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Abstract

We consider the asymptotic minimum density f(s, k) of monotone k-subwords
of words over a totally ordered alphabet of size s. The unrestricted alphabet case,
f(∞, k), is well-studied, known for f(∞, 3) and f(∞, 4), and, in particular, conjec-
tured to be rational for all k. Here we determine f(2, k) for all k and determine
f(3, 3), which is already irrational. We describe an explicit construction for all s
which is conjectured to yield f(s, 3). Using our construction and flag algebra, we
determine f(4, 3), f(5, 3), f(6, 3) up to 10−3 yet argue that flag algebra, regardless
of computational power, cannot determine f(5, 3) precisely. Finally, we prove that
for every fixed k > 3, the gap between f(s, k) and f(∞, k) is Θ(1

s ).

Mathematics Subject Classifications: 68R15

1 Introduction

Let S be a totally ordered set. An n-word over the alphabet S is a sequence w : [n]→ S.
The sequence elements are called letters. A subsequence (hereafter, subword) of a word is
monotone if it is monotone non-increasing or monotone non-decreasing.

The study of patterns (such as monotone patterns) in words is a classical problem
in combinatorics; see [12] for a survey of central results in the area. The special case of
permutations which, in the realm of patterns, is the case where all letters in the word are
distinct, dates back to the classical theorem of Erdős and Szekeres [7], who proved that a
permutation of length (k− 1)2 + 1 has a monotone k-length subword. Hence, one expects
that as n grows, the number of monotone k-subwords grows accordingly. Nevertheless, it
is usually difficult to determine the minimum amount of monotone patterns. In fact, it was
not long ago that Samotij and Sudakov [17] determined this minimum for permutations in
the special case where n 6 k2 +ck3/2/ log k for some absolute constant c and k sufficiently
large. As pattern quantification problems are mostly hard to enumerate precisely, it is
of interest to study asymptotic density, whether minimum density (e.g., [3]), maximum
density (e.g., [18]) or the random word setting (e.g., [5]). As we are interested in monotone
subwords, we consider their minimum asymptotic density, as formally defined below.
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Hereafter, we shall assume that S is finite, and set, without loss of generality, S =
Σs := {0, . . . , s−1}. Let m(k, w) denote the number of monotone k-subwords of a word w
and let f(s, k, n) denote the minimum ofm(k, w)/

(
n
k

)
taken over all w ∈ (Σs)

n. Notice that
g(k, n) := f(n, k, n) is the minimum density of monotone k-subwords of a permutation
of [n]. Let f(s, k) (respectively, g(k)) denote the limit of f(s, k, n) (respectively, g(k, n))
as n goes to infinity. The limit clearly exists as the sequences f(s, k, n) and g(k, n) are
monotone non-decreasing with n. It is easy to see that for every fixed k, f(s, k) is a
non-increasing function of s and its limit is g(k).

The problem of determining g(k, n) was initiated by Atkinson, Albert and Holton
(see [14]). Myers described a construction upper-bounding g(k, n) for every k, n and
conjectured that it yields the exact bound, and hence the exact value of g(k). Myers
proved his conjecture for k = 3, determining g(3, n) for every n. He also gave a simple
proof that g(3) = 1

4
, based on Goodman’s classical formula [9]. As for the general case,

Myers’ conjecture is that g(k) = 1
(k−1)k−1 . This value was shown to hold for the special

class of layered permutations by de Oliveira Bastos, and Coregliano [6]. The case g(4) = 1
27

was proved by Balogh, Hu, Lidickỳ, Pikhurko, Udvari, and Volec [3] with a sophisticated
use of flag algebra, but otherwise the general conjecture of Myers regarding g(k) is wide
open. Here we address f(s, k) and, as we shall see, the problem becomes challenging even
for k = 3 and even for small size alphabets, unlike the case k = 3 of permutations which,
recall, is fairly simple.

Let us start with the smallest size nontrivial alphabet, s = 2. In this case we can
determine f(2, k) for all k, but even this requires some effort, as the proof of the theorem
below suggests.

Theorem 1. f(2, k) = k
2k−1 .

As can be seen from the proof of Theorem 1, one can determine f(2, k, n) exactly for
all n; the minimum is attained by an alternating binary word (and, when n is odd, only
by an alternating binary word).

We next turn to larger alphabets. In the next two theorems we consider the case k = 3
(monotone triples), for which we can get precise and almost precise results for small s,
and conjecture the precise result for every s. Our next theorem determines the smallest
case, f(3, 3) which turns out to be irrational (recall that in the permutation case, all
conjectured values are rationals).

Theorem 2. f(3, 3) = 2−
√

2 = 0.5857....

In Section 3, we present, for every s, an explicit construction of a sequence Ss =
{wn}∞n=1 of words over Σs where wn is an n-word, which is conjectured to be asymptotically
optimal, in the sense that m(3, wn)/

(
n
3

)
is conjectured to approach f(s, 3) as n goes to

infinity. Our construction is accompanied with an explicitly defined multivariate degree
3 polynomial hs with b(s − 1)/2c variables. Let q(s) denote the minimum of hs in the
positive orthant of the closed halfspace defined by summing the variables to 1

2
. It is then

conjectured (see Conjecture 8) that q(s) = f(s, 3) and proved that q(s) > f(s, 3) (q(3)
coincides with f(3, 3) of Theorem 2). While we can obviously compute q(s) to arbitrary
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precision for every s, we have done so analytically for all 4 6 s 6 7 as can be seen from
the upper bound column of Table 1. But how plausible is our conjecture in the sense of a
supporting lower bound? It is exact for s = 3, and we prove that it is very close to f(s, 3)
for s ∈ {4, 5, 6}. To this end, we shall use the flag algebra framework of Razborov [15].
Our approach follows along the lines of [3], with two major differences: The flag algebraic
objects that we work with are, what we call, word graphs, which are certain edge colorings
of complete graphs that capture monotonicity in words. This is somewhat different than
[3] whose objects are permutation graphs. While a single word graph may correspond to
many words (hence, considerably reducing the search space instead of working directly
with words), there are still many distinct word graphs for small s and n, as opposed to
permutation graphs. For example, while there are only 776 permutation graphs for n = 7,
there are 12712 word graphs already for n = 7 and s = 6 (see Table 2). This makes our
semidefinite programs rather large. On the other hand, while [3] obtain an exact rational
result, we only claim a lower bound - nor can we ask for an exact result yielding q(s)
using a flag algebra generated sdp - because q(s) is an integer polynomial evaluated at
a real algebraic root of another high degree polynomial (in fact q(5) is determined by
an algebraic number of degree 4, see Subsection 3.1). We thus argue that, regardless
of computational power, flag algebra just by itself cannot be used to determine f(s, 5).
Nevertheless, using flag algebra, we obtain the lower bounds for f(s, 3) when s ∈ {4, 5, 6}
given in the lower bound column of Table 1. As can be seen, these lower bounds differ
from q(s) (hence f(s, 3)) by at most 10−3. Our findings are summarized in the following
theorem.

Theorem 3. The following holds for f(s, 3) where 4 6 s 6 7.

s upper bound (conjectured tight) lower bound gap smaller than
4 0.5133... 0.5123... 0.001
5 0.4610... 0.4604... 0.001
6 0.4288... 0.4280... 0.001
7 0.4033...

