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Abstract

In the present paper, motivated by a conjecture of Jahan and Zheng, we prove
that componentwise polymatroidal ideals have linear quotients. This solves posi-
tively a conjecture of Bandari and Herzog. We introduce componentwise discrete
polymatroids, as the combinatorial counterpart of componentwise polymatroidal
ideals, and show that they are shellable multicomplexes.

Mathematics Subject Classifications: 13F20, 13H10

1 Componentwise linear quotients

Let S = K[x1, . . . , xn] be the polynomial ring with coefficients over a field K, and let
I ⊂ S be a monomial ideal. Let G(I) be the unique minimal set of monomial generators
of I. We say that I has linear quotients if there exists an order u1, . . . , um of G(I) such
that (u1, . . . , uj−1) : uj is generated by variables for j = 2, . . . ,m.

For j  0, let I〈j〉 be the monomial ideal generated by the monomials of degree
j belonging to I. We say that I has componentwise linear quotients if I〈j〉 has linear
quotients for all j. It is known that ideals with linear quotients have componentwise
linear quotients [12, Corollary 2.8]. The converse is an open question [12]:

Conjecture 1. (Jahan–Zheng) Let I be a monomial with componentwise linear quotients.
Then I has linear quotients.

The above conjecture is widely open. See [11] for some partial results.

2 Componentwise Polymatroidal Ideals

A monomial ideal I is called polymatroidal if the set of the exponent vectors of the minimal
monomial generators of I is the set of bases of a discrete polymatroid [9]. Polymatroidal
ideals have linear quotients. A monomial ideal I is componentwise polymatroidal if the
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component I〈j〉 is polymatroidal for all j. Hence, componentwise polymatroidal ideals are
ideals with componentwise linear quotients. Therefore, a particular case of Conjecture 1
is:

Conjecture 2. (Bandari–Herzog) Let I be a componentwise polymatroidal ideal. Then
I has linear quotients.

This conjecture was firstly considered in [1] and proved for ideals of componentwise
Veronese type. Recently, Bandari and Qureshi [2] proved it in the two variables case and
for componentwise polymatroidal ideals with strong exchange property.

We are going to prove Conjecture 2 in full generality.

For this aim, we recall some results from [2]. For a monomial u = xa1
1 · · · xan

n ∈ S, we
denote its degree by deg(u) = a1 + · · · + an. Whereas, the xi-degree of u is the integer
degxi

(u) = ai = max{j  0 : xj
i divides u}.

Theorem 3. [2, Proposition 1.2] Let I ⊂ S be a monomial ideal. Then, the following
conditions are equivalent.

(i) I is a componentwise polymatroidal ideal.

(ii) For all u, v ∈ I with deg(u)  deg(v) and with u not dividing v, and all i such that
degxi

(v) > degxi
(u) there exists an integer j with degxj

(v) < degxj
(u) and such that

xj(v/xi) ∈ I.

Proposition 4. [2, Proposition 1.5] Let I ⊂ S be a componentwise polymatroidal ideal.
Then the following property, called the dual exchange property, holds: For all u, v ∈ I
with deg(u)  deg(v), and all i such that degxi

(v) < degxi
(u) there exists an integer j

with degxj
(v) > degxj

(u) and such that xi(v/xj) ∈ I.

We close this section with some examples.

Example 5. (a) Componentwise polymatroidal ideals in two variables were classified in
[2]. Let I ⊂ K[x, y] be a monomial ideal. We may assume that the minimal monomial
generators of I do not have any common factor. In fact, if I = uJ for a monomial u ∈ S
and a monomial ideal J , then I is componentwise polymatroidal if and only if J is such.
It is proved in [2, Corollary 2.7] that I ⊂ K[x, y] is a componentwise polymatroidal ideal
if and only if I is a yx-tight ideal in the sense of [2, Definition 2.1].

(b) Let a = (a1, . . . , an) ∈ Zn
0 and d  1. The ideal of Veronese type (a, d) is

Ia,d = (xb1
1 · · · xbn

n : b1 + · · ·+ bn = d, bi  ai, for all i).

Monomial ideals whose all components are of Veronese type are componentwise polyma-
troidal ideals, see also [1, Section 3].

