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Abstract

Given a tropical linear space L ⊆ Tn and a matrix A ∈ Tm×n, the image AL of L
under A is typically not a tropical linear space. We introduce a tropical linear space
tropimA (L), the tropical image, containing AL. We show under mild hypotheses
that tropimA (L) is realizable if L is and apply the tropical image to construct the
stable sum of two tropical linear spaces without a disjoint pair of bases.

Mathematics Subject Classifications: 14T15

1 Introduction

In tropical geometry, a single polynomial defines a tropical hypersurface, but not every
intersection of hypersurfaces is a tropical variety. Morphisms of tropical varieties carry
similar difficulties. For instance, the image of a tropicalized morphism (a tuple of tropical-
ized polynomials) typically is not a tropical variety, let alone equal to the tropicalization
of the image. Can the image of a tropical morphism be extended to a tropical variety?

In this paper, we give an algebraic treatment of this question in the case of a linear
map on a tropical linear space, drawing on the algebraic treatment of tropical linear
spaces of [6] and the construction of Stiefel tropical linear spaces in [5]. Given a matrix
A and a tropical linear space L over a semifield S, we introduce a tropical linear space
tropimA (L), called the tropical image. The tropical Plücker coordinates of the tropical
image are determined by the minors of A and the coordinates of L, analogously to the
classical situation.

Theorem. The tropical image tropimA (L) enjoys the following properties:

• it contains the set-theoretic image AL;

• its rank is at most the rank of L;

• the underlying matroid of tropimA (L) is induced from the underlying matroid of L
via the bipartite graph underlying A;
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• if A has a non-zero maximal minor, then the image tropimA

󰀃
SE

󰀄
of the free S-

module SE is the Stiefel troipcal linear space associated to AT ;

• if L = trop (Λ) is realizable over a sufficiently large field, then tropimA (L) is realiz-
able and is equal to the tropicalization of an image of Λ;

• the stable sum L+stL
′ of tropical linear spaces is the tropical image of L⊕L′ under

the matrix
󰀅
I I

󰀆
representing addition.

The tropical image allows us to unify and generalize constructions appearing in the
literature, for instance by extending Stiefel tropical linear spaces to all matrices, or the
stable sum to all pairs of linear spaces. The tropical image is constructed by first con-
structing a linear space containing the set-theoretic graph of a linear function, and then
projecting. The tropical graph coincides with an iterated tropical modification. By giv-
ing an algebraic treatment and connecting to the matroid literature the linear case, we
are able to give examples of unexpected phenomena in tropical geometry, for instance an
example of a tropical modification L′ → L where L and L′ are tropical linear spaces but
the function corresponding to the modification is non-linear.

2 Preliminaries

2.1 Modules over idempotent semifields

A semiring is a set with two binary operations that satisfy the axioms of a (commutative)
ring except for the existence of additive inverses. The additive identity will be denoted 0,
and the multiplicative identity 1. A semifield is a semiring where every nonzero element
has a multiplicative inverse. A semiring is idempotent if and only if 1+1 = 1. Idempotent
semirings have a canonical ordering given by a 󰃑 b if and only if a+ b = b; if this ordering
is total, the semiring is said to be totally ordered. In tropical geometry, the main example
of a totally ordered semifield is the tropical semifield T = R∪ {−∞} with the operations
of maximum and the usual real addition.

A module N over a semifield S is an abelian monoid with a homomorphism S →
End(N). The dual of an S-module N is N∨ := HomS(N,S). If S is an idempotent
semifield and E = {e1, e2, . . . , en} is a finite set, the free S-module with basis E will be
denoted SE. Unlike free modules over rings, SE has a unique basis up to permutation
and scaling [7, Proposition 2.2.2]. The dual (SE)∨ of a free module is also free; the dual
basis to E will usually be denoted {x1, x2, . . . , xn} and satisfies

xi(ej) =

󰀫
1 i = j

0 i ∕= j
.

Remark 1. The category of totally ordered idempotent semifields is equivalent to the
category of totally ordered abelian groups via S 󰀁→ S×.
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Definition 2 ([7], Definition 2.3.1). Let S be a totally ordered idempotent semifield, and
let f ∈ (SE)∨ be a linear form. The tropical hyperplane defined by f is the submodule

󰀫
v =

n󰁛

i=1

viei ∈ SE : f(v) = f

󰀣
󰁛

i ∕=j

viei

󰀤
for all j

󰀬
.

If f =
󰁓n

i=1 fixi, then the condition that v =
󰁓n

i=1 viei is in the tropical hyperplane
defined by f if f(v) tropically vanishes, that is, the maximum of {fivi}ni=1 is achieved
twice.

2.2 Tropical linear spaces

Tropical linear spaces, introduced by Speyer [16], are defined by tropical Plücker coordi-
nates, which satisfy the tropicalization of the classical quadratic Plücker relations. Over
the tropical semifield, they are equivalent to valuated matroids, going back to work of
Murota. In that context, the results in this section appear in [11]; our main reference
below is [7], which works over a general idempotent semifield. Here and below,

󰀃
E
d

󰀄
will

denote the set of subsets of E of size d.

Definition 3 ([7], Definition 4.1.1). Let S be a totally ordered idempotent semifield. A

tropical Plücker vector of rank d on ground set E is a nonzero vector w ∈ S(
E
d) satisfying

the tropical Plücker relations : for any J ∈
󰀃

E
d+1

󰀄
and K ∈

󰀃
E

d−1

󰀄
,

󰁛

i∈J−K

wJ−iwK+i =
󰁛

i∈J−K,i ∕=j

wJ−iwK+i

for all j ∈ J −K.

Definition 4 ([7], Theorem 4.2.1). Let S be a totally ordered idempotent semifield, and

let w ∈ S(
E
d) be a tropical Plücker vector. Then the tropical linear space associated to w

is the intersection of the tropical hyperplanes defined by
󰁛

i∈J

wJ−ixi

over all J ∈
󰀃

E
d+1

󰀄
. The tropical linear space associated to w is denoted Lw.