Table 1: Upper and lower bounds for f(s, 3). All upper bounds are conjectured to be
optimal.

Finally, we consider the general case f(s, k). Recall that f(s, k) is a non-increasing
function of s and its limit is g(k); yet how quickly does it converge as a function of s?
The following theorem provides the answer.

Theorem 4. f(s, k)− g(k) = Θ(1
s
). In particular, f(s, k) = 1

(k−1)k−1 + Θ(1
s
) for k = 3, 4

and, assuming the conjecture of Myers, f(s, k) = 1
(k−1)k−1 + Θ(1

s
) holds for all k.

The remainder of this paper is organized as follows. In Section 2 we prove our exact
results, Theorems 1 and 2. The case k = 3 consisting of the conjectured optimal upper
bound for f(s, 3) and the explicit construction of the polynomial hs is given in Section 3.
Section 4 describes our proof of the lower bounds using flag algebra; these two sections,
together with Appendix A, yield Theorem 3. In the final Section 5 we prove Theorem 4.
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2 Exact results

In this section we prove our exact results starting with the case of the binary alphabet,
Theorem 1, and proceeding with the case of the ternary alphabet, Theorem 2. We require
some notation: For a word w, let wt denote the letter of w at position t (so that w1 is
the first letter of w), let q<(`, t, w) denote the number of occurrences of the letter ` at
positions of w smaller than t and let q>(`, t, w) denote the number of occurrences of the
letter ` at positions of w larger than t.

2.1 Binary alphabet

proof of Theorem 1. We assume that all words are over Σ2 = {0, 1}. It is immediate to
verify that for every k-word u, the probability that a randomly chosen k-subword of the
alternating n-word 01010 . . . equals u is 1

2k
+ on(1). As there are precisely 2k monotone

k-words over Σ2, it follows that f(2, k) 6 2k
2k

.
To prove the lower bound, we show that binary words of length n minimizing the

density of monotone k-subwords must be close to an alternating n-word. In fact, we will
prove that if n is odd, then it must be an alternating n-word. Note that it suffices to
consider the case where n is odd to obtain the claimed lower bound on f(2, k). So, let
n be odd and let w be a word of length n with m(k, w) 6 m(k, w∗) for all w∗ ∈ (Σ2)n.
Without loss of generality, assume that the number of 0’s in w is larger than the number
of 1’s. We may further assume that w is not alternating, otherwise there is nothing to
prove. Let x denote the number of 0’s in w and let y = n− x < x denote the number of
1’s in w.

We first claim that w must start and end with 0. Assume, to the contrary, that it
starts with 1 and let t be the smallest position such that wt = 0, so we have t > 2. Flip
wt and wt−1 to obtain the word w∗. We have

m(k, w)−m(k, w∗) =
k−2∑
h=0

(
q<(1, t− 1, w)

h

)(
q>(0, t, w)

k − 2− h

)
−
(
q<(0, t− 1, w)

h

)(
q>(1, t, w)

k − 2− h

)

=

(
k−2∑
h=0

(
t− 2

h

)(
x− 1

k − 2− h

))
−
(
y − t+ 1

k − 2

)
>

(
x− 1

k − 2

)
−
(
y − t+ 1

k − 2

)
>

(
x− 1

k − 2

)
−
(
y − 1

k − 2

)
> 0

contradicting the minimality of w. Hence w starts with 0 and similarly (by considering the
reverse) w ends with 0. We next show that x−y = 1. Assume the contrary (that x−y > 3).
Let w∗ be obtained from w by changing both w1 and wn to 1. It is easily verified that
m(k, w)−m(k, w∗) =

(
x−2
k−2

)
−
(
y
k−2

)
> 0, a contradiction. So, we now know that x−y = 1,

that w starts and ends with 0 and is not alternating. Hence, there must be some position
t such that wt = wt+1 = 0. Now, there are two possible cases: (i) there exists a smallest
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position r > t such that wr = 1, wt = · · · = wr−1 = 0 and q<(0, r−1, w) > q<(1, r−1, w),
or else (ii) there is a largest position r < t such that wr = 1, wr+1 = · · · = wt = 0
and q>(0, r + 1, w) > q>(1, r + 1, w). The two cases are symmetrical as if one of them
does not hold, then it holds in the reverse of w. (For example, in 0111010001010 we may
choose t = 7 since w7 = w8 = 0. The first case does not hold since although w10 = 1,
we have q<(0, 9, w) = q<(1, 9, w) = 4. The second case does hold since w6 = 1 and
q>(0, 7, w) > q>(1, 7, w). Notice that if we take the reverse 0101000101110 then we can
choose t = 5 and the first case holds since we have w8 = 1 and q<(0, 7, w) > q<(1, 7, w).
As another example, in 01100 the first case does not hold simply since wr does not exist,
but in the reverse 00110 it does hold as we w3 = 1 and q<(0, 2, w) > q<(1, 2, w)). Hence,
assume without loss of generality that (i) holds, so q<(0, r − 1, w) > q<(1, r − 1, w). But
notice that this also implies that q>(1, r, w) > q>(0, r, w) since x − y = 1. Let w∗ be
obtained from w by flipping wr and wr−1. We have

m(k, w)−m(k, w∗) =
k−2∑
h=0

(
q<(0, r − 1, w)

h

)(
q>(1, r, w)

k − 2− h

)
−
(
q<(1, r − 1, w)

h

)(
q>(0, r, w)

k − 2− h

)
.

But since q<(0, r− 1, w) > q<(1, r− 1, w) and since q>(1, r, w) > q>(0, r, w) we have that
m(k, w)−m(k, w∗) > 0, a contradiction. We have proved that if n is odd, w minimizing
m(k, w) must be alternating, as required.

2.2 Ternary alphabet

Proof of Theorem 2. We assume that all words are over Σ3 = {0, 1, 2}. Our proof consists
of two stages. In the first stage we prove that the structure of an extremal word is of a
certain form, and in the second stage we optimize over the parameters of that form.

Let y be a given nonnegative integer. Let n > 2y be an odd integer and consider
all n-words over Σ3 with 2y 1’s and where the number of 0’s, denoted x, is larger than
the number of 2’s, denoted z. Under these restrictions, let w be an n-word minimizing
m(3, w). We will prove that w must start with y 1’s, proceed with alternating 0’s and 2’s,
and end with y 1’s. For example, if y = 2 and n = 9 then w = 110202011. Let u be the
subword of w obtained by ignoring all 1’s.

Lemma 5. u is alternating.

Proof. We first prove that u must start and end with 0. Assume, to the contrary, that u
starts with 2 and let t be the smallest position such that wt = 0 (so we have t > 2) and
let r < t be the largest position such that wr = 2. For example, if w = 122111000 then
t = 7 and r = 3. Notice that wr+1 = · · · = wt−1 = 1 (possibly r + 1 = t). Flip wr and
wt to obtain the word w∗. For the last example, we have w∗ = 120111200. To evaluate
m(3, w)−m(3, w∗) we need to consider 3-words of w that were affected by the flip. These
can be partitioned into three types: Those 3-words that contain both locations r, t, those
that contain location r but not t, and those that contain t but not r (3-words not of one
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of these types have not changed). Let A, B and C denote the respective contribution of
each of these types to m(3, w)−m(3, w∗). We have:

A = q>(0, t, w) + q<(2, r, w)− q>(2, t, w)

> q>(0, t, w)− q>(2, t, w)

> (x− 1)− (z − 1)

> 0 .