(c) A monomial ideal I generated in a single degree has the strong exchange prop-
erty if for all u, v ∈ G(I) all i such that degxi

(u) > degxi
(v) and all j such that

degxj
(u) < degxj

(v), then xj(u/xi) belongs to G(I). It is known that any such ideal
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I is a polymatroidal ideal of the form I = uIa,d for some suitable monomial u ∈ S,
a ∈ Zn

0 and d  1. Hence, ideals whose all components satisfy the strong exchange
property are componentwise polymatroidal.

(d) Denote by m the maximal ideal (x1, . . . , xn). It is known that the product of
polymatroidal ideals is polymatroidal. Let 1  d1 < · · · < dt be positive integers,
J1, . . . , Jt be polymatroidal ideals generated in degrees d1, . . . , dt, respectively, such that
mdi+1−diJi ⊆ Ji+1 for i = 1, . . . , t − 1. Let I = J1 + · · · + Jt. Then I is componentwise
polymatroidal. Indeed,

I〈j〉 =






Ji if j = di, for some i,

mj−diJi if di < j < di+1, for some i,

mj−dtJt if j  dt,

is polymatroidal for all j.

(e) Let u = xi1 · · · xid and v = xj1 · · · xjd be two monomials of the same degree d, with
1  i1  . . .  id  n and 1  j1  . . .  jd  n. We write v ≼Borel u if jk  ik for
all k. The principal Borel ideal generated by u, denoted by B(u), is the monomial ideal
generated in degree d whose minimal generating set is

G(B(u)) = {v ∈ S : deg(v) = deg(u), v ≼Borel u}.

It is known that B(u) is polymatroidal. Let u, v ∈ S be monomials of the same degree.
It follows from the definition of ≽Borel that B(v) ⊆ B(u) if and only if v ≼Borel u. Notice
that mℓB(u) = B(uxℓ

n) for any ℓ. We say that a monomial ideal I is componentwise
principal Borel if all I〈j〉 are principal Borel ideals. From (d) and these considerations,
it follows that I is componentwise principal Borel if and only if there exists monomials
u1, . . . , ut of degrees d1 < · · · < dt, respectively, such that

uix
di+1−di
n ≼Borel ui+1,

for i = 1, . . . , t− 1, and I = B(u1) + · · ·+B(ut).

(f) Actually, componentwise polymatroidal ideals appeared implicitly for the first time
in the work of Francisco and Van Tuyl [7], in connection to ideals of fat points. For n  1,
set [n] = {1, . . . , n}. Given a non-empty subset A of [n], denote by PA the polymatroidal
ideal (xi : i ∈ A). Suppose that A1, . . . , At are non-empty subsets of [n] such that
Ai ∪ Aj = [n] for all i ∕= j. It is shown in [7, Theorem 3.1] that

I = P k1
A1

∩ · · · ∩ P kt
At

is componentwise polymatroidal for all positive integers k1, . . . , kt  1.

(g) Let I be a polymatroidal ideal generated in degree d. The socle of I is the monomial
ideal soc(I) = (I : m)〈d−1〉. It is conjectured in [1, page 760], and proved in some special
cases in [4], that soc(I) is again polymatroidal. It is noted in [4] that (I : m) is generated
in at most two degrees d− 1 and d, and that (I : m)〈d〉 = I. Thus

(I : m) = soc(I) + I.
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Furthermore, it follows by the very definition of colon ideal that m(I : m) ⊆ I. In
particular, m · soc(I) ⊆ I. Hence, if soc(I) is polymatroidal, it would follow by the
construction in (d) that (I : m) is componentwise polymatroidal.

(h) More generally, let I be a componentwise polymatroidal ideal. If the above conjec-
ture about the socle of polymatroidal ideals is true, then (I : m) would be componentwise
polymatroidal as well. Indeed,

(I : m)〈j〉 = {u ∈ S : deg(u) = j, and uxi ∈ I, for all i}
= {u ∈ S : deg(u) = j, and uxi ∈ I〈j+1〉, for all i}
= (I〈j+1〉 : m)〈j〉

= soc(I〈j+1〉)

would be a polymatroidal ideal, for all j.

3 Componentwise polymatroidal ideals have linear quotients

We are now ready to prove the main result in the paper.

Theorem 6. Componentwise polymatroidal ideals have linear quotients.

Proof. Let I ⊂ S = K[x1, . . . , xn] be a componentwise polymatroidal ideal. We prove
the theorem by induction on |G(I)|, the number of minimal monomial generators of I. If
|G(I)| = 1, then I is a principal ideal and it has linear quotients.

