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Abstract

We build on the methods introduced by Friedmann, Hanlon, Stanley, and Wachs,
and further developed by Brauner and Friedmann, to construct additional classes
of presentations of Specht modules. We obtain these presentations by defining a
linear operator which is a symmetrized sum of dual Garnir relations on the space of
column tabloids. Our presentations apply to the vast majority of shapes of Specht
modules.

Mathematics Subject Classifications: 05E10, 20C30

1 Introduction

The Specht modules Sλ, where λ is a partition of n, give a complete set of irreducible
representations of the symmetric group Sn over a field of characteristic 0, say C. They
can be constructed as subspaces of the regular representation CSn or as presentations
given in terms of generators and relations, known as Garnir relations. This paper deals
primarily with the latter type of construction.

Let λ = (λ1 > · · · > λl) be a partition of n. A Young tableaux of shape λ is a filling
of the Young diagram of shape λ with distinct entries from the set [n] := {1, 2, . . . , n}.
Let Tλ be the set of Young tableaux of shape λ. The symmetric group Sn acts on Tλ by
replacing each entry of a tableau by its image under the permutation in Sn.

To construct the Specht module as a submodule of the regular representation, one can
use Young symmetrizers. For t ∈ Tλ, the Young symmetrizer is defined by

et :=
∑
α∈Rt

α
∑
β∈Ct

sgn(β)β, (1)

where Ct is the column stabilizer of t and Rt is the row stabilizer of t. The Specht module
Sλ is the submodule of the regular representation CSn spanned by {τet : τ ∈ Sn}.
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To construct the Specht module as a presentation, one can use column tabloids and
Garnir relations. Let Mλ be the vector space (over C) generated by Tλ subject only to
column relations, which are of the form t + s, where s ∈ Tλ is obtained from t ∈ Tλ by
switching two entries in the same column. Given t ∈ Tλ, let [t] denote the coset of t in
Mλ. These cosets, which are called column tabloids, generate Mλ. A Young tableau is
column strict if the entries of each of its columns increase from top to bottom. Clearly,
{[t] : t is a column strict Young tableau of shape λ} is a basis for Mλ.

In [9], Fulton introduces dual Garnir relations on the column tabloids and shows that
Sλ is isomorphic to the quotient space of Mλ by these relations. There is a dual Garnir
relation for each t ∈ Tλ, each choice of adjacent columns, and each ` up to the length
of the next column. In particular, each Garnir relation is a weighted sum of a column
tabloid [t] and column tabloids obtained from t by exchanging ` entries of a column with
the top ` entries of the next column. Fulton then obtains a simplification: it is enough to
use only the dual Garnir relations that exchange exactly one entry of a column with the
top entry of the next column, i.e. we can just fix ` = 1.

An analogous simplification is obtained in [7], which improves upon a result in [8]. In
the presentation of [7], ` is also restricted to a single value, but this time it is the maximum
possible value: ` equals the length of the next column, so as many entries are exchanged as
the shape of λ allows. This presentation holds for partitions whose conjugate has distinct
parts.

A different simplification is obtained in [2], where a symmetrized sum of dual Garnir
relations with ` = 1 is introduced. The number of relations needed is dramatically
reduced: the construction uses a single relation for every pair of adjacent columns and [t]
varies in Mλ, a significantly smaller space than Tλ. The presentation of [2] holds for all
partitions.

In the present paper we consider intermediate values of `. For what shapes λ would
dual Garnir relations that exchange exactly ` entries between the columns provide a
presentation for Sλ? This is a question posed in [7]. Our results answer that question
and generalize both [7], where ` is maximal, and [2], where ` = 1. Our methods are those
envisioned in [7]. The question posed there also inspired [14] to address it using a different
approach, via representations of the general linear group. See Remark on p. 18 following
Theorem 8 for a discussion relating the results of [14] to the results in the current paper.

Our main result is contained in Theorems 7 and 8. In Theorem 7, we provide conditions
on the shape of a 2-column partition µ = (n,m)′ for any `, using eigenvalues of an
operator, η`, on Mµ. Given a value of `, for any µ for which the conditions are satisfied,
we have obtained a presentation of Sµ. In Theorem 8, we use the results for 2-column
shapes to state conditions on partitions λ with any number of columns. In Table 4.1, we
provide some computer-generated data that tells us which 2-column shapes satisfy these
conditions. The data indicates that the conditions are satisfied for the vast majority of
shapes µ and values of `.

The work in [8] was presented in the language of the generalized Jacobi relations that
define the LAnKe or Filippov algebra [1, 3, 4, 5, 6, 10, 11, 13, 15]. An observation in [8],
that the restricted class of Garnir relations that fix ` to be the maximum possible value
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(for staircase partitions λ) corresponds to the generalized Jacobi relations, motivated the
work in the papers [8, 7, 2, 14] and the current paper.

This paper is organized as follows. In Section 2, we introduce notation and review
the relevant prior results. In Section 3, we introduce the relevant relation and compute
its eigenvalues w`,i, which appear in Theorem 5. A combinatorial identity emerges, given
in Corollary 6. Section 4 contains our main results, along with a statement about the
equivalence of two sets of combinatorial conditions (Corollary 10).

2 Notation and prior results

The symmetric group Sn acts on Tλ by replacing each entry of a tableau by its image
under the permutation in Sn. This induces a representation of Sn on Mλ. In [9, Ch.
7.4], Fulton introduces a map

α : Mλ → Sλ

given by
α : [t] 7→ et.

The map α is Sn-equivariant and surjective. Moreover, ker(α) is generated by a set of
relations which Fulton calls the dual Garnir relations.

