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Abstract

Let Γ denote a Q-polynomial distance-regular graph, with vertex set X and di-
ameter D > 3. The standard module V has a basis {x̂|x ∈ X}, where x̂ denotes
column x of the identity matrix I ∈ MatX(C). Let E denote a Q-polynomial prim-
itive idempotent of Γ. The eigenspace EV is spanned by the vectors {Ex̂|x ∈ X}.
It was previously known that these vectors satisfy a condition called the balanced
set condition. In this paper, we introduce a variation on the balanced set condi-
tion called the Norton-balanced condition. The Norton-balanced condition involves
the Norton algebra product on EV . We define Γ to be Norton-balanced whenever
Γ has a Q-polynomial primitive idempotent E such that the set {Ex̂|x ∈ X} is
Norton-balanced. We show that Γ is Norton-balanced in the following cases: (i)
Γ is bipartite; (ii) Γ is almost bipartite; (iii) Γ is dual-bipartite; (iv) Γ is almost
dual-bipartite; (v) Γ is tight; (vi) Γ is a Hamming graph; (vii) Γ is a Johnson graph;
(viii) Γ is the Grassmann graph Jq(2D,D); (ix) Γ is a halved bipartite dual-polar
graph; (x) Γ is a halved Hemmeter graph; (xi) Γ is a halved hypercube; (xii) Γ is
a folded-half hypercube; (xiii) Γ has q-Racah type and affords a spin model. Some
theoretical results about the Norton-balanced condition are obtained, and some
open problems are given.

Mathematics Subject Classifications: 05E30

1 Introduction

This paper is about a family of finite undirected graphs, said to be distance-regular [7].
We will investigate a type of distance-regular graph, called Q-polynomial [7, Chapter 8].
The Q-polynomial property was introduced in 1973 by Delsarte [18] in his work on coding
theory and design theory. Since that beginning, the property has been linked to many
topics, such as orthogonal polynomials [3, p. 260], [27, 42]; spin models [9, 13, 14, 33, 34];
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q-deformed enveloping algebras [22, 24, 47]; partially ordered sets [1, 4, 16, 17, 20, 32, 36];
tridiagonal pairs [10, 21, 23]; free fermions [5, 6, 11]; and the double affine Hecke algebra
[28, 29, 30]. Comprehensive treatments of the Q-polynomial property can be found in
[2, 3, 7, 15, 46].

For a Q-polynomial distance-regular graph, the adjacency matrix has a distinguished
primitive idempotent called a Q-polynomial idempotent. There is a characterization of
the Q-polynomial primitive idempotents, called the balanced set characterization [38,
Theorem 1.1]. Over the next few paragraphs, we will describe this characterization in
order to motivate our main topic.

Throughout this section, Γ = (X,R) denotes a distance-regular graph with vertex set
X, adjacency relation R, and diameter D > 3 (formal definitions start in Section 2).

Let V denote the R-vector space consisting of the column vectors with coordinates
indexed by X and all entries in R. The vector space V becomes a Euclidean space with
bilinear form 〈u, v〉 = utv for u, v ∈ V . For x ∈ X define a vector x̂ ∈ V that has
x-coordinate 1 and all other coordinates 0. The vectors {x̂|x ∈ X} form an orthonormal
basis for V . The adjacency matrix A of Γ acts on V by left multiplication.

Let E denote a primitive idempotent of Γ. The matrix E is the orthogonal projection
onto the eigenspace EV of A. By construction, the subspace EV is spanned by the vectors
{Ex̂|x ∈ X}.

Let ∂ denote the path-length distance function for Γ. For x ∈ X and 0 6 i 6 D, define
the set Γi(x) = {y ∈ X|∂(x, y) = i}. According to the balanced set characterization [38,
Theorem 1.1], E is Q-polynomial if and only if the following (i), (ii) hold:

(i) the vectors {Ex̂|x ∈ X} are mutually distinct;

(ii) for x, y ∈ X and 0 6 i, j 6 D,∑
z∈Γi(x)∩Γj(y)

Eẑ −
∑

z∈Γj(x)∩Γi(y)

Eẑ ∈ Span{Ex̂− Eŷ}.

For the rest of this section, assume that E is Q-polynomial. We mention a special
case of the balanced set dependency. Pick x, y ∈ X and write i = ∂(x, y). Define

x−y =
∑

z∈Γ(x)∩Γi−1(y)

ẑ, x+
y =

∑
z∈Γ(x)∩Γi+1(y)

ẑ,

where Γ(x) = Γ1(x) and Γ−1(x) = ∅ = ΓD+1(x). Then

Ex−y − Ey−x ∈ Span{Ex̂− Eŷ}, Ex+
y − Ey+

x ∈ Span{Ex̂− Eŷ}.

The vectors {Ex̂|x ∈ X} satisfy another type of linear dependency, known as the sym-
metric balanced set dependency [41, Theorem 2.6]. Let x, y ∈ X and 0 6 i, j 6 D.
According to the symmetric balanced set dependency,∑

z∈Γi(x)∩Γj(y)

Eẑ +
∑

z∈Γj(x)∩Γi(y)

Eẑ ∈ Span{Ex−y + Ey−x , Ex
+
y + Ey+

x , Ex̂+ Eŷ}.
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Comparing the balanced set dependency with its symmetric version, we find that for
x, y ∈ X and 0 6 i, j 6 D,∑

z∈Γi(x)∩Γj(y)

Eẑ ∈ Span{Ex−y , Ex+
y , Ex̂, Eŷ}.

It could happen that for all x, y ∈ X the vectors Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent.