Tropical linear spaces determine their tropical Plücker coordinates up to a scalar in
S× (first proven over T in [16] and [10], and for any S in [7, §6.2]). Tropical linear spaces
are submodules of the ambient free module, since tropical hyperplanes are. The following
lemma gives a generating set for a tropical linear space, known as the valuated cocircuits.
The hypothesis that the idempotent semifield S is totally ordered is essential.

Lemma 5. [6, Proposition 4.1.9] Let S be a totally ordered idempotent semifield, and let

w ∈ S(
E
d) be a tropical Plücker vector. Then Lw is generated as an S-module by

󰀫
󰁛

i∈E−K

wK+iei : K ∈
󰀕

E

d− 1

󰀖󰀬
.
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2.3 Subspaces and the tropical incidence relations

For two tropical Plücker vectors w and z on ground set E, when is Lw ⊆ Lz? This occurs
if and only if w and z satisfy the tropical incidence relations, the tropical analogue of
incidence relations for Plücker vectors. These relations first appeared in [8] over T but
hold over any idempotent semifield.

Lemma 6. Let S be a totally ordered idempotent semifield, and let w ∈ S(
E
d) and z ∈ S(

E
e)

be tropical Plücker vectors. Then Lw ⊆ Lz if and only if

󰁛

i∈A−B

zA−iwB+i =
󰁛

i∈A−B,i ∕=j

zA−iwB+i (1)

for all A ∈
󰀃

E
e+1

󰀄
, B ∈

󰀃
E

d−1

󰀄
, and j ∈ A− B.

Proof. The relations (1) exactly require that for anyB ∈
󰀃

E
d−1

󰀄
andA ∈

󰀃
E

e+1

󰀄
, the valuated

cocircuit
󰁓

i∈E−B wB+iei of w is contained in the hyperplane defined by
󰁓

i∈A zA−ixi, one
of the hyperplanes defining Lz. Thus, the relations (1) hold if and only if all the valuated
cocircuits of w are contained in Lz. By Lemma 5, Lw is generated as an S-module by its
valuated cocircuits, so since Lz is an S-module, Lw ⊆ Lz.

2.4 Exterior algebra and operations on Plücker vectors

If S is an idempotent semifield, the tropical Grassmann algebra or exterior algebra
󰁙∗ SE

on SE is the S-algebra quotient of the symmetric algebra on SE by the relations e2i ∼ 0
[7, §3.1]. If I = {i1, . . . , id} ⊂ E, let eI := ei1 ∧ ei2 ∧ · · ·∧ eid . The dth graded piece

󰁙d SE

is free with basis {eI | I ⊆ E, |I| = d} . We will consider a tropical Plücker vector of rank
d as an element of

󰁙d SE.
There are three operations of interest on the exterior algebra that preserve the tropical

Plücker relations. The first is the multiplication ∧. The second is the Hodge star 󰂏 :󰁙d SE →
󰁙|E|−d(SE)∨, which maps eI to xE−I . Combining these gives the third operation

· :
󰁙d SE ×

󰁙d′ Sn →
󰁙d+d′−n SE defined by w · w′ = 󰂏(󰂏w ∧ 󰂏w′).

Lemma 7. Let S be a totally ordered idempotent semifield.

(a) If w ∈
󰁙d SE and w′ ∈

󰁙d′ SE are tropical Plücker vectors such that w ∧ w′ ∕= 0,
then w ∧ w′ is a tropical Plücker vector.

(b) If w ∈
󰁙d SE is a tropical Plücker vector, then so is 󰂏w.

(c) If w ∈
󰁙d SE and w′ ∈

󰁙d′ SE are tropical Plücker vectors such that w · w′ ∕= 0,
then w · w′ is a tropical Plücker vector.

Proof. (a) is [7, Proposition 5.1.2]. (b) can be checked from the definition, and (c) follows
from (a) and (b).
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Remark 8. For ϕ ∈ (SE)∨, the tropical linear space L󰂏ϕ is the tropical hyperplane defined
by ϕ, for 󰁛

i∈E

(󰂏ϕ)E−ixi =
󰁛

i∈E

ϕ(ei)xi = ϕ,

and hence
󰁓n

i=1 ciei is in the hyperplane defined by ϕ if and only if it is in the tropical
linear space with tropical Plücker coordinates 󰂏ϕ.

All three operations, when they result in a nonzero vector, have geometric interpreta-
tions: Lw∧w′ is the stable sum of Lw and Lw′ [5], L󰂏w is the tropical orthogonal dual of
Lw, and Lw·w′ is the stable intersection of Lw and Lw′ [16]. Speyer introduced the stable
intersection over T when all tropical Plücker coordinates are non-zero [16] and gave a
geometric interpretation in terms of polyhedral complexes.

The orthogonal dual reverses inclusions, while stable sum and stable intersection pre-
serve inclusions. Over T, this follows from polyhedral geometry; we provide an algebraic
proof over any totally ordered idempotent semifield.

Lemma 9. Let S be a totally ordered idempotent semifield.

(a) If w ∈
󰁙d SE and z ∈

󰁙e SE are tropical Plücker vectors and Lw ⊆ Lz, then
L󰂏z ⊆ L󰂏w.

(b) If w ∈
󰁙d SE, w′ ∈

󰁙d′ SE, z ∈
󰁙e SE, and z′ ∈

󰁙e′ SE are tropical Plücker vectors
such that z ∧ z′ ∕= 0, Lw ⊆ Lz, and Lw′ ⊆ Lz′, then w ∧ w′ ∕= 0, and Lw∧w′ ⊆ Lz∧z′.

(c) If w ∈
󰁙d SE, w′ ∈

󰁙d′ SE, z ∈
󰁙e SE, and z′ ∈

󰁙e′ SE are tropical Plücker vectors
such that w · w′ ∕= 0, Lw ⊆ Lz, and Lw′ ⊆ Lz′ , then z · z′ ∕= 0, and Lw·w′ ⊆ Lz·z′.