As for the second and third types, we have

B = C = (t− r − 1)(q<(2, r, w) + q>(0, t, w)− q>(2, t, w)) .

As x > z we have

B + C = 2(t− r − 1)(q<(2, r, w) + q>(0, t, w)− q>(2, t, w))

> 2(t− r − 1)(q>(0, t, w)− q>(2, t, w))

> 2(t− r − 1)(x− 1− z) > 0 .

Hence, m(3, w)−m(3, w∗) = A + B + C > 0, a contradiction. Similarly (by considering
the reverse) u ends with 0. We next show that x − z = 1. Assume the contrary (that
x− z > 3). Let w∗ be obtained from w by changing the first and last letters of u from 0
to 2. It is easily verified that m(3, w)−m(3, w∗) > (x− 2)− z > 0, a contradiction to the
minimality of w (as w∗ still has 2y 1’s). So, we now know that x − z = 1, that u starts
and ends with 0 and assume it is not alternating (otherwise we are done). Hence, there
must be some position t such that ut = ut+1 = 0. As in the proof of the binary case, there
are now two possible cases: (i) there exists a smallest position r > t such that ur = 2,
ut = · · · = ur−1 = 0 and q<(0, r − 1, u) > q<(2, r − 1, u), or else (ii) there is a largest
position r < t such that ur = 2, ur+1 = · · · = ut = 0 and q>(0, r + 1, u) > q>(2, r + 1, u).
Notice that the two cases are symmetrical as if one of them does not hold, then it holds
in the reverse of w (which also reverses u). Hence, assume without loss of generality
that (i) holds, so q<(0, r − 1, u) > q<(2, r − 1, u). But notice that this also implies that
q>(2, r, u) > q>(0, r, u) since x − z = 1. Returning to w, position r in u corresponds to
some position r′ in w and position r− 1 in u corresponds to some position r′′ in w where
we have r′′ < r′ and all letters strictly between r′′ and r′ (if there are any) are 1’s. Let
w∗ be obtained from w by flipping wr′ and wr′′ . We have that

m(3, w)−m(3, w∗)

= (2(r′ − r′′)− 1) · (q<(0, r′′, w) + q>(2, r′, w)− q<(2, r′′, w)− q>(0, r′, w))

> q<(0, r′′, w) + q>(2, r′, w)− q<(2, r′′, w)− q>(0, r′, w)

= q<(0, r − 1, u) + q>(2, r, u)− q<(2, r − 1, u)− q>(0, r′, u)

> 0 ,

a contradiction. We have proved that u is alternating, as claimed.

the electronic journal of combinatorics 32(1) (2025), #P1.47 6



Lemma 6. u is a consecutive subword of w. Furthermore, w begins with y 1’s and ends
with y 1’s.

Proof. Assume that u is not consecutive, or that it is consecutive but w does not begin
with y 1’s or does not end with y 1’s. Let t be the smallest position such that wt = 1 and
wt−1 6= 1. We may assume that q<(1, t, w) < q>(1, t, w) (recall that the total number of
1’s is even) as otherwise we can use the reverse of w. Let p be the smallest index such
that wp 6= 1. Let w∗ be obtained by moving wt to position p and shifting wp · · ·wt−1

one position to the right. For example, if w = 111021110201201 then p = 4, t = 6 and
w∗ = 111102110201201. For notational clarity, let aj = q<(j, t, w) and let bj = q>(j, t, w).
We have

m(3, w)−m(3, w∗) = a0b2 + a2b0 + b1a0 + b1a2 − a0b0 − a2b2 − a1a0 − a1a2 .

But notice that b1 = q>(1, t, w) > a1 = q<(1, t, w) and that a0 + a2 = t− p > 0, so

m(3, w)−m(3, w∗) > a0b2 + a2b0 − a0b0 − a2b2 .

But since u is alternating, we have that either a0 = a2 or that b0 = b2. In either case, the
r.h.s. of the last inequality is 0, so m(3, w)−m(3, w∗) > 0, a contradiction.

A word w satisfying the statement of Lemma 6 is said to be of proper form. Namely,
w is of the form 1yu1y where u = 0202 · · · 20 is alternating. Let n > 3 be given and
let w∗ be a word such that m(3, w∗) 6 m(3, w∗∗) for all w∗∗ ∈ (Σ3)n. Equivalently,
f(3, 3, n) = m(3, w∗)/

(
n
3

)
. If n is odd and the number of 1’s in w∗ is even then, by Lemmas

5 and 6, we may assume that w∗ is of proper form. Otherwise, there exists a word w of
proper form of length n′ where n − 2 6 n′ 6 n such that f(3, 3, n′) = m(3, w)/

(
n′

3

)
.

Clearly if we append n−n′ 6 2 arbitrary letters to w we obtain an n-word. As any letter
participates in O(n2) monotone 3-words we have:

f(3, 3, n′) + on(1) =
m(3, w) +O(n2)(

n′

3

) >
m(3, w∗)(

n′

3

) >
m(3, w∗)(

n
3

) = f(3, 3, n) .

Hence, in order to determine f(3, 3) it suffices to consider words of proper form. For odd
n and 0 6 y < n/2 let w(n, y) = 1y0202 · · · 201y. So, our goal is to determine 0 6 y < n/2
such that m(3, w(n, y)) is minimized. Setting y = αn it is easily verified that

m(3, w(n, αn))(
n
3

) =
3

4
(1− 2α)3 + (2α)3 + 6α2(1− 2α) + 12α(1

2
− α)2 + on(1)

=
3

4
− 3α

2
+ 3α2 + 2α3 + on(1) .

Hence

f(3, 3) = min
06α6 1

2

3

4
− 3α

2
+ 3α2 + 2α3 = 2−

√
2 (1)

where the minimum is obtained at α =
√

2−1
2

.
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3 A construction for every alphabet

We present an explicit construction of a sequence Ss = {wn}∞n=1 of words over Σs where
wn is an n-word, which is conjectured to be asymptotically optimal. In other words, it
is conjectured that m(3, wn)/

(
n
3

)
tends to f(s, 3) as n goes to infinity. By explicit we

mean that for every fixed s and every given n, there is a polynomial time algorithm that
generates wn.

For two letters `1, `2, we say that a word is (`1, `2)-alternating if it only contains the
letters `1, `2 and any two consecutive letters are distinct. To describe the construction, it
is convenient to distinguish cases according to the parity of s.

Suppose first that s is even, and let x1, . . . xs/2−1 be real variables such that xi > 0 and
x1 + · · · + xs/2−1 6 1

2
. We say that an n-word over Σs is of folded form corresponding to

x1, . . . , xs/2−1 if it is a palindrome and the first (hence last) bx1nc letters are (s/2−1, s/2)-
alternating, the next bx2nc letters are (s/2 − 2, s/2 + 1)-alternating and so on until the
next bxs/2−1nc letters are (1, s − 2)-alternating and finally the remaining (hence central
positions) are (0, s− 1)-alternating. Let Fs(x1, . . . xs/2−1) be the set of all words of folded
form corresponding to x1, . . . , xs/2−1 and observe that for every n > 1 there is at least one
n-word in Fs(x1, . . . , xs/2−1). For example, suppose s = 6, x1 = 0.2, x2 = 0.25 and n = 11,
then 23145054132 ∈ F6(0.2, 0.25). Clearly, for any two n-words w,w′ of Fs(x1, . . . , xs/2−1),
|m(3, w)−m(3, w′)| = O(n2).

