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Abstract

The pure O-sequences of the form (1, a, a, . . .) are classified.

Mathematics Subject Classifications: 05E40, 13D40, 13H10

1 Introduction

Let x1, . . . , xs represent distinct indeterminates with deg xi = 1, for i = 1, . . . , s. A
nonempty, finite set A of monomials in x1, . . . , xs is called an order ideal of monomials if
for any u ∈ A and any monomial v that divides u, we have v ∈ A. In particular, 1 ∈ A
for any order ideal of monomials A. We say that A is pure if the maximal elements of
A, with respect to divisibility, all have the same degree. The h-vector of A is defined as
h(A) = (h0, h1, . . . , hn), where

n = max{deg u : u ∈ A} and hi =
∣∣{u ∈ A : deg u = i}

∣∣, for 0 6 i 6 n.

Clearly, h0 = 1.
A finite sequence of positive integers h = (h0, h1, . . . , hn) is called an O-sequence if

there exists an order ideal of monomials A with h = h(A). Finally, following Stanley [21],
an O-sequence h is pure if there exists a pure order ideal of monomials A with h = h(A).
Equivalently, in the language of commutative algebra, pure O-sequences coincide with
the Hilbert functions of (standard graded) artinian monomial level algebras. We refer to
[1, 18] for an introduction to the theory of pure O-sequences both combinatorially and
algebraically, and for some recent developments.

A classification of the possible O-sequences is essentially due to Macaulay (see [15] and
[22, Theorem 2.2]). On the other hand, an explicit characterization of pure O-sequences
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seems entirely out of reach, despite much effort by many researchers. A notably long-
standing problem in this field is a conjecture of Stanley’s, stating that the h-vector of any
matroid complex is a pure O-sequence [21, 23]. Partial results in this direction have been
obtained in, for instance, [2, 3, 4, 5, 8, 9, 13, 14, 16, 20].

The purpose of the present paper is to prove the following:

Theorem A. Let n > 4. Then a sequence h = (1, a, a, . . . , a, b) ∈ Zn+1
>0 is a pure O-

sequence if and only if b 6 a 6 2b.

The proof of Theorem A is given in Section 1. In addition, in Section 2, as a supplement
to Theorem A, the pure O-sequences (1, a, b) and (1, a, a, b) are classified (see Proposition
7).

Part of our motivation for considering pure O-sequences of the form (1, a, a, . . . , a, b)
arises from the theory of δ-vectors of Castelnuovo polytopes [10, 12, 19], where it was
shown that a sequence (1, a, a, . . . , a, b) ∈ Zn+1

>0 , with n > 2, is the h-vector of a Cohen–
Macaulay graded domain if b 6 a 6 (b+1)(n+1). In particular, Theorem A together with
Proposition 7 (ii) guarantees that, when n > 3, any pure O-sequence (1, a, a, . . . , a, b) is
the h-vector of a Cohen–Macaulay graded domain.

Finally, a problem of current interest in commutative algebra is to determine classes of
artinian algebras that enjoy the so-called Weak (or Strong) Lefschetz Properties [1, 6]. The
results of this paper imply that, over a field of characteristic zero, any artinian monomial
level algebra with Hilbert function given by a pure O-sequence of the form (1, a, a, . . . , a, b)
has the Strong Lefschetz Property.

2 Proof of Theorem A

Our proof of Theorem A is divided into several lemmata.

Lemma 1. Let h = (1, a, a, . . . , a, b) ∈ Zn+1
>0 be a pure O-sequence, where n > 3. Then

b 6 a.

Proof. This result can easily be shown using [1, Proposition 3.6], but we present a self-
contained proof since it appears of independent interest. Consider an artinian monomial
level k-algebra A =

⊕n
i=0Ai with Hilbert function h, where k = A0 is a field of char-

acteristic zero. By Hibi-Hausel’s g-theorem on the differentiability of a pure O-sequence
through its first half (see [9, Theorem 1.1] and [7, Theorem 6.2]), we deduce that mul-
tiplication by a Zariski-general linear form L between consecutive graded pieces Ai and
Ai+1 is injective, for all indices i 6 bn/2c.

Now note that, because Ai and Ai+1 have the same k-vector space dimension in those
degrees (namely, a), multiplication by L is in fact bijective. Finally, since the grading
of A is standard, it is easy to see ([17, Proposition 2.1]) that if multiplication by L is
surjective from some degree i to i+ 1, then it is surjective from degree j to j + 1, for all
j > i. The case j = n− 1 yields b 6 a.

Lemma 2. Let n > 2. Then (1, a, a, . . . , a, b) ∈ Zn+1
>0 is a pure O-sequence for any

b = da/2e, . . . , a.
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Proof. Partition a into exactly b parts of size 6 2, say a = 2s1 + s2 with s1 + s2 = b, and
consider the two sets of monomials x1x

n−1
2 , . . . , x2s1−1x

n−1
2s1

and yn1 , . . . , y
n
s2

. Then the pure
O-sequence they generate is

(1, 0, 0, . . . , 0) + s1 · (0, 2, 2, . . . , 2, 1) + s2 · (0, 1, 1, . . . , 1, 1)

= (1, 2s1 + s2, 2s1 + s2, . . . , 2s1 + s2, s1 + s2)

= (1, a, a, . . . , a, b),

as desired.

Lemma 3. Let n > 4. Then (1, a, a, . . . , a, b) ∈ Zn+1
>0 cannot be a pure O-sequence if

2b < a.

