 n− 1 and π(1) = 00 · · ·0;

• miπ
(i) > mi−1 and the number of occurrence of the letter mi−1 in π(i) is at most

one, for all i = 2, . . . , k;

• π(i) can be written as π(i,1)mi · · ·π(i,si)miπ
(i,si+1) where π(i,1) · · ·π(i,si+1) forms an

increasing sequence.

Also, a ∈ An(110, 120, 210) if and only if the following hold

• m1 = 0 < m2 = 1 < m3 < · · · <mk 6 n− 1 and π(1) = 00 · · ·0;

• miπ
(i) >mi−1, for all i = 2, . . . , k;

• π(i) can be written as θ(i)mi · · ·mi, where θ
(i) forms a nondecreasing sequence.

To show that there is a bijection f from a ∈ An(100, 120, 210) to b ∈ An(110, 120, 210),
it suffices to construct a bijection fi that maps miπ

(i) of a to miπ
(i) of b, for any i =

2, 3, . . . , k. Note that π(i) = π(i,1)mi · · ·π(i,si)miπ
(i,si+1) of a, where π(i,1) · · ·π(i,si+1) forms

an increasing sequence. So, we map miπ
(i) of a to miβ

(i) of b as follows. Let β(i) be empty
sequence, we read π(i,j) from j = 1, . . . , si + 1,

• if π(i,j) is the empty sequence, then we append the maximal letter of π(i,1) · · ·π(i,j−1)

(if it exists) to β(i). Otherwise, if π(i,1) · · ·π(i,j) is an empty sequence, then we append
the letter mi−1 to β(i);

• if π(i,j) is not the empty sequence, then we append the sequence π(i,j) to β(i).

At the end we append d times the letter mi to β
(i), where d = si − |{j | π(i,j) = ∅}|.

Clearly, fi is a bijection. For instance, let mi−1 = 1 and mi = 5, then as an example
fi(551235545) = 511233445.

Hence, f forms a bijection from An(100, 120, 210) to An(110, 120, 210), as required.

Similar to the arguments in the proof of Theorem 3, we have

Theorem 4. We have {100, 120, 201} a∼ {110, 120, 201}.
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Note that by our procedure as described in Section 2, one can find the succession
rules of the generating trees T [{100, 120, 201], T [{100, 120, 210], T [{110, 120, 201], and
T [{110, 120, 210]. However, with the combinatorial proofs of Theorems 3 and 4 and
tedious to find the succession rules of the generating trees, we did not try to find explicit
formulas for the corresponding generating functions.

3.7 Class 61

In this section, we count An(100, 201, 210) and show that

An(100, 201, 210) and An(110, 201, 210)

are equinumerous, using both generating-tree and bijective approaches.

3.7.1 A bijection from An(100, 201, 210) to An(110, 201, 210)

First, we give analogous characterizations of ascent sequences that avoid each of these
triples. Obviously, weakly increasing ascent sequences avoid both these triples of pat-
terns. Now suppose r > 1 distinct values, say (mi)

r
i=1, occur as descent bottoms in

an ascent sequence a. Split a at the last occurrence of each mi to decompose a as
a = π1m1π2m2 . . . πrmrπr+1. Then we have the following obvious characterizations.

Lemma 5. (i ) An ascent sequence a avoids the patterns 100, 201 and 210 if and only

if π1m1 6 π2m2 6 . . . 6 πrmr 6 πr+1 (entrywise) and each of π1, . . . , πr+1 is weakly

increasing. (ii ) An ascent sequence a avoids the patterns 110, 201 and 210 if and only if

π1m1 6 π2m2 6 . . . 6 πrmr 6 πr+1 (entrywise), πr+1 is weakly increasing and for each

i = 1, . . . , r, the entries in πi greater than mi are strictly increasing, and the entries in πi
that are no greater than mi are weakly increasing.

b b

b b

b b b

b b

b

b

b

b b

b b

b

b

b

b b

b

b

b

b

b

b

b

π1 m1 π2 m2 π3 m3 π4

Figure 3: A (100,201,210)-avoiding ascent sequence: each πi is weakly increasing

Sequences in An(100, 201, 210) and An(110, 201, 210) are depicted in Figures 3 and 4
respectively with a heavy dot denoting the last occurrence of each descent bottom value
and a box enclosing each πimi. A bijection between them is rather obvious (the two
depicted avoiders correspond under this bijection).

the electronic journal of combinatorics 32(1) (2025), #P1.40 13



b b

b b

b

b b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

π1 m1 π2 m2 π3 m3 π4

Figure 4: A (110,201,210)-avoiding ascent sequence: each subsequence {aj ∈ πi : aj > mi}
is strictly increasing