We now consider some situations where this occurs.
The set of vectors {Ex̂|x ∈ X} is called strongly balanced [39, Section 2] whenever

for all x, y ∈ X and 0 6 i, j 6 D,∑
z∈Γi(x)∩Γj(y)

Eẑ ∈ Span{Ex̂, Eŷ}.

According to [39, Theorems 1, 3] the following are equivalent:

(i) the set {Ex̂|x ∈ X} is strongly balanced;

(ii) E is dual-bipartite or almost dual-bipartite (see Section 3 below).

We now recall the Norton algebra structure on EV [8, Proposition 5.2]. For u ∈ V
and x ∈ X let ux denote the x-coordinate of u. So u =

∑
x∈X uxx̂. For u, v ∈ V define

a vector u ◦ v =
∑

x∈X uxvxx̂. The Norton algebra consists of the R-vector space EV ,
together with the product

u ? v = E(u ◦ v) (u, v ∈ EV ).

The Norton product ? is commutative, and nonassociative in general.
We now introduce the Norton-balanced condition. The set of vectors {Ex̂|x ∈ X} is

called Norton-balanced whenever for all x, y ∈ X and 0 6 i, j 6 D,∑
z∈Γi(x)∩Γj(y)

Eẑ ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

Let us clarify the Norton-balanced condition. By our above comments, the following
are equivalent:

(i) the set {Ex̂|x ∈ X} is Norton-balanced;

(ii) for all x, y ∈ X we have Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

We say that Γ is Norton-balanced whenever Γ has a Q-polynomial primitive idempotent
E such that the set {Ex̂|x ∈ X} is Norton-balanced.

Next, we describe our results. We have two kinds of results; some are about examples,
and some are more theoretical. We first describe the results about examples. This will
be done over the next four paragraphs.
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Assume that Γ is Q-polynomial. Using some elementary arguments, we show that Γ
is Norton-balanced in the following cases: (i) Γ is bipartite; (ii) Γ is almost bipartite; (iii)
Γ is dual-bipartite; (iv) Γ is almost dual-bipartite; (v) Γ is tight.

The combinatorial structure of Γ is described by some well-known parameters called
the intersection numbers. We show that in general, Γ being Norton-balanced is not a
condition on the intersection numbers alone. To do this, we consider the Hamming graph
H(D, 4) and a Doob graph with diameter D. These graphs have the same intersection
numbers. We show that H(D, 4) is Norton-balanced and the Doob graph is not.

The book [2, Chapter 6.4] gives a list of the known infinite families of Q-polynomial
distance-regular graphs with unbounded diameter. For each listed graph, every
Q-polynomial structure is described. We examine these Q-polynomial structures. For
each listed graph Γ = (X,R) and each Q-polynomial primitive idempotent E of Γ, we
determine if the set {Ex̂|x ∈ X} is Norton-balanced or not. In summary form, our conclu-
sion is that Γ is Norton-balanced in the following cases: (vi) Γ is a Hamming graph; (vii) Γ
is a Johnson graph; (viii) Γ is the Grassmann graph Jq(2D,D); (ix) Γ is a halved bipartite
dual-polar graph; (x) Γ is a halved Hemmeter graph; (xi) Γ is a halved hypercube; (xii)
Γ is a folded-half hypercube.

The Norton-balanced condition was inspired by our recent work with Nomura on spin
models [34]. We show that Γ is Norton-balanced in the following case: (xiii) Γ has q-Racah
type and affords a spin model.

We will describe our theoretical results after a definition and some comments.
We define Γ to be reinforced whenever the following (i), (ii) hold for 2 6 i 6 D:

(i) for x, y ∈ X at distance ∂(x, y) = i, the average valency of the induced subgraph
Γ(x) ∩ Γi−1(y) is independent of x and y;

(ii) for x, y ∈ X at distance ∂(x, y) = i−1, the average valency of the induced subgraph
Γ(x) ∩ Γi(y) is independent of x and y.

If Γ is distance-transitive then Γ is reinforced. Assume for the moment that Γ is reinforced.
For 2 6 i 6 D let zi denote the average valency mentioned in (i), and note that a1− zi is
the average valency mentioned in (ii). In Lemma 41 we give a formula zi = z2αi + a1βi,
where αi, βi are determined by the intersection numbers.

We now describe our theoretical results. This will be done over the next three para-
graphs. Let E denote a Q-polynomial primitive idempotent of Γ.

Consider the following two conditions on E:

(i) the set {Ex̂|x ∈ X} is Norton balanced;

(ii) for x, y ∈ X the vectors Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent.

By our earlier comments, (i) implies (ii). We display an example for which (ii) holds but
not (i). We show that (i) is implied by (ii) together with a certain restriction on the
coefficients in the linear dependence.

Let λ denote an indeterminate. For 2 6 i 6 D − 1 we define a quadratic polynomial
Φi(λ) whose coefficients are determined by the intersection numbers of Γ. Pick x, y ∈ X
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at distance ∂(x, y) = i. Assuming that Γ is reinforced, we compute the inner products
between Ex−y , Ex+

y , Ex̂, Eŷ in terms of the intersection numbers and zi, zi+1. Using these
inner products and a Cauchy-Schwarz inequality, we show that Φi(z2) > 0, with equality
if and only if Ex−y , Ex+

y , Ex̂, Eŷ are linearly dependent. We show that if Γ is reinforced
and the set {Ex̂|x ∈ X} is Norton-balanced, then Φi(z2) = 0 for 2 6 i 6 D − 1.