The dual Garnir relation gc,`(t) is

gc,`(t) = [t]− πc,`(t), (2)

where πc,`(t) is the sum of column tabloids obtained from all possible ways of exchanging
the top ` elements of the (c+ 1)st column of t with any subset of size ` of the elements of
column c, preserving the vertical order of each set of ` elements. Note that t can be any
tableau, not necessarily with increasing columns.

If we let Gλ be the subspace of Mλ generated by the Garnir relations in

{gc,`(t) : c ∈ [λ1 − 1], ` ∈ [λ′c+1], t ∈ Tλ}, (3)

where λ′ is the conjugate partition of λ, then Gλ is invariant under the action of Sn. In
[9, Ch. 7.4], Fulton shows that Gλ = ker(α), thereby obtaining the following presentation
of Sλ:

Mλ/Gλ ∼=Sn S
λ. (4)

As mentioned in the introduction, Gλ contains a dual Garnir relation for each t ∈ Tλ,
each choice of adjacent columns, and each ` up to the length of the next column.

On page 102 (after Ex. 15) of [9], a presentation of Sλ with a smaller set of relations
is given. In this presentation, the index ` in gc,`(t) of (3) is restricted to a single value:
` = min[λ′c+1] = 1. More precisely, the presentation is

Mλ/Gλ,min ∼=Sn S
λ, (5)

where Gλ,min is the subspace of Gλ generated by the subset of Garnir relations with ` = 1:

{gc,1(t) : c ∈ [λ1 − 1], t ∈ Tλ}.
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This is Fulton’s simplification mentioned in the introduction.
In the analogous simplification of [7], the index ` in gc,`(t) of (3) is restricted to the

maximum value ` = λ′c+1:

Theorem 1. [7, Theorem 1.1] Let λ be a partition whose conjugate has distinct parts.
Then

Mλ/Gλ,max ∼=Sn S
λ, (6)

where Gλ,max is the subspace of Gλ generated by

{gc,λ′c+1
(t) : c ∈ [λ1 − 1], t ∈ Tλ}.

Moreover, this set of relations can be further reduced by restricting t to the set of column
strict tableaux.

The approach in [7], which improves on an earlier result [8] that applied only to stair-
case partitions, is to define a certain linear operator on the space of column tabloids and
study its eigenspaces. This approach has also been used in [2] to obtain a different presen-
tation of Sλ with a reduced number of relations, which works for all shapes. Rather than
using a subset of the Garnir relations, [2] introduce a relation consisting of symmetrized
sums of the dual Garnir relations that generate Gλ,min:

ηc,1([t]) = m[t]−
∑

[s] , (7)

where the sum ranges over all possible tableaux s obtained from t by swapping one entry
in column c+ 1 of t with one entry in column c.

The relation ηc,1 can be thought of as a sum of gc,1 relations which has the advantage
of symmetrizing over all positions of elements in the (c + 1)st column. For t ∈ Tλ, let
hc,1([t]) be the image of ηc,1 on the c and (c + 1)st columns of [t] that leaves the other
columns of [t] fixed. The result obtained in [2] is:

Theorem 2. [2, Theorem 3.5] For any partition λ of n, let Hλ be the space generated by
hc,1([t]) for every [t] ∈Mλ and 1 6 c 6 λ1 − 1. Then the kernel of α is Hλ. Thus,

Mλ/Hλ ∼=Sn S
λ.

We can see that only the single relation ηc,1 is needed for each pair of adjacent columns.
In the next section, we address the case of an intermediate value of ` that was proposed

in [7], generalizing the methods of [7, 2]. As mentioned in the introduction, [14] was
motivated by [7] to address this same question in a different way, using representations
of the general linear group. See Remark on p. 18 following Theorem 8 for a statement of
their theorem and a discussion relating their results to ours.
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3 A linear operator and its eigenvalues

We now define a linear operator on the space of column tabloids, and study its eigenspaces.
We use a symmetrized sum of gc,`(t) relations, where we symmetrize over all ways of
exchanging any ` elements of the (c+ 1)st column with any ` elements of column c, where
` ∈ [λ′c+1]. This is a generalization of [2], where ` = 1, and of [7], where ` = λ′c+1.

In this section we focus on 2-column partitions µ of n + m with shape 2m1n−m, so µ
has a column of size n and a column of size m for 1 6 m 6 n, and µ′ = (n,m). We shall
address the implications of these results to partitions with more than two columns in the
next section.

Definition 3. Let µ = 2m1n−m, and let ` ∈ [m]. We define the map η` : Mµ →Mµ to be

η`[t] =

(
m

`

)
[t]−

∑
[s]

where the sum ranges over all possible tableaux s obtained from t by swapping ` entries
in the second column of t with ` entries in the first column, preserving the vertical order
of each set of ` entries.

Example: Let

[t] =

1 5
2 6
3 7
4

.

Then

η2([t]) = 3

1 5
2 6
3 7
4

−


5 1
6 2
3 7
4

+

5 1
2 3
6 7
4

+

5 1
2 4
3 7
6

+

1 2
5 3
6 7
4

+

1 2
5 4
3 7
6

+

1 3
2 4
5 7
6



−


5 1
7 6
3 2
4

+

5 1
2 6
7 3
4

+

5 1
2 6
3 4
7

+

1 2
5 6
7 3
4

+

1 2
5 6
3 4
7

+

1 3
2 6
5 4
7



−


6 5
7 1
3 2
4

+

6 5
2 1
7 3
4

+

6 5
2 1
3 4
7

+

1 5
6 2
7 3
4

+

1 5
6 2
3 4
7

+

1 5
2 3
6 4
7

 .

In determining the coefficient of [t] in Definition 3, we used the fact that
(
m
`

)
is the

number of ways to pick ` entries from the second column, making η`([t]) a sum of dual
Garnir relations.

