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Abstract

Suppose we have a finite thick generalised quadrangle whose automorphism
group G acts primitively on both the set of points and the set of lines. Then
G must be almost simple. In this paper, we show that soc(G) cannot be isomorphic
to 2B2

󰀃
22m+1

󰀄
or 2G2

󰀃
32m+1

󰀄
where m is a positive integer.

Mathematics Subject Classifications: 20B25, 51E12

1 Introduction

A generalised polygon is a type of incidence structure introduced by Jacques Tits (1959)
[18] to realise groups of Lie type as symmetries (more precisely, automorphism groups)
of geometric objects. Let n be a positive integer. A generalised n-gon is an incidence
structure whose incidence graph is a bipartite graph with diameter n and girth 2n. We
say that a generalised n-gon has order (s, t) if every line has s + 1 points incident with
it and every point is incident with t + 1 lines. Furthermore, a generalised n-gon is said
to be thick if it has order (s, t) where s, t > 1. Feit and Higman showed in [6] that thick
generalised n-gons exist if and only if n ∈ {3, 4, 6, 8}. Our focus from now will only be on
thick generalised polygons. Therefore, we refer to a thick generalised polygon as simply
a generalised polygon. The examples of generalised polygons that arise from groups of
Lie type via the construction of Tits are called classical. Since then, many non-classical
examples of projective planes (generalised 3-gons) and generalised quadrangles (4-gons)
have been found [19, Section 3.7]. In the case of generalised hexagons (6-gons) and gen-
eralised octagons (8-gons), the only known examples are the classical ones.

Many attempts have been made to construct new examples. These attempts involve
introducing various symmetry conditions on the automorphism groups and analysing the
possible groups acting on generalised polygons with these symmetry conditions. Bueken-
hout and Van Maldeghem (1994) [5] showed that if a group acts distance-transitively on a
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generalised n-gon (n 󰃍 4), then in fact, it must act point-primitively on that generalised
n-gon. We summarise the results on generalised hexagons and octagons in Table 1 and
the results on generalised quadrangles in Table 2. Here, we let Γ be a generalised n-gon
(generalised hexagon or octagon in Table 1 and generalised quadrangle in Table 2) and
G 󰃑 Aut(Γ). For a point α in Γ, we write Gα to denote the point-stabiliser of α in G.
Also, q is assumed to be a prime power. Finally, the column of assumptions refers to the
action of G on Γ.

Table 1: Summary of results on generalised hexagons and octagons.

Assumptions Conclusion Reference

Point-primitive,
line-primitive
and flag-transitive

G is almost simple of Lie type [15]

Point-primitive G is almost simple of Lie type [3]

Point-primitive and
soc(G) ∼= PSLn(q) for n 󰃍 2

Gα acts irreducibly on V = Fn
q [8]

Point-primitive and
soc(G) ∼= 2B2(2

2m+1),
2G2(3

2m+1) or 2F4(2
2m+1)

soc(G) ∼= 2F4(2
2m+1) and Γ is

the classical generalised octagon or its dual
[13]

Table 2: Summary of results on generalised quadrangles.

Assumptions Conclusion Reference

Point-primitive and
line-primitive

G is almost simple [2]

Point-primitive
line-primitive
and flag-transitive

G is almost simple of Lie type [2]

Point-primitive,
flag-transitive and
soc(G) ∼= An with n 󰃍 5

G 󰃑 S6 and Γ is the unique
generalised quadrangle of order (2, 2)

[2]

Point-primitive
soc(G) is not isomorphic to
a sporadic group

[1]

Point-primitive and
soc(G) ∼= PSL2(q) for q 󰃍 4

q = 9 and
Γ is the symplectic quadrangle W (2)

[7]

Point-primitive and
line-primitive

soc(G) is not isomorphic to PSU3(q)
for q 󰃍 3

[12]
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The main theorem in this paper (Theorem 1) is motivated by the work of Morgan and
Popiel [13] on generalised hexagons and octagons, where they showed that if G acts point-
primitively on a generalised hexagon or an octagon Γ with socle soc(G) ∼= 2B2(2

2m+1),
2G2(3

2m+1) or 2F4(2
2m+1), then soc(G) ∼= 2F4(2

2m+1) and Γ is the classical generalised
octagon or its dual.