Suppose |G(I)| > 1. By induction, all componentwise polymatroidal ideals in S with
less than |G(I)| generators have linear quotients. Furthermore, we may suppose that all
monomials u ∈ G(I) have no common factor w ∕= 1. Otherwise, we may consider the ideal
I ′ with G(I ′) = {u/w : u ∈ G(I)}. Then I ′ is componentwise polymatroidal too, and
I has linear quotients if and only if I ′ has linear quotients. Let d = α(I) be the initial
degree of I. That is, I〈j〉 = 0 for 0  j < d and I〈d〉 ∕= 0. Let j be any integer such that
xj divides some monomial generator of I〈d〉. After a suitable relabeling, we may assume
j = 1. Therefore, we can write

I = x1I1 + I2

for unique monomial ideals I1, I2 ⊂ S such that

G(x1I1) = {u ∈ G(I) : x1 divides u},
G(I2) = {u ∈ G(I) : x1 does not divide u}.

We are going to prove the following three facts:

(a) I2 ⊆ I1 as monomial ideals of S.

(b) x1I1 is a componentwise polymatroidal ideal of S.

(c) I2 is a componentwise polymatroidal ideal of K[x2, . . . , xn].
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Once we get these claims, the proof ends as follows. Since the monomials in G(I)
have no common factor ∕= 1, |G(x1I1)| and |G(I2)| are strictly less than |G(I)|. Items
(b) and (c) together with our induction hypothesis imply that x1I1 and I2 have linear
quotients, with linear quotients orders, say u1, . . . , ur of G(x1I1), and v1, . . . , vs of G(I2).
We claim u1, . . . , ur, v1, . . . , vs is a linear quotients order of I. Indeed, if ℓ ∈ [r], then
(u1, . . . , uℓ−1) : uℓ is generated by variables by our inductive hypothesis on x1I1. Whereas,
if ℓ ∈ [s], using the inductive hypothesis on I2, we obtain that the ideal

(u1, . . . , ur, v1, . . . , vℓ−1) : vℓ = (u1, . . . , ur) : vℓ + (v1, . . . , vℓ−1) : vℓ

= (x1I1 : vℓ) + (v1, . . . , vℓ−1) : vℓ

= (x1) + (v1, . . . , vℓ−1) : vℓ

is generated by variables, because it is a sum of ideals generated by variables. Here, we
have used the fact that vℓ ∈ G(I2) ⊂ I1 and x1 does not divide vℓ to get the equality
(x1I1 : vℓ) = x1(I1 : vℓ) = x1S = (x1).

It remains to prove items (a), (b) and (c).

Proof of (a): It is enough to show that any monomial of G(I2) is divided by some
monomial of I1. Let v ∈ G(I2) and let u ∈ x1I1 with deg(u) = α(I). Then deg(u) =
α(x1I1) = α(I). Therefore deg(u)  deg(v). Moreover degx1

(v) = 0 < degx1
(u). By the

dual exchange property (Proposition 4) we can find j with degxj
(v) > degxj

(u) such that
x1(v/xj) ∈ I. Then there is w ∈ G(I) that divides x1(v/xj). If w ∈ G(I2), then x1 does
not divide w and so w divides v/xj, against the fact that v is a minimal generator of I.
Hence w ∈ G(x1I1) and w = x1w

′ divides x1(v/xj). Consequently w′ ∈ I1 divides v/xj.
Hence w′ ∈ I1 divides v ∈ G(I2), as desired.

Proof of (b): Let u, v ∈ x1I1 with deg(u)  deg(v), u not dividing v, and let i such
that degxi

(v) > degxi
(u). By Theorem 3(ii) it is enough to determine j with degxj

(v) <
degxj

(u) such that xj(v/xi) ∈ x1I1. Since u, v ∈ I, by Theorem 3 we can find j with
degxj

(v) < degxj
(u) such that xj(v/xi) ∈ I. We show now that xj(v/xi) ∈ x1I1. Note

that x1 divides v ∈ x1I1. If i ∕= 1, then x1 divides xj(v/xi). Otherwise, if i = 1, since x1

divides u ∈ x1I1 and degx1
(v) > degx1

(u)  1, we obtain degx1
(xj(v/x1))  1. Hence, in

both cases x1 divides xj(v/xi). Now, if some w ∈ G(I2) divides xj(v/xi) then x1w also
divides xj(v/xi). By item (a), x1w ∈ x1I2 ⊂ x1I1 and so xj(v/xi) ∈ x1I1. Otherwise,
some w ∈ G(x1I1) divides xj(v/xi) and again xj(v/xi) ∈ x1I1, as wanted.