Since η` is defined via its action on positions of [t], it is a right action on Mλ. Mean-
while, Sn+m acts on the letters of t, so its action on Tλ and its induced action on Mλ are
left actions. Therefore, the actions of η` and Sn+m commute and η` is Sn+m-equivariant.
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Furthermore, it follows from equation (4) that Im(η`) ⊆ ker(α), as η`([t]) is a sum of dual
Garnir relations. Using techniques employed in [8, 7, 2], we will show that for the vast
majority of partitions µ, the relations generated by η` for any single value of ` are all that
is needed to generate Gµ. To do so, we study the eigenvalues of η`; the rest of this section
is devoted to this study.

Note that because

Mµ ∼=
m⊕
i=0

S2i1n+m−2i

is multiplicity-free, by Schur’s Lemma η` acts as a scalar on each irreducible submodule
of Mµ. Thus, finding the kernel of η` is equivalent to finding the irreducible submodules
of Mµ on which η` acts like the 0 scalar.

We proceed by computing the action of η` on each irreducible submodule of Mµ. For
each T ∈

(
[n+m]
n

)
, let vT ∈ Mµ be the column tabloid with first column T (both columns

assumed to be in increasing order). For any v ∈Mµ, let 〈v, vT 〉 be the coefficient of vT in
the expansion of v in the basis of all vT .

Lemma 4. For every S, T ∈
(
[n+m]
n

)
,

〈η`(vS), vT 〉 =


(
m
`

)
if S = T,

0 if S 6= T and |S ∩ T | 6= n− `,
(−1)

∑`
k=1(ck+dk)+`+1 if |S ∩ T | = n− ` with

S\T = {c1, . . . , c`}, T\S = {d1, . . . , d`}.

Proof. The first two cases easily follow from the definition of η`. We consider the third
case.

Let S = {a1, a2, . . . , an} and [n + m] \ S = {b1, b2, . . . , bm}. Then the columns of vS,
arranged from left to right instead of top to bottom, are

a1, a2, . . . , an

and
b1, b2, . . . , bm,

where the entries of each column are in increasing order. Let i1, i2, . . . , i` ∈ [n] and
j1, j2, . . . , j` ∈ [m]. We will exchange the entries ai1 , ai2 , . . . , ai` with the entries bj1 , bj2 , . . . , bj`
to obtain a term that appears in η`(vS). The two columns of such a term look like

a1, . . . , ai1−1, bj1 , ai1+1, . . . , ai2−1, bj2 , ai2+1, . . . , ai`−1, bj` , ai`+1, . . . , an

and
b1, . . . , bj1−1, ai1 , bj1+1, . . . , bj2−1, ai2 , bj2+1, . . . , bj`−1, ai` , bj`+1, . . . , bm.

In order to get an element in the basis of Mµ, we need to reorder the entries of each
column so they are increasing. Every exchange within a column results in a sign. What
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sign will we end up with? We consider each column individually first. Each column will
require two stages. Then we will put the resulting signs together.

Column 1, Stage 1: We move all the b’s to the end of the column. Moving bj` to
the end gives n − i` transpositions. Moving bj`−1

to just before bj` gives n − i`−1 − 1
transpositions, and so on. The total number of transpositions for this stage is:

`−1∑
k=0

(n− i`−k − k) = n`− `(`− 1)

2
−
∑̀
k=1

ik . (8)

After these transpositions, the first column is

a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , ai`−1, ai`+1, . . . , an, bj1 , bj2 , . . . , bj` .

Column 1, Stage 2: We move the b’s to their correct positions. We begin with bj1 . We
have that bj1 is larger than j1−1 b’s and therefore it is larger than (bj1−1)−(j1−1) = bj1−j1
a’s. Some of those a’s, say γ1 of them, are not in the first column (because they were
exchanged into the second column). So in the first column, there are bj1 − j1 − γ1 a’s
smaller than bj1 .

We need to move bj1 from after all the n− ` a’s to after bj1− j1−γ1 a’s. That requires
(n− `)− (bj1 − j1 − γ1) transpositions.

Define γk to be the number of a’s in {ai1 , . . . , ai`} that are smaller than bjk . So in the
first column, there are bjk − jk − γk a’s smaller than bjk .

We have dealt with bj1 already. Now we move bj2 from after all the n− ` a’s to after
bj2 − j2 − γ2 a’s. Since bj1 < bj2 , we do not need to transpose through bj1 . So we have
(n− `)− (bj2 − j2 − γ2) transpositions. Continuing this way gives

∑̀
k=1

(
(n− `)− (bjk − jk − γk)

)
= `(n− `)−

∑̀
k=1

(
bjk − jk − γk

)
(9)

transpositions. This completes the reordering of the first column.
Column 2, Stage 1: We move all the a’s to the end of the column. By the same

reasoning as in stage 1 of the first column, the number of transpositions required is

`−1∑
k=0

(m− j`−k − k) = m`− `(`− 1)

2
−
∑̀
k=1

jk . (10)

Now the second column is

b1, . . . , bj1−1, bj1+1, . . . , bj2−1, bj2+1, . . . , bj`−1, bj`+1, . . . , bm, ai1 , . . . , ai` .