Theorem 1. Let m be a positive integer. An almost simple group with socle isomorphic
to 2B2(2

2m+1) or 2G2(3
2m+1) cannot act primitively on both the set of points and the set

of lines of a generalised quadrangle.

The case where soc(G) ∼= 2F4(2
2m+1) is not included in this paper as it still requires

further analysis and the techniques needed to classify generalised quadrangles in this
scenario may be different.

2 Preliminaries

We develop some preliminary definitions and results from incidence geometry and group
theory.

2.1 Incidence Geometry

An incidence geometry is a triple (P ,L, I) where P is called the set of points, L is the
set of lines disjoint from P and I ⊆ P × I is the incidence relation. We say that a point
α ∈ P is incident with a line L ∈ L if (α, L) ∈ I. This pair (α, L) is called a flag. We
say two points α, β ∈ P are collinear if there exists a line L ∈ L such that (α, L) ∈ I and
(β, L) ∈ I. Finally, the dual of an incidence geometry (P ,L, I) is the incidence geometry
(P ′,L′, I ′) where the set of points P ′ = L, the set of lines L′ = P and the incident pair
(L,α) ∈ I ′ precisely when (α, L) ∈ I.

We may also view an incidence structure as a graph. More precisely, given an in-
cidence structure Γ = (P ,L, I), we construct a graph called the incidence graph of Γ
in the following way: we take the vertex set to be P ∪ L and we join an edge between
α ∈ P and L ∈ L if (α, L) ∈ I. Note that the disjointness of P and L ensures that the
incidence graph does not contain loops. Finally, an automorphism of Γ is a bijective map
θ : P ∪ L → P ∪ L that sends points to points and lines to lines as well as preserving
the incidence relation. The group of automorphisms of Γ is denoted by Aut(Γ). While we
have defined generalised polygons via this incidence graph, we will often think of them
as incidence geometries. For more information on incidence structures and generalised
polygons, we refer to [10, 14, 19].

From here on, a generalised quadrangle is assumed to be finite, i.e., it has a finite
set of points and set of lines. Furthermore, a generalised quadrangle with order (s, t) has
(s+ 1)(st+ 1) points and (t+ 1)(st+ 1) lines [14, (1.2.1)].
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Lemma 2 ([7, Corollary 2.3]). Let G be a group acting on a generalised quadrangle Γ and
suppose g ∈ G. Let Γg = (Pg,Lg, Ig) be the fixed substructure of g. If |Pg| 󰃍 2, |Lg| 󰃍 2
and Γg admits an automorphism group H that is transitive on both points and lines, then
Γg is a generalised quadrangle of order (s′, t′) for some positive integers s′ and t′.

The next number-theoretic lemma concerns the solutions of s and t given a certain
number of points and lines.

Lemma 3. Let a, b, s, t be positive integers and p be a prime. If

(s+ 1)(st+ 1) = pa and (t+ 1)(st+ 1) = pb, (1)

then p = 2. Furthermore, we have: (s = 1 and b = a/2 + 1) or (t = 1 and a = b/2 + 1).

Proof. Let d := gcd(s+1, t+1, st+1). Then d divides t(s+1)−(st+1) = t−1. Therefore,
d divides t+1− (t−1) = 2. Hence, d = 1 or d = 2. Since s+1, t+1, st+1 󰃍 2, it follows
that p divides s + 1, t + 1 and st + 1 and so, p divides d. From which, we deduce that
d = 2 and p = 2. Now, suppose that s+1 ∕= 2 and t+1 ∕= 2. Then s+1 ≡ 0 (mod 4) and
t+ 1 ≡ 0 (mod 4). Thus, st+ 1 ≡ (−1)(−1) + 1 ≡ 2 (mod 4) and so, st+ 1 = 2. This is
a contradiction since st+ 1 > s+ 1 > 2. Therefore, s+ 1 = 2 or t+ 1 = 2. Without loss
of generality, say t = 1. Substituting for t and p in (1), we obtain

(s+ 1)2 = 2a and 2(s+ 1) = 2b.

