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Abstract

For an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the
graph obtained from D by reversing the orientation of each edge that has both
endpoints in X. Define the inversion number of D, denoted inv(D), to be the
minimum number of inversions required to obtain an acyclic oriented graph from
D. The dijoin, denoted D1 → D2, of two oriented graphs D1 and D2 is constructed
by taking vertex-disjoint copies of D1 and D2 and adding all edges from D1 to D2.
We show that inv(D1 → D2) > inv(D1), for any oriented graphs D1 and D2 such
that inv(D1) = inv(D2) 󰃍 1. This resolves a question of Aubian, Havet, Hörsch,
Klingelhoefer, Nisse, Rambaud and Vermande. Our proof proceeds via a natural
connection between the graph inversion number and the subgraph complementation
number.

Mathematics Subject Classifications: 05C20

1 Introduction

Given an oriented graph D and a set X ⊆ V (D), the inversion of X in D is the oriented
graph obtained fromD by reversing the orientation of each edge that has both endpoints in
X. In this case, we say that we invert X in D. Given a family of sets X1, . . . , Xk ⊆ V (D),
the inversion of X1, . . . , Xk in D is the oriented graph obtained by inverting each set in
turn: inverting X1 in D, then X2 in the resulting oriented graph, and so on. Note that
the order in which we perform these inversions does not impact the final oriented graph.

If inverting X1, . . . , Xk in D produces an acyclic oriented graph, then these sets form
a decycling family of D. The inversion number was introduced by Belkechine [4] and early
results on the topic were obtained by Belkechine, Bouaziz, Boudabbous and Pouzet [5].
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Given oriented graphsD1 andD2, the dijoin fromD1 toD2, denoted byD1 → D2 is the
oriented graph constructed from vertex-disjoint copies of D1 and D2 by adding all edges
uv where u ∈ V (D1) and v ∈ V (D2). Bang-Jensen, Costa Ferreira da Silva and Havet [3]
observed that if D1 and D2 are oriented graphs then inv(D1 → D2) 󰃑 inv(D1) + inv(D2),
and conjectured that equality holds for all D1, D2. They proved that the conjecture holds
if inv(D1) = inv(D2) = 1.

However, this conjecture was shown to be false by two simultaneous papers [1, 2].
The authors of [2] provide a whole family of counterexamples, showing that for every odd
k 󰃍 3 there is a tournament D1 with inv(D1) = k such that for any oriented graph D2

with inv(D2) 󰃍 1, we have inv(D1 → D2) 󰃑 inv(D1)+inv(D2)−1. Thus the trivial upper
bound on the inversion number of a dijoin is not always tight.

For a trivial lower bound, it is easy to see that inv(D1 → D2)󰃍max{inv(D1), inv(D2)}.
As a first step towards investigating the tightness of this lower bound, Aubian, Havet,
Hörsch, Klingelhoefer, Nisse, Rambaud and Vermande asked the following question.

Question 1 ([2, Problem 5.5]). Does there exist a non-acyclic oriented graph D such
that

inv(D → D) = inv(D)?

We answer this question in the negative. In fact, we prove the following slightly more
general result.

Theorem 2. Let D1 and D2 be oriented graphs such that inv(D1) = inv(D2) 󰃍 1. Then
inv(D1 → D2) > inv(D1).

In order to prove this theorem, we use a natural connection between the subgraph
complementation number, as studied by Buchanan, Purcell and Rombach in [6], and
the inversion number, which we believe may be useful in future research on this topic.
This allows us to deduce that the inversion number of a digraph D is either tmr(D) or
tmr(D)+1, where tmr(D) is the minimum rank across a family of matrices (see Section 3).
The same connection is made in [7], however (by using the results in [6]) we are able to
classify when inv(D) = tmr(D) + 1, which is a vital ingredient in our proof. We discuss
this further in Section 3, after first noting some easy observations in Section 2. We prove
Theorem 2 in Section 4. Some open problems and conjectures are given in Section 5.

2 Preliminaries

In this section, we recall some definitions and notation pertaining to oriented graphs, and
present some basic results on the inversion number of oriented graphs which will be useful
in later sections.