For odd s, our construction is just slightly different. Let x1, . . . , x(s−1)/2 be real vari-
ables such that xi > 0 and x1 + · · · + x(s−1)/2 6 1

2
. We say that an n-word over Σs is of

folded form corresponding to x1, . . . , x(s−1)/2 if it is a palindrome and the first (hence last)
bx1nc letters are all equal to (s − 1)/2, the next bx2nc letters are ((s − 3)/2, (s + 1)/2)-
alternating, the next bx3nc letters are ((s − 5)/2, (s + 3)/2)-alternating, and so on until
the next bx(s−1)/2nc letters are (1, s−2)-alternating and finally the remaining (hence cen-
tral positions) are (0, s− 1)-alternating. Let Fs(x1, . . . , x(s−1)/2) be the set of all words of
folded form corresponding to x1, . . . , x(s−1)/2 and observe that for every n > 1 there is at
least one n-word in Fs(x1, . . . , x(s−1)/2). For example, suppose s = 5, x1 = 0.2, x2 = 0.25
and n = 11, then 22310401322 ∈ F5(0.2, 0.25). Clearly, for any two n-words w,w′ of
Fs(x1, . . . x(s−1)/2), |m(3, w)−m(3, w′)| = O(n2).

Let hs(x1, . . . , xb(s−1)/2c) be the polynomial so that for every w ∈ Fs(x1, . . . , xb(s−1)/2c)
it holds that m(3, w)/

(
n
3

)
= hs(x1, . . . , xb(s−1)/2c)+on(1) (notice that hs is unique since for

any two n-words w,w′ of Fs(x1, . . . , xb(s−1)/2c), it holds that |m(3, w)−m(3, w′)| = O(n2)).
Clearly, hs is a degree 3 polynomial and clearly

Proposition 7.

f(s, 3) 6 min
xi>0 , x1+···+xb(s−1)/2c6

1
2

hs(x1, . . . , xb(s−1)/2c) .

We conjecture that this upper bound is tight.

Conjecture 8.

f(s, 3) = min
xi>0 , x1+···+xb(s−1)/2c6

1
2

hs(x1, . . . , xb(s−1)/2c) . (2)
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Notice that for any fixed s we can generate the coefficients of hs(x1, . . . , xb(s−1)/2c)
in constant time. Hence, given n, we can approximate the r.h.s. of (2) and the corre-
sponding optimal solution vector (x1, . . . , xb(s−1)/2c) to precision 1/n in polynomial time.
Consequently we may construct an n-word wn in Fs(x1, . . . , xb(s−1)/2c) in polynomial time,
hence the claim regarding the explicit construction of Ss in the beginning of this section.

3.1 hs for s = 3, 4, 5, 6, 7 and the upper bounds of Theorem 3

Here we exhibit hs for some small s and compute the corresponding minimum in (2). It is
immediate to see that h3(x1) = 3

4
− 3x1

2
+3x1

2+2x1
3 is exactly the polynomial in (1) and the

solution to (2) is 2 −
√

2, as we have proved in Theorem 2 that the asymptotic solution

for s(3, 3) can be obtained by considering a folded form corresponding to x1 =
√

2−1
2

.
Equivalently, the proof of Theorem 2 regrading f(3, 3) shows that Conjecture 8 holds for
s = 3.

For s = 4 we have that h4(x1) is a univariate polynomial. One may manually com-
pute h4(x) by considering the number of monotone 3-word palindromes of the form
w = 12..1203..3021..21 where the first (1, 2)-alternating block is of size bxnc. To do
this, we consider all possible monotone 3-words of Σ4 (of which there are 36, where four
of which do not appear in w; these are 013, 310, 023, 320). For each such word, we
compute its density in w. For example, the density of 133 is 3

2
x(1

2
−x)2 +on(1). Summing

the corresponding density for all 32 monotone 3-words of Σ4 that appear in w we obtain

h4(x) = 9x2(1
2
− x) + 12x(1

2
− x)2 + 6x3 +

3

4
(1− 2x)3 = 3x3 +

3

2
x2 − 3

2
x+

3

4
.

We obtain that h4(x) is minimized at x =
√

7−1
6

at which it is equal to 37−7
√

7
36

= 0.5133 . . . .
For s = 5 we have that h5(x1, x2) is a bivariate polynomial of degree 3 and one can

manually compute h5(x, y) by considering the number of monotone 3-word palindromes
of the form w = 2 · · · 213 · · · 1304 · · · 4031 · · · 312 · · · 2 where the first block of 2’s is of size
bxnc and the next (1, 3)-alternating block is of size bync. It is easy (though lengthy) to
verify that:

h5(x, y) = 2x3 + 6x2y + 3x2 + 9y2x− 3

2
x+ 3y3 +

3

2
y2 − 3

2
y +

3

4
.

We have

∂h5(x, y)

∂x
= −3

2
+ 6x2 + 9y2 + 6x+ 12xy ,

∂h5(x, y)

∂y
= −3

2
+ 6x2 + 3y + 18xy + 9y2 .

Standard calculus gives that the minimum of h5(x, y) where x > 0, y > 0 and x + y 6 1
2

is obtained at (x, y) = (0.124772 . . . , 0.199708 . . . ) where x = 0.124772 . . . is the (unique)
positive root of 16t4 + 64t3 + 56t2− 1 and y = 0.199708 · · · = 1− 1

1+2x
is obtained from x
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by equating any of the partial derivatives above to zero. At this minimum point we have
h5(x, y) = 0.4610 . . . .

For s = 6 we obtain

h6(x, y) = 3x3 + 3y3 + 6x2y + 9xy2 +
3

2
x2 +

3

2
y2 − 3

2
x− 3

2
y +

3

4
.

We have

∂h6(x, y)

∂x
= 9x2 + 12xy + 3x+ 9y2 − 3

2
,

∂h6(x, y)

∂y
= 6x2 + 18xy + 3y + 9y2 − 3

2
.

Standard calculus gives that the minimum of h6(x, y) where x > 0, y > 0 and x + y 6 1
2

is obtained at (x, y) = (0.189186 . . . , 0.163220 . . . ) where x = 0.189186 . . . is the (unique)
positive root of 46t4 + 68t3 + 24t2− 2t− 1 and y = 0.163220 · · · = x2+x

1+2x
is obtained from x

by equating any of the partial derivatives above to zero. At this minimum point we have
h6(x, y) = 0.428809 . . . .

For s = 7 we obtain

h7(x, y, z) =
3

4
− 3

2
x+ 3x2 + 2x3 − 3

2
y + 6x2y +

3

2
y2 + 9xy2 + 3y3

− 3

2
z + 6x2z + 12xyz + 6y2z +

3

2
z2 + 9xz2 + 9yz2 + 3z3 .

We have

∂h7(x, y, z)

∂x
= −3

2
+ 6x2 + 9y2 + 12yz + 9z2 + 6x+ 12xy + 12xz ,

∂h7(x, y, z)

∂y
= −3

2
+ 6x2 + 3y + 18xy + 9y2 + 12xz + 12yz + 9z2 ,

∂h7(x, y, z)

∂z
= −3

2
+ 6x2 + 6y2 + 3z + 18yz + 9z2 + 12xy + 18xz .