Hence, s + 1 = 2a/2 = 2b−1, from which, we obtain b = a/2 + 1. If we consider the case
where s = 1, then by the same argument, we obtain a = b/2 + 1.

2.2 Group Theory

2.2.1 Notation

Let n be a positive integer and q be a prime power. We denote the cyclic group of order n
by Cn, the dihedral group of order 2n by Dn, the elementary abelian group of order q by
Eq. Given two groups H and K, we write H.K to mean an extension of H by K, i.e., a
group G with a normal subgroup M where M ∼= H and G/M ∼= K. When the extension
is a split extension, we write H : K (or H ⋊K).

2.2.2 Elementary Results

In our study of groups of Lie type, we will come across subgroups that are semidirect
products of two groups with coprime order. A classical result that will be useful in
studying these subgroups is the Schur-Zassenhaus Theorem, which can be found in [9,
Section 3B].

Theorem 4 (Schur-Zassenhaus Theorem). Let G be a group with a normal subgroup N
such that |N | and |G/N | are coprime. Then there exists a subgroup K 󰃑 G such that
G = N ⋊ K, i.e., G = NK and N ∩ K = 1. We call K a complement of N in G.
Moreover, all complements of N in G are conjugate to K.
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Corollary 5. Let G = N ⋊K where gcd(|N |, |K|) = 1. Suppose M 󰃑 G with |M | = |K|.
Then M = Kx for some x ∈ G.

Proof. Observe that N ∩ M = 1 since they have coprime orders. Thus, |NM | =
|N ||M |/|N ∩ M | = |N ||K| = |G|. Hence, M is a complement of N in G. By the
Schur-Zassenhaus Theorem, all complements of N are conjugate and so, M = Kx for
some x ∈ G.

Corollary 6. Let G = N ⋊K where gcd(|N |, |K|) = 1 and suppose g ∈ G such that |g|
divides |K|. Then g ∈ Kh for some h ∈ G. In particular, the number of conjugacy classes
of elements with order |g| in G is at most the number of conjugacy classes of elements
with order |g| in K.

Proof. First, observe that g acts on N by conjugation. Since |g| divides |K|, it follows
that g /∈ N . Hence, we have the subgroup M := N ⋊ 〈g〉 󰃑 G. Note that KM =
K(N ⋊ 〈g〉) = KN〈g〉 = G and |G| = |K||M |/|K ∩M |. Thus,

|K ∩M | = |K||M |
|G| =

|K||N ||〈g〉|
|G| =

|K||N ||g|
|K||N | = |g|.

By Corollary 5, we deduce that K ∩ M is a complement of N in M . By the Schur-
Zassenhaus Theorem, all complements of N in M are conjugate. Therefore, K∩M = 〈g〉x
for some x ∈ M . Thus, 〈g〉 󰃑 Kx−1

, whence, g ∈ Kh, where h = x−1. The number of
conjugacy classes of elements with order |g| is at most the number in K because any
element of G with order |g| is conjugate to an element of K.

2.2.3 Permutation Groups

Our investigation involves groups of Lie type acting on generalised quadrangles. The
following lemma provides a formula for calculating the number of fixed points of an
element with respect to a group action.

Lemma 7 (Formula for the Number of Fixed Points [11, Lemma 2.5]). Let G be a finite
group acting transitively on a set Ω. Let α ∈ Ω and g ∈ G. Then the number of fixed
points of g, denoted π(g), is given by

π(g) =
|Ω||gG ∩Gα|

|gG| . (2)

Lemma 8 ([12, Lemma 2.4]). Let G be a group acting transitively on a set Ω and g
be a non-identity element in G. Consider a point α ∈ Ωg, where Ωg is the set of fixed
points of g. Then CG(g) acts transitively on Ωg if and only if gG ∩ Gα = gGα, i.e., the
conjugacy class of g in G does not split into multiple conjugacy classes in Gα. In this
case, |Ωg| = |CG(g) : CG(g) ∩Gα|.
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3 Suzuki Groups

3.1 Structure of Suzuki Groups

In this subsection, we provide some background information on the family of Suzuki
groups. Throughout this section, we denote a Suzuki group by 2B2(q), where q = 22m+1

for some positive integer m. We start with the following result which can be found in [16,
Theorem 9].