Recall that an oriented graph is a pair D = (V,E), where V is a collection of vertices
and E ⊆ V (2) is a collection of ordered pairs of distinct vertices such that, for any u, v ∈ V
at most one of uv and vu is in E. For u, v ∈ V , we write uv to denote the edge oriented
(or directed) from u to v. An oriented graph can be viewed as the result of assigning
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a direction to, or orienting, each edge of a suitable simple graph. A tournament is an
oriented graph where exactly one of uv and vu is present for all u ∕= v ∈ V , i.e. an
orientation of a complete graph. An oriented graph D1 is a subgraph of D2, denoted
D1 ⊆ D2, if V (D1) ⊆ V (D2) and E(D1) ⊆ E(D2).

The out-neighbourhood of a vertex v, denoted N+(v), is the set of all vertices u ∈ V
such that vu ∈ E. The in-neighbourhood of v, denoted N−(v), is the set of all vertices
u ∈ V such that uv ∈ E. A vertex v is a source if N−(v) is empty, and v is a sink if
N+(v) is empty.

We first make the simple observation that removing vertices and edges from an oriented
graph cannot increase the inversion number. Indeed, after removing the same vertices and
edges from a decycling family of the initial oriented graph, it is a decycling family of the
subgraph.

Observation 3. Let D1 and D2 be tournaments and suppose that D1 ⊆ D2. Then
inv(D1) 󰃑 inv(D2).

The following result can help to reduce a problem about oriented graphs to a problem
about tournaments only.

Proposition 4. For every oriented graph D, there is a tournament D∗ on the same vertex
set with D ⊆ D∗ and inv(D∗) = inv(D).

Proof. Let k := inv(D). Let U be the acyclic oriented graph that is reached from D
after applying a decycling family X1, X2, . . . , Xk. There exists a transitive tournament
U∗ on the same vertex set with U ⊆ U∗. Inverting the sets X1, X2, . . . , Xk in U∗ gives a
tournament D∗ with D ⊆ D∗. Clearly inv(D∗) 󰃑 k and so by Observation 3, inv(D∗) =
k.

We will also use the following simple results that consider the effect that the removal
of a single vertex has on the inversion number of an oriented graph.

Proposition 5. Let D be an oriented graph on n 󰃍 2 vertices. If v ∈ V (D) is a sink or
a source, then inv(D − v) = inv(D).

Proof. By Observation 3, inv(D − v) 󰃑 inv(D). Now, since v is a sink or a source, a
decycling family of D−v is also a decycling family of D. Hence, inv(D−v) 󰃍 inv(D).

Given an oriented graph D, we say that u, v ∈ V (D) are twin vertices if N+(u)\{v} =
N+(v) \ {u} and N−(u) \ {v} = N−(v) \ {u}.

Proposition 6. Let D be an oriented graph on n 󰃍 2 vertices. If u, v ∈ V (D) are twin
vertices, then inv(D − v) = inv(D).

Proof. By Observation 3, inv(D − v) 󰃑 inv(D). Now, suppose X1, . . . , Xk is a decycling
family of D − v. For 1 󰃑 i 󰃑 k, let Yi = Xi if u /∈ Xi, and Yi = Xi ∪ {v} if u ∈ Xi. Then
Y1, . . . , Yk is a decycling family of D, and inv(D − v) 󰃍 inv(D).
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Finally, we have the following trivial upper bound on the inversion number of an
oriented graph.

Proposition 7. For an oriented graph D of order n 󰃍 1, we have inv(D) 󰃑 n− 1.

Proof. Note that the inversion number of an oriented graph on one vertex is clearly zero,
and assume the statement of the proposition is true for oriented graphs of order n − 1.
Let v be a vertex in D, and let X = N+(v) ∪ {v}. Inverting X in D, gives an oriented
graph D′ in which v is a sink. Hence, using Proposition 5, inv(D′) = inv(D′− v) 󰃑 n− 2,
and inv(D) 󰃑 inv(D′) + 1 󰃑 n− 1.

3 Subgraph complementation and tournament minimum rank

In this section, we discuss a natural connection between the subgraph complementation
number, as studied in [6], and the inversion number. Importantly, we will show that the
inversion number is closely related to the lowest rank of a matrix from a particular set of
matrices, a key step in our proof of Theorem 2.