3.7.2 A generating tree for An(100, 201, 210)

Based on our algorithm, we find that the generating tree T [100, 201, 210] has a root α0,0

and satisfies the following rules:

αa,m  βm−a
a+1 , αa,m, αa,m+1, . . . , α0,m+1,

βa  αa,a, . . . , α0,a,

where αa,m = 0101212 · · ·a(a− 1)a (a+ 1)(a + 2) · · ·m and βa = 0101212 · · · (a− 1)(a−
2)(a−1)a(a−1). To see the rules, we note that the children of αa,m (respectively, βa) are
exactly αa,mj with j = a, a+1, . . . , a+m+1 (respectively, βaj with j = a, a+1, . . . , 2a).
Now, we show the following equivalences:

• T ({100, 201, 210};αa,mj) ∼= T ({100, 201, 210}; βa+1), for all j = a, a+ 1, . . . , m− 1:
Let π = αa,mjπ

′ be any ascent sequence that avoids {100, 201, 210}. So π′ does not
contain any letter from the set {0, 1, . . . , m − 1. Thus, π avoids {100, 201, 210} if
and only if βa+1(1+a−m+π′) avoids {100, 201, 210}, which proves the equivalence.

• T ({100, 201, 210};αa,mm) ∼= T (αa,m): Note that the ascent sequence π = αa,mmπ
′

avoids {100, 201, 210} if and only if the ascent sequence αa,mπ
′ avoids {100, 201, 210}

(just remove the letter m).

• T ({100, 201, 210};αa,mj) ∼= T ({100, 201, 210};αa+m+1−j,m+1), for all j = m+1, m+
2, . . . , a+m+1: Let j = m+1+j′ and π = αa,mjπ

′ be any ascent sequence that avoids
{100, 201, 210}. Note that π′ does not contain any letter from the set {0, 1, . . . , j′}.
So by removing the letters 0, 1, . . . , j′ from π′ we obtain that π avoids {100, 201, 210}
if and only if the ascent sequence αa+m+1−j,m+1(−j′+π′) = αa−j′,m+1(−j′+π′) avoids
{100, 201, 210}, which proved the equivalence.

Hence, the first rule is holding. Similarly, the second rule is holding.
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Define Aa,m(x) (respectively, Ba(x)) to be the generating function for the number of
nodes at level n in the tree T ({100, 201, 210};αa,a) (respectively, T ({100, 201, 210}; βa)),
where the root stay at level 1. Hence, the above rules can be translated to

Aa,m(x) = x+ (m− a)xBa+1(x) + xAa,m(x) + x

a
∑

j=0

Aj,m+1(x), m > a > 0

Ba(x) = x+ x
a

∑

j=0

Aj,a(x), a > 1.

Now, we define A(x; v, u) =
∑

a>0

∑

m>aAa,m(x)v
aum and B(x; v) =

∑

a>1Ba(x)v
a−1.

Then the last two recurrences can be written as

A(x; v, u) =
x

(1− u)(1− vu)
+ xA(x; v, u) +

x

u(1− v)
(A(x; v, u)−A(x; 1, vu))

+
xu

(1− u)2
B(x; vu), (1)

B(x; v) =
x

1− v
+
x

v
(A(x; 1, v)−A(x; 0, 0)). (2)

By (2), (1) can be written as

A(x; v/u, u) =
x

(1− u)(1− v)
+ xA(x; v/u, u) +

x

u− v
(A(x; v/u, u)− A(x; 1, v))

+
xu

(1− u)2

(

x

1− v
+
x

v
(A(x; 1, v)−A(x; 0, 0))

)

. (3)

In order to solve this equation, we assume that A(x; 0, 0) = C(x)− 1 = 1−
√
1−4x
2x

− 1. By
substituting u = vx−v−x

x−1
into (3), we obtain that

A(x; 1, v) =
x(xC(x)(vx − v − x) + v − xv + x2)

(v − 1)(v2(x− 1)2 − v(3x− 1)(x− 1) + x3)
.

Hence, by substituting expression of A(x; 1, v) into (3) and replacing v with vu, we obtain

A(x; v, u) =
x((x− 1)u3v2 + (2− 3x)u2v + (3x− 1)u− x)

√
1− 4x

2((x− 1)2u2v2 − (3x− 1)(x− 1)uv + x3)(1− uv)(1− u)2

+
x((x− 1)u3v2 + 2(1− x)u2v2 − x(2x− 1)u2v)

2((x− 1)2u2v2 − (3x− 1)(x− 1)uv + x3)(1− uv)(1− u)2

+
x(2(2x− 1)uv + (4x− 1)(x− 1)u− 2x2 + x)

2((x− 1)2u2v2 − (3x− 1)(x− 1)uv + x3)(1− uv)(1− u)2
.