Theorem 9 (Maximal Subgroups of a Suzuki Group). Let G = 2B2(q) and H be a
maximal subgroup of G. Then H is isomorphic to one of the following:

(i) M ∼= Eq.Eq.Cq−1;

(ii) B0 = NG(A0) ∼= Dq−1, where A0
∼= Cq−1;

(iii) A1
∼= Cq+

√
2q+1, A2

∼= Cq−
√
2q+1;

(iv) Bi = NG(Ai) ∼= Cq±
√
2q+1 : C4 for i ∈ {1, 2}; and

(v) N0
∼= 2B2(q0), where q0 = 2n0 > 2 and q = qr00 for some prime r0.

Moreover, there is only one conjugacy class of each type of maximal subgroup.

The next lemma shows that all the involutions in a Suzuki group are conjugate.

Lemma 10 (Conjugacy Class of Involutions). Let G = 2B2(q) and H be a maximal
subgroup of G. Then G and H both have exactly one conjugacy class of involutions.

Proof. It was shown in [16, Proposition 7] that all the involutions are conjugate in G.
Furthermore, if H ∼= Eq.Eq.Cq−1, then a cyclic subgroup of H of order q − 1 permutes
the set of involutions in H transitively [16, Proposition 8]. Therefore, we only need to
consider the cases:1 H ∼= Dq−1 = Cq−1 : C2 and H ∼= Cq±

√
2q+1 : C4. Since q is a power of

2, we have that gcd(q− 1, 2) = 1 and gcd(q±
√
2q + 1, 4) = 1. Hence, by Corollary 6, we

conclude that all the involutions are conjugate in G.

The following lemma provides information about the centraliser of an involution in G.

Lemma 11 (Centraliser of an Involution). Let G = 2B2(q) with maximal subgroups
H,K 󰃑 G where H ∼= Dq−1 and K ∼= Cq±

√
2q+1 : C4. Let g ∈ G, h ∈ H and k ∈ K

be involutions. Then

|CG(g)| = q2, |CH(h)| = 2, and |CK(k)| = 4.

1Note that the subfield case: H ∼= 2B2(q0), we have that H is a Suzuki group and so, it follows from
[16, Proposition 7].
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Proof. Consider G = 2B2(q). Note that CG(g) 󰃑 Q where Q is a Sylow 2-subgroup
of order q2 [16, Proposition 1]. Moreover, g ∈ Z(Q) [16, Proposition 7]. Therefore,
|CG(g)| = |Q| = q2.

Next, we find CH(h) = CG(h) ∩ H. Observe that |CH(h)| = |CG(h) ∩ H| 󰃑 2 since
|CG(h)| = q2 and |H| = 2(q − 1). Note that h ∈ CH(h). Hence, CH(h) ∼= C2. Similarly,
we have |CK(k)| = |CG(k) ∩K| 󰃑 4 since |CG(k)| = q2 and |K| = 4(q ±

√
2q + 1). Let

us now write K = 〈x〉 : 〈y〉, where |x| = q ±
√
2q + 1 and |y| = 4. Using Corollary 6, we

find that k = (y2)z for some z ∈ K, whence, yz ∈ CK(k). Since |y| = 4, we have that
CK(k) ∼= C4.

Lemma 12 (Number of Fixed Points of an Involution). Let G = 2B2(q) act primitively
on a set Ω and take a point α ∈ Ω. Suppose g ∈ Gα is an involution. Then

|Ωg| =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

q2/2 = 24m+1 if Gα
∼= Dq−1,

q2/4 = 24m if Gα
∼= Cq±

√
2q+1 : C4,

(q/q0)
2 = 22n0(r0−1) if Gα

∼= 2B2(q0) where q0 = 2n0 > 2

and q = qr00 for some prime r0.

Furthermore, CG(g) acts transitively on Ωg, the set of points fixed by g.