Column 2, Stage 2: We move the a’s to their correct positions. We have that aik is
larger than ik − 1 of the a’s and (aik − 1)− (ik − 1) = (aik − ik) of the b’s.
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Define δk to be the number of b’s in {bj1 , . . . , bj`} that are smaller than aik . Then we
need to move ai1 left to just after (ai1− i1− δ1) b’s, which requires (m− `)− (aik− ik− δk)
transpositions. Continuing with ai2 and so on, we have

∑̀
k=1

(
(m− `)− (aik − ik − δk)

)
= `(m− `)−

∑̀
k=1

(
aik − ik − δk

)
(11)

transpositions.
Total from both columns: The total number of transpositions for both columns com-

bined is given by the sum of equations (8), (9), (10), and (11). We are only concerned
with the parity of the total number of transpositions. Adding the four equations and
omitting any obviously even terms gives

∑̀
k=1

(
γk + δk

)
−
∑̀
k=1

(
aik + bjk

)
transpositions.

We now show that
∑`

k=1

(
γk + δk

)
has the same parity as `.

For any pair (c, d) ∈ [`]× [`], we have either aic < bjd or aic > bjd . Therefore, we can
think of the pair (c, d) as contributing 1 to γd in the first case, or as contributing 1 to δc
in the second case. So each pair (c, d) contributes exactly 1 to the sum

∑`
k=1

(
γk + δk

)
.

Hence, the sum equals the number of pairs (c, d), which is `2, which has the same parity
as `.

Since S \ T = {ai1 , . . . , ai`} and T \ S = {bj1 , . . . , bj`}, and there is a sign in the
definition of η`, the lemma follows.

We are now ready to compute the scalar action of η` on each irreducible submodule
of Mµ.

Theorem 5. On the irreducible submodule of Mµ isomorphic to S2i1(n+m)−2i
, the operator

η` acts like multiplication by the scalar ω`,i, where

ω`,i :=

(
m

`

)
−
∑̀
`1=0

(
m− i
`1

)(
n− i
`1

)(
i

`− `1

)
(−1)`1 .
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Proof. Let T = [n] so that

vT =
1 n+1

2 n+2

...
...

m n+m

m+1

...

n

,

and let t be the standard Young tableau of shape 2i1n+m−2i given by

t =
1 n+1

2 n+2

...
...

i n+i

i+1

...

n

n+i+1

...

n+m

.

Recall that the Specht module S2i1(n+m)−2i
is spanned by {τet : τ ∈ Sn+m}, where et is the

symmetrizer of Equation (1). In order to study the action of η` on this Specht module, we
begin by simplifying the action of et on vT by factorizing et as follows. Let rt =

∑
α∈Rt

α.
Let dt be the signed sum of column permutations stabilizing {1, 2, . . . , n}, {n+1, . . . , n+i},
and {n+ i+ 1, . . . , n+m}, i.e. the signed sum of permutations in the subgroup

S{1,...,n} × S{n+1,...,n+i} × S{n+i+1,...,n+m} ⊆ Ct.

Now let ft be the signed sum of left coset representatives of the above subgroup of Ct,
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that is, permutations σ in Ct that satisfy1

σ(1) < · · · < σ(n), σ(n+ i+ 1) < · · · < σ(n+m), σ(n+ 1) < · · · < σ(n+ i).

Then etvT = rtftdtvT . The antisymmetry of column tabloids ensures that dtvT is a scalar
multiple of vT , because it simply permutes within columns. Therefore we can conclude
that rtftvT is a scalar multiple of etvT , and in particular that etvT is nonzero, as the
coefficient of vT in rtftvT is 1.

Consider η`(rtftvT ). In the subspace restricted to S2i1n+m−2i
, the fact that η` acts on

etvT as a scalar implies the same is true of rtftvT . In fact, because the coefficient of vT in
rtftvT is 1, we can determine precisely what this scalar is by computing 〈η`(rtftvT ), vT 〉.

We have
rtftvT =

∑
S∈([n+m]

n )

〈rtftvT , vS〉vS.

Applying the linear operator η` thus gives

η`(rtftvT ) =
∑

S∈([n+m]
n )

〈rtftvT , vS〉η`(vS).

Note that when T = S, by Lemma 4 we have 〈η`(vT ), vT 〉 =
(
m
`

)
. With this, we can

compute the coefficient of vT in general by

ω`,i = 〈η`(rtftvT ), vT 〉 =
∑

S∈([n+m]
n )

〈rtftvT , vS〉〈η`(vS), vT 〉 (12)

=

(
m

`

)
+

∑
S∈([n+m]

n )\{T}

〈rtftvT , vS〉〈η`(vS), vT 〉.

The contributions to the sum arise only when S and T differ by ` elements. In the
sum rtftvT , there are four different ways to obtain a vS that fulfills this criterion:

1. vS is obtained by doing row permutations only (possible iff ` 6 i).

2. vS is obtained by doing column permutations only (possible iff ` 6 m− i).

3. vS is obtained by a subset of the column permutations of case (2) above, followed
by row permutations.

4. vS is obtained via a combination of column permutations and row permutations: `1
entries are exchanged via column permutations and `2 entries via row permutations,
where ` = `1 + `2 (possible iff `1 6 m− i and `2 6 i).

1In [8] and [2], the representatives used were mistakenly right coset representatives. The results in [8]
are unaffected by the error. The main results in [2] are also unaffected, but see footnote on page 19.
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In case (4), if we let `1 = 0 we get case (1), and if we let `2 = 0 we get cases (2) and (3).
We find it helpful to compute cases (1), (2), and (3) before case (4).

Case (1): row exchanges only.
Pick u1, u2, . . . , u` ∈ [i] and let

α = (u1, n+ u1)(u2, n+ u2) · · · (u`, n+ u`) .

Then the columns of αvT , written left to right instead of top to bottom, are

1, 2, . . . , u1 − 1, n+ u1, u1 + 1, . . . , u` − 1, n+ u`, u` + 1, . . . , n

and

n+ 1, . . . , n+ u1 − 1, u1, n+ u1 + 1, . . . , n+ u` + 1, u`, n+ u` + 1, . . . , n+m.