We say that E is a dependency candidate (or DC) whenever there exists ξ ∈ C such
that Φi(ξ) = 0 for 2 6 i 6 D−1. Note that E being DC is a condition on the intersection
numbers of Γ. If Γ is reinforced and the set {Ex̂|x ∈ X} is Norton-balanced, then E is
DC. In our main theoretical result Theorem 128, we display a necessary and sufficient
condition on the intersection numbers of Γ, for E to be DC. Using Theorem 128 we show
that for certain examples Γ is not Norton-balanced.

In the previous paragraphs, we often assumed that Γ is reinforced; this was done for
clarity and simplicity. In the main body of the paper, we sometimes use a more general
argument that involves weaker hypotheses.

This paper is organized as follows. Section 2 contains some preliminaries. Sections
3, 4 contain basic information about a distance-regular graph Γ and its Q-polynomial
primitive idempotents E. In Section 5 we recall the Norton algebra. In Section 6 we
introduce the Norton-balanced condition. In Section 7 we give some examples that satisfy
the Norton-balanced condition. In Section 8 we give some linear algebraic consequences of
the Norton-balanced condition. In Section 9 we recall some parameters related to the Q-
polynomial property. In Section 10 we discuss a 4-vertex configuration called a kite, and
we introduce the reinforced condition. In Sections 11–14 we consider a pair of vertices x, y
of Γ, and investigate the potential linear dependence of Ex−y , Ex+

y , Ex̂, Eŷ. In Section 15
we introduce the polynomials Φi(λ). In Section 16 we discuss the DC condition. Sections
17–29 are about examples. Section 30 is about the case in which Γ affords a spin model.
Section 31 contains some directions for future research.

2 Preliminaries

We now begin our formal argument. The following concepts and notation will be used
throughout the paper. Let R denote the field of real numbers. Let X denote a nonempty
finite set. The elements of X are called vertices. Let MatX(R) denote the R-algebra
consisting of the matrices with rows and columns indexed by X and all entries in R.
Let I ∈ MatX(R) denote the identity matrix. Let V = RX denote the R-vector space
consisting of the column vectors with coordinates indexed by X and all entries in R. The
algebra MatX(R) acts on V by left multiplication. We endow V with a bilinear form 〈 , 〉
such that 〈u, v〉 = utv for all u, v ∈ V , where t denotes transpose. Note that 〈u, v〉 = 〈v, u〉
for u, v ∈ V . For u ∈ V we abbreviate ‖u‖2 = 〈u, u〉. We have ‖u‖2 > 0, with equality if
and only if u = 0. The bilinear form turns V into a Euclidean space. For B ∈ MatX(R)
we have 〈Bu, v〉 = 〈u,Btv〉 for all u, v ∈ V . For x ∈ X define a vector x̂ ∈ V that has
x-coordinate 1 and all other coordinates 0. The vectors {x̂|x ∈ X} form an orthonormal
basis for V . The vector 1 =

∑
x∈X x̂ has all coordinates 1. Let J ∈ MatX(R) have all

entries 1. Note that Jx̂ = 1 for all x ∈ X. For B,C ∈ MatX(R) their entrywise product
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B ◦ C ∈ MatX(R) has (x, y)-entry Bx,yCx,y for all x, y ∈ X. For a positive q ∈ R let q
1
2

denote the positive square root of q.

3 Distance-Regular Graphs

In this section, we review some definitions and basic concepts concerning distance-regular
graphs. See [2, 3, 7, 15, 46] for more information. Let Γ = (X,R) denote a finite,
undirected, connected graph, without loops or multiple edges, with vertex set X and
adjacency relationR. For an integer n > 0, a path of length n in Γ is a sequence of vertices
{xi}ni=0 such that xi−1, xi are adjacent for 1 6 i 6 n. This path is said to connect x0, xn.
For x, y ∈ X let ∂(x, y) denote the length of a shortest path that connects x, y. We call
∂(x, y) the distance between x and y. The integer D = max{∂(x, y)|x, y ∈ X} is called the
diameter of Γ. For an integer i > 0 and x ∈ X define the set Γi(x) = {y ∈ X|∂(x, y) = i}.
We abbreviate Γ(x) = Γ1(x). For x ∈ X we call |Γ(x)| the valency of x. For an integer
k > 0, we say that Γ is regular with valency k whenever each vertex in X has valency
k. We say that Γ is distance-regular whenever for all integers h, i, j (0 6 h, i, j 6 D)
and all vertices x, y ∈ X at distance ∂(x, y) = h, the cardinality phi,j = |Γi(x) ∩ Γj(y)| is
independent of x and y. The integers phi,j are called the intersection numbers of Γ. For
the rest of this paper, we assume that Γ is distance-regular with D > 3. Note that Γ
is regular with valency k = p0

1,1. By construction phi,j = phj,i for 0 6 h, i, j 6 D. By the
triangle inequality the following holds for 0 6 h, i, j 6 D:

(i) phi,j = 0 if one of h, i, j is greater than the sum of the other two;

(ii) phi,j 6= 0 if one of h, i, j is equal to the sum of the other two.

We abbreviate

ci = pi1,i−1 (1 6 i 6 D), ai = pi1,i (0 6 i 6 D), bi = pi1,i+1 (0 6 i 6 D − 1).

We have b0 = k. Note that a0 = 0 and c1 = 1. By [7, Lemma 4.1.6] we have

ci−1 6 ci (2 6 i 6 D), bi−1 > bi (1 6 i 6 D − 1), bi > cD−i (0 6 i 6 D − 1).