Standard calculus gives that the minimum of h7(x, y, z) where x > 0, y > 0, z > 0 and
x + y + z 6 1

2
is obtained at (x, y, z) = (0.0887976 . . . , 0.150811 . . . , 0.135436 . . . ) where

x = 0.0887976 . . . is the (unique) positive root of 256t8 + 2560t7 + 9088t6 + 14080t5 +

9248t4 + 1888t3 + 56t2 − 16t− 1 and y = 0.150811 · · · = 2x
2x+1

, z = 0.135436 · · · = y2+2x
2x+2y+1

are obtained from x by equating the partial derivatives above to zero. At this minimum
point we have h7(x, y, z) = 0.403383 . . . .

4 Flag algebra and lower bounds for f(s, k)

The flag algebra method, introduced in a seminal paper of Razborov [15], has become a
widely used and astonishingly effective method, mostly for homomorphism density prob-
lems in extremal combinatorics. See [16] for a survey of flag algebra applications. To use

the electronic journal of combinatorics 32(1) (2025), #P1.47 10



2 2

2

0 1 1

2 2 2

10 0

Figure 1: The elements of G(2, 3). The leftmost graph corresponds to the words 000, 111,
the next graph corresponds to 001, 011, the next graph corresponds to 010, 101, and the
rightmost graph corresponds to 100, 110.

this method in our setting, we first need to introduce the combinatorial objects that we
work with.

For an n-word w over a totally ordered alphabet, the word graph of w is an edge-
colored undirected complete graph with vertex set [n] and whose edges are colored by the
function c :

(
[n]
2

)
→ {0, 1, 2} for which:

c(i, j) =


0 if i < j and wi < wj ,

1 if i < j and wi > wj ,

2 if wi = wj .

An (unlabeled) edge-colored complete graph is a word graph if it is the word graph of some
word. Notice that not every edge-colored complete graph with colors {0, 1, 2} is a word
graph and notice that the subset of word graphs not using the color 2 is isomorphic to the
well-known class of permutation graphs. It is immediate to see that a k-subword of a word
w is monotone if and only if the k-clique corresponding to the subword in the word graph
of w does not use both the colors 0 and 1; we call such cliques monotone. Hence, in order
to study f(s, k), it is equivalent to study the density of monotone k-cliques of word graphs
of words over Σs. It is more effective to study the latter as there are significantly fewer
word graphs than words. Let G(s, n) denote the set of all word graphs that correspond
to n-words over Σs and let G(s) = ∪nG(s, n). For example, the four elements of G(2, 3)
are depicted in Figure 1 and it is easy to verify that |G(s, 3)| = 8 for all s > 3.

For two word graphs H and G, let P (H,G) denote the number of copies of H in G and
let p(H,G) = P (H,G)/

(|V (G)|
|V (H|

)
be the density of H in G. Let mk(G) denote the number

of monotone k-cliques in G and notice that mk(G) equals m(k, w) if G is the word graph
of w. Let fk(G) = mk(G)/

(|V (G)|
k

)
be the density of monotone k-cliques in G. By double

counting, we have for G ∈ G(s, n) that

fk(G) =
∑

H∈G(s,l)

fk(H)p(H,G) for k 6 l 6 n . (3)

We turn to our flag algebra notations and objects, which we describe in some brevity
(yet in full), following an approach similar to [3]. The reader interested in more details
may consult various surveys and gentle treatments to the subject, such as the one in [8].

A type σ is a bijectively vertex-labeled word graph from G(s, h) with label set [h]. We
call h the size of σ and, for completeness, denote by 0 the trivial empty type. Notice

the electronic journal of combinatorics 32(1) (2025), #P1.47 11



a b

c

de

f

0

0
02

0 0
01

2

2

1

1

1

1

0

1 2

1 2
0

1 2

00

1

0
2

0

0

1

2

10

1 2
0



F F’
K

Figure 2: Depicted are a σ-type and three σ-flags F, F ′ ∈ Fσ4 , K = (M, θ) ∈ Fσ6 (notice
that M ∈ G(3, 6) as it is the word graph of, e.g., 012201). It holds that p(F,K) =
2
6

= 1
3

as only for the choices U = {a, b, d, e}, {a, b, c, e} we have (M [U ], θ) ∼= F . It also
holds here that p(F, F ′;K) = 2

6
as can be seen by the only possible choices (U,U ′) =

({a, b, d, e}, {a, b, c, f}) and (U,U ′) = ({a, b, c, e}, {a, b, d, f}) giving (M [U ], θ) ∼= F and
(M [U ′], θ) ∼= F ′.

that for all s > 2, there is a unique type of size 1 and three distinct types of size 2,
corresponding to the three possible colorings of K2 with colors {0, 1, 2}.

For a type σ of size h, a σ-flag F is a pair (M, θ) where M is a word graph from
G(s) and θ : [h] → V (M) is an injective mapping such that M [Im(θ)] is a copy of σ.
Two σ-flags F = (M, θ) and F ′ = (M ′, θ′) are flag-isomorphic (denoted F ∼= F ′) if there
is a graph isomorphism between M and M ′ (recall that M and M ′ are edge-colored so
such an isomorphism should respect edge colors) which maps a labeled vertex in F to a
vertex with the same label in F ′. Denote by Fσl the set of σ-flags on l vertices, up to flag
isomorphism. Note that F0

l = G(s, l).
Given σ-flags F ∈ Fσl and K = (M, θ) ∈ Fσn , let p(F,K) be the probability that if

we choose a random l-subset U of V (M), subject to Im(θ) ⊆ U , then (M [U ], θ) ∼= F . (if
n < l or if K is not a σ-flag, define p(F,K) = 0). Similarly, given flags F, F ′ ∈ Fσl and
K = (M, θ) ∈ Fσn , define the joint density p(F, F ′;K) as the probability that if we choose
two random l-subsets U,U ′ of V (M), subject to U ∩U ′ = Im(θ), then (M [U ], θ) ∼= F and
(M [U ′], θ) ∼= F ′ (note: one can similarly define joint density when the flags F, F ′ have
different sizes, but we do not need this here; also, if K is not a σ-flag or n < 2l − |σ|,
define p(F, F ′;K) = 0). As an illustrative example of these notions, consider the type σ,
and the σ-flags F, F ′, K with the corresponding values of p(F,K) and p(F, F ′;K) given
in Figure 2.

Now, suppose that Fσl∗ = {F1, . . . , Ft} for some l∗ > |σ|. Let Q be a t × t positive
semidefinite matrix and let K be some σ-flag with n vertices. It follows from positive-
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semidefiniteness and from Lemma 2.3 in [15] that:

0 6
∑
i,j

Q[i, j]p(Fi, Fj;K) + on(1) .

Notice that the last inequality holds also if K is not a σ-flag as p(Fi, Fj;K) = 0 in this
case. Let Θ(h,G) be the set of injective mappings from [h] to V (G) where G ∈ G(s, n).
If we choose θ ∈ Θ(|σ|, G) uniformly at random, then K = (G, θ) may or may not be a
σ-flag. In any case, we have from the last inequality and assuming that l > 2l∗−|σ| that:

0 6
∑
i,j

Q[i, j]Eθ∈Θ(|σ|,G)[p(Fi, Fj; (G, θ))] + on(1)

=
∑

H∈G(s,l)

(∑
i,j

Q[i, j]Eθ∈Θ(|σ|,H)[p(Fi, Fj; (H, θ))]

)
p(H,G) + on(1) .