3.1 Background on subgraph complementation

In order to state the results of Buchanan, Purcell and Rombach [6], we first require the
following definitions.

Given an (undirected) graph G of order n 󰃍 1 and a set X ⊆ V (G), the subgraph
complementation of X in G is the graph obtained from G by complementing the edges
in G[X]. In this case, we say that we complement X in G. Given a family of sets
X1, . . . , Xk ⊆ V (G), the subgraph complementation of X1, . . . , Xk in G is the graph ob-
tained by complementing each set in turn: complementing X1 in G, then X2 in the
resulting graph, and so on. Note that the order in which we perform these subgraph
complementations does not impact the final graph.

If complementing X1, . . . , Xk in G results in the empty graph Kn, then these sets form
a subgraph complementing system of G. The subgraph complementation number of G,
denoted by c2(G), is the minimum number of sets in a subgraph complementing system
of G.

Note that F is a subgraph complementing system of G if and only if each pair of
adjacent vertices appears together in an odd number of sets in F , while each pair of
non-adjacent vertices appears together in an even number of sets in F .

Let M(G) be the collection of all n × n matrices with entries in {0, 1} that can be
obtained from the adjacency matrix1 of G by altering diagonal entries. In this paper the
rank of a matrix is always taken over F2 and we will refer to the rank of a matrix taken
over F2 as simply the rank. Define the minimum rank of a graph G, denoted by mr(G),
to be the minimum rank of a matrix in M(G).

1Recall that the adjacency matrix of G, denoted A(G), is the n×n matrix such that Ai,j = 1 whenever
ij ∈ E(G) and 0 otherwise (including on the diagonal).
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Buchanan, Purcell, and Rombach [6] showed that the quantities mr(G) and c2(G)
cannot differ by more than 1. In addition, they characterised the graphs for which they
differ.

Lemma 8 ([6] Corollary 4.7 and Theorem 4.12). Let G be a graph. Then either

1. c2(G) = mr(G), or

2. c2(G) = mr(G) + 1, in which case mr(G) is even.

Moreover, if G has at least one edge, then c2(G) = mr(G) + 1 if and only if there is a
unique matrix M ∈ M(G) of minimum rank and all of the diagonal entries of this matrix
are equal to zero.

Although it will not be directly relevant for our application of the result, the interested
reader might like to know that the proof of Lemma 8 uses an equivalent form of the
problem. A d-dimensional faithful orthogonal representation of a graph G over the field F2

is a function φ : V (G) → Fd
2 where non-adjacent vertices are assigned orthogonal vectors;

that is, φ(u)·φ(v) = 0 for all uv /∈ E(G), and adjacent vertices are assigned non-orthogonal
vectors; that is, φ(u)·φ(v) = 1. The d-dimensional faithful orthogonal representations ofG
over F2 are in bijective correspondence with the subgraph complementation systems of G,
where a representation φ corresponds to the system {X1, . . . , Xd} with v ∈ V (G) included
in Xi if and only if the ith entry of φ(v) is 1. This approach bears a strong similarity
to the analysis used in [2] to prove that for every odd k 󰃍 3 there is a tournament
D1 with inv(D1) = k such that for any oriented graph D2 with inv(D2) 󰃍 1, we have
inv(D1 → D2) 󰃑 inv(D1) + inv(D2)− 1.

3.2 Tournament minimum rank

Let D be a tournament on n vertices and T a transitive tournament on the same vertex
set. Define GD,T to be the (undirected) graph on the same vertex set as D with the edge
ij present if and only if the edge between vertices i and j has opposite orientations in D
and T . Clearly, a series of inversions that takes D to T corresponds exactly to a subgraph
complementing system of GD,T .

Let T be the collection of all (labelled) n-vertex transitive tournaments and define

M∗(D) =
󰁞

T∈T

M(GD,T ).

Define the tournament minimum rank of a tournament D, denoted tmr(D), as:

tmr(D) := min{rank(M) : M ∈ M∗(D)}.

Equivalently, tmr(D) = minT∈T mr(GD,T ).
The following result is a direct consequence of Lemma 8 and provides a useful rela-

tionship between inv(D) and tmr(D).

the electronic journal of combinatorics 32(1) (2025), #P1.44 5



Corollary 9 (Corollary to Lemma 8). Let D be a tournament. Then either

1. inv(D) = tmr(D), or

2. inv(D) = tmr(D) + 1, in which case tmr(D) is even.