Note that the expression of A(x; v, u) satisfies (3) and A(x; 0, 0) = C(x) − 1. Hence,
A(x; v, u) is the solution of (3), which, by Lemma 5, leads to the following result.

Theorem 6. The number of ascent sequences in An(100, 201, 210) is given by 1
n+1

(

2n
n

)

,

the nth Catalan number.
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3.7.3 Decorated paths

To count An(100, 201, 210) bijectively, we first give a bijection, presented in the next
section, from An(100, 201, 210) to a set DPn that turns w ∈ An(100, 201, 210) into a
weakly increasing ascent sequence intertwined with a path of steps, U = (1, 1), F =
(1, 0), D = (1,−1), that we will call a decorated path, and DPn denotes the set of
decorated paths of size n. A member of DPn is a string of symbols (or letters or entries),
each symbol a nonnegative integer (number, for short) 0, 1, 2, . . . or a step, U = (1, 1), F =
(1, 0), D = (1,−1), such as 0 0F 1U 1 2 2DF 3U D 3, with n = #U ’s + # numbers,
that satisfies certain conditions as follows. Ignoring the steps, the numbers must form
a weakly increasing ascent sequence. Ignoring the numbers, the steps must form what
we will call a ternary path, because they’re counted by the ternary numbers A001764 =
(1, 3, 12, 55, 273, 1428, . . .). We assume familiarity with basic notions about Dyck paths.
A ternary path of size n consists of n each U, F,D steps such that ignoring the F ’s leaves
a Dyck path, while if the D’s are ignored, the F ’s and U ’s alternate, starting with an F .
For example, FUDFUD, FUFDUD and FUFUDD are the 3 ternary paths of size 2,
and FUUDFD does not qualify because the F ’s and U ’s don’t alternate.

The empty string is the sole member of DP0. For a nonempty string to qualify as a
decorated path, the following further conditions must be satisfied by its entries regarding
how the numbers and steps intertwine:

1. The first entry is 0.

2. If a step is immediately preceded by a number a, then the next number (if there
is one) is determined: for aU the next number is also a, for aF and aD, the next
number must be a + 1. So 0F0UD does not qualify, nor does

0F 1U 1F D 2 2U DF 3U D

(since 2U DF 3 offends).

3. Each U is immediately preceded by a number; this condition is violated by 0FUD
(U is preceded by F ).

4. There are no consecutive UF ’s in the decorated path. So 0F 1U F 1U DD does
not qualify.

Recall that a weakly increasing ascent sequence has first entry 0 and each later entry is
the same as, or one more than, its predecessor. Here are the first few sets of decorated
paths:

DP0 = {ǫ}, DP1 = {0}, DP2 = {00, 01}, DP3 = {000, 001, 011, 012, 0F1UD},

and DP4 consists of 8 weakly increasing ascent sequences and

00F1UD, 0F1U1D, 0F1UD1, 0F11UD, 01F2UD, 0F12UD.
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A weak-rise in a (100,201,210)-avoiding ascent sequence is an entry wi such that wi >

wi−1 or wi starts the sequence. Thus every entry is a weak-rise or a descent bottom.
In a weakly increasing ascent sequence, every entry is a weak-rise and the jump from

one entry to the next is at most 1. But in a (100,201,210)-avoiding ascent sequence, the
jump from one weak-rise to the next weak-rise can be bigger than 1 due to the possibility
that entries bracketing a descent bottom entry may be equal, thereby contributing an
ascent without increasing the maximum entry. For a weak-rise wi, define the descent-

induced excess of wi, denoted e(wi), as follows. If wi−1 is a descent bottom entry, then
e(wi) = wi − wi−2 > 0, otherwise e(wi) = 0 if wi = wi−1, and e(wi) = wi − wi−1 − 1 > 0
if wi > wi−1, where here we define e(w1) = 0. Thus, in w = ( 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 1 2 3 2 5 6 6 5 6 8 9 )
with descent bottoms at positions 3, 6, 10, we see that e(w7) = 5 − 3 = 2 and e(w12) =
8− 6− 1 = 1 while all other weak-rises have descent-induced excess of 0.