Proof. We use the tropical incidence relations of Lemma 6. For (a), the Plücker vectors
w and z satisfy the tropical incidence relations if and only if 󰂏z and 󰂏w do, for

󰁛

i∈A−B

zA−iwB+i =
󰁛

i∈Bc−Ac

(󰂏w)Bc−i(󰂏z)Ac+i

and dropping a term from the right-hand side is exactly dropping a term from the left-hand
side. Alternatively, (a) follows from the characterization of tropical orthogonal duality of
[7, Corollary 4.4.4].

The proof of (b) is a generalization of [7, Proposition 5.1.2]. If z ∧ z′ ∕= 0, [3, Theorem
6.5] implies w ∧ w′ ∕= 0. If A ∈

󰀃
E

e+e′+1

󰀄
and B ∈

󰀃
E

d+d′−1

󰀄
, then

󰁛

i∈A−B

(z ∧ z′)A−i(w ∧ w′)B+i =
󰁛

i∈A−B

󰁛

C⊔C′=A−i
D⊔D′=B+i

zCz
′
C′wDw

′
D′ . (2)

Collecting terms with i ∈ D and i ∈ D′ separately gives the equal expression

󰁛

J⊔C′=A
K⊔D′=B

(z′C′w′
D′)

󰀣
󰁛

i∈J−K

zJ−iwK+i

󰀤
+

󰁛

C⊔J ′=A
D⊔K′=B

(zCwD)

󰀣
󰁛

i∈J ′−K′

z′J ′−iw
′
K′+i

󰀤
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Further, the terms with fixed j ∈ A− B in (2) are exactly the terms with j ∈ J −K or
j ∈ J ′ −K ′ in the above sums. Since Lw ⊆ Lz and Lw′ ⊆ Lz′ , the sums above are equal
when terms for j are dropped. Thus, the tropical incidence relations for w∧w′ and z ∧ z′

hold, so Lw∧w′ ⊆ Lz∧z′ . Finally, (c) follows from (a) and (b).

2.5 Matroids

A matroid M on a finite ground set E is a collection of bases, subsets of E, satisfying
the strong exchange axiom: if I and J are bases of M and i ∈ I − J , then there exists
j ∈ J − I such that I − i + j and J − j + i are bases of M . Matroids may be defined
in a number of cryptomorphic ways, and standard matroid terminology will be used in
various remarks and examples in this paper; in particular, we will use the deletion M \F
and contraction M/F for F ⊆ E. A standard reference for matroids is [12].

Matroids are equivalent to tropical linear spaces over the two-element idempotent
semifield B = {0, 1}, with additive identity 0 and multiplicative identity 1 [3, Theorem
1.5]: a vector w ∈

󰁙
BE is a tropical Plücker vector if and only if it is the indicator

vector of the bases of a matroid. Further, a tropical Plücker vector w over an idempotent
semifield S defines a matroid, by taking the bases to be those coordinates of w that are
non-zero. As the tropical linear space Lw recovers w up to a scalar [7, §6.2], this matroid
only depends on Lw and is called the underlying matroid of Lw. The underlying matroid
of Lw corresponds to the pushforward of Lw under the canonical semiring homomorphism
S → B.

2.6 Minors of tropical linear spaces

Frenk defined the minors of a tropical linear space in [6], following the definition of the
minors of a valuated matroid given by Dress and Wenzel [4]. The following is essentially
[1, Lemma 6.4], translated to the language of totally ordered idempotent semifields. It
shows that coordinate subspaces and projections of tropical linear spaces are again tropical
linear spaces.

Recall that if M is a matroid on E and F ⊆ E, then M \ F is the deletion of M with
respect to F , and M/F = (M∗ \ F )∗ is the contraction of M to E − F [12, 3.1].

Lemma 10. Let S be a totally ordered idempotent semifield, and let w ∈
󰁙d SE be a

tropical Plücker vector. Let M be the underlying matroid of w. Let F ⊆ E be fixed, and

let J ⊆ E − F . Define z ∈ S(
F

d−|J|) by

zI = wJ∪I .

(a) If |J | < rkM/F or |J | > rkM \F , then z is zero.

(b) if |J | = rkM/F , then z is either zero or the Plücker vector of πF (Lw), where
πF : SE → SF is the coordinate projection map;

(c) if |J | = rkM \F , then z is either zero or the Plücker vector of SF ∩ Lw.
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Proof. (a) If |J | < rkM/F or |J | > rkM \F , then there is no I ⊆ F such that J ∪ I is a
basis for M .

(b) If |J | = rkM/F and there is I ⊆ F such that wI∪J ∕= 0, then |I| = rkM\(E−F ),
so J is a basis for M/F . Then apply [1, Lemma 6.4].

(c) This follows from the dual argument to (b) and the dual part of [1, Lemma 6.4].

Remark 11. Over B, Lemma 10 shows that if M is the matroid associated to Lw ⊆ BE,
then πF (Lw) is the tropical linear space corresponding to the matroid M \(E − F ) and
BF ∩Lw is the tropical linear space corresponding to the matroid M/(E−F ). Thus, when
|J | = rkM \F , z is nonzero exactly when J is a basis of M \F , and dually for M/F . See
[3, Theorem 4.1] for more details.

3 Linear extensions

3.1 Linear extensions of tropical linear spaces

In tropical geometry, graphs of regular functions on a balanced polyhedral complex are
generally not balanced; in particular, the graph of a linear function ϕ ∈ (SE)∨ is typically
not a tropical linear space. However, there is a natural balanced polyhedral complex
containing the set-theoretic graph. In his doctoral thesis, Frenk studied extensions of
tropical linear spaces over T, translating between polyhedral and algebraic definitions of
this balanced polyhedral complex [6, §4.2.2]. We generalize Frenk’s construction, con-
necting it to matroidal notions and to the important operation of tropical modification.
These methods allow us to construct an explicit example of a tropical linear space that is
the tropical modification of a tropical linear space along a non-linear rational function.