Proof. Let x1, . . . , xa be variables. Suppose that h = (1, a, a, h3, . . . , hn−1, b) ∈ Zn+1
>0 is a

pure O-sequence, where 2b < a and n > 4. Let {u1, . . . , ub} denote a set of monomials in
x1, . . . , xa of degree n that generates h. Let pj be the number of variables xi for which
xi divides uj, but does not divide any of u1, . . . , uj−1. Since 2b < a, we can assume that
p1 > 3. Let qj be the number of quadratic monomials xixi′ for which xixi′ divides uj, but
does not divide any of u1, . . . , uj−1. Then

b∑
j=1

pj =
b∑

j=1

qj = a. (1)

Note that qj > pj, for each j. Furthermore, since n > 4, it follows that q1 > p1. This
contradicts (1), completing the proof.

Combining Lemmata 1, 2, and 3 proves Theorem A.

Remark 4. Let n > 4, and h = (1, h1, . . . , hn) ∈ Zn+1
>0 be a pure O-sequence such that

h1 = hi for some 2 6 i 6 n− 2. It follows from [9, Theorem 1.1] that h1 = h2.
Let h1 = h2 = a and hn = b. Arguing as in the proof of Lemma 3, we have a 6 2b and

each qj ∈ {1, 2}. Let qj = 2 for 1 6 j 6 b′, and qj = 1 for b′ + 1 6 j 6 b. If 1 6 j 6 b′,
then uj = xj1x

n−1
j2

with j1 6= j2. If b′ + 1 6 j 6 b, then either uj = xnj1 or uj = xj1x
n−1
j′2

,

where 1 6 j′2 6 b′. Thus, each hi = 2b′ + (b− b′) = a. Hence h = (1, a, a, . . . , a, b).

Remark 5. The proof of Lemma 3, together with Remark 4, shows that all pure O-
sequences of the form (1, a, a, . . . , a, b) can be constructed starting from the two pure
O-sequences (1, 2, 2, . . . , 2, 1) and (1, 1, . . . , 1, 1).

Remark 6. Interestingly from an algebraic standpoint, it follows from the argument of
Lemma 1 that, over a field of characteristic zero, any artinian monomial level algebra
with Hilbert function given by the pure O-sequence (1, a, a, . . . , a, b) enjoys the Strong
Lefschetz Property.
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3 The pure O-sequences (1, a, b) and (1, a, a, b)

As a supplement to Theorem A, we give the following result, which completes the char-
acterization of pure O-sequences of the form (1, a, . . . , a, b).

Proposition 7. Let a and b be positive integers.

(i) The sequence (1, a, b) is a pure O-sequence if and only if da/2e 6 b 6
(
a+1
2

)
.

(ii) The sequence (1, a, a, b) is a pure O-sequence if and only if da/3e 6 b 6 a.

Proof. (i) The proof is a simple exercise. See [1, Corollary 4.7] and [9, Example 1.2].
(ii) We want to determine when b monomials of degree 3 in a variables have a total

of a degree 2 divisors. First note that each of these b monomials can involve at most 3
variables. This implies da/3e 6 b. The upper bound b 6 a was proven in Lemma 1. Thus,
it remains to show that (1, a, a, b) is a pure O-sequence for each integer b = da/3e, . . . , a.

Any degree 3 monomial is of one of the following three kinds: xyz (which generates the
pure O-sequence (1, 3, 3, 1)); xy2 (generating (1, 2, 2, 1)); and x3 (generating (1, 1, 1, 1)).
Further, any integer a in the range under consideration can be partitioned into exactly
b parts of size 6 3 (since, clearly, any integer a − b satisfying 0 6 a − b 6 2b can be
partitioned into at most b parts of size 6 2). Hence write a = 3t1 + 2t2 + t3, where the
multiplicities ti are nonnegative and sum up to b.

Now consider t1 squarefree monomials of degree 3 in disjoint sets of variables, say

x1x2x3, . . . , x3t1−2x3t1−1x3t1 ;

t2 monomials of the form
y1y

2
2, . . . , y2t2−1y

2
2t2

;

and t3 monomials of the form
z31 , . . . , z

3
t3
.

The pure O-sequence generated by the above t1 + t2 + t3 monomials is given by:

(1, 0, 0, 0) + t1 · (0, 3, 3, 1) + t2 · (0, 2, 2, 1) + t3 · (0, 1, 1, 1)

= (1, 3t1 + 2t2 + t3, 3t1 + 2t2 + t3, t1 + t2 + t3)

= (1, a, a, b).

This concludes the proof of (ii).

Remark 8. We wrap up by noting that while any pure O-sequence is an artinian level
Hilbert function [1], the converse is far from being true, even for n = 2.

It is easy to see that the sequence (1, a, b) is level if and only if 1 6 b 6
(
a+1
2

)
. Also,

(1, a, a, b) is level for any b in the range 1 6 b 6 a. More generally, using the techniques
of [11], it can be shown that for any n > 3, (1, a, a, . . . , a, b) ∈ Zn+1

>0 is level whenever
1 6 b 6 a, over a field of any characteristic.
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However, larger values of b may also be attained when n > 3. For instance,
(1, 13, 13, 14) is a level Hilbert function ([1, Chapter 3]). In fact, we remark here without
proof that, in stark contrast to the case of pure O-sequences, it is possible to construct
level sequences (1, a, a, b) where the difference b − a gets arbitrarily large and is asymp-
totic to a itself. This strongly suggests that an explicit characterization of level Hilbert
functions might hard to achieve, even in the special case (1, a, a, b).
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