Lemma 7. For each weak-rise wk in w ∈ An(100, 201, 210),

∑

{e(wi) : i 6 k and wi a weak-rise} 6 # descents in (wi)
k
i=1 .

Proof. This is a consequence of Lemma 5 and the defining condition for ascent sequences
because each descent contributes at most one unit to later descent-induced excesses.

3.7.4 A bijection from An(100, 201, 210) to DPn

Every weakly increasing ascent sequence avoids 100, 201 and 210. For an avoider w ∈
An(100, 201, 210) with no descents the decorated path has no steps and consists simply
of w. Otherwise, let r > 1 denote the number of descents in w and for each descent
ai > bi, record the size di := ai − bi > 1 of the descent, 1 6 i 6 r. Then (i) change
each descent bottom entry to a U step, (ii) for each weak-rise entry wk, insert e(wk) D
steps just before wk, and add (#descents in w)−∑{e(wi) : wi is weak-rise} D’s at the
end, and (iii) subtract from each numerical entry the total number of D’s occurring to its
left. This ensures that when two numbers are separated by one or more D’s, the second
number is one more than the first, and the predecessor of a U step, necessarily a number,
is the same as the first number appearing after the U if there is one. For example, with
r = 5 descents and (di)

r
i=1 = (1, 1, 1, 2, 3),

(row 1) 0 1 0 1 2 1 2 3 2 3 3 6 4 8 8 9 6 9
(i)−→ 0 1 U 1 2 U 2 3 U 3 3 6 U 8 8 9 U 9
(ii)−→ 0 1 U 1 2 U 2 3 U 3 3 DD 6 U DD 8 8 9 U 9D

(row 4)
(iii)−→ 0 1 U 1 2 U 2 3 U 3 3 DD 4 U DD 4 4 5 U 5D

To insert the F s into this sequence (row 4) of numbers and U,D steps, first insert a dot
after each D step and after each number whose successor is a D step or a larger number
(but no dots after the last U):

0 · 1 U 1 · 2 U 2 · 3 U 3 3 ·D ·D · 4 U D ·D · 4 4 · 5 U 5 D
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Lemma 8. The number of dots between two successive Us is equal to the difference between

the two corresponding descent tops in the original avoider (to the first descent top in the

case of the first U).

Proof. Say wj and wk are two successive descent tops in the original sequence, row 1 in
the example above. Then

wk − wj = (wj+2 − wj) +

k
∑

i=j+3

(wi − wi−1)

= e(wj+2) +

k
∑

i=j+3

e(wi) + # {i ∈ [ j + 3, k] : wi > wi−1}

= (#D’s between wj+1 and wj+2) + (#D’s between wj+2 and wk) +

(#numbers followed by a D or a larger number) [all in row 4]

= # dots between the corresponding U ’s ,

where the last summands in the second and third equalities are equal because if two
numbers are separated by one or more D’s in row 4, then the first number is necessarily
smaller than the second.

By Lemma 5(i) and 8, the number of dots between the (i− 1)-th U and the i-th U is
equal to the number of possible values for di, 1 6 i 6 r. Now insert an F at the di-th
dot, counted left to right, between the (i− 1)-th U and the i-th U, 1 6 i 6 r, (and erase
the dots) to obtain the desired decorated path in DPn. The example yields

0 F 1 U 1 F 2 U 2 F 3 U 3 3 D F D 4 U D D 4 4 F 5 U 5 D .

We leave to the reader the straightforward verification that the resulting decorated path
satisfies the conditions to be in DPn and that the map is invertible.

3.7.5 A sum to count DPn

We now give an explicit multi-index sum to count DPn. There are 2
n−1 elements of DPn

with no U, F,D steps. So suppose the underlying ternary path T of w ∈ DPn has size
r > 1 so that w contains n − r numbers. A number must precede each U in w and for
each adjacent UF in T , there must be at least one number between U and F in w. Say
there are k UF ’s in T . There are 3r + 1 gaps between the steps in T (including at both
ends). As we have just seen, r+ k+1 gaps are necessarily occupied by numbers, namely,
the first gap (contains 0), each gap before a U and each gap between a UF . Each of
the remaining 2r − k gaps may or may not be occupied. Say i ∈ [0, 2r − k] of them are
occupied—