Note that the coefficient of p(H,G) is independent of G as it only depends on σ, l∗, Q,H
(recall that s is fixed), so denote it by cH(σ, l∗, Q). We have

0 6
∑

H∈G(s,l)

cH(σ, l∗, Q)p(H,G) + on(1) .

Let (σi, li, Qi) for i ∈ [d] be a set of d triples (where l > 2li − |σi| for 1 6 i 6 d).
For each triple, we consider the corresponding coefficient cH(σi, li, Qi) and set cH =∑d

i=1 cH(σi, li, Qi). Summing the last inequality for each triple we have:

0 6
∑

H∈G(s,l)

cH · p(H,G) + on(1) .

The last inequality together with (3) gives for l > k that

fk(G) + on(1) >
∑

H∈G(s,l)

(fk(H)− cH)p(H,G) > min
H∈G(s,l)

(fk(H)− cH) .

We therefore obtain:

Corollary 9. Let s > 2, k > 3 and d > 1 be integers. Let l > k and let (σi, li, Qi) for
i ∈ [d] be such that σi is a type (whose underlying graph is from G(s)), li > |σi| is an
integer satisfying l > 2li − |σi| and Qi is a positive semidefinite matrix indexed by Fσili .
Then,

f(s, k) > min
H∈G(s,l)

(fk(H)− cH) .

By Corollary 9, to obtain a lower bound for f(s, k) we can choose l > k, compute
fk(H) for all H ∈ G(s, l), choose d types σi and d sizes li for i ∈ [d] and then solve a
semidefinite program to obtain solutions for the semidefinite matrices Qi for i ∈ [d] that
maximizes minH∈G(s,l)(fk(H)− cH). This turns out to be a lucrative avenue for k = 3 and
s = 4, 5, 6 as detailed in the following subsection.
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4.1 The lower bounds of Theorem 3

The results in this subsection reference a computer program which we call the “generator
program” (link to code given in Table 4) and also reference Appendix A which provides
additional technical details.

Table 2 lists the size of the word graph set G(s, l) for various s, l. The generator
program generates the sets G(s, l). The values |G(s, 8)| for s ∈ {5, 6, 7} are still feasible
when running the semidefinite program on a supercomputer but the added benefit in
doing so, if any, is negligible (see Appendix A for more details).

l = 2 l = 3 l = 4 l = 5 l = 6 l = 7 l = 8
s = 2 3 4 10 16 36 64 136
s = 3 3 8 24 76 260 848 2760
s = 4 3 8 35 146 780 3871 18962
s = 5 3 8 35 179 1248 8978 62394
s = 6 3 8 35 179 1390 12712 119960
s = 7 3 8 35 179 1390 13488 155384

Table 2: The size of G(s, l) for various s, l.

The generator program computes f3(H) for every H ∈ G(s, l) which, recall, is the
density of monotone triangles in H.

We shall use the types (valid for all s > 3) listed in Figure 3 as σ1, . . . , σ9. Hence, we
have d = 9 using the notation of the previous subsection.
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Figure 3: Types of size 3 used in our program.

The generator program computes Fσili . Specifically we shall use li = 5 for 2 6 i 6 9
and use l1 = 4. Table 3 lists the sizes of these flag lists (note that some flag lists, hence
their sizes, vary with the alphabet size s, as G(4, 5) ( G(5, 5) = G(6, 5)).

|Fσ14 | |Fσ25 | |Fσ35 | |Fσ45 | |Fσ55 | |Fσ65 | |Fσ75 | |Fσ85 | |Fσ95 |
s = 4 80 330 305 203 305 177 330 203 110
s = 5 80 402 376 203 376 177 402 203 110
s = 6 80 402 376 203 376 177 402 203 110

Table 3: The size of Fσili .

Finally, the generator program computes the last piece of data needed to generate the
semidefinite program for a given s ∈ {4, 5, 6}, namely, for each pair of flags F, F ′ ∈ Fσili
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and for each H ∈ G(s, l) it computes Eθ∈Θ(|σi|,H)[p(F, F
′; (H, θ))], where in our program

we use l = 7. Notice that 7 is a valid choice for l as recall that we must have l > 2li− |σi|
(recall that we have chosen l1 = 4 as |σ1| = 1 while we have chosen li = 5 as |σi| = 3 for
2 6 i 6 9).

Using the computed constants mentioned above, the generator program then creates
for each s ∈ {4, 5, 6}, an input file in standard format (see Appendix A for more details)
that is fed to an sdp solver. The solver gives for each s ∈ {4, 5, 6} corresponding positive
semidefinite matrices Q1, . . . , Q9, for which we obtain that minH∈G(4,7)(f3(H) − cH) =
0.5123..., minH∈G(5,7)(f3(H)− cH) = 0.4604..., minH∈G(6,7)(f3(H)− cH) = 0.4280.... All of
these bounds are proved rigorous using a rounding procedure elaborated upon in Appendix
A. Hence, the lower bounds in Theorem 3 hold as claimed. Finally, note that together
with the upper bounds given in Subsection 3.1, Theorem 3 is proved.

5 f(s, k) versus g(k)

In this section we prove Theorem 4, which follows from the theorem and proposition
below.

Theorem 10. f(s, k) > g(k) + Θ(1
s
).

Proof. Throughout the proof we shall assume that k = Θ(1) is fixed and s grows. Let
q = (k − 2)2 + 1 and assume that n is divisible by 6q2. Let w be an n-word over Σs.
We say that a permutation π ∈ Sn respects w if wi < wj implies π(i) < π(j). Let R
be the set of all permutations that respect w. Notice that any monotone k-subword of
π corresponds to a monotone k-subword of w for any π ∈ R, but the converse does not
necessarily hold. For example, the permutation 213 respects w = 001 but the former is
not monotone. By the definition of g(k) we have that the density of monotone k-subwords
of any permutation π (in particular, for π ∈ R) is at least g(k)− on(1).

Assume first that w contains a letter ` that appears at least n/6q2 times. Consider
some subword of w that contains only the letter `. While it is trivially monotone in w,
the corresponding word in π for a randomly chosen π ∈ R is monotone with probability
only 2/k!, so the density of monotone subwords in w is at least g(k) − on(1) + Θ(1) >
g(k) − on(1) + Θ(1

s
). Hence, we may and will assume that each letter appears at most

n/6q2 times in w.
Partition [n] into q consecutive parts V1, . . . , Vq, each of size n/q. For π ∈ R, let

Zi be the set of images of π in Vi (so,, e.g., Z1 = {π(1), . . . , π(n/q)}). Consider another
partition of [n] into 6q2 consecutive parts W1, . . . ,W6q2 , each of size n/6q2. We say that Wj

is popular in Zi if |Wj∩Zi| > n/12q3. Notice that since |Zi| = n/q and since |Wj| = n/6q2,
there are at least 3q Wj’s that are popular in Zi. We now perform a process of selecting
one popular Wj for each Zi as follows. Let p1 be an index such that Wp1 is popular in Z1.
Assume that we have already selected p1, p2, . . . , pm−1. We select pm such that Wpm is
popular in Zm and {pm−1, pm, pm+1}∩{p1, . . . , pm−1} = ∅. Notice that we can complete
this selection process for all Z1, . . . , Zq since there are at least 3q popular Wj’s for each
Zi.
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Consider the sequence p1, p2, . . . , pq. It is a set of q distinct elements of [6q2] (and,
furthermore, no two elements of this sequence differ by 1). As q = (k − 2)2 + 1, we have
by the theorem of Erdős and Szekeres [7], that it contains a monotone subsequence of
length k− 1, say pj1 , . . . , pjk−1

and assume, without loss of generality, that it is monotone
increasing. Hence pjr < pjr+1 and recall also that in fact pjr +1 < pjr+1 for r = 1, . . . , k−2.