Proof. Since Gα contains a single class of involutions (Lemma 10), we conclude that
gG ∩ Gα = gGα . Thus, applying Lemma 8, we find that CG(g) acts transitively on Ωg

and |Ωg| = |CG(g) : CG(g) ∩ Gα|. Using Lemma 11, we obtain the desired formulae for
|Ωg|.

3.2 Suzuki Groups Acting on Generalised Quadrangles

We now prove Theorem 1 in the case where the socle is isomorphic to 2B2(q).

Proof. Suppose that an almost simple group with socle 2B2(q) acts primitively on the
point-set and the line-set of a generalised quadrangle Γ = (P ,L, I) with order (s, t)
where s, t 󰃍 2. Then |P| = (s+1)(st+1). Note that s+1 󰃍 3 and st+1 󰃍 3. Therefore,
their product cannot be a prime. The argument in [13, Section 3] shows that the socle
of this almost simple group acts primitively on both P and L. Therefore, it suffices to
consider the Suzuki group 2B2(q) acting primitively on both P and L. Let G = 2B2(q).
For a point α ∈ P and a line L ∈ L, their respective stabilisers Gα and GL are maximal
subgroups of G. By Theorem 9, a maximal subgroup of 2B2(q) is isomorphic to one of
the following:

(i) (Parabolic) Eq.Eq.Cq−1;

(ii) (Dihedral) Dq−1;

(iii) (Frobenius) Cq±
√
2q+1 : C4; or
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(iv) (Subfield) 2B2(q0), where q0 = 2n0 > 2 and q = qr00 for some prime r0.

Moreover, there is only one conjugacy class of each type of maximal subgroup, see also
[4, Table 8.16].

Note that if Gα
∼= Eq.Eq.Cq−1, then by [16], the action of G is 2-transitive. Thus,

a pair of collinear points can be mapped to a pair of non-collinear points, which is a
contradiction. Therefore, we only need to investigate the cases: Dq−1, Cq±

√
2q+1 : C4 and

2B2(q0) for the point and line-stabiliser and show that there are no generalised quadrangles
in those scenarios. To this end, suppose Gα is isomorphic toDq−1, Cq±

√
2q+1 : C4 or

2B2(q0)
and GL is isomorphic to Dq−1, Cq±

√
2q+1 : C4 or

2B2(q1), where qi = 2ni > 2 and qrii = q for
primes ri and i = 1, 2. Observe that both Gα and GL contain an involution, say g ∈ Gα

and h ∈ GL. Since all the involutions in G are conjugate (Lemma 10), there exists a
k ∈ G such that g = hk. Thus, g ∈ Gk

L. Since Gk
L = GL′ where L′ = Lk ∈ L, we can take

L to be L′ and assume that we have an involution g ∈ Gα ∩ GL. Let Pg and Lg be the
set of points and the set of lines fixed by g, respectively. By Lemma 12, we find that the
number of fixed points and lines are

|Pg| = 2a and |Lg| = 2b,

where a ∈ A := {4m, 4m + 1, 2n0(r0 − 1)} and b ∈ B := {4m, 4m + 1, 2n1(r1 − 1)}. By
Lemma 2, the fixed substructure, (Pg,Lg, Ig) is a generalised quadrangle of order (s′, t′)
for some positive integers s′ and t′. Therefore,

|Pg| = (s′ + 1)(s′t′ + 1) = 2a and |Lg| = (t′ + 1)(s′t′ + 1) = 2b.

By Lemma 3, we have that b = a/2 + 1 or dually, a = b/2 + 1. Let us suppose that b =
a/2+1. Thus, a is even and so, a = 4m or 2n0(r0−1). If a = 4m, then b−1 = a/2 = 2m.
Hence, b = 2m+1, which is odd. However, the only odd element in B is 4m+1 and so, we
have a contradiction. Next, if a = 2n0(r0−1), then b = a/2+1 = n0(r0−1)+1. However,
since r0 is an odd prime, it follows that b is odd. Therefore, b = 4m + 1. Consequently,
we find 4m+ 1 = b = n0r0 − n0 + 1 < n0r0 = 2m+ 1, which is a contradiction. The case
where a = b/2+1 is analogous. Therefore, the Suzuki group 2B2(q) cannot act primitively
on both the set of points and the set of lines of a generalised quadrangle. Consequently,
an almost simple group with socle isomorphic to 2B2(q) cannot act primitively on both
the set of points and the set of lines of a generalised quadrangle.