(

2r−k

i

)

choices—giving r + k + i+ 1 occupied gaps.
Apart from the initial gap whose first number is 0, the first number in each of the

other r + k + i occupied gaps is determined by the last number in the preceding gap, by
condition (2) in the definition of DPn. Also, a choice of positions among the n − r − 1
nonfirst numbers (the first number is necessarily 0) for these r+k+ i determined numbers
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specifies how many numbers go into each occupied gap. All that’s left in order to specify
w is n− r − (r + k + i+ 1) binary choices (each number is the same as or one unit more
than its predecessor). There are 1

k+1

(

r−1
k

)(

2r
k

)

ternary paths of size r with k UF ’s. These
observations yield the following sum to count DPn (note the r = k = i = 0 summand is
2n−1 as it should be):

|DPn| =
n−1
2

∑

r=0

r
∑

k=0

2r−k
∑

i=0

1

k + 1

(

r − 1

k

)(

2r

k

)(

2r − k

i

)(

n− r − 1

r + k + i

)

2n−i−k−2r−1 . (4)

By Theorem 6 and (4), we have the following combinatorial identity.

Corollary 9. For all n > 1,

n−1
2

∑

r=0

r
∑

k=0

2r−k
∑

i=0

1

k + 1

(

r − 1

k

)(

2r

k

)(

2r − k

i

)(

n− r − 1

r + k + i

)

2n−i−k−2r−1 =
1

n+ 1

(

2n

n

)

.

3.7.6 A bijection φ from DPn to Dyck n-paths

We first define a statistic X on DPn that motivates our bijection φ. This statistic turns
out to have the same distribution as the “first return” on Dyck paths. For w ∈ DPn, if
w consists only of numbers, then X(w) = 1 + asc(w). Otherwise, place a dot in each gap
between the letters of w starting with the last U and a dot at the end, as illustrated in
Figure 5 below, and say a gap is “good” unless it is a gap between U and D or between
two equal numbers. There are always at least two gaps and the “gap” at the very end
is always good. Then X counts the good gaps, indicated by the circled dots in Figure 5.
Say w ∈ DPn is primitive if w is nonempty and X(w) = 1. Thus, for n > 1, the set of

Ex.1: −−−− U · 3 · 3 · 4 · D · 5 · 5 · 5 · D · D · 6 · 6 ·
Ex.2: −−−− U · D ·

Figure 5: Two examples of terminal segments of decorated paths and their “good” gaps.

primitive decorated paths in DPn, denoted PPn, consists of those that end UD together
with the all-numbers sequence 0n.

In the next two sections, we will give two preliminary bijections ψ and ρ on which φ
depends. The first, ψ, sends PPn to DPn−1 for n > 1 and corresponds to de-elevating
(removing the first and last step from) a primitive (precisely one return) Dyck path
to obtain a 1-size-smaller Dyck path. The second, ρ, sends DPn, n > 1, to pairs of
decorated paths (y, z) whose sizes sum to n where y is a primitive decorated path and z
is an arbitrary decorated path. This corresponds to the first-return decomposition that
splits a nonempty Dyck path into a pair of Dyck paths, the first with precisely one return,
the second arbitrary.

With these two bijections in hand, it is clear we can recursively define a size-preserving
bijection φ from decorated paths to Dyck paths. The base case is that φ sends the empty
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decorated path to the empty Dyck path. Then, for a nonempty decorated path w, with
ρ(w) = (y, z) where y is primitive,

φ(w) = U · φ(ψ(y)) ·D · φ(z) ,

where the dot denotes concatenation.

3.7.7 The bijection ψ from PPn to DPn−1.

Suppose w ∈ PPn. If w = 0n, then ψ(w) = 0n−1. Otherwise, let w′ denote the segment
of w strictly between the last F and terminating UD. Note that steps in w′ (if any) must
all be Ds because F s and Us alternate. Let I denote the list of numbers in w′. Then
I is weakly increasing, and nonempty by condition (3) in Section 3.7.3 with last (and
largest) entry a, say. Let x denote the letter immediately preceding the last F . Then x
is a number or x = D by condition (4). If I is a constant list, so I = as, then w′ has the
form Dr>0as since all D’s must occur at the start by condition (2). We now consider 3
cases to facilitate showing that ψ is invertible.

1. I is a constant list as and x = D. Then w has the form on the left side below and
ψ deletes the last occurrence of each of F, U and D, and moves the Dr>0 factor to
the end.

· · ·DFDr>0as>1UD → · · ·Das>1Dr>0 .

2. I is a constant list as and x is a number. By condition (2) x = a − 1. Then w has
the form on the left side below and ψ performs the same actions as in case 1.

· · · (a− 1)FDr>0as>1UD → · · · (a− 1)as>1Dr>0 .