Observe that k = ci + ai + bi (0 6 i 6 D), where c0 = 0 and bD = 0. For 0 6 i 6 D
define ki = p0

i,i and note that ki = |Γi(x)| for all x ∈ X. We have k0 = 1 and k1 = k. By
[3, p. 195] we have

ki =
b0b1 · · · bi−1

c1c2 · · · ci
(0 6 i 6 D).

The graph Γ is called bipartite whenever ai = 0 for 0 6 i 6 D. The graph Γ is called
almost bipartite whenever ai = 0 for 0 6 i 6 D− 1 and aD 6= 0. The graph Γ is called an
antipodal 2-cover whenever kD = 1. This occurs if and only if ki = kD−i (0 6 i 6 D) if
and only if bi = cD−i (0 6 i 6 D); see [7, Proposition 4.2.2].
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We recall the Bose-Mesner algebra of Γ. For 0 6 i 6 D define Ai ∈ MatX(R) that has
(x, y)-entry

(Ai)x,y =

{
1, if ∂(x, y) = i;

0, if ∂(x, y) 6= i
(x, y ∈ X).

For x ∈ X we have

Aix̂ =
∑

y∈Γi(x)

ŷ. (1)

We call Ai the ith distance matrix of Γ. We abbreviate A = A1 and call this the adjacency
matrix of Γ. Observe that (i) A0 = I; (ii) J =

∑D
i=0Ai; (iii) Ati = Ai (0 6 i 6 D); (iv)

AiAj =
∑D

h=0 p
h
i,jAh (0 6 i, j 6 D). Therefore the matrices {Ai}Di=0 form a basis for

a commutative subalgebra M of MatX(R), called the Bose-Mesner algebra of Γ. The
matrix A generates M [46, Corollary 3.4]. The matrices {Ai}Di=0 are symmetric and
mutually commute, so they can be simultaneously diagonalized over R. Consequently M
has a second basis {Ei}Di=0 such that (i) E0 = |X|−1J ; (ii) I =

∑D
i=0 Ei; (iii) Et

i = Ei (0 6
i 6 D); (iv) EiEj = δi,jEi (0 6 i, j 6 D). We call {Ei}Di=0 the primitive idempotents of
Γ. The primitive idempotent E0 is called trivial.

For 0 6 i 6 D let θi denote the eigenvalue of A for Ei. We have AEi = θiEi = EiA.
We have A =

∑D
i=0 θiEi. The scalars {θi}Di=0 are mutually distinct because A generates

M . We have

V =
D∑
i=0

EiV (orthogonal direct sum).

For 0 6 i 6 D the subspace EiV is the eigenspace of A for the eigenvalue θi. By [7,
p. 128] we have θ0 = k.

We recall the Krein parameters of Γ. For 0 6 i, j 6 D we have Ai ◦ Aj = δi,jAi.
Therefore M is closed under ◦. Consequently, there exist scalars qhi,j ∈ R (0 6 h, i, j 6 D)
such that

Ei ◦ Ej = |X|−1

D∑
h=0

qhi,jEh (0 6 i, j 6 D).

The scalars qhi,j are called the Krein parameters of Γ. By construction qhi,j = qhj,i for
0 6 h, i, j 6 D. By [3, p. 69] we have qhi,j > 0 for 0 6 h, i, j 6 D. By [46, Lemma 5.15]
we have q0

i,i = dim(EiV ) for 0 6 i 6 D.
Next, we describe a feature of the Krein parameters that will play a role in our main

results. In this description, we will use the following notation. For u ∈ V and x ∈ X let
ux denote the x-coordinate of u. So u =

∑
x∈X uxx̂. For u, v ∈ V define a vector u◦v ∈ V

that has x-coordinate uxvx for all x ∈ X. So u ◦ v =
∑

x∈X uxvxx̂. We have

x̂ ◦ ŷ = δx,yx̂ (x, y ∈ X). (2)

For v ∈ V we have 1 ◦ v = v.
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Lemma 1. (See [8, Proposition 5.1].) The following hold for 0 6 h, i, j 6 D.

(i) Assume that qhi,j 6= 0. Then Eh
(
EiV ◦ EjV

)
spans EhV .

(ii) Assume that qhi,j = 0. Then Eh
(
EiV ◦ EjV

)
= 0.

We recall the Q-polynomial property. The ordering {Ei}Di=0 of the primitive idempo-
tents is called Q-polynomial whenever the following hold for 0 6 h, i, j 6 D:

(i) qhi,j = 0 if one of h, i, j is greater than the sum of the other two;

(ii) qhi,j 6= 0 if one of h, i, j is equal to the sum of the other two.

Assume that the ordering {Ei}Di=0 is Q-polynomial. We abbreviate

c∗i = qi1,i−1 (1 6 i 6 D), a∗i = qi1,i (0 6 i 6 D), b∗i = qi1,i+1 (0 6 i 6 D − 1).

We emphasize that c∗i 6= 0 (1 6 i 6 D) and b∗i 6= 0 (0 6 i 6 D− 1). By [46, Lemma 5.15]
we have a∗0 = 0 and c∗1 = 1. The Q-polynomial ordering {Ei}Di=0 is called dual-bipartite
(resp. almost dual-bipartite) whenever a∗i = 0 for 0 6 i 6 D (resp. a∗i = 0 for 0 6 i 6 D−1
and a∗D 6= 0).

A primitive idempotent E of Γ is called Q-polynomial whenever there exists a Q-
polynomial ordering {Ei}Di=0 of the primitive idempotents of Γ such that E = E1. For the
rest of this paragraph, assume that E is Q-polynomial. By construction, E is nontrivial.
We say that E is dual-bipartite (resp. almost dual-bipartite) whenever the corresponding
Q-polynomial ordering {Ei}Di=0 is dual-bipartite (resp. almost dual-bipartite). By [7,
p. 241] and [19, Theorems 1.1, 1.2], E is dual-bipartite if and only if Γ is an antipodal
2-cover.