For αvT to have ordered entries, we need to move the n+u1, n+u2, . . . , n+u` to the end
of the first column, and to move the u1, u2, . . . , u` in the second column to the beginning
of the column.

For the first column, we first move n + u` to the end, then n + u`−1, and so on. The
number of transpositions for the first column is:

`−1∑
k=0

(n− u`−k − k) = n`−
∑̀
k=1

uk −
`(`− 1)

2
.

The number of transpositions for the second column is:

∑̀
k=1

(uk − k) =
∑̀
k=1

uk −
`(`+ 1)

2
.

Together, the number of transpositions for ordering the columns of αvT is

n`− `2 .

To compute 〈η`(vS), vT 〉, note that T \S = {u1, . . . , u`} and S\T = {n+u1, . . . , n+u`}
in Lemma 4, giving

〈η`(vS), vT 〉 = (−1)
∑`

k=1(uk+n+uk)+`+1 = (−1)n`+`+1 .

Hence,
〈rtftvT , vS〉〈η`(vS), vT 〉 = (−1)(n`+`+1)+(n`−`2) = (−1),

which is independent of the choice of uk’s. There are
(
i
`

)
ways to pick the uk’s. So case

(1) gives an overall contribution of

−
(
i

`

)
. (13)

This expression appropriately gives 0 when ` > i.
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Case (2): column exchanges only.
The permutations σ in ft satisfy

σ(1) < · · · < σ(n), σ(n+ i+ 1) < · · · < σ(n+m), σ(n+ 1) < · · · < σ(n+ i).

Since σ ∈ Ct, it follows that σ fixes {n + 1, . . . , n + i}. Since we need |S ∩ T | = n − `,
and since T = [n] and S = {σ(1), . . . , σ(n)}, we need to exchange ` of the elements in
[n] with ` of the elements n + i + 1, . . . , n + m. Let Q` := {q1 < . . . < q`} ∈

(
[n]
`

)
, and

P` := {p1 < . . . < p`} ∈
({n+i+1,...,n+m}

`

)
be the sets of elements exchanged. In one-line

notation, σ restricted to the first column of t is the concatenation of the sequences

1, . . . , q1 − 1, q1 + 1, . . . , q2 − 1, q2 + 1, . . . , q` − 1, q` + 1, . . . , n

p1, p2, . . . , p`

q1, q2, . . . , q`

n+ i+ 1, . . . , p1 − 1, p1 + 1, . . . , p2 − 1, p2 + 1, . . . , p` − 1, p` + 1, . . . , n+m.

The number of inversions in σ restricted to the first column of t is then

`−1∑
k=0

(n− q`−k − k) +
∑̀
k=1

(pk − k − n+ i) + `2 = i`+
∑̀
k=1

(pk − qk).

Now we consider σvT . Its first column is the same as the first n entries of the first
column of σt, and does not need further reordering. Its second column is the concatenation
of the sequences

n+ 1, . . . , n+ i

q1, q2, . . . , q`

n+ i+ 1, . . . , p1 − 1, p1 + 1, . . . , p2 − 1, p2 + 1, . . . , p` − 1, p` + 1, . . . , n+m.

To reorder this column, we need to move the qk’s all the way to the left. That takes i
transpositions for each qk, giving the sign (−1)`i. So

〈rtftvT , vS〉 = (−1)
∑`

k=1(pk−qk).

It remains to compute 〈η`(vS), vT 〉. Since S \T = {p1, . . . , p`} and T \S = {q1, . . . , q`},
in Lemma 4 we have

〈η`(vS), vT 〉 = (−1)
∑`

k=1(pk+qk)+`+1.

The total sign of this contribution is then

(−1)
∑`

k=1(pk−qk)(−1)
∑`

k=1(pk+qk)+`+1 = (−1)`+1.

There are
(
n
`

)
choices for the qk’s and

(
m−i
`

)
choices for the pk’s, giving the total contri-

bution from this case of (
n

`

)(
m− i
`

)
(−1)`+1. (14)
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Case (3): column permutations from case (2) followed by row permutations.
If in case (2), qj 6 i and qj+1 > i for some 1 6 j 6 `, then after σ from case (2),

we can apply row swaps (qγ, n + qγ) for any γ 6 j and still have |S ∩ T | = n − `, with
S \ T = {p1, . . . , p`} and T \ S = {q1, . . . , q`}. The row group is not signed, so all that
remains is to reorder the columns of ασvT to be increasing and compute the corresponding
sign.

Suppose we do the row swaps for qγ1 , . . . , qγr for some r 6 j and 1 6 γ1 < γ2 < · · · <
γr 6 j, so that

α = (qγ1 , n+ qγ1) · · · (qγr , n+ qγr).

The first column of ασvT is as in Case (2) and needs no further reordering. The sign
for the reordering of second column of ασvT can be obtained from the sign of reordering
of the second column of σvT as follows. Suppose ρ achieves the reordering of the second
column of σvT . Then ρα−1 achieves the reordering of the second column of ασvT . The
contribution from case (2) is therefore modified only by sgnα−1 = (−1)r, so we have in
this case:

(−1)`+1+r.

How many ways are there to have r row swaps? In picking the qk’s, let us pick j of them
to be in [i] and ` − j of them to be in [n] \ [i]. Then we can pick r of the first j qk’s for
the row swaps. There are (

i

j

)(
n− i
`− j

)(
j

r

)
ways to do this. There are still

(
m−i
`

)
ways to pick the pk’s. So we have the contribution(

m− i
`

)
(−1)`+1

∑̀
r=1

∑̀
j=0

(
i

j

)(
n− i
`− j

)(
j

r

)
(−1)r. (15)

Note that if we set r = 0 in the above equation, we get the contribution of case (2).