Definition 12. An extension of a tropical linear space Lw ⊆ SE is a tropical linear space
Lz ⊆ SE∪P for P disjoint from E such that πE(Lz) = Lw. An elementary extension of
Lw ⊆ SE is an extension Lz ⊆ SE∪P such that |P | = 1.

Because projection corresponds to the restricted matroid, the underlying matroid of an
extension is an extension of the underlying matroid. Elementary extensions of matroids
were studied by Crapo [12, Chapter 7.2].

For ϕ ∈ (SE)∨, the set-theoretic graph of ϕ is contained in the tropical hyperplane
defined by ϕ+ xp ∈ (SE+p)∨, which has tropical Plücker coordinates 󰂏E+p(ϕ+ xp). This
suggests defining the “graph” of ϕ on a tropical linear space Lw ⊆ SE as the stable
intersection of this tropical hyperplane with Lw ⊕ S.

Definition 13. Let S be a totally ordered idempotent semifield. A linear extension of a
tropical linear space Lw ⊆ SE is an elementary extension Lz ⊆ SE+p of Lw such that for
some ϕ ∈ (SE)∨, z is of the form

z = (w ∧ ep) · 󰂏E+p(ϕ+ xp) = 󰂏E+p(󰂏Ew ∧ (ϕ+ xp)).

Such an Lz will be denoted Lw +ϕ p.
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By Lemma 7, the vector (w ∧ ep) · 󰂏E+p(ϕ + xp) is always a tropical Plücker vector,
and for I ⊆ E of size rkw, ((w ∧ ep) · 󰂏E+p(ϕ + xp))I = wI . Thus, Lemma 10 implies
that a linear extension of Lw projects onto Lw. The following lemma shows that Lw +ϕ p
contains the set-theoretic graph of ϕ on Lw.

Lemma 14. [6, Proposition 4.2.12] Let S be a totally ordered idempotent semifield, and
Lw ⊆ SE be a tropical linear space. Let ϕ ∈ (SE)∨. If w · 󰂏ϕ ∕= 0, then

Lw +ϕ p = {v + ϕ(v)ep | v ∈ Lw} ∪ {v + aep | v ∈ Lw·󰂏ϕ, a 󰃑 ϕ(v)};

if w · 󰂏ϕ = 0, then
Lw +ϕ p = {v + ϕ(v)ep | v ∈ Lw}.

Proof. Let z = (w ∧ ep) · 󰂏E+p(ϕ+ xp). First suppose that w · 󰂏ϕ ∕= 0. Let d be the rank
of Lw. If A ⊆ E + p is of size d− 1 and contains p, then

󰁛

i∈(E+p)−A

zA+iei =
󰁛

i∈(E+p)−A

(󰂏Ew ∧ (ϕ+ xp))(E+p)−A−iei

=
󰁛

i∈E−(A−p)

󰂏E(󰂏Ew ∧ ϕ)A−p+iei,

which is the cocircuit of Lw·󰂏ϕ associated to A− p. If A ⊆ E is of size d− 1,
󰁛

i∈(E+p)−A

zA+iei =
󰁛

i∈E−A

(󰂏Ew ∧ (ϕ+ xp))(E+p)−A−iei

+ (󰂏Ew ∧ (ϕ+ xp))E−Aep

=
󰁛

i∈E−A

wA+iei + ϕ

󰀣
󰁛

i∈E−A

wA+iei

󰀤
ep,

which is exactly v + ϕ(v)ep for v the cocircuit of Lw associated to A. If w · 󰂏ϕ ∕= 0, the
same arguments show that the cociruits of z are exactly v + ϕ(v)ep for v a cocircuit of
Lw, and hence are included in the right-hand side.

Now we prove the reverse inclusion. If v ∈ Lw, then v is a linear combination of
cocircuits of Lw. Since ϕ is linear, v + ϕ(v)ep is thus a linear combination of terms
v′+ϕ(v′)ep where v

′ is a cocircuit of Lw. Hence, v+ϕ(v)ep ∈ Lw+ϕ p. Now suppose that
w · 󰂏ϕ ∕= 0, v ∈ Lw·󰂏ϕ, and a 󰃑 ϕ(v). If ϕ(v) = 0, there is nothing to prove, so assume
ϕ(v) ∕= 0. Then

v + aep = aϕ(v)−1(v + ϕ(v)ep) + v

since addition is idempotent, showing that v + aep ∈ Lw +ϕ p.

A basic property of linear extensions is monotonicity:

Lemma 15. Let S be a totally ordered idempotent semifield, and Lw ⊆ Lz ⊆ SE be
tropical linear spaces. Let ϕ ∈ (SE)∨. Then

Lw +ϕ p ⊆ Lz +ϕ p.
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Proof. Let 󰂏 denote the Hodge star on SE+p. By Lemma 9, the wedge and its dual
operation are both monotonic, so Lw∧ep ⊆ Lz∧ep and

L(w∧ep)·󰂏(ϕ+xp) ⊆ L(z∧ep)·󰂏(ϕ+xp),

as desired.

3.2 Tropical modification and linearity

Lemma 14 implies that linear extensions over T are tropical modifications in the sense of
[14]. This section is self-contained and will not be required for following sections.

Theorem 16. Let L ⊆ TE be a tropical linear space, and let ϕ ∈ (TE)∨ be a dual vector.
Then the intersection of the linear extension L +ϕ p with the tropical torus (TE+p)× is
equal as a set to the tropical modification of L∩ (TE)× along ϕ, which is equal to divL(ϕ).