We say that Γ is Q-polynomial whenever there exists a Q-polynomial ordering {Ei}Di=0

of the primitive idempotents of Γ. We say that Γ is dual-bipartite (resp. almost dual-
bipartite) whenever there exists a Q-polynomial ordering {Ei}Di=0 of the primitive idem-
potents of Γ that is dual-bipartite (resp. almost dual-bipartite).

For the rest of this paper, we assume that Γ is Q-polynomial. To avoid trivialities, we
always assume that the valency k > 3.

4 Some eigenspace geometry

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. By construction, the
eigenspace EV is spanned by the vectors {Ex̂|x ∈ X}. In this section, we discuss the
geometry of these vectors. We will describe the inner product 〈Ex̂, Eŷ〉 for x, y ∈ X. We
will also display some linear dependencies among {Ex̂|x ∈ X}.

The matrix E is contained in the Bose-Mesner algebra M . Therefore, there exist
θ∗i ∈ R (0 6 i 6 D) such that

E = |X|−1

D∑
i=0

θ∗iAi. (3)
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By [3, p. 260] the scalars {θ∗i }Di=0 are mutually distinct. By [46, Lemma 3.9] we have
θ∗0 = dim(EV ). The scalars {θ∗i }Di=0 are called the dual eigenvalues of Γ associated with
E. For notational convenience, let θ∗−1 and θ∗D+1 denote indeterminates. By [7, p. 128],

ciθ
∗
i−1 + aiθ

∗
i + biθ

∗
i+1 = θ1θ

∗
i (0 6 i 6 D). (4)

The following result is well known; see for example [7, Proposition 4.4.1].

Lemma 2. (See [7, Proposition 4.4.1].) Pick x, y ∈ X and write i = ∂(x, y). Then the
following (i)–(iii) hold:

(i) 〈Ex̂, Eŷ〉 = |X|−1θ∗i ;

(ii) ‖Ex̂‖2 = ‖Eŷ‖2 = |X|−1θ∗0;

(iii) θ∗i /θ
∗
0 is the cosine of the angle between Ex̂ and Eŷ.

Corollary 3. For distinct x, y ∈ X we have Ex̂ 6= Eŷ.

Proof. Write i = ∂(x, y) and note that i 6= 0. The dual eigenvalues {θ∗j}Dj=0 are mutually
distinct, so θ∗i 6= θ∗0. The result follows in view of Lemma 2(iii).

As we consider additional consequences of Lemma 2, we will treat separately the case
in which Γ is an antipodal 2-cover.

Lemma 4. Assume that Γ is not an antipodal 2-cover. Then the following hold:

(i) θ∗0 > θ∗i > −θ∗0 (1 6 i 6 D);

(ii) for distinct x, y ∈ X the vectors Ex̂, Eŷ are linearly independent.

Proof. (i) Pick x, y ∈ X at distance ∂(x, y) = i. Using Lemma 2 and trigonometry we
obtain θ∗0 > θ∗i > −θ∗0, with equality on the right if and only if Ex̂ + Eŷ = 0. Suppose
this equality occurs. The vertices x, y uniquely determine each other by Ex̂+Eŷ = 0 and
Corollary 3, so ki = 1. Now kD = 1 in view of [7, Proposition 5.1.1(i)]. Consequently Γ
is an antipodal 2-cover, for a contradiction. We have shown that θ∗0 > θ∗i > −θ∗0.
(ii) By (i) and Lemma 2.

Lemma 5. Assume that Γ is an antipodal 2-cover. Then the following hold.

(i) θ∗0 > θ∗i > −θ∗0 (1 6 i 6 D − 1) and θ∗D = −θ∗0;

(ii) for distinct x, y ∈ X the vectors Ex̂, Eŷ are linearly independent if ∂(x, y) 6= D,
and Ex̂+ Eŷ = 0 if ∂(x, y) = D.

Proof. Similar to the proof of Lemma 4, except that θ∗D = −θ∗0 by [7, Theorem 8.2.4].

Next, we display some linear dependencies among the vectors {Ex̂|x ∈ X}.
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Lemma 6. Let x ∈ X. Then ∑
y∈Γ(x)

Eŷ = θ1Ex̂. (5)

Moreover for 0 6 i 6 D, ∑
y∈Γi(x)

Eŷ ∈ Span{Ex̂}. (6)

Proof. The equation (5) holds, because each side is equal to EAx̂. To verify (6), note
that Ai = fi(A), where fi is a polynomial with real coefficients and degree i. Using (1)
we obtain ∑

y∈Γi(x)

Eŷ = EAix̂ = Efi(A)x̂ = fi(θ1)Ex̂ ∈ Span{Ex̂}.

5 The Norton algebra

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. In this section, we recall
the Norton algebra product ? on the vector space EV . For x, y ∈ X we compute Ex̂?Eŷ.

Definition 7. (See [8, Proposition 5.2].) The Norton algebra EV consists of the R-vector
space EV , together with the product

u ? v = E(u ◦ v) (u, v ∈ EV ). (7)

We call ? the Norton product.

The Norton product ? is commutative, and nonassociative in general.
As we investigate ? it is natural to consider Ex̂ ? Eŷ for all x, y ∈ X. In the next two

lemmas we discuss some extremal cases.

Lemma 8. (See [44, Lemma 3.2].) For x ∈ X,

Ex̂ ? Ex̂ = |X|−1a∗1Ex̂.