Moreover, if D is not transitive, then inv(D) = tmr(D) + 1 if and only if every matrix
M ∈ M∗(D) with minimum rank has every diagonal entry equal to zero.

Proof. Let T be an n-vertex transitive tournament. If transforming D into T requires ℓ
inversions, then c2(GD,T ) = ℓ. So, by the definition of the inversion number,

inv(D) = min
T∈T

c2(GD,T ).

By Lemma 8, we have that mr(GD,T ) 󰃑 c2(GD,T ) 󰃑 mr(GD,T ) + 1, and so

tmr(D) = min
T∈T

mr(GD,T ) 󰃑 min
T∈T

c2(GD,T ) 󰃑 min
T∈T

mr(GD,T ) + 1 = tmr(D) + 1.

Furthermore, the equality inv(D) = tmr(D)+1 holds if and only if c2(GD,T ) = mr(GD,T )+
1 for every T ∈ T with mr(GD,T ) = tmr(D). This immediately implies that, if inv(D) =
tmr(D) + 1, then tmr(D) must be even.

Moreover, if D is not transitive, then GD,T contains at least one edge for any T ∈ T
and Lemma 8 tells us that, if c2(GD,T ) = mr(GD,T ) + 1, then there is a unique matrix
of minimum rank in M(GD,T ) and it has all zeroes on the diagonal. Hence, if inv(D) =
tmr(D) + 1, this is true of every T with mr(GD,T ) = tmr(D) and every matrix in M∗(D)
of minimum rank has zeros on the diagonal.

It is interesting to note that all of the examples in [1, 2] of pairs of graphs D1, D2

with inv(D1 → D2) < inv(D1) + inv(D2) have that Di is a tournament with inv(Di) =
tmr(Di) + 1 for at least one i. In fact, the following result holds.

Theorem 10. Let D1 be a tournament with inv(D1) = tmr(D1) + 1, and let D2 be any
oriented graph with inv(D2) 󰃍 1. Then inv(D1 → D2) 󰃑 inv(D1) + inv(D2)− 1.

This can be proved using a similar argument to that used in [2]. Alternatively, we can
directly apply Corollary 9, as follows.

Proof. LetD1 be a tournament satisfying inv(D1) = tmr(D1)+1. Applying Proposition 4,
let D∗

2 be a tournament containing D2 with inv(D∗
2) = inv(D2). We see that

inv(D1 → D2) 󰃑 inv(D1 → D∗
2) 󰃑 tmr(D1 → D∗

2) + 1

󰃑 tmr(D1) + tmr(D∗
2) + 1

󰃑 inv(D1) + inv(D∗
2) = inv(D1) + inv(D2).

Suppose for a contradiction that we have equality. Then

inv(D1 → D∗
2) = tmr(D1 → D∗

2) + 1, (1)

tmr(D1 → D∗
2) = tmr(D1) + tmr(D∗

2), and (2)

inv(D∗
2) = tmr(D∗

2). (3)
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Using (3) and inv(D∗
2) 󰃍 1 (so D∗

2 is not transitive), Corollary 9 tells us that there is some
minimum rank matrix M2 ∈ M∗(D∗

2) with a non-zero diagonal entry. Then, letting M1

be a minimum rank matrix in M∗(D1), the matrix

󰀗
M1 0
0 M2

󰀘

is a matrix in M∗(D1 → D∗
2) with a non-zero entry on the diagonal and rank tmr(D1) +

tmr(D∗
2), which is equal to tmr(D1 → D∗

2) by (2). Applying Corollary 9 again, this implies
that inv(D1 → D∗

2) = tmr(D1 → D∗
2), contradicting (1).

4 Proof of Theorem 2

In Problem 5.5 of [2], Aubian, Havet, Hörsch, Klingelhoefer, Nisse, Rambaud, and Ver-
mande ask whether there exists a non-acyclic oriented graph D such that inv(D → D) =
inv(D). The goal of this section is to prove Theorem 2, and answer this question in the
negative. We restate it below for convenience.

Theorem 2. Let D1 and D2 be oriented graphs such that inv(D1) = inv(D2) 󰃍 1. Then
inv(D1 → D2) > inv(D1).