Proof. If w,w′ are tropical Plücker vectors with all nonzero coordinates, then Speyer
showed Lw·w′ ∩ (T×)E is the geometric stable intersection

lim
τ→(1,...,1)

(Lw ∩ τLw′) ∩ (T×)E,

where the limit is over an open subset of the torus (T×)E = RE [16, Theorem 4.11].
Speyer’s proof also goes through when w,w′ are arbitrary tropical Plücker vectors such
that w · w′ ∕= 0. The tropical modification of L along ϕ in the torus is exactly the set-
theoretic graph of ϕ on L along with the undergraph on divL(ϕ). By [14, Proposition
2.12], divL(ϕ) is exactly the geometric stable intersection of the hyperplane defined by ϕ
and L in the torus. This shows (L+ϕ p)∩ (T×)E is the tropical modification of L∩ (T×)E

by ϕ.

In [14, Proposition 2.25], Shaw proves that every rank-preserving nontrivial extension
of a matroid corresponds to a tropical modification of the corresponding tropical linear
spaces. However, tropical modifications by linear functions are special amoing matroid
extensions. We recall the relevant matroid theory: given a matroid M on ground set E,
and given X ⊆ E, the principal extension of M with respect to X, denoted M +F p, can
be described as the matroid on E + p with independent sets

{I | I ∈ I(M)} ∪ {I ∪ p | I ∈ I(M), clM(I) ∕⊇ clM(F )},

where I(M) is the set of independent sets of M [12, Proposition 7.2.5].

Lemma 17. Let S be a totally ordered idempotent semifield, Lw ⊆ SE a tropical linear
space with underlying matroid M , and ϕ ∈ (SE)∨. If

F = {i ∈ E | ϕ(ei) ∕= 0},

then the underlying matroid of the linear extension Lw +ϕ p is the principal extension
M +F p.
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Proof. The bases of (w ∧ ep) · 󰂏E+p(ϕ+ xp) are exactly I when I ⊆ E is a basis of M and
K ∪ p when ϕ(

󰁓
i∈E−K wK+iei) ∕= 0. Hence, K ∪ p is a basis of Lw +ϕ p if and only if the

cocircuit of M supported in E−K, i.e. E− clM(K), intersects F . Hence, the underlying
matroid of Lw +ϕ p is exactly the prinipcal extension M +F p.

It is known that not every elementary extension of matroids is principal. Hence, there
are some elementary tropical modifications L′ → L where L and L′ are both tropical linear
spaces, but the rational function associated to the modification L′ → L is not linear.

Example 18. Let w = e123 + e124 + e134 + e234 ∈
󰁙3 B4 be the tropical Plücker vector

corresponding to the uniform matroid U3,4. Let z = (e1 + e2) ∧ (e3 + e4); then Lz =
〈e1 + e2〉 ⊕ 〈e3 + e4〉 ⊆ Lw. I claim that

divLw

󰀕
(x1 + x2)(x3 + x4)

x1 + x2 + x3 + x4

󰀖
= Lz.

At the level of algebraic cycles, we have

divLw

󰀕
(x1 + x2)(x3 + x4)

x1 + x2 + x3 + x4

󰀖
= divLw(x1 + x2) + divLw(x3 + x4)

− divLw(x1 + x2 + x3 + x4).

All of these divisors, of linear spaces by linear functions, may be computed according to
Theorem 16. Their tropical Plücker vectors are

w1 = w · 󰂏(x1 + x2) = e13 + e14 + e23 + e24 + e34,

w2 = w · 󰂏(x3 + x4) = e12 + e13 + e14 + e23 + e24,

w3 = w · 󰂏(x1 + x2 + x3 + x4) = e12 + e13 + e14 + e23 + e24 + e34,

respectively. By computing the valuated cocircuits via Lemma 5, and then taking the
tropical span, it may be checked that the faces of Lwi

(as a polyhedral complex) are given
by the following:

Lw1 = {(α, β,α,α) | α 󰃍 β} ∪ {(β,α,α,α) | α 󰃍 β}
∪ {(α,α, β, β) | α 󰃍 β};

Lw2 = {(α,α, β,α) | α 󰃍 β} ∪ {(α,α,α, β) | α 󰃍 β}
∪ {(β, β,α,α) | α 󰃍 β};

Lw3 = {(β,α,α,α) | α 󰃍 β} ∪ {(α, β,α,α) | α 󰃍 β}
∪ {(α,α, β,α) | α 󰃍 β} ∪ {(α,α,α, β) | α 󰃍 β}.

Hence at the level of tropical cycles, we have

Lw1 + Lw2 − Lw3 = {(α,α, β, β) | α, β ∈ T} = 〈e1 + e2〉 ⊕ 〈e3 + e4〉.

Thus, Lz is a linear divisor of Lw, giving rise to a tropical modification Lw+z∧ep → Lw,
associated to a non-linear rational function. In terms of the underlying matroids, the
extension Lw+z∧ep of Lw corresponds to an elementary extension of matroids with the
non-principal modular cut M = {{1, 2}, {3, 4}, {1, 2, 3, 4}}.
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Remark 19. A similar phenomenon was noted by Shaw [14, Example 2.29], where the
moduli space Mtrop

0,5 of tropical rational curves with five marked points cannot be realized
as a sequence of modifications along regular functions.

4 Tropical images

4.1 Tropical graphs and tropical images

Extending our work in §3.1, we come to the main definitions of the paper: how to define
the image of a tropical linear space.

Definition 20. Let S be a totally ordered idempotent semifield, and w ∈
󰁙d SE be a

tropical Plücker vector. Let A = {aij} ∈ SF×E be a matrix with columns indexed by
E and rows indexed by F = {f1, . . . , fm}. Let {x1, . . . , xn} denote the dual basis to SE

and {y1, . . . , ym} denote the dual basis to SF . Let ρj =
󰁓

i∈E ajixi ∈ (SE)∨ be the form
associated with the jth row of A. The tropical graph of A on Lw is the tropical linear
space in SE⊔F with tropical Plücker vector

g(w,A) = (w ∧ fF ) · 󰂏(ρ1 + y1) · 󰂏(ρ2 + y2) · . . . · 󰂏(ρm + ym) ∈
󰁡d

SE⊔F ,

where fF = f1 ∧ f2 ∧ · · · ∧ fm.