3. I is not a constant list. So a−1 must occur in I since I is part of a weakly increasing
ascent sequence, and w has the form on the left side below. Here ψ interchanges the
last U step and the Dr>0 factor, deletes one a, and subtracts 1 from each remaining
a.

· · ·F · · · (a− 1)Dr>0as>1UD → · · ·F · · · (a− 1)U(a− 1)s−1>0Dr+1>1 .

Next, we show ψ is invertible. A constant decorated path consists entirely of 0s: 0r>0.
A nonconstant decorated path ends with a number, cases (i) and (ii) in Figure 6 below,
or a D step, cases (iii) - (vi), and these 6 cases are mutually exclusive and exhaustive.
The cases 1,2,3 can thus be distinguished: case 1 when ψ(w) is in case (i) or (iii), case 2
when ψ(w) is in case (ii) or (iv), and case 3 when ψ(w) is in case (v) or (vi). It is now
clear how to reverse ψ.
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Case Terminal segment
(i) Das>1

(ii) (a− 1)as>1

(iii) Das>1Dr>1

(iv) (a− 1)as>1Dr>1

(v) Uas>1Dr>1

(vi) UDr>1

Figure 6: Cases by terminal segment.

3.7.8 The bijection ρ from DPn to
⋃

n

i=1
PPi × DPn−i, n > 1

To define ρ, we need a notion of standardization. To standardize a string of numbers and
steps with respect to a number a, denoted Sta(w), means to add a− b to each number in
the string where b is the first number in the string so that the first number becomes a.
For example, St2(3U44D) = 2U33D and Sta(ǫ) = ǫ.

Now suppose w ∈ DPn, n > 1, and consider four cases to define ρ(w) as a pair of
decorated paths.

• If w consists entirely of numbers, then w can be written in the form w = 0jw2

where w2 is empty or begins with the number 1, and ρ(w) = (0j , St0(w2)) of the
form (all-numbers, all-numbers). For example, ρ(001223) = (00, 0112).

• If the last U of w is (immediately) followed by a number, say a, so that w has the
form w1a

jw2 where w1 ends with the last U , j > 1, and the first letter of w2 is not
a. Then ρ(w) = (0j, w1 · Sta(w2)) of the form (all-numbers, not all-numbers). For
example, ρ(0F1U112D3) = (00, 0F1U1D2).

• If the last U of w has successor a D and this D is the last D in w, then w has
the form w1w2 where w1 ends with UD and w2 (possible empty) consists entirely
of numbers. Here ρ(w) = (w1, St0(w2)) of the form (not all-numbers, all-numbers).
For example, ρ(0F12UD233) = (0F12UD, 011).

• If the last U of w has successor a D, denoted D1, and D1 is not the last D in w,
let D2 denote the second D after the last U and let U2 denote its matching upstep
in the underlying UFD path. By condition (3), U2 is preceded by a number, say
a. See Figure 7 below for a schematic example, where v denotes the string of 0 or
more numbers between D1 and D2, and the arrows indicate matching steps.

Split w after U2 and after D1 to write w = w1w2w3, as shown. Then ρ(w) =
(St0(w2), w1 · Sta(w3)) of the form (not all-numbers, not all-numbers). For example,
ρ(0F1U1F222UD233D4) = (0F111UD, 0F1U122D3).

The four bulleted cases can be distinguished according as each of the two resulting deco-
rated paths consists entirely of numbers or not, as indicated in each of the bulleted cases.
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b

b b

b b

b

b b

b

b

w1 w2 w3

a

v
U2

U1 D1

D2

Figure 7: A decomposition for the bijection ρ.

It is clear the map ρ can then be reversed by looking at the position of the last U in the
second member of ρ(w) if it contains a U , otherwise by a suitable concatenation.

4 Further results

By using our algorithm as in the previous sections, one can show that the number awk of
A-Wilf-equivalence classes of k length-3 patterns is given by

aw4 = 74, aw5 = 61, aw6 = 47, aw7 = 35, aw8 = 25,

aw9 = 18, aw10 = 12, aw11 = 7, aw12 = 3, aw13 = 1.
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Appendix

Table 2: Ascent sequences avoiding a triples of length-3 patterns.