Now consider a randomly chosen k-subword of w, say u = wx0 . . . , wxk−1
. What is

the probability of the event A that π(xr) ∈ Wpjr
∩ Zjr for 1 6 r 6 k − 1 and that

π(x0) ∈ Wpj1
∩ Zj1? It is clearly Θ(1) since |Wpjr

∩ Zjr | > n/12q3 = Θ(n) (note that this
does not depend on s). What is the probability of the event B ⊆ A that it further holds
that wx0 = wx1? Since |Wpj1

∩ Zj1| > n/12q3 and there are only s letters, we have that

B holds with probability Θ(1
s
). Hence, a Θ(1

s
) fraction of the k-subwords of w satisfy

event B. We claim that if u satisfies B then it is monotone in w. Indeed, this holds since
wx0 = wx1 and since π(x1) . . . π(xk−1) is monotone increasing in π. To see the latter notice
that π(xr) ∈ Wpjr

and π(xr+1) ∈ Wpjr+1
and recall that pjr + 1 < pjr+1 and that no letter

appears more than n/6q2 = |Wpjr+1| times in w. But now, suppose that we choose π ∈ R
at random. Since wx0 = wx1 , the probability that π(x0) < π(x1) is 1

2
. Hence, there exists

π ∈ R for which at most half of the k-subwords of w that satisfy B (and recall that all of
which are monotone in w) correspond to monotone words in π. Hence, a Θ(1

s
) fraction of

the k-subwords of w are monotone in w but not monotone in π. Therefore, the density
of monotone k-subwords in w is at least g(k)− on(1) + Θ(1

s
).

Proposition 11. f(s, k) 6 g(k) +
(k
2)
s

+ Θ
(

1
s2

)
.

Proof. We shall assume that s divides n and construct an n-word with a small amount of
monotone k-subwords. Let π be a permutation of [n] minimizing the number of monotone
subsequences of length k. Let this number be m(k, π), so by definition of g(k) we have
m(k, π) = g(k)

(
n
k

)
(1 + on(1)). Let V` = {π−1(v) | `n/s < v 6 (` + 1)n/s} for 0 6 ` < s.

Construct an n-word w over Σs where wi = ` if i ∈ V`. We compare m(k, w) to m(k, π).
Clearly, if a subsequence of π is monotone, then the corresponding subsequence of w is
also monotone. The only way a non-monotone subsequence of π can become monotone
in w is if the subsequence contains two locations i and j such that i, j ∈ V` for some `.
The amount of such sequences is

(1 + on(1))

(
n

k

)(
1−

k−1∏
i=1

(
1− i

s

))
= (1 + on(1))

(
n

k

)((k
2

)
s

+ Θ

(
1

s2

))
.

It follows that f(s, k) 6 g(k) +
(k
2)
s

+ Θ
(

1
s2

)
.

From Theorem 10 and Proposition 11 we obtain f(s, k)− g(k) = Θ(1
s
), proving The-

orem 4.
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A Notes on the semidefinite programs

A.1 Computational resources and limitations

The state of the art numerical sdp solvers are CSDP [4] and SDPA [19]. They are similar
in their performance, accuracy, adhere to the same standard input format, and implement
a primal-dual interior-point method. While efficient and accurate, being an interior-point
method means, in particular, that they need to store and manipulate dense matrices whose
orders are at least the number of constraints of the problem instance. For example, CSDP,
which we have used, requires at least 8m2 bytes of storage [4], where m is the number of
constraints, which, in our problem, equals |G(s, l)|. Constraint sizes of the order about
100000 already require a supercomputer and constraint sizes in the millions are impractical
using conventional hardware; see [13] for more details on hardware limitations when using
CSDP. To obtain meaningful lower bounds for f(s, k) when s > 7 or k > 4 require using
|G(s, l)| where l > 8 and even larger, which, by Table 2 and the above discussion, becomes
too computationally demanding.

Another obvious, yet crucial point, is that CSDP and SDPA use floating point arith-
metic, and hence their results, while highly accurate, are, nevertheless, approximations.
One then needs to apply some further rounding procedure in order to turn the results
into a rigorous proof. See Subsection A.3 for details on our rounding method of choice.

A.2 Converting to standard sdp format

CSDP solves the following standard form semidefinite program. Let C,A1, . . . , Am be
given real symmetric matrices and let X be a (variable) real symmetric matrix. Let
a = (a1, . . . , am) be a given real vector. The semidefinite program solved by CSDP is:

max tr(CX)

subject to tr(AjX) = aj for 1 6 j 6 m ,

X � 0

(4)

(here X � 0 means X is positive semidefinite).
Recalling Corollary 9 and the objects (i.e., types, flag lists, joint densities) of Subsec-

tion 4.1, note that our semidefinite program, for fixed s ∈ {4, 5, 6} is:

max
Q1,...,Q9

min
H∈G(s,7)

(f3(H)− cH)

subject to Qi � 0 and to cH =
∑9

i=1 cH(σi, li, Qi). Denoting Fσili = {F i
1, . . . , F

i
ti
} recall

the definition of cH(σi, li, Qi) given in Section 4:

cH(σi, li, Qi) =

ti∑
u=1

ti∑
v=1

Qi[u, v]Eθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))] .

Our program is therefore

max
Q1,...,Q9

min
H∈G(s,7)

(f3(H)−
9∑
i=1

ti∑
u=1

ti∑
v=1

Qi[u, v]Eθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))])
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subject to Qi � 0. Now, observe that if M and N1, . . . , N9 are positive integers then the
last program yields the same result as the program

1

M
max

Q1,...,Q9

min
H∈G(s,7)

(M · f3(H)−
9∑
i=1

ti∑
u=1

ti∑
v=1

Qi[u, v]NiEθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))]) .

The advantage of using the latter formulation is that we can choose M , N1, . . . , N9 such
that all constants in the sdp are integers, which makes the input to the sdp more concise.
Since f3(H) is a rational with denominator

(
7
3

)
, we shall choose M = 35. Also notice

that for i = 2, . . . , 9, p(F i
u, F

i
v; (H, θ)) is a rational with denominator 1260 (the number of

choices for θ ∈ Θ(|σi|, H) is 7 · 6 · 5 and the number of choices for a subset pair (U,U ′) in
the definition of joint density is

(
4
2

)
in our case), so we choose Ni = 1260. Analogously,

p(F 1
u , F

1
v ; (H, θ)) is a rational with denominator 140 = 7 ·

(
6
3

)
so we choose N1 = 140. We

then execute the sdp and obtain by Corollary 9 that

35f(s, 3) > max
Q1,...,Q9

min
H∈G(s,7)

(35f3(H)−
9∑
i=1

ti∑
u=1

ti∑
v=1

Qi[u, v]NiEθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))]) .