Case (4): column permutations to exchange `1 elements and row permutations
to exchange `2 = ` − `1 elements.

We begin similarly to case (2), replacing ` with `1, where 1 6 `1 < `. We use a
column permutation σ to exchange the elements of Q`1 = {q1 < · · · < q`1} ∈

(
[n]
`1

)
with

the elements of P`1 = {p1 < · · · < p`1} ∈
({n+i+1,...,n+m}

`1

)
. Then we pick `2 = ` − `1

elements of [i], say 1 6 u1 < · · · < u`2 6 i such that {u1, . . . , u`2} ∩ {q1, . . . , q`1} = ∅ and
carry out a row exchange on them,

α = (u1, n+ u1)(u2, n+ u2) · · · (u`2 , n+ u`2).

The permutation ασ exchanges a total of ` entries between the first and second columns
of vT , as desired.

The sign of the column permutation is the same as in case (2), except that ` is replaced
by `1:

sgn(σ) = (−1)−`1i+
∑`1

k=1(pk−qk).
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We now consider the sign of the transposition that orders the two columns of ασvT in
increasing order. We begin by applying only σ, so the first row of σvT is

1, . . . , q1 − 1, q1 + 1, . . . , q`1 − 1, q`1 + 1, . . . , n, p1, p2, . . . , p`,

and the second row of σvT is

n+ 1, . . . , n+ i, q1, q2, . . . , q`1 , n+ i+ 1, . . . , p1 − 1, p1 + 1, . . . , p`1 − 1, p`1 + 1, . . . , n+m.

Once we apply α, the entries n+ uk are in the first column mixed in between 1 and i
where the uk used to be, and the entries uk are in the second column mixed in between
n + 1 and n + i where the n + uk used to be. To count the number of transpositions
required for reordering, we define γk to be the number of elements in Q`1 larger than uk.

In the first column, we need to move the n+ uk’s to just after n. This requires

`2∑
k=1

(n− γk − uk − (k − 1))

transpositions. In the second column, we need to move the uk’s and the qk’s to the left
and keep them in order. This requires

i`1 +

`1∑
k=1

(uk − k + γk)

transpositions. So turning ασvT into vS gives the sign

(−1)n`2+i`1+`2 .

Finally, since S\T = {p1, . . . , p`1 , n+u1, . . . , n+u`2} and T \S = {p1, . . . , p`1 , u1, . . . , u`2},
Lemma 4 gives

〈η`(vS), vT 〉 = (−1)
∑`1

k=1(pk+qk)+
∑`2

k=1(n+uk+uk)+`+1.

The overall sign simplifies to
(−1)`1+1.

How many of these cases are there? If we choose j of the `1 q’s to come from [i], there
will be i − j elements in [i] to choose the uk’s from. Summing these and remembering
that there are still

(
m−i
`1

)
ways to choose the pk’s gives(
m− i
`1

)
(−1)`1+1

`1∑
j=0

(
i

j

)(
n− i
`1 − j

)(
i− j
`2

)
.

As in case (3), we can also have row swaps using the subset of the qk’s that are in [i], and
if there are r such row swaps, this merely introduces a factor of (−1)r, giving(

m− i
`1

)
(−1)`1+1

j∑
r=0

`1∑
j=0

(
i

j

)(
n− i
`1 − j

)(
i− j
`2

)(
j

r

)
(−1)r. (16)
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We start the sum from r = 0 to include the case we just computed where no additional
row swaps are done.

Note that setting `1 = 0 in the above formula gives us the contribution from case (1)
and setting `1 = ` in the above formula gives us the contributions from cases (2) and (3)
combined. Therefore, the total eigenvalue from all four cases is given by summing the
above formula from `1 = 0 to `1 = `.

Now, reordering the sum to carry out the sum over r first reveals that we have a term

j∑
r=0

(
j

r

)
(−1)r =

{
1 j = 0

0 j > 0
. (17)

So the only contribution to the sum above is the j = r = 0 term, and the theorem is
proved.

Note that the cancellation that appears in equation (17) means in essence that we
can limit the Q`1 to only

(
[n]\[i]
`1

)
and not consider the contributions from the type of row

swaps discussed in case (3) (where the r originates), since those cancel the contributions
from the Q`1 in

(
[n]
`1

)
\
(
[n]\[i]
`1

)
.

Example. Let n = 8, m = 7, ` = 3. We will demonstrate case (4) with `1 = 2, `2 = 1,
i = 4.

Pick q1 = 2, q2 = 5, p1 = 14, p2 = 15, u1 = 3. In this case, j = 1 (because q1 6 4 and
q2 > 4). We have:

vT =
1 9

2 10

3 11

4 12

5 13

6 14

7 15

8

, t =
1 9

2 10

3 11

4 12

5

6

7

8

13

14

15

, σt =
1 9

3 10

4 11

6 12

7

8

14

15

2

5

13

, ασvT =
1 9

11 10

4 3

6 12

7 2

8 5

14 13

15

, vS =
1 2

4 3

6 5

7 9

8 10

11 12

14 13

15

.

Following the counting in the proof for sgn(σ), we have

sgn(σ) = (−1)−2·4+(14−2)+(15−5) = +1.
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Alternatively, we see that in cycle notation, σ = (2, 3, 4, 6, 8, 15, 13)(5, 7, 14), which is
even.

Now following the counting in the proof for ordering the columns of ασvT , we have

(−1)8·1+4·2+1 = (−1).

Alternatively, to order the first column we can use the permutation (11, 4, 6, 7, 8), which
is even, and to order the second column we can use the permutation (9, 2, 10, 3, 5, 12),
which is odd, giving the overall sign (−1).