Proof of (c): Let u, v ∈ I2 with deg(u)  deg(v), u not dividing v and let i such that
degxi

(v) > degxi
(u). Recall that we are regarding I2 as an ideal of K[x2, . . . , xn], hence

degx1
(v) = degx1

(u) = 0. By Theorem 3(ii) valid in I, there exists j with degxj
(v) <

degxj
(u) and such that xj(v/xi) ∈ I. Since j ∕= 1, x1 does not divide xj(v/xi). Hence

xj(v/xi) ∈ I2, as desired.

Example 7. By Examples 5(f), I = P 2
{1,2,3} ∩ P 2

{1,3,4} is componentwise polymatroidal.

Notice that G(I) = {x2
1, x1x3, x

2
3, x1x2x4, x2x3x4, x

2
2x

2
4} and α(I) = 2. A variable di-

viding a generator of least degree is for instance x1. Using the notation in the proof
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of Theorem 6 and the Macaulay2 [8] package [5], we checked that I1 = (x1, x3, x2x4),
I2 = (x2

3, x2x3x4, x
2
2x

2
4) are componentwise polymatroidal ideals and I2 ⊆ I1. The ideal

I1 has linear quotients order x1, x3, x2x4. Whereas a linear quotients order of I2 is
x2
3, x2x3x4, x

2
2x

2
4. Hence, according to the proof of the theorem, a linear quotients or-

der of I = x1I1 + I2 is indeed x2
1, x1x3, x1x2x4, x

2
3, x2x3x4, x

2
2x

2
4.

Unfortunately the product of componentwise polymatroidal ideals is not a componen-
twise polymatroidal ideal anymore [1]. However, we expect that

Conjecture 8. Each power of a componentwise polymatroidal ideal has linear quotients.

For a monomial ideal I, denote by HSj(I) the jth homological shift ideal of I [4].
That is, the monomial ideal generated by the monomials whose exponent vectors are the
jth multigraded shifts appearing in the minimal multigraded free resolution of I. It is
expected that HSj(I) is polymatroidal for all j, if I is polymatroidal. For some partial
results on this conjecture see [3, 4, 6].

Question 9. Let I be a componentwise polymatroidal ideal. Is HSj(I) componentwise
polymatroidal as well, for all j?

4 Componentwise Discrete Polymatroids

In this final section, we introduce the combinatorial counterpart of componentwise poly-
matroidal ideals, which we call componentwise discrete polymatroids.

For a = (a1, . . . , an) ∈ Zn
0, denote by a[i] = ai the ith component of a. We set

|a| = a1+ · · ·+ an. Let a,b ∈ Zn
0. We write a  b if a[i]  b[i] for all i. We write a < b

if a  b and a ∕= b. Let e1, . . . , en be the canonical basis of Zn
0, that is ei[j] = 0 for all

j ∕= i and ei[i] = 1. A simplicial multicomplex M on the vertex set [n] is a finite subset
of Zn

0 satisfying the following properties:

(a) If a ∈ M and b  a, then b ∈ M.

(b) ei ∈ M for all i.

Any a ∈ M is called a face of M. A facet a ∈ M is a face of M for which there is
no b ∈ M such that a < b. The set of facets of M is denoted by F(M). We set
α(M) = min{|a| : a ∈ F(M)} and ω(M) = max{|a| : a ∈ F(M)}. The dimension of
M is dim(M) = max{|a|− 1 : a ∈ M}. Notice that dim(M) = ω(M)− 1.

For any b1, . . . ,bℓ ∈ Zn
0, we denote by 〈b1, . . . ,bℓ〉 the unique, smallest with respect

to the inclusion, simplicial multicomplex containing b1, . . . ,bℓ.
For a ∈ Z0, we set xa =


i x

a[i]
i . The facet ideal of M is defined as

I(M) = (xa : a ∈ F(M)).

There is a natural bijection between monomial ideals of S and simplicial multicom-
plexes on vertex set [n], defined by assigning to each monomial ideal I ⊂ S the simplicial
multicomplex MI = 〈a ∈ Zn

0 : x
a ∈ G(I)〉.
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Now, we introduce a special class of simplicial multicomplexes. A simplicial multi-
complex P is called a componentwise discrete polymatroid if I(P) is a componentwise
polymatroidal ideal. To adhere to the classical terminology used for discrete polyma-
troids, we call the facets of P the bases of P . Notice that a componentwise discrete
polymatroid P is a discrete polymatroid if and only if α(P) = ω(P).