(5)
Translating the sdp (5) to standard sdp format as in (4) is a straightforward process

of adding slack variables. In our case m = |G(s, 7)| is the dimension of the vector a =
(a1, . . . , am). Now, suppose that G(s, 7) = {H1, . . . , Hm} then ai = 35f3(Hi). Each of
the matrices C,A1, . . . , Am is a block diagonal matrix with precisely 10 blocks, where for
1 6 i 6 9, the i’th block corresponds to the type σi and the last block is the “slack
block”. For i = 1, . . . , 9, the order of block i in each of these matrices is |Fσili |, namely
it is the corresponding row in Table 3. The dimension of the slack block is m + 1. As
for their entries, the matrix C is entirely zero except for the [1, 1] entry of the slack
block which is 1. For 1 6 i 6 9 and for 1 6 j 6 m, entry [u, v] of block i of Aj is
NiEθ∈Θ(|σi|,Hj)[p(F

i
u, F

i
v; (Hj, θ))]. The slack block of Aj is entirely zero except for entries

[1, 1] and [j + 1, j + 1] which are 1 (so the slack block is a diagonal matrix). The input
files referenced in Table 4 contain all of these values in standard SDPA sparse format
(see the manuals of either SDPA or CSDP for a description of this format, used by both
programs).

A.3 Rounding

As the output matrix of the sdp solver is an approximate floating point solution, one
needs to couple the approximate result with a rounding argument in order to obtain a
rigorous proof. There are several approaches addressing this task, broadly falling into two
categories, depending on whether the solution of the sdp is claimed to be an exact result
or a bound for the exact result. In the “exact” case, one needs to convert the entries of the
output matrix to rationals which can then be certified, with exact arithmetic, to yield the
claimed exact solution. These methods involve (sometimes ingenious [10, 11]) “guessing”
of the entries to close rationals, and are usually suited to problems containing a moderate
amount of variables (by variables we mean the number of distinct entry positions of the
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resulting matrix that are potentially nonzero). In the “bound” case, rounding is less
stringent and hence suitable for sdp’s with a large number of variables (see, e.g., [1, 18]).
As in our problem we only claim a lower bound for f(s, 3), the rounding procedure we
present is of the “bound” category; specifically, we will adopt to our setting the method
from [18].

Let X ′ denote the result matrix of the sdp execution. Notice that X ′ has the same
block structure as the matrices Aj. Recalling that block i is square symmetric of order
|Fσili | for 1 6 i 6 9 and that the slack block is diagonal of order m+ 1 = |G(s, 7)|+ 1, we
have that the number of variables in our problem is:

9∑
i=1

(
|Fσili |+ 1

2

)
+ |G(s, 7)|+ 1 =


272942 if s = 4 ,

379247 if s = 5 ,

382981 if s = 6 .

Let δ > 0 be a parameter, which can be configured by CSDP and is taken by default
to be 10−8 [4]. CSDP guarantees [4] that X ′ satisfies:

| tr(AjX ′)− aj| 6 δ for 1 6 j 6 m ,

X ′ � 0 .
(6)

Nevertheless, as X ′ consists of floating point numbers, we need to convert them to ratio-
nals in order to certify a rigorous proof, without incurring significant loss in the obtained
bound. Since X ′ � 0, we use python numpy (which uses BLAS/LAPACK [2]) to compute
the Cholesky decomposition of X ′, so L′L′T = X ′ where L′ is lower triangular. Neverthe-
less, the computed L′ is still a floating point approximation (since X ′ is an approximation
and since the Cholesky decomposition routine may further incur additional loss). Let D
be a large integer (specifically, we use D = 106). We multiply each entry of L′ by D and
round each resulting entry to the closest integer, thus we obtain an integer matrix L. We
expect that 1

D2LL
T is a good approximation of the exact result X of our sdp. The matrix

L computed by our python script (see Table 4) is our certificate and is provided by the
links in Table 4 as well.

Our final task is to verify that L produces a bound close to optimal. Let M = LLT . We
first verify that L is indeed the Cholesky decomposition of M . Since L is lower triangular,
this means that we just need to verify that all diagonal entries of L are positive. Indeed, as
our script shows, this holds (for s = 4, 5, 6 the lowest diagonal entry of the corresponding
L is respectively, 31, 15, 4).

Let bj = tr( 1
D2AjM −aj). Since Aj,M, aj are all integral, we have that bj is a rational

with denominator D2. Let ε = maxmj=1 |bj|. Our program shows that in all cases s = 4, 5, 6
the obtained (rational) ε is smaller than 0.0002.

Notice that tr( 1
D2CM) is a lower bound for the precise solution of the problem

max tr(CX)

subject to tr(AjX) = aj + bj for 1 6 j 6 m ,

X � 0 .

(7)
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Recalling that aj = 35f3(Hj) we have, in turn, that the precise solution of (7) is the
precise solution of

max
Q1,...,Q9

min
Hj∈G(s,7)

(35f3(Hj) + bj −
9∑
i=1

ti∑
u=1

ti∑
v=1

Qi[u, v]NiEθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))]) .

Hence, if Q1, . . . , Q9 denote the non-slack blocks of 1
D2M , we have that

tr(
1

D2
CM) 6 min

Hj∈G(s,7)
(35f3(Hj)+bj−

9∑
i=1

ti∑
u=1

ti∑
v=1

Qi[u, v]NiEθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))]) .

Since |bj| 6 ε, we have that

tr(
1

D2
CM)− ε 6 min

Hj∈G(s,7)
(35f3(Hj)−

9∑
i=1

ti∑
u=1

ti∑
v=1

Qi[u, v]NiEθ∈Θ(|σi|,H)[p(F
i
u, F

i
v; (H, θ))]) .

Hence, by (5), tr( 1
D2CM) − ε 6 35f(s, 3). Finally, running our python script referenced

in Table 4, or just examining entry [1, 1] of the slack block of M (recall that the only
nonzero entry of C is the [1, 1] entry of the slack block, which equals 1), we have

tr(CM) =


17931108816196 if s = 4 ,

16117334329600 if s = 5 ,

14982659113536 if s = 6 .

Recalling that ε < 0.0002 and D = 106, the lower bounds in Theorem 3 hold.

Generator program github.com/raphaelyuster/monotone-words/blob/main/sdp-generator.cpp

SDP rounding script github.com/raphaelyuster/monotone-words/blob/main/sdp_analyzer.py

SDP input, s = 4 raw.githubusercontent.com/raphaelyuster/monotone-words/main/words4.dat-s

SDP input, s = 5 raw.githubusercontent.com/raphaelyuster/monotone-words/main/words5.dat-s

SDP input, s = 6 raw.githubusercontent.com/raphaelyuster/monotone-words/main/words6.dat-s

Certificate, s = 4 github.com/raphaelyuster/monotone-words/blob/main/words4.cert

Certificate, s = 5 github.com/raphaelyuster/monotone-words/blob/main/words5.cert

Certificate, s = 6 github.com/raphaelyuster/monotone-words/blob/main/words6.cert

Script output, s = 4 github.com/raphaelyuster/monotone-words/blob/main/words4.txt

Script output, s = 5 github.com/raphaelyuster/monotone-words/blob/main/words5.txt

Script output, s = 6 github.com/raphaelyuster/monotone-words/blob/main/words6.txt

Table 4: Description of each certificate and its corresponding url.
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