By definition, the tropical graph of A on Lw is the iterated linear extension

(· · · ((Lw +ρ1 f1) +ρ2 f2) · · ·+ρm fm).

This tropical linear space does not depend on the order of the extensions, as the wedge
product and its dual operation are commutative.

Definition 21. Let S be a totally ordered idempotent semifield, A ∈ SF×E be a matrix,
and w ∈

󰁙d SE be a tropical Plücker vector. The tropical image of Lw under A, denoted
tropimA (Lw), is the projection

πF

󰀃
Lg(w,a)

󰀄

of the tropical graph of A on Lw onto the codomain of A.

By Lemma 10, the tropical image is a tropical linear space.

Lemma 22. Let S be a totally ordered idempotent semifield, Lw ⊆ SE a tropical linear
space, and A ∈ SF×E a matrix. Then

(a) ALw ⊆ tropimA (Lw);

(b) rk tropimA (Lw) 󰃑 rkLw;

(c) if Lw ⊆ Lz ⊆ SE is another tropical linear space, then

tropimA (Lw) ⊆ tropimA (Lz) .
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Proof. (a) By Lemma 14, the tropical graph of A on Lw, equal to the linear extension
(· · · ((Lw +ρ1 f1) +ρ2 f2) · · ·+ρm fm), contains v +

󰁓m
i=1 ρi(v)fi for all v ∈ Lw. Hence, the

tropical image contains
󰁓m

i=1 ρi(v)fi = Av for all v ∈ Lw.
(b) The tropical graph of A on Lw has the same rank as Lw, and projecting onto a

coordinate subspace does not increase rank.
(c) By Lemma 15, linear extensions are monotonic, and the coordinate projection πF

is monotonic.

The following lemma gives a more explicit formulation of the Plücker coordinates of
the tropical image.

Lemma 23. Let S be a totally ordered idempotent semifield, w ∈
󰁙d SE be a tropi-

cal Plücker vector, and A ∈ SF×E be a matrix. The tropical Plücker coordinates z of
tropimA (Lw) are

zJ =
󰁛

I⊆E−K

tdet (AJI)wI∪K ,

where K is any basis for the contraction of the tropical graph of A on Lw to E, and
tdet (AJI) is the tropical J × I minor of A.

Proof. Let g(w,A) denote the tropical Plücker vector of the tropical graph of A on Lw.
By Lemma 10, if K is a basis for the contraction of g(w,A) to E, then J 󰀁→ g(w,A)K∪J
for J ⊆ F are tropical Plücker coordinates for tropimA (Lw). By definition, if 󰂏 is the
Hodge star on SE⊔F and ρj denotes the form associated to the jth row of A,

g(w,A)K∪J = [(w ∧ fF ) · 󰂏(ρ1 + y1) · . . . · 󰂏(ρm + ym)]K∪J

=

󰀥
(󰂏Ew) ∧

m󰁡

j=1

(ρj + yj)

󰀦

(E−K)∪(F−J)

by duality. Since 󰂏Ew is supported in E and ρj+yj is supported in E∪j for all j ∈ F , the
only terms that contribute to yF−J in the above wedge product are ρj + yj for j ∈ F − j.
Hence,

g(w,A)K∪J =

󰀥
(󰂏Ew) ∧

󰁡

j∈J

(ρj + yj)

󰀦

E−K

=
󰁛

I⊆E−K

(󰂏Ew)E−K−I(
󰁡

j∈J

ρj)I

=
󰁛

I⊆E−K

wI∪Ktdet (AJI) ,

as desired.

Lemma 23 shows that if A ∈ SF×E has a nonzero maximal minor, then tropimA

󰀃
SE

󰀄

is equal to the Stiefel tropical linear space associated to AT (see [5]). Even if A has no
nonzero maximal minor, we have
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Corollary 24. For arbitrary A ∈ SF×E, if B is a submatrix of A formed by the columns
of a maximal non-zero minor of A, then

tropimA

󰀃
SE

󰀄
= tropimB

󰀃
SE

󰀄
,

and hence is a Stiefel tropical linear space. In particular, tropimA

󰀃
SE

󰀄
has rank equal to

the size of the largest nonzero minor of A.

4.2 The underlying matroid of the tropical image

In this section, we compute the underlying matroid of the tropical image. Given a matroid
M on E and a bipartite graph Γ on E ⊔ F , the induced matroid Γ(M) is the matroid on
F whose independent sets are exactly the J ⊆ F that have a perfect matching in Γ to an
independent set of M (see [12, Chapter 12.2]).

Theorem 25. Suppose M is a matroid on E corresponding to the tropical linear space
Lw ⊆ BE. Let Γ be a bipartite graph on E ⊔ F , with incidence matrix A ∈ BF×E. Then
the induced matroid Γ(M) corresponds to the tropical linear space tropimA (Lw) ⊆ BF .

Proof. Non-zero terms in the expansion of tdet (AJI) correspond to bijections f : J → I
such that Aj,f(j) = 1 for all j ∈ J , i.e. j and f(j) are adjacent in Γ for all j ∈ J . Hence,
tdet (AJI) = 1 if and only if there is a matching from J to I in Γ. By Lemma 23, the
tropical Plücker coordinates of tropimA (Lw) are

zJ =
󰁛

I⊆E−K

tdet (AJI)wK∪I , (3)

where K is a basis for the contraction of the tropical graph to E. By Lemma 10, K is
a minimal subset of E such that (3) does not vanish for all J , and hence the bases of
tropimA (Lw) are the bases of Γ(M).

Corollary 26. The tropical linear spaces associated to transversal matroids are exactly
the tropical images of free B-modules.