Lemma 9. The following (i)–(iv) are equivalent:

(i) u ? v = 0 for all u, v ∈ EV ;

(ii) Ex̂ ? Eŷ = 0 for all x, y ∈ X;

(iii) Ex̂ ? Ex̂ = 0 for all x ∈ X;
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(iv) a∗1 = 0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. The implication (iii) ⇒ (iv) is from
Lemma 8, and the implication (iv)⇒ (i) is from Lemma 1.

Corollary 10. Assume that E is dual-bipartite or almost dual-bipartite. Then the equiv-
alent conditions (i)–(iv) in Lemma 9 all hold.

Proof. We assume that a∗i = 0 for 0 6 i 6 D − 1, so a∗1 = 0.

Let x, y ∈ X. Shortly, we will review a formula for Ex̂ ? Eŷ that appeared in [44,
Theorem 3.7].

Lemma 11. For x, y ∈ X and 0 6 i, j 6 D,

Aix̂ ◦ Aj ŷ =
∑

z∈Γi(x)∩Γj(y)

ẑ. (8)

Proof. By (1) and (2).

Lemma 12. Pick 0 6 h, i, j 6 D and x, y ∈ X at distance ∂(x, y) = h. Then:

(i) ‖Aix̂ ◦ Aj ŷ‖2 = phi,j;

(ii) Aix̂ ◦ Aj ŷ = 0 if and only if phi,j = 0.

Proof. (i) By (8) and since |Γi(x) ∩ Γj(y)| = phi,j.
(ii) By (i) above.

Definition 13. (See [44, Definition 3.5].) Pick x, y ∈ X and write i = ∂(x, y). Define

x−y = Ax̂ ◦ Ai−1ŷ =
∑

z∈Γ(x)∩Γi−1(y)

ẑ,

x0
y = Ax̂ ◦ Aiŷ =

∑
z∈Γ(x)∩Γi(y)

ẑ,

x+
y = Ax̂ ◦ Ai+1ŷ =

∑
z∈Γ(x)∩Γi+1(y)

ẑ,

where we understand

A−1 = 0, Γ−1(x) = ∅, AD+1 = 0, ΓD+1(x) = ∅.

We clarify the meaning of Definition 13. Pick x, y ∈ X. If ∂(x, y) = D then x+
y = 0.

If ∂(x, y) = 1 then x−y = ŷ. If x = y then x0
y = 0 and x−y = 0.

Lemma 14. For x, y ∈ X we have

x−y + x0
y + x+

y = Ax̂, (9)

Ex−y + Ex0
y + Ex+

y = θ1Ex̂. (10)
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Proof. Assertion (9) follows from (1) (with i = 1). Assertion (10) follows from (5).

Proposition 15. (See [44, Theorem 3.7].) For x, y ∈ X we have

Ex̂ ? Eŷ =
(θ∗i−1 − θ∗i )Ex−y + (θ∗i+1 − θ∗i )Ex+

y + (θ1 − θ2)θ∗iEx̂+ (θ2 − θ0)Eŷ

|X|(θ1 − θ2)
(11)

where i = ∂(x, y). We recall that θ∗−1 and θ∗D+1 are indeterminates.

We mention some special cases of Proposition 15.

Corollary 16. (See [44, Corollary 3.8].) The following (i)–(iii) hold.

(i) For x ∈ X,

Ex̂ ? Ex̂ =
θ1θ
∗
1 − θ2θ

∗
0 + θ2 − θ0

|X|(θ1 − θ2)
Ex̂.

(ii) For x, y ∈ X at distance ∂(x, y) = 1,

Ex̂ ? Eŷ =
(θ∗2 − θ∗1)Ex+

y + (θ1 − θ2)θ∗1Ex̂+ (θ2 − θ0 + θ∗0 − θ∗1)Eŷ

|X|(θ1 − θ2)
.

(iii) For x, y ∈ X at distance ∂(x, y) = D,

Ex̂ ? Eŷ =
(θ∗D−1 − θ∗D)Ex−y + (θ1 − θ2)θ∗DEx̂+ (θ2 − θ0)Eŷ

|X|(θ1 − θ2)
.

Comparing Lemma 8 and Corollary 16(i), we obtain

a∗1 =
θ1θ
∗
1 − θ2θ

∗
0 + θ2 − θ0

θ1 − θ2

.

6 The Norton-balanced condition

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. In Section 4, we
considered some linear dependencies among the vectors {Ex̂|x ∈ X}. In the present
section, we return to this topic. We will review the balanced set condition [38] and some
variations [39, 41]. Then we will introduce the Norton-balanced condition.

Lemma 17. (Balanced set condition [38, Theorem 1.1].) For x, y ∈ X and 0 6 i, j 6 D,∑
z∈Γi(x)∩Γj(y)

Eẑ −
∑

z∈Γj(x)∩Γi(y)

Eẑ ∈ Span{Ex̂− Eŷ}.
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We emphasize some special cases of Lemma 17. For x, y ∈ X,

Ex+
y − Ey+

x ∈ Span{Ex̂− Eŷ}, Ex−y − Ey−x ∈ Span{Ex̂− Eŷ}.

Next, we describe the symmetric balanced set condition.

Lemma 18. (Symmetric balanced set condition [41, Theorem 2.6].) For x, y ∈ X and
0 6 i, j 6 D,∑

z∈Γi(x)∩Γj(y)

Eẑ +
∑

z∈Γj(x)∩Γi(y)

Eẑ ∈ Span{Ex−y + Ey−x , Ex
+
y + Ey+

x , Ex̂+ Eŷ}.