In fact, we may focus our attention exclusively on the tournament case.

Lemma 11. Let D1 and D2 be tournaments such that inv(D1) = inv(D2) 󰃍 1. Then
inv(D1 → D2) > inv(D1).

Before we prove Lemma 11, we demonstrate why this suffices to prove Theorem 2.

Proof of Theorem 2. Suppose for a contradiction that there exist oriented graphs D1, D2

with inv(D1) = inv(D2) = inv(D1 → D2). Let k := inv(D1).
Apply Proposition 4 to obtain a tournament (D1→D2)

∗ with (D1→D2) ⊆ (D1→D2)
∗

and
inv((D1 → D2)

∗) = inv(D1 → D2) = k.

Since (D1 → D2)
∗ contains every edge of D1 → D2, it is the dijoin of two tournaments E1

and E2, where E1 ⊇ D1 and E2 ⊇ D2. By Observation 3, both E1 and E2 have inversion
number at least k. Hence

k = inv((D1 → D2)
∗) = inv(E1 → E2) 󰃍 inv(E1) 󰃍 k

and
k = inv((D1 → D2)

∗) = inv(E1 → E2) 󰃍 inv(E2) 󰃍 k.

Therefore, we have two tournaments E1, E2 with inv(E1) = k = inv(E2) = inv(E1 → E2),
contradicting Lemma 11.
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In order to prove Lemma 11, we will require the following lemma about the structure
of certain symmetric matrices. Call an n × m matrix with entries in {0, 1} a staircase
matrix if its entries increase down each column and decrease along each row (so that the
1s form the shape of a staircase in the bottom left).

Lemma 12. Let M be a symmetric (n +m) × (n +m) matrix with entries in {0, 1} of
the form 󰀗

A C
CT B

󰀘

where A is a symmetric n×n matrix, B is a symmetric m×m matrix and C is an n×m
staircase matrix. If m 󰃍 rank(A) + 1, then one of the following holds:

1. rank(M) 󰃍 rank(A) + 1, or

2. there are two adjacent columns of B which are identical, or

3. the final column of B contains only zeroes.

Proof. Suppose that M is a matrix of the given form. Clearly rank(M) 󰃍 rank(A), so
suppose that rank(M) = rank(A) = k. It must therefore be possible to write each row of
B as a linear combination of rows of C over F2.

Since rank(M) = k, it follows that the staircase C must contain at most k distinct
non-zero columns (‘steps’). Since m 󰃍 k + 1, this means that either C contains two
consecutive columns with the same entries or C contains a zero column. We split into
two cases.

Case 1. Suppose that C contains two adjacent columns with the same entries, say column
i and i+ 1. Since each row of B can be written as a linear combination of rows
of C over F2, this implies that columns i and i + 1 of B must also contain the
same entries.

Case 2. Suppose that C contains a zero column. Since C is a staircase matrix, the final
column of C must be a zero column. Since each row of B can be written as
a linear combination of rows of C, this implies that the final column of B also
contains only zeroes.

We are now armed with all the tools necessary to prove Lemma 11.

Proof of Lemma 11. Suppose for a contradiction that there exist non-transitive tourna-
ments D1 and D2 with inv(D1) = inv(D2) = inv(D1 → D2). Take D1, D2 to be tourna-
ments with this property such that |V (D1)| + |V (D2)| is minimal, and let n1 := |V (D1)|
and n2 := |V (D2)|. Let n := n1 + n2 and k := inv(D1). Note that Proposition 7 tells us
that k + 1 󰃑 n1, n2.
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Our goal is to show that every minimum rank matrix in M∗(D1 → D2) has rank k
and only zero entries on the diagonal. Then, by Corollary 9, we are able to conclude that
inv(D1 → D2) = k + 1 to obtain a contradiction.

Suppose that M is a matrix of minimum rank in M∗(D1 → D2), where M ∈
M(GD1→D2,T ) for some transitive tournament T . Note that T naturally induces an order
≺ on its vertices, with the source as the first vertex and the sink as the last vertex. We fix
a different ordering φ : V (T ) → [n] of the vertices of T (and thus of D1 → D2), which is
obtained by first taking all vertices in the copy of D1 in the order induced by the natural
ordering on T , and then taking all vertices in the copy of D2 in the order induced by T .
That is, φ(u) < φ(v) if and only if either u ∈ V (D1) and v ∈ V (D2), or u, v ∈ V (D1) and
u ≺ v, or u, v ∈ V (D2) and u ≺ v.