We denote by [n]〈d〉 the discrete polymatroid {a ∈ Zn
0 : |a|  d}. In particular

[n]〈1〉 = {e1, . . . , en}. Whereas, given a non-empty finite set A ⊂ Zn
0 and an integer

j  0, we set A〈j〉 = {a ∈ A : |a|  j}. Furthermore, if A1, A2 ⊂ Zn
0 are non-empty finite

sets, we define the sum as A1 + A2 = {a1 + a2 : a1 ∈ A1, a2 ∈ A2}.
Now, we can characterize componentwise discrete polymatroids.

Theorem 10. The following conditions are equivalent:

(i) P is a componentwise discrete polymatroid.

(ii) For all α(P)  j  ω(P), the simplicial multicomplex

j

k=α(P)

(P〈k〉 + [n]〈j−k〉)

is a discrete polymatroid.

(iii) For all a,b ∈
ω(P)

ℓ=α(P)

ℓ
k=α(P)(P〈k〉 + [n]〈ℓ−k〉) with α(P)  |a|  |b| and a ∕ b,

and all i such that b[i] > a[i], there is an integer j with b[j] < a[j] such that

b− ei + ej ∈
ω(P)

ℓ=α(P)

ℓ
k=α(P)(P〈k〉 + [n]〈ℓ−k〉).

Proof. We first notice the following fact. Let I ⊂ S be a monomial ideal, and let ω(I) =
max{deg(u) : u ∈ G(I)}. Then I is componentwise polymatroidal if and only if I〈j〉 is
polymatroidal for α(I)  j  ω(I). Only sufficiency needs a proof. Suppose that I〈j〉 is
polymatroidal for α(I)  j  ω(I). If j > ω(I), then I〈j〉 = mj−ω(I)I〈ω(I)〉 is polymatroidal
for it is the product of two polymatroidal ideals.

It is easily seen that I(P)〈j〉 = I(
j

k=α(P)(P〈k〉 + [n]〈j−k〉)) for all α(P)  j  ω(P).

Since, by definition, I(P) is componentwise polymatroidal if and only if I(P)〈j〉 is poly-
matroidal for all α(P)  j  ω(P), the equivalence (i)⇔(ii) follows at once.

The implication (i)⇒(iii) follows from Theorem 3. Conversely, assume that (iii) holds.
Then, [9, Theorem 2.3] implies that I(P)〈j〉 is polymatroidal for all α(P)  j  ω(P).
This shows that (iii)⇒(ii) and concludes the proof.

A simplicial multicomplex M is called pure if |a| = |b| for all a,b ∈ F(M). Whereas,
M is called shellable if there exists an order a1, . . . , am of F(M) such that the simplicial
multicomplex

〈a1, . . . , aj−1〉 ∩ 〈aj〉
is pure of dimension |aj| − 1 for all j = 2, . . . ,m. In this case, a1, . . . , am is called a
shelling order of M. It is well-known and easily seen that a1, . . . , am is a shelling order
of M if and only if xa1 , . . . ,xam is a linear quotients order of I(M). Thus, Theorem 6
implies immediately
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Corollary 11. Componentwise discrete polymatroids are shellable.

We end the paper with some natural questions.
Let P be a componentwise discrete polymatroid. Attached to P there are the following

three monomial subalgebras of S[t]:

K[P ] = K[xat : a ∈ P ],

K[F(P)] = K[xat : a ∈ F(P)],

R(I(P)) =


k0

I(P)ktk = K[x1, . . . , xn,x
at : a ∈ F(P)].

We call K[F(P)] the base ring of P . Whereas, R(I(P)) is the Rees algebra of I(P).
These three algebras are toric rings. It follows from a famous theorem of Hochster that
if a toric ring is normal, then it is Cohen–Macaulay [10].

Question 12. Let P be a componentwise discrete polymatroid. Are the rings K[P ],
K[F(P)], R(I(P)) normal? Cohen–Macaulay?

The above question has a positive answer when P is actually a discrete polymatroid,
see [9, Theorem 6.1], [9, Corollary 6.2] and [13, Proposition 3.11].

On the other hand, the following question is open even for discrete polymatroids.

Question 13. Let P be a componentwise discrete polymatroid. Are the rings K[P ],
K[F(P)], R(I(P)) Koszul?
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