Finally, since T \ S = {2, 3, 5} and S \ T = {11, 14, 15}, the sign we get from Lemma
4 for 〈η2(vS), vT 〉 is

(−1)(2+3+5)+(11+14+15)+3+1 = +1.

So the contribution of this case to the eigenvalue is

(+1)(−1)(+1)) = −1 = (−1)`1+1,

where `1 = 2.

The trace: The operator η2 for the shape (8, 7)′ is a
(
15
8

)
×
(
15
8

)
matrix. Its diagonal entries

all equal
(
7
3

)
, so its trace is

(
7
3

)(
15
8

)
. A computation of the sum of the eigenvalues of η2 with

multiplicity, where the multiplicity of ω2,i is the dimension of S2i115−2i
for i = 0, 1, . . . , 7,

confirms this trace. The computation of the trace in these two different ways for any
n > m > ` gives the following result.

Corollary 6 (A combinatorial identity). For n > m > `, the following identity holds:

m∑
i=0

∑̀
`1=0

(
m− i
`1

)(
n− i
`1

)(
i

`− `1

)(
n+m

i

)
n+m− 2i+ 1

n+m− i+ 1
(−1)`1 = 0.

Proof. Given n, m, and `, the diagonal entries of η` are equal
(
m
`

)
, and its size is

dimM (n,m)′ × dimM (n,m)′ . Since dimM (n,m)′ =
(
n+m
n

)
, we have

Tr (η`) =

(
m

`

)(
n+m

n

)
.

The trace also equals the sum of the eigenvalues of η` with multiplicity, i.e.

Tr (η`) =
m∑
i=0

ω`,i dim(S2i1n+m−2i

).

Hooke’s Law formula gives

dimS2i1n+m−2i

=

(
n+m

i

)
n+m− 2i+ 1

n+m− i+ 1
.
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So we have(
m

`

)(
n+m

n

)
=

m∑
i=0

(m
`

)
−
∑̀
`1=0

(
m− i
`1

)(
n− i
`1

)(
i

`− `1

)
(−1)`1

(n+m

i

)
n+m− 2i+ 1

n+m− i+ 1
.

Since

M (n,m)′ ∼=
m⊕
i=0

S2i1n+m−2i

,

we have the identity(
n+m

n

)
=

m∑
i=0

dim(S2i1n+m−2i

) =
m∑
i=0

(
n+m

i

)
n+m− 2i+ 1

n+m− i+ 1
,

which results in the corollary.

4 A class of presentations of Specht modules

It is straightforward to check that for all 2-column partitions µ = 2m1n−m, we have
w`,m = 0. It follows that

ker η` ⊇ Sµ.

The Specht modules for which w`,i 6= 0 for 0 6 i < m are those for which we have
obtained a new presentation. That is, in those cases, ker(η`) ∼= Sµ and Im(η`) = ker(α)
for α : Mµ → Sµ. This is the content of our central theorem.

Theorem 7. Let µ = 2m1n−m and let Hµ,` be the subspace of Mµ generated by η`([t]) for
[t] ∈Mµ. Then

Mµ/Hµ,` ∼= Sµ

as Sn+m-modules iff (
m

`

)
−
∑̀
`1=0

(
m− i
`1

)(
n− i
`1

)(
i

`− `1

)
(−1)`1 6= 0

for i = 0, 1, . . . ,m− 1.

Proof. The theorem is a direct consequence of Theorem 5.

We now state the conditions for presentations of partitions with two or more columns.
Let λ be a partition, let `c ∈ [λ′c+1], and let hc,`c([t]) be the image of η`c on the c and
(c+ 1)st columns of [t] that leaves the other columns of [t] fixed.

Theorem 8. Let λ be a partition of n and let λ′ be its conjugate partition. Let ˆ̀ =
(`1, `2, . . . , `λ1−1) and let Hλ,ˆ̀ be the space generated by hc,`c([t]) for every [t] ∈ Mλ,
1 6 c 6 λ1 − 1, and one choice of `c ∈ [λ′c+1] for each c. Then

Mλ/Hλ,ˆ̀∼=Sn S
λ
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iff λ satisfies the conditions(
λ′c+1

`c

)
−

`c∑
k=0

(
λ′c+1 − i

k

)(
λ′c − i
k

)(
i

`c − k

)
(−1)k 6= 0

for all 1 6 c 6 λc − 1 and i = 0, 1, . . . , λ′c+1 − 1.

Proof. This theorem follows from Theorem 7 and the definition of hc,`c([t]).

Remark Motivated by the same question proposed in [7] that led to the present paper,
[14] addressed the case of intermediate values of `, approaching it via representations of
the general linear group. In that different context, but using the same generalization of the
symmetrized sum of [2] (Equation (7)) as we do in Definition 3, they state the following
sufficient (but not necessary, except in the 2-column case) condition for the corresponding
quotient space to be a Specht module. We modify their notation to match ours.

Theorem 9. [14, Theorem 6.2]2 Let λ be a partition of n and `1, . . . , `λ1−1 positive integers
satisfying `c 6 λc+1, c = 1, . . . , λ1 − 1. Let ˆ̀ = (`1, . . . , `λ1−1). Then as Sn-modules, we

have Mλ/Hλ,ˆ̀∼= Sλ if

j∑
t=1

(−1)t−1
(
λ′c+1 − t
λ′c+1 − `c

)(
j

t

)(
λ′c − λ′c+1 + j + t

t

)
6= 0

for all c = 1, . . . , λ1 − 1 and j = 1, . . . , λ′c+1.