Note that permuting both the rows and the columns of M by a given permutation does
not change the rank of M or the diagonal entries. Therefore, we may, and will, assume
that our matrix M has rows and columns ordered according to the vertex ordering φ.

Now, since M has minimum rank, by Corollary 9, rank(M) ∈ {k − 1, k}. Moreover,
by our choice of vertex order, M has the form

󰀗
A C
CT B

󰀘
(4)

where A is an n1 × n1 symmetric matrix, B is an n2 × n2 symmetric matrix and C is an
n1×n2 staircase matrix. To see that C is indeed a staircase matrix, consider a 1 in C, and
suppose it corresponds to the edge uv where u ∈ V (D1) and v ∈ V (D2). Since this entry,
which we denote Cu,v, is a 1, we have v ≺ u. An entry Cu,v′ to the left of Cu,v corresponds
to an edge between u and some vertex v′ ∈ V (D2) with v′ ≺ v. Hence, v′ ≺ v ≺ u and
the entry Cu,v′ must also be a 1. Similarly an entry below Cu,v corresponds to the edge
between v and some vertex u′ with u ≺ u′, it must also be a 1 as we have v ≺ u ≺ u′.

Clearly rank(A) 󰃑 rank(M) 󰃑 k. Since A ∈ M∗(D1), by Corollary 9,

rank(A) 󰃍 tmr(D1) 󰃍 inv(D1)− 1 = k − 1.

The corresponding inequalities also hold for B, and thus rank(A), rank(B) ∈ {k − 1, k}.
Claim 13. rank(A) = rank(B) = k − 1 and rank(M) = k.

Proof. First suppose, in order to obtain a contradiction, that rank(A) = rank(M). Since
n2 󰃍 k+1 󰃍 rank(A)+1, by Lemma 12 we can immediately deduce that either there are
two adjacent columns of B that have the same entries, or the final column of B contains
only zeroes.

Suppose there are two adjacent columns of B with the same entries, and let these
correspond to the vertices u and v. Let i = φ(u) and note that φ(v) = i+1. By definition
of φ, a vertex w ∈ D2 is in N+(u) if and only if either φ(w) < i and Bφ(w),i = 1, or
φ(w) > i and Bφ(w),i = 0. Similarly, a vertex w ∈ D2 is in N+(v) if and only if either
φ(w) < i+ 1 and Bφ(w),i+1 = 1, or φ(w) > i+ 1 and Bφ(w),i+1 = 0. Since Bj,i = Bj,i+1 for
all j, we see that N+(u) \ {v} = N+(v) \ {u}. In particular, u and v are twin vertices in
D2. Let D

′
2 = D2 − u. By Proposition 6, inv(D′

2) = inv(D2).
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Otherwise, suppose that the final column of B is all zeros. This means that the vertex
u with φ(u) = n is a sink in D2. Let D

′
2 = D2 − u. By Proposition 5, inv(D′

2) = inv(D2).
In either case, by Observation 3,

k = inv(D2) = inv(D′
2) 󰃑 inv(D1 → D′

2) 󰃑 inv(D1 → D2) = k.

In particular, inv(D′
2) = inv(D1 → D′

2) = k and D′
2 has one fewer vertex than D2, con-

tradicting the minimality of |V (D1)|+ |V (D2)|. Hence, rank(A) < rank(M).
Now suppose rank(B) = rank(M). This follows along the same lines as the previous

case, the only difference being that we must apply Lemma 12 to M with rows and columns
in reverse. Either there are two adjacent columns of A that have the same entries or the
first column of A contains only zeroes, corresponding to D1 containing twin vertices or
a source vertex, respectively. The proof then proceeds as before, and thus rank(B) <
rank(M). Therefore, rank(A) = rank(B) = k − 1 and rank(M) = k.