4 Ree Groups

We provide some background information on the family of small Ree groups. Throughout
this section, we denote a small Ree group by 2G2(q), where q = 32m+1 for some positive
integer m.
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4.1 Structure of Ree Groups

We have the following theorem regarding the maximal subgroups of 2G2(q) (see [4, Table
8.43]).

Theorem 13 (Maximal Subgroups of a Small Ree Group). Let G = 2G2(q) and H be a
maximal subgroup of G. Then H is isomorphic to one of the following:

(i) Eq.Eq.Eq.Cq−1;

(ii) C2 × PSL2(q);

(iii) (E4 ×D(q+1)/4) : C3;

(iv) Cq±
√
3q+1 : C6; and

(v) 2G2(q0), where q0 = 3n0 > 3 and q = qr00 for some prime r0.

Moreover, there is only one conjugacy class of each type of maximal subgroup.

Analogous to the Suzuki groups, elements of order 3 play a crucial role in studying
the action of a small Ree group on a generalised quadrangle. First, we recall a definition
from group theory. For a group G and g ∈ G, we say that g is real in G if g is conjugate
to its inverse in G, i.e., there exists an element h ∈ G such that g−1 = gh. We may omit
the “in G” part and simply refer to g as a real element.

The following lemma is useful for analysing the maximal subgroup isomorphic to
(E4 ×D(q+1)/4) : C3.

Lemma 14. Let H = KR ∼= (E4 × D(q+1)/4) : C3 where K ∼= E4 × D(q+1)/4 and R =
〈y〉 ∼= C3. Then y centralises an involution in H.

Proof. Note that 〈y〉 acts by conjugation on the set of involutions in H. We count the
number of involutions in H. Since q + 1 = 32m+1 + 1 = 3(32)m + 1 ≡ 3 + 1 (mod 8) ≡ 4
(mod 8), it follows that (q+1)/4 is odd and thus, D(q+1)/4 has (q+1)/4 involutions. Since
an involution in K is the product of an element of E4 and an involution in D(q+1)/4, or is
just an involution in E4, the number of involutions in K is 4(q+1)/4+3 = q+4. Now, all
the involutions in H are in K because K ⊴ H and gcd(|K|, |R|) = 1. Therefore, H has
q+4 involutions. Focusing on the action of 〈y〉 on the set of involutions, suppose that 〈y〉
has no fixed points, i.e., y does not centralise any involution. Then the orbits of 〈y〉 must
have length divisible by 3. This implies that q+4 is divisible by 3, which is a contradiction
as q = 32m+1. Therefore, y has a fixed point, i.e., y centralises an involution.

Lemma 15 (Conjugacy Classes of Elements of Order Three). Let G = 2G2(q) and H be
a maximal subgroup of G. Then the following statements hold:

(i) In G, there is one conjugacy class of real elements of order 3 and two conjugacy
classes of non-real elements of order 3.
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(ii) If H ∼= C2 × PSL2(q), H ∼= (E4 ×D(q+1)/4) : C3, or H ∼= Cq±
√
3q+1 : C6, then there

are two H-conjugacy classes of non-real elements of order 3.

Proof. First, we find that the centre of a Sylow 3-subgroup of G contains one conjugacy
class of elements with order 3 with representative labelled X [20, Chapter III, Paragraph
4]. Also, in [20, Chapter III, Paragraph 7], we find that there are two conjugacy classes
of elements of order 3 with representatives labelled T and T−1. This yields (i).

Now we focus on (ii). From [20, Chapter III, Paragraphs 1 and 3], we deduce that an
order 3 element in G is not real precisely when it centralises an involution. Therefore, it
suffices to show the following two points:

(a) An element of order 3 in H centralises an involution.

(b) There are at most two conjugacy classes of elements with order 3 in H.

Indeed, once we have established that there are at most two conjugacy classes, it follows
that we have exactly two conjugacy classes since the elements are not real.