For the two-column case of Theorem 9, i.e. for λ1 = 2, [14] state that this condition
is also necessary ([14, Corollary 6.1]). Putting their result together with Theorem 7 gives

Corollary 10 (Equivalence of two sets of combinatorial conditions). Let n > m > `.
Then (

m

`

)
−
∑̀
`1=0

(
m− i
`1

)(
n− i
`1

)(
i

`− `1

)
(−1)`1 6= 0

for i = 0, 1, . . . ,m− 1 iff

j∑
t=1

(−1)t−1
(
m− t
m− `

)(
j

t

)(
n−m+ j + t

t

)
6= 0

for j = 1, . . . ,m.

As in [2], Theorem 8 dramatically reduces the number of generators needed to obtain
Gλ. The original construction leading to Equation (4) required enumerating over every
1 6 k 6 λ′c+1 for every pair of columns c and c + 1 of every t ∈ Tλ. Even Fulton’s

2Due to a typo, the statement of this theorem in the published version of [14] erroneously limits the
values of j to j = 1, . . . , `c; the values should be j = 1, . . . , λ′c+1, as stated here.
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simplification using only gc,1 relations requires enumerating over t ∈ Tλ for every pair of
columns c and c+ 1. By contrast, our construction uses a single relation for every pair of
adjacent columns, and [t] varies in Mλ, a significantly smaller space than Tλ.

We now discuss the shapes µ and values ` for which the conditions of Theorem 7 hold.
When ` = 1, the condition w1,i 6= 0 in Theorem 7 simplifies to (m− i)(n− i+ 1) 6= 0,

which is achieved in all cases, i.e. whenever 0 6 i < m 6 n. This is the case of [2],3 cited
earlier as Theorem 2.

When ` = m, the condition wm,i 6= 0 in Theorem 7 simplifies to

1−
(
n− i
m− i

)
(−1)m−i 6= 0,

which holds for 0 6 i < m whenever n 6= m or n = 1. This is the case of [7], cited earlier
as Theorem 1. In fact, when ` = m, no symmetrization occurs and ηm is equal to the
Garnir relation g1,m used in [7].

Generally speaking, the conditions in Theorem 7 seem to hold for the vast majority
of cases. Considering n > m > ` for 1 6 n 6 50, only 391 of the possible 22,100
combinations of n, m, and ` have values of i < m for which S2i1n+m−2i

is in the kernel of
η`. In those cases, there is only one such value of i in all but 12 of the cases, in which the
number of such values is 2. Data for 1 6 n 6 28 is recorded in Table 4.1.
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Table 4.1: Values of (n,m, `, i) for which w`,i = 0 for n 6 28, 0 6 i < m, and 1 6 ` < m.
n m ` i

5 4 2 1
6 4 3 2
6 6 4 3
6 6 5 3
7 3 2 1
7 5 3 1
7 6 5 3
7 6 5 4
7 7 5 4
8 5 2 2
8 5 4 2
8 8 2 3
9 5 3 3
9 7 2 3
9 7 3 2
9 7 5 5
9 9 4 4
9 9 4 5
9 9 5 5

10 9 2 4
10 9 5 5
10 9 5 6
10 9 7 6
10 10 5 6
11 6 2 3
11 7 4 5
11 7 5 4
11 8 5 6
11 11 2 5
11 11 9 5
12 4 2 2
12 6 3 2
12 6 3 4
12 10 2 5
12 10 3 6
12 10 7 8
12 10 9 6
12 11 9 9
12 12 4 6
12 12 8 6

n m ` i

13 6 4 3
13 9 5 7
13 10 4 7
13 10 7 7
13 12 7 9
14 7 2 4
14 11 2 6
14 12 3 5
14 12 6 8
15 7 3 5
15 10 5 8
15 11 6 9
15 13 9 11
15 14 10 11
15 14 11 8
15 15 13 10
15 15 14 10
16 9 3 4
16 10 2 6
16 12 2 7
16 14 3 9
16 15 7 11
16 15 14 10
16 15 14 11
16 16 4 5
16 16 14 11
17 5 2 3
17 8 2 5
17 11 5 9
17 13 7 11
17 15 3 7
17 15 13 7
17 16 2 9
17 16 10 13
17 16 11 13
17 16 13 14
18 8 3 6
18 9 5 6
18 10 4 6
18 10 4 8

n m ` i

18 12 7 9
18 13 2 8
18 14 5 11
18 15 9 13
18 16 11 13
18 16 11 14
18 16 14 12
18 17 11 10
18 17 11 14
19 9 6 3
19 12 5 3
19 12 5 10
19 15 8 13
20 9 2 6
20 14 2 9
20 16 2 10
20 17 7 14
20 17 11 14
21 9 3 7
21 13 5 11
21 15 3 11
21 17 9 15
21 19 13 17
22 6 2 4
22 15 2 10
22 15 4 12
22 15 8 12
22 16 7 14
22 19 2 12
22 21 17 19
23 10 2 7
23 12 9 7
23 13 2 9
23 14 5 12
23 16 11 12
23 19 10 17
23 21 9 17
23 23 2 14
24 10 3 8
24 15 4 10

n m ` i

24 16 2 11
24 16 6 14
24 19 9 17
24 22 2 14
24 22 3 12
24 22 11 19
24 22 15 20
24 22 20 12
24 24 4 15
25 13 4 11
25 15 5 11
25 15 5 13
25 21 11 19
25 22 13 20
25 23 9 19
26 11 2 8
26 17 2 12
26 17 3 10
26 22 8 19
26 22 13 19
26 24 3 17
26 25 2 16
27 7 2 5
27 11 3 9
27 16 5 14
27 19 7 17
27 21 9 19
27 22 2 15
27 23 12 21
27 25 17 23
27 26 21 24
28 18 2 13
28 26 3 15
28 28 2 18
28 28 26 18
28 28 26 21
28 28 27 21
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