Combining Lemmas 17 and 18, we obtain the following result.

Lemma 19. For x, y ∈ X and 0 6 i, j 6 D,∑
z∈Γi(x)∩Γj(y)

Eẑ ∈ Span{Ex−y , Ex+
y , Ex̂, Eŷ}.

It could happen that for all x, y ∈ X the vectors Ex−y , Ex+
y , Ex̂, Eŷ are linearly

dependent. We now consider some situations where this occurs.

Definition 20. (See [39, Section 2].) The set of vectors {Ex̂|x ∈ X} is called strongly
balanced whenever for all x, y ∈ X and 0 6 i, j 6 D,∑

z∈Γi(x)∩Γj(y)

Eẑ ∈ Span{Ex̂, Eŷ}.

Lemma 21. (See [39, Theorems 1, 3].) The following are equivalent:

(i) the set {Ex̂|x ∈ X} is strongly balanced;

(ii) E is dual-bipartite or almost dual-bipartite.

We now introduce the Norton-balanced condition.

Definition 22. The set of vectors {Ex̂|x ∈ X} is called Norton-balanced whenever for
all x, y ∈ X and 0 6 i, j 6 D,∑

z∈Γi(x)∩Γj(y)

Eẑ ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

Let us clarify the above definition.

Lemma 23. The following are equivalent:

(i) the set {Ex̂|x ∈ X} is Norton-balanced;

(ii) for all x, y ∈ X we have Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.
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Proof. By Lemma 19.

Lemma 24. Let x, y ∈ X and write i = ∂(x, y).

(i) Assume that i ∈ {0, 1, D}. Then Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

(ii) Assume that 2 6 i 6 D − 1. Then Ex−y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ} if and only if
Ex+

y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

Proof. (i) By (5) and Corollary 16.
(ii) By Proposition 15.

Remark 25. The Norton-balanced condition is not a condition on the intersection numbers
alone. We show this with an example. The example involves the Hamming graph H(D, 4)
[2, p. 355] and a Doob graph of diameter D [2, p. 387]. These graphs have the same
intersection numbers, but are not isomorphic. They both have a Q-polynomial structure
with eigenvalue sequence θi = 3D − 4i (0 6 i 6 D). For either graph, let E = E1

denote the primitive idempotent associated with θ1. As we will see, the set {Ex̂|x ∈ X}
is Norton-balanced for H(D, 4) but not for the Doob graph.

7 The Norton-balanced condition; first examples

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. In this section, we show
that the set {Ex̂|x ∈ X} is Norton-balanced in the following cases: Γ is bipartite; Γ is
almost bipartite; E is dual-bipartite; E is almost dual-bipartite; Γ is tight.

Lemma 26. Assume that Γ is bipartite or almost bipartite. Let 1 6 i 6 D − 1 and
x, y ∈ X at distance ∂(x, y) = i. Then

Ex+
y = θ1Ex̂− Ex−y . (12)

Moreover,

Ex̂ ? Eŷ =
(θ∗i−1 − θ∗i+1)Ex−y + (θ1θ

∗
i+1 − θ2θ

∗
i )Ex̂+ (θ2 − θ0)Eŷ

|X|(θ1 − θ2)
. (13)

Proof. By Lemma 12 and ai = 0 we have x0
y = 0. This and Lemma 14 imply (12). To get

(13), evaluate Proposition 15 using (12).

Proposition 27. Assume that Γ is bipartite or almost bipartite. Then the set {Ex̂|x ∈ X}
is Norton-balanced.

Proof. We invoke Lemma 23. For x, y ∈ X we show that

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}. (14)

First assume that ∂(x, y) ∈ {0, 1, D}. Then (14) holds by Lemma 24(i). Next assume that
2 6 ∂(x, y) 6 D − 1. Then (14) holds by Lemma 24(ii) and (13). The result follows.
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Proposition 28. Assume that E is dual-bipartite or almost dual-bipartite. Then the set
{Ex̂|x ∈ X} is Norton-balanced.

Proof. By Lemma 21 and Definitions 20, 22.

Next, we recall what it means for Γ to be tight. The tight concept was introduced in
[26], and discussed further in [35]. Assume for the moment that Γ is not bipartite. By
[35, Theorem 1.3], aD = 0 if and only if a∗D = 0.

Definition 29. (See [35, Theorem 1.3].) We say that Γ is tight whenever Γ is not bipartite
and aD = a∗D = 0.

We bring in some notation. Write

ED = |X|−1

D∑
i=0

%iAi, %i ∈ R.

For notational convenience, let %−1 and %D+1 denote indeterminates.

Lemma 30. Assume that Γ is tight. Pick distinct x, y ∈ X and write i = ∂(x, y). Then

(%i−1 − %i)Ex−y + (%i+1 − %i)Ex+
y =

(
θD−1 − θ1

)
%iEx̂. (15)

Proof. We first show that

E
(
EDŷ ◦ (A− θD−1I)x̂

)
= 0. (16)

We have EDŷ ∈ EDV . Moreover,

A− θD−1I =
D∑
j=0

(θj − θD−1)Ej =
∑

06j6D
j 6=D−1

(θj − θD−1)Ej.

Therefore,

(A− θD−1I)x̂ ∈
∑

06j6D
j 6=D−1

EjV.