Beginning of Table 2

Class B triple {|An(B)|}11n=1

1 {000,011,012} 1,2,2,0,0,0,0,0,0,0,0

2 {000,001,012},{000,010,012} 1,2,2,1,0,0,0,0,0,0,0

3 {000,001,010},{000,001,011},{000,010,011}

{001,010,011},{001,010,012},{001,011,012}

{010,011,012} 1,2,2,2,2,2,2,2,2,2,2

4 {000,012,101},{000,012,110} 1,2,3,2,0,0,0,0,0,0,0

5 {000,012,021},{000,012,100},{000,012,102}

{000,012,120},{000,012,201},{000,012,210} 1,2,3,3,0,0,0,0,0,0,0

6 {000,011,102},{000,011,120},{001,011,100}

{001,011,120},{001,012,100},{001,012,110}

{011,012,100} 1,2,3,3,3,3,3,3,3,3,3

7 {000,001,021},{000,001,120} 1,2,3,4,4,4,4,4,4,4,4

8 {000,001,110},{000,011,021},{000,011,100}

{000,011,101},{000,011,110},{000,011,201}

{000,011,210},{001,010,021},{001,010,100}

{001,010,101},{001,010,102},{001,010,110}

{001,010,120},{001,010,201},{001,010,210}

{001,011,021},{001,011,101},{001,011,102}

{001,011,110},{001,011,201},{001,011,210}

{001,012,021},{001,012,101},{001,012,102}

{001,012,120},{001,012,201},{001,012,210}

{010,011,021},{010,011,100},{010,011,101}

{010,011,102},{010,011,110},{010,011,120}

{010,011,201},{010,011,210},{010,012,021}

{010,012,100},{010,012,101},{010,012,102}

{010,012,110},{010,012,120},{010,012,201}

{010,012,210},{011,012,021},{011,012,101}

{011,012,102},{011,012,110},{011,012,120}

{011,012,201},{011,012,210} 1,2,3,4,5,6,7,8,9,10,11

9 {000,001,210} 1,2,3,5,7,9,11,13,15,17,19

10 {000,001,100},{000,001,101},{000,001,102}

{000,001,201},{000,010,021},{000,010,100}

{000,010,101},{000,010,102},{000,010,110}

{000,010,120},{000,010,201},{000,010,210} 1,2,3,5,8,13,21,34,55,89,144

11 {000,201,210} 1,2,4,10,25,66,177,488,1368,3900,11258

12 {000,100,201} 1,2,4,10,26,74,218,672,2130,6945,23145

13 {000,100,210} 1,2,4,10,26,75,228,738,2501,8857,32543

14 {001,021,100},{001,021,110},{001,021,120}

{001,100,110},{001,100,120},{001,110,120}

{011,100,102},{011,100,120},{011,102,120}

{012,100,101},{012,100,110},{012,101,110} 1,2,4,6,8,10,12,14,16,18,20

15 {001,021,101},{001,021,102},{001,021,201}

{001,021,210},{001,100,210},{001,101,110}

{001,101,120},{001,102,110},{001,102,120}

{001,110,201},{001,110,210},{001,120,201}

{001,120,210},{011,021,100},{011,021,102}

{011,021,120},{011,100,101},{011,100,110}

{011,100,201},{011,100,210},{011,101,102}

{011,101,120},{011,102,110},{011,102,201}

{011,102,210},{011,110,120},{011,120,201}

{011,120,210},{012,021,100},{012,021,101}

{012,021,110},{012,100,102},{012,100,120}

{012,100,201},{012,100,210},{012,101,102}

{012,101,120},{012,101,201},{012,101,210}

{012,102,110},{012,110,120},{012,110,201}

{012,110,210} 1,2,4,7,11,16,22,29,37,46,56

16 {001,100,101},{001,100,102},{001,100,201} 1,2,4,7,12,20,33,54,88,143,232

17 {000,021,102} 1,2,4,8,11,18,29,47,76,123,199

18 {000,102,120} 1,2,4,8,12,20,32,52,84,136,220

19 {000,021,120} 1,2,4,8,13,23,39,67,114,194,329

20 {000,102,110} 1,2,4,8,14,24,40,66,108,176,286

21 {001,101,210},{001,102,210},{001,201,210} 1,2,4,8,15,26,42,64,93,130,176

22 {000,021,101},{000,021,110} 1,2,4,8,15,28,51,92,164,290,509

23 {000,101,120} 1,2,4,8,15,29,56,108,208,401,773

24 {000,101,102},{000,101,110},{001,101,102}

{001,101,201},{001,102,201},{010,021,100}

{010,021,101},{010,021,102},{010,021,110}

{010,021,120},{010,021,201},{010,021,210}

{010,100,101},{010,100,102},{010,100,110}
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Continuation of Table 2