Let us suppose H ∼= C2 × PSL2(q). Note that all the order 3 elements of H are in
PSL2(q). Therefore, the involution in C2 is centralised by the order 3 elements of H.
Also, there are exactly two conjugacy classes of elements with order 3 in PSL2(q) (see [17,
Chapter 3, (6.3) (iii)]) and hence, two conjugacy classes in H.

Next, we consider H = KR ∼= (E4 × D(q+1)/4) : C3 where K ∼= E4 × D(q+1)/4 and
R = 〈y〉 ∼= C3. Observe that gcd(|E4 ×D(q+1)/4|, |C3|) = gcd(2(q + 1), 3) = 1. Hence, by
Corollary 6, any element of order 3 must be conjugate in H to y or y−1. So there are
at most two conjugacy classes of elements with order 3. Furthermore, y centralises an
involution in H by Lemma 14.

Finally, let us suppose that H = KR ∼= Cq±
√
3q+1 : C6 where K ∼= Cq±

√
3q+1 and

R = 〈y〉 ∼= C6. We find that gcd(|Cq±
√
3q+1|, |C6|) = gcd(q ±

√
3q + 1, 6) = 1 since

q ±
√
3q + 1 ≡ 1 ± 1 + 1 (mod 2) ≡ 1 (mod 2) and q ±

√
3q + 1 ≡ 1 (mod 3). There

are two conjugacy classes of elements with order 3 in R, namely, (y2)R and (y4)R. Using
Corollary 6 again, we find that the number of conjugacy classes of elements with order 3
in H is at most 2. Moreover, we note that y2 centralises y3, which is an involution.

Lemma 16 (Centralisers of Elements of Order Three). Let G = 2G2(q), x ∈ G be a real
element of order 3 and y ∈ G be a non-real element of order 3. Then

|CG(x)| = q3 and |CG(y)| = 2q2.

Consider maximal subgroups H1, H2 and H3 of G where H1
∼= C2 × PSL2(q), H2

∼=
(E4 × D(q+1)/4) : C3 and H3

∼= Cq±
√
3q+1 : C6. Suppose hi ∈ Hi are elements of order 3

for i ∈ {1, 2, 3}. Then

|CH1(h1)| = 2q, |CH2(h2)| = 6 and |CH3(h3)| = 6.
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Proof. From [20, Chapter III, Paragraphs 2 and 3], we obtain |CG(y)| = 2q2 and |CG(x)| =
q3, respectively.

From [17, Chapter 3, (6.4) (i)], we find that |CPGL2(q)(x)| = q when x is an element
of order 3. Since PSL2(q) has index 2 in PGL2(q) and C := CPGL2(q)(x) has odd order, it
follows that C 󰃑 PSL2(q). Now, back to H1. Since the C2 in H1 also centralises h1, we
obtain |CH1(h1)| = 2q.

Next, observe that |CH2(h2)| = |CG(h2) ∩ H2| 󰃑 6 since gcd(|CG(h2)|, |H2|) =
gcd(2q2, 4 · 2(q + 1)/4 · 6) = gcd(2q2, 12(q + 1)) = 6. Furthermore, h2 centralises an
involution in H2 (Lemma 14). Therefore, |CH2(h2)| = 6.

Finally, we consider H3. By the argument as above, we see that gcd(|CG(h3)|, |H3|) =
gcd(2q2, 6(q ±

√
3q + 1)) = 6, whence, |CH3(h3)| = |CG(h3) ∩ H3| 󰃑 6. Since h3 lies in

some subgroup isomorphic to C6 in H3 (Corollary 6), it follows that h3 is centralised by
6 elements. Therefore, |CH3(h3)| = 6.

Lemma 17 (Number of Fixed Points of Order Three Elements). Let G = 2G2(q) act
primitively on a set Ω and take a point α ∈ Ω. Suppose we have a non-real element
g ∈ Gα of order 3. Then

|Ωg| =

󰀻
󰁁󰀿

󰁁󰀽

q if Gα
∼= C2 × PSL2(q),

q2/3 if Gα
∼= (E4 ×D(q+1)/4) : C3 or Gα

∼= Cq±
√
3q+1 : C6

(q/q0)
2 if Gα

∼= 2G2(q0) where q0 = 3n0 > 3 and q = qr00 for some prime r0.