Proof. Transversal matroids are the induced matroids of free matroids.

Corollary 26 also follows from the description of Stiefel tropical linear spaces as the
tropical image of free modules.

Remark 27. On [6, p. 108], Frenk investigates the valuated linking system associated to
a bipartite graph with edges weighted by elements of a semifield. If A is the weighted
incidence matrix of the weighted bipartite graph, Frenk’s definition assigns to the pair
(I, J) the weight tdet (AJI). Thus, the tropical image under A is, in Frenk’s language,
the image under the valuated linking system associated to the weighted graph of A.

Surprisingly, an iterated tropical image may not be a tropical image: it may be that
tropimB (tropimA (Lw)) is not equal to tropimC (Lw) for any matrix C!
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Example 28. Consider the B-matrices

B =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
A =

󰀵

󰀷
1 1
1 1
1 1

󰀶

󰀸

The tropical image tropimB (tropimA (B3)) is exactly the rank 2 truncation of the transver-
sal matroid tropimB (B3). This truncation has three cyclic flats of rank 1, namely {1, 2},
{3, 4}, and {5, 6}. By a result of Brylawski, a rank r transversal matroid has at most

󰀃
r
k

󰀄

rank-k cyclic flats [2]. Thus, tropimB (tropimA (B3)) is not transversal, and hence is not
of the form tropimC (B3) for any matrix C.

1
2

34

56

1

2

3

4

5

6

Figure 1: Geometric representations of the matroids tropimB (B3) and
tropimB (tropimA (B3)) of Example 28.

4.3 Realizability

Recall that if k is a field, S a totally ordered idempotent semifield, and val : k → S is
a surjective valuation, then we may tropicalize a linear subspace Λ ⊆ kn by taking the
valuation of every element of Λ coordinate-wise. The result trop (Λ) is the tropicalization
of Λ. The tropical Plücker coordinates of trop (Λ) are the image of the Plücker coordinates
of Λ under val [15]. A tropical linear space is realizable with respect to a particular
valuation if it is a tropicalization of some linear space under that valuation. For matroids,
a realizable tropical linear space via k → B is exactly a representable matroid over k.

Let M be a matroid on E and Γ a bipartite graph on E ⊔F . Piff and Welsh proved in
1970 that if M is representable over a sufficiently large field, then Γ(M) is representable
over that field as well [12, Proposition 12.2.16]. Fink and Rincón also observed that a
Stiefel tropical linear space in Tn is the tropicalization of the image of a general lift of
its matrix. Theorem 31 below is a common generalization of these results and gives a
criterion for realizability of the tropical image.

Given a field κ and a totally ordered semifield S, let κ{tS} denote the field of formal
series

󰁓
s∈T αst

s, where T ⊆ S× is well-ordered and αs ∈ κ for all s ∈ T . There is
a surjective valuation val : κ{tS} → S that sends a series

󰁓
s∈T αst

s to (min{s ∈ T |
αs ∕= 0})−1 (here the inverse is to accord with our convention of maximum for addition).
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Poonen showed that every valuation that is trivial on its initial field factors through such
a valuation [13]. The main technical tool of our analysis of realizability is Lemma 30,
which describes when solutions to equations on valuations in S may be lifted to κ{tS}.
Proving the existence of solutions requires the following lemma on the non-vanishing of
polynomials.

Lemma 29. [9, Lemma 2] Let κ be a field, and let f ∈ κ[x1, . . . , xn] be a polynomial.
Suppose the degree of f in each xi alone is less than |κ|. Then there exists α ∈ κn such
that f(α) ∕= 0.

Lemma 30. Let S be a totally ordered idempotent semifield, κ a field, and let val :
κ{tS} → S be the standard valuation. Let f1, f2, . . . , fm ∈ κ{tS}[x1, . . . , xn] and let
a ∈ Sn. If di is the maximum degree of fi in each xj alone, and |κ| >

󰁓m
i=1 di, then

there exists a non-empty Zariski open subset of κn such that if the leading coefficients of
α ∈ val−1(a) lie in that subset, then

val(fi)(a) = val(fi(α))

for all i.

Proof. Suppose fi =
󰁓

u c
i
ux

u for ciu ∈ κ{tS}. Let gi ∈ κ[x1, . . . , xn] be the sum of the
leading terms of those ciux

u such that val(fi)(a) = val(ciu)a
u1
1 · · · aun

n . Then α ∈ val−1(a)
satisfies val(fi)(a) = val(fi(α)) if and only if gi does not vanish on the leading coefficients
of α. The degree of gi in a single indeterminate is at most di, so by Lemma 29, there is a
point α in κn such that g1g2 · · · gm does not vanish, i.e. where no gi vanishes.

Theorem 31. Let S be a totally ordered idempotent semifield, and val : κ{tS} → S be
the standard valuation. Let Λ ⊆ κ{tS}E be a rank d linear subspace, and L = trop (Λ).
Let A ∈ SF×E be a matrix. If |κ| >

󰀃|E|+|F |
d

󰀄
, then tropimA (L) is realizable over κ{tS},

and for ∆ ∈ val−1(A) with generic leading coefficients we have

tropimA (L) = trop (∆Λ) .

Proof. Because coordinate projection commutes with tropicalization, it suffices to show
for ∆ ∈ val−1(A) with generic leading coefficients that the tropicalization of the graph of
∆ on Λ is the tropical graph of A on L.