Class B triple {|An(B)|}11n=1

{010,100,120},{010,100,201},{010,100,210}

{010,101,102},{010,101,110},{010,101,120}

{010,101,201},{010,101,210},{010,102,110}

{010,102,120},{010,102,201},{010,102,210}

{010,110,120},{010,110,201},{010,110,210}

{010,120,201},{010,120,210},{010,201,210}

{011,021,101},{011,021,110},{011,021,201}

{011,021,210},{011,101,110},{011,101,201}

{011,101,210},{011,110,201},{011,110,210}

{011,201,210},{012,021,102},{012,021,120}

{012,021,201},{012,021,210},{012,102,120}

{012,102,201},{012,102,210},{012,120,201}

{012,120,210},{012,201,210} 1,2,4,8,16,32,64,128,256,512,1024

25 {000,110,120} 1,2,4,8,17,37,84,195,465,1131,2809

26 {000,102,210} 1,2,4,9,17,33,61,112,202,361,639

27 {000,102,201} 1,2,4,9,17,35,69,139,277,555,1109

28 {000,021,100},{000,021,201},{000,021,210} 1,2,4,9,18,37,73,143,275,523,983

29 {000,100,102} 1,2,4,9,18,38,78,163,337,701,1453

30 {000,100,120} 1,2,4,9,19,43,98,231,552,1345,3329

31 {000,120,201} 1,2,4,9,19,43,99,236,568,1394,3462

32 {000,120,210} 1,2,4,9,19,43,99,236,570,1410,3547

33 {000,101,210} 1,2,4,9,20,45,101,227,510,1146,2575

34 {000,100,101},{000,101,201} 1,2,4,9,21,51,127,323,835,2188,5798

35 {000,110,201} 1,2,4,9,21,51,128,331,876,2360,6446

36 {000,100,110} 1,2,4,9,22,58,163,486,1526,5019,17208

37 {000,110,210} 1,2,4,9,22,58,164,492,1555,5143,17706

38 {021,102,110} 1,2,5,12,25,48,89,164,305,576,1105

39 {021,100,102} 1,2,5,12,26,53,105,206,404,795,1571

40 {100,102,110} 1,2,5,12,27,57,117,237,477,957,1917

41 {021,101,102},{021,101,120},{021,102,120}

{100,102,120},{101,102,110},{101,102,120}

{102,110,120} 1,2,5,12,27,58,121,248,503,1014,2037

42 {021,100,101},{021,100,110},{021,100,120}

{021,101,110},{021,110,120} 1,2,5,12,28,64,144,320,704,1536,3328

43 {100,101,110},{100,101,120},{101,110,120} 1,2,5,12,28,65,151,351,816,1897,4410

44 {100,101,102} 1,2,5,12,29,70,169,408,985,2378,5741

45 {100,110,120} 1,2,5,12,30,78,210,581,1648,4778,14120

46 {102,110,201} 1,2,5,13,31,69,147,305,623,1261,2539

47 {021,102,201},{021,102,210},{102,110,210} 1,2,5,13,32,74,163,347,722,1480,3005

48 {100,102,210} 1,2,5,13,33,80,187,426,953,2104,4599

49 {101,102,210},{102,120,201},{102,120,210} 1,2,5,13,33,81,193,449,1025,2305,5121

50 {100,102,201} 1,2,5,13,33,82,201,489,1185,2866,6925

51 {101,120,201},{101,120,210} 1,2,5,13,33,82,202,497,1224,3017,7439

52 {021,100,201},{021,100,210},{021,110,201}

{021,110,210} 1,2,5,13,34,88,224,560,1376,3328,7936

53 {021,101,201},{021,101,210},{021,120,201}

{021,120,210},{100,101,210},{101,102,201}

{101,110,201},{101,110,210} 1,2,5,13,34,89,233,610,1597,4181,10946

54 {100,101,201} 1,2,5,13,35,97,275,794,2327,6905,20705

55 {100,120,201},{110,120,201} 1,2,5,13,35,98,284,845,2567,7932,24857

56 {100,120,210},{110,120,210} 1,2,5,13,35,98,284,847,2589,8085,25725

57 {100,110,201} 1,2,5,13,35,98,285,856,2638,8297,26529

58 {100,110,210} 1,2,5,13,36,106,330,1079,3682,13040,47702

59 {102,201,210} 1,2,5,14,39,104,265,650,1547,3596,8205

60 {101,201,210} 1,2,5,14,41,122,365,1094,3281,9842,29525

61 {021,201,210},{100,201,210},{110,201,210} 1,2,5,14,42,132,429,1430,4862,16796,58786

62 {120,201,210} 1,2,5,14,42,133,440,1507,5304,19074,69787

End of Table 2
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