By Claim 13, inv(D1) = rank(A)+1 and inv(D2) = rank(B)+1. Hence, by Corollary 9,
A and B (and thus M) must have zero entries on the diagonal. Therefore, every matrix
of M∗(D1 → D2) of minimum rank has rank k and every diagonal entry equal to zero.
By Corollary 9, we conclude that inv(D1 → D2) = k + 1, which is a contradiction.

5 Open problems

In light of Theorem 10, and the fact that all of the examples in [1, 2] of pairs of oriented
graphs D1, D2 with inv(D1 → D2) < inv(D1)+inv(D2) can be obtained by an application
of this theorem, we ask whether these are all such examples.

Question 14. Do there exist tournaments D1, D2 with inv(Di) = tmr(Di) for i = 1, 2
and inv(D1 → D2) < inv(D1) + inv(D2)?

Note that by Corollary 9, for any tournament D, if inv(D) is even, then inv(D) =
tmr(D). Hence, a negative answer to this question would disprove the following pair of
similar conjectures (the latter of which is strictly stronger than the former).

Conjecture 15 ([1, Conjecture 8.9]). For all ℓ, r ∈ N with ℓ 󰃍 3 or r 󰃍 3 there exist
oriented graphs D1 and D2 with inv(D1) = ℓ and inv(D2) = r, but inv(D1 → D2) <
inv(D1) + inv(D2).

Conjecture 16 ([2, Conjecture 5.3]). For all ℓ 󰃍 3 there exists an oriented graph D1

with inv(D1) = ℓ such that for all D2 with inv(D2) 󰃍 1, we have inv(D1 → D2) <
inv(D1) + inv(D2).

One approach to answering Question 14 would be to bound the tournament minimum
rank of the dijoin of two tournaments.

Question 17. Do there exist tournaments D1, D2 with tmr(D1 → D2) < tmr(D1) +
tmr(D2)?
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A negative answer to this question would be a very strong result that would also answer
Question 14 in the negative, and therefore resolve the two conjectures above. Moreover,
we could immediately conclude that

inv(D1) + inv(D2)− 2 󰃑 inv(D1 → D2) 󰃑 inv(D1) + inv(D2).

for all oriented graphs D1, D2, by a simple application of Proposition 4 and Corollary 9.
One place to start would be to answer Question 17 in the special case when one of the

tournaments is
−→
C3, the directed cycle on three vertices.

Conjecture 18. For all tournaments D, we have tmr(D → −→
C3) = tmr(D) + 1 =

tmr(
−→
C3 → D).

We can generalise the idea of dijoins to sequences of graphs. Given a finite sequence
D1, . . . , Dk of oriented graphs, the k-join of D1, . . . , Dk, denoted by [D1, . . . , Dk], is the
oriented graph constructed from vertex-disjoint copies of D1, . . . , Dk by adding all edges
uv where u ∈ V (Di) and v ∈ V (Dj) for i < j. For ease of notation, we write [D]k for the
k-join of k copies of the same oriented graph D.

Pouzet, Kaddour and Thatte [7] proved that inv
󰀓󰁫−→

C3

󰁬

k

󰀔
= k for all k, where

−→
C3 is

the directed cycle on three vertices. Further to this, Alon, Powierski, Savery, Scott and
Wilmer [1] proved that if D1, D2, . . . , Dk are oriented graphs with inv(Di) 󰃑 2 for all i
and inv(Di) = 2 for at most one i, then

inv([D1, D2, . . . , Dk]) =
k󰁛

i=1

inv(Di).

They conjecture that the condition that inv(Di) = 2 for at most one i is unnecessary.

Conjecture 19 ([1, Conjecture 8.8]). Let k ∈ N, and let D1, . . . , Dk be oriented graphs
satisfying inv(Di) 󰃑 2 for all i. Then inv([D1, . . . , Dk]) =

󰁓k
i=1 inv(Di).

We remark that inv(D) = tmr(D) for every tournament with inv(D) 󰃑 2, and so a
negative answer to Question 17 would immediately lead to a proof of this conjecture. In
addition, combined with Corollary 9, it would give an affirmative answer to the following
question, yielding a more general result.

Question 20. Let k ∈ N, and let D1, . . . , Dk be oriented graphs such that, for every i,
either inv(Di) = 1 or inv(Di) is even. Is inv([D1, . . . , Dk]) =

󰁓k
i=1 inv(Di)?
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