Let e1, . . . , en, f1, . . . , fm be the standard basis of κ{tS}E∪F and let x1, . . . , xn, y1, . . . ,
ym be the dual basis. Let p be a Plücker vector for Λ. The (classical) graph of a matrix
X = [Xji]i∈E,j∈F on Λ ⊆ κ{tS} has Plücker vector

󰂏E⊔F

󰀣
󰂏Ep ∧

m󰁡

j=1

󰀣
yj −

n󰁛

i=1

Xjixi

󰀤󰀤
, (4)

where 󰂏E⊔F and 󰂏E denote the classical Hodge stars on κ{tS}E⊔F and κ{tS}E. For each
I ∈

󰀃
E⊔F
d

󰀄
, let fI ∈ κ{tS}[Xji] be the coefficient of eI in (4). If J = I ∩E and K = I ∩F ,
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then

fI = ±
󰀣
󰂏Ep ∧

m󰁡

j=1

󰀣
yj −

n󰁛

i=1

Xjixi

󰀤󰀤

E−J∪F−K

= ±
󰀣
󰂏Ep ∧

󰁡

j∈K

󰀣
−

n󰁛

i=1

Xjixi

󰀤󰀤

E−J

,

so the terms of fI are of the form ±pJ∪σ(K)

󰁔
j∈K Xj,σ(j) for an injective function σ : K →

(E − J). Hence, every coefficient of fI is of the form ±pJ ′ for some J ′ ⊆ E. Comparing
with the definition of tropical image shows I 󰀁→ val(fI)(A) is a tropical Plücker vector
for the tropical graph of A on L. The degree of fI in each indeterminate is at most 1,
and by hypothesis |κ| > |{fI : I ⊆ E ⊔ F, |I| = d}| . By Lemma 30, there is a non-empty
Zariski open subset of κF×E such that if the leading coefficients of ∆ ∈ val−1(A) lie in
that open subset, then the tropical graph of A on L is the tropicalization of the graph of
∆ on Λ.

5 Stable sum

In this section, we show the stable sum of tropical linear spaces is a tropical image under
addition. This also provides a generalization of the stable sum to tropical linear spaces
Lw and Lz when w ∧ z = 0, generalizing matroid unions.

The tropical addition map + : SE⊔E → SE, coinciding with the tropicalization of
classical addition, has matrix

A+ =
󰀅
IE IE

󰀆
,

where IE is the identity matrix on SE. The underlying bipartite graph of this matrix
is the same graph used to define the matroid union [12, Theorem 12.3.1], suggesting
investigating the tropical image under A+ over an arbitrary semifield.

Theorem 32. Let S be a totally ordered idempotent semifield. Let Lw and Lz be tropical
linear spaces in SE. If w ∧ z ∕= 0, then

tropimA+
(Lw ⊕ Lz) = Lw∧z,

where A+ is the matrix of the addition map + : SE⊔E → SE.

Proof. Write the domain of the sum map as SE′⊔E′′
for E ′ = {e′1, . . . , e′n} and E ′′ =

{e′′1, . . . , e′′n} two copies of E. The underlying bipartite graph of addition is the graph on
(E ′ ⊔ E ′′) ⊔ E where a vertex in E is exactly adjacent to its two copies in E ′ ⊔ E ′′. By
Theorem 25 and [12, Theorem 12.3.1], the underlying matroid of tropimA+

(Lw ⊕ Lz) is
the matroid union of the underlying matroids of Lw and Lz. Because w ∧ z ∕= 0, these
matroids have disjoint bases, so rk tropim+ (Lw ⊕ Lz) = rkLw + rkLz = rkLw ⊕ Lz. As
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the ranks of Lw ⊕ Lz and its tropical image are the same, Lemma 23 implies that the
tropical Plücker coordinates of tropim+ (Lw ⊕ Lz) are

J 󰀁→
󰁛

I⊆E′⊔E′′

tdet ((A+)JI)wI∩E′zI∩E′′ =
󰁛

J=J ′⊔J ′′

wJ ′zJ ′′

since tdet ((A+)JI) is 1 if and only if the copies of I ∩E ′ and I ∩E ′′ in E are a partition
of J . This shows that the tropical Plucker vector of the tropical image is exactly w ∧ z,
as desired.

The stable sum (and dually, stable intersection) of tropical linear spaces Lw ⊆ SE

and Lz ⊆ SE has so far only been defined when w ∧ z ∕= 0 [5]. Theorem 32 suggests the
following definition for arbitrary Lw and Lz:

Definition 33. Let Lw ⊆ SE and Lz ⊆ SE be tropical linear spaces. Then the stable
sum of Lw and Lz is

Lw +st Lz = tropimA+
(Lw ⊕ Lz) ,

By Theorem 25, the underlying matroid of Lw +st Lz is the union of the underlying
matroids of Lw and Lz, even when w ∧ z = 0. If w ∧ z = 0, then the stable sum is equal
to a rank-additive stable sum of subspaces:

Corollary 34. Let Lw and Lz be tropical linear spaces in SE. Then if Lw′ and Lz′ are
subspaces of Lw and Lz such that w′∧z′ is non-zero and has rank equal to Lw+stLz, then

Lw′∧z′ = Lw +st Lz.

Proof. Since Lw′ ⊕ Lz′ ⊆ Lw ⊕ Lz, by Lemma 22,

Lw′ +st Lz′ ⊆ Lw +st Lz. (5)

But by Theorem 32, Lw′ +st Lz′ = Lw′∧z′ , and so the tropical linear spaces in (5) have the
same rank. Hence, they are equal.

The stable sum of realizable tropical linear spaces has the following “stable” interpre-
tation: combining Theorem 31 and 32 shows that if Λ1 and Λ2 are transverse subspaces
of κ{tS}E,

trop (Λ1) +st trop (Λ2) = trop (γ1Λ1 + γ2Λ2)

for generic (γ1, γ2) ∈ (κ×)E⊔E. Dualizing and observing that trop (γΛ) = trop (Λ) for any
γ ∈ (κ×)E shows that if Λ1 and Λ2 intersect transversely, then

trop (Λ1) ∩st trop (Λ2) = trop (Λ1 ∩ γΛ2)

for generic γ ∈ (κ×)E. This result is known for tropical varieties of all degrees [10, Theorem
3.6.1], but the proof is entirely in the language of balanced polyhedral complexes. The
methods of this paper provide a new and algebraic proof in the linear case.
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