Furthermore, CG(g) acts transitively on Ωg, the set of points fixed by g.

Proof. By Lemma 15, Gα has precisely two conjugacy classes of order 3 non-real elements.
Since G also has two conjugacy classes of these elements, the conjugacy classes do not
split, i.e., gG ∩Gα = gGα . Thus, applying Lemma 8, we find that CG(g) acts transitively
on Ωg and |Ωg| = |CG(g) : CG(g)∩Gα|. Using Lemma 16, we obtain the desired formulae
for |Ωg|.

4.2 Ree Groups Acting on Generalised Quadrangles

We now prove Theorem 1 in the case where the socle is isomorphic to 2G2(q).

Proof. Suppose that an almost simple group with socle 2G2(q) acts primitively on the
point-set and the line-set of a generalised quadrangle Γ = (P ,L, I) with order (s, t)
where s, t 󰃍 2. Then |P| = (s+1)(st+1). Note that s+1 󰃍 3 and st+1 󰃍 3. Therefore,
their product cannot be a prime. The argument in [13, Section 4] shows that the socle
of this almost simple group acts primitively on both P and L. Therefore, it suffices to
consider the Ree group 2G2(q) acting primitively on both P and L. Let G = 2G2(q).
For a point α ∈ P and a line L ∈ L, their respective stabilisers Gα and GL are maximal
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subgroups of G. We use the list of maximal subgroups from Theorem 13.

If Gα
∼= Eq.Eq.Eq.Cq−1, then the action of G is 2-transitive [20, Theorem (v)]. Thus,

a pair of collinear points can be mapped to a pair of non-collinear points, which is a
contradiction. Therefore, we only need to investigate the cases: C2 × PSL2(q), (E4 ×
D(q+1)/4) : C3, Cq±

√
3q+1 : C6 and 2G2(q0) for the point and line-stabiliser and show

that there are no generalised quadrangles in these scenarios. To this end, suppose Gα

is isomorphic to C2 × PSL2(q), (E4 × D(q+1)/4) : C3, Cq±
√
2q+1 : C4 or 2G2(q0) and GL

is isomorphic to C2 × PSL2(q), (E4 × D(q+1)/4) : C3, Cq±
√
2q+1 : C4 or 2G2(q1), where

qi = 3ni > 3 and qrii = q for primes ri and i = 1, 2. By Lemma 15, both Gα and GL

contain a non-real element of order 3, say g ∈ Gα and h ∈ GL. Moreover, there are
precisely two classes of non-real elements of order 3 in G, and so g is conjugate to h or
h−1. Without loss of generality, suppose g is conjugate to h, and so, we can write g = hk

for some k ∈ G. Hence, g ∈ Gk
L. Since Gk

L = GL′ where L′ = Lk ∈ L, we can take L to
be L′ and assume that we have an order 3 non-real element g ∈ Gα ∩GL. Let Pg and Lg

be the set of points and the set of lines fixed by g, respectively. By Lemma 17, we find
that the number of fixed points and lines are

|Pg| = 3a and |Lg| = 3b,

where a ∈ A := {2m+1, 4m+1, 2n0(r0− 1)} and b ∈ B := {2m+1, 4m+1, 2n1(r1− 1)}.
By Lemma 2, the fixed substructure, (Pg,Lg, Ig) is a generalised quadrangle of order
(s′, t′) for some positive integers s′ and t′. Therefore,

|Pg| = (s′ + 1)(s′t′ + 1) = 3a and |Lg| = (t′ + 1)(s′t′ + 1) = 3b.

However, there are no solutions for s′ and t′ by Lemma 3 and so, we have a contradiction.
Therefore, the small Ree group 2G2(q) cannot act primitively on both the set of points
and the set of lines of a generalised quadrangle. Consequently, an almost simple group
with socle isomorphic to 2G2(q) cannot act primitively on both the set of points and the
set of lines of a generalised quadrangle.
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