For 0 6 j 6 D such that j 6= D − 1, we have q1
D,j = 0 and therefore E

(
EDV ◦ EjV

)
= 0

in view of Lemma 1. By these comments we get (16). By (16) and the construction,

0 = |X|E
(
EDŷ ◦ (A− θD−1I)x̂

)
= |X|E

(
EDŷ ◦

(
x−y + x0

y + x+
y − θD−1x̂

))
= E

(
%i−1x

−
y + %ix

0
y + %i+1x

+
y − θD−1%ix̂

)
= %i−1Ex

−
y + %iEx

0
y + %i+1Ex

+
y − θD−1%iEx̂.

In the previous line, we eliminate Ex0
y using (10), and routinely obtain (15).
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Lemma 31. Assume that Γ is tight. Then the set {Ex̂|x ∈ X} is Norton-balanced.

Proof. We invoke Lemma 23. For x, y ∈ X we show that

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}. (17)

First assume that ∂(x, y) ∈ {0, 1, D}. Then (17) holds by Lemma 24(i). Next assume
that 2 6 ∂(x, y) 6 D − 1. The equations (11), (15) give a linear system in the unknowns
Ex−y , Ex+

y . For this linear system the coefficient matrix is invertible; indeed

det

(
θ∗i−1 − θ∗i θ∗i+1 − θ∗i
%i−1 − %i %i+1 − %i

)
6= 0

by [26, p. 183]. By linear algebra, the linear system has a unique solution for Ex−y , Ex+
y .

Examining the solution, we routinely obtain (17).

8 The vectors Ex−
y , Ex+

y , Ex̂, Eŷ

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. In the previous section,
we displayed some examples for which the set {Ex̂|x ∈ X} is Norton-balanced. Later
in the paper we will discuss some more examples. In this section, we will develop some
methods that will facilitate the discussion.

Lemma 32. Assume that the set {Ex̂|x ∈ X} is Norton-balanced. Then for x, y ∈ X the
vectors Ex−y , Ex+

y , Ex̂, Eŷ are linearly dependent.

Proof. By Lemma 23 and linear algebra.

Consider the converse to Lemma 32. For the moment, assume that for all x, y ∈ X
the vectors Ex−y , Ex+

y , Ex̂, Eŷ are linearly dependent. It is not necessarily the case that
the set {Ex̂|x ∈ X} is Norton-balanced; the next result gives a counterexample.

Lemma 33. Assume that a∗1 = 0 and a∗2 6= 0. Then:

(i) the set {Ex̂|x ∈ X} is not Norton-balanced;

(ii) for x, y ∈ X we have

0 = (θ∗i−1 − θ∗i )Ex−y + (θ∗i+1 − θ∗i )Ex+
y + (θ1 − θ2)θ∗iEx̂+ (θ2 − θ0)Eŷ

where i = ∂(x, y).

Proof. (i) We assume that {Ex̂|x ∈ X} is Norton-balanced, and get a contradiction. By
Lemma 9 and Definitions 20, 22 the set {Ex̂|x ∈ X} is strongly balanced. By this and
Lemma 21, E is dual-bipartite or almost dual-bipartite. This contradicts a∗2 6= 0.

(ii) By Lemma 9, the left-hand side of (11) is equal to zero.
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Pick distinct x, y ∈ X. Our next general goal is to investigate the potential linear
dependence among the vectors Ex−y , Ex+

y , Ex̂, Eŷ. We will consider the following situa-
tions:

(i) Ex−y , Ex̂, Eŷ are linearly dependent;

(ii) Ex+
y , Ex̂, Eŷ are linearly dependent;

(iii) Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent, but not (i), (ii).

As we discuss these situations, we will need some parameters β, γ, γ∗ associated with
E. We will also need some facts about a certain 4-vertex configuration called a kite. We
review these topics in the next two sections.

9 The parameters β, γ, γ∗

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote aQ-polynomial primitive idempotent of Γ. In this section, we discuss
some parameters β, γ, γ∗ associated with E.

By [2, p. 283] the scalars

θi−2 − θi+1

θi−1 − θi
,

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
(18)

are equal and independent of i for 2 6 i 6 D−1. We denote this common value by β+ 1.
By [2, p. 283] there exist real numbers γ, γ∗ such that both

γ = θi−1 − βθi + θi+1, γ∗ = θ∗i−1 − βθ∗i + θ∗i+1 (19)

for 1 6 i 6 D − 1. The recurrences (19) can be solved in closed form. We will focus on
the sequence {θ∗i }Di=0; the sequence {θi}Di=0 is similar. Let C denote the field of complex
numbers. There exists 0 6= q ∈ C such that β = q + q−1. Note that q = 1 iff β = 2, and
q = −1 iff β = −2. By [2, p. 286] we have

case θ∗i closed form γ∗

β 6= ±2 θ∗i = a+ bqi + cq−i (2− β)a
β = 2 θ∗i = a+ bi+ ci2 2c
β = −2 θ∗i = a+ b(−1)i + ci(−1)i 4a

In the above table, the a, b, c are appropriate complex numbers. The case γ∗ = 0 becomes
important later in the paper. We now examine this case.

Lemma 34. We refer to the above table.

(i) Assume that β 6= 2. Then γ∗ = 0 if and only if a = 0.

(ii) Assume that β = 2. Then γ∗ = 0 if and only if c = 0.
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Proof. Immediate from the above table.

A theorem of Leonard [3, p. 260] gives detailed formulas for the intersection numbers
and Krein parameters of Γ. In [45, Section 20] these formulas are derived using the theory
of Leonard pairs. Later in the paper we will invoke the formulas, using the notation of
[45, Section 20]. The details of the formulas depend on the case of β shown in the table
above Lemma 34. For each case, there are some subcases as shown in the table below.

case subcases
β 6= ±2 q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk,

affine q-Krawtchouk, dual q-Krawtchouk
β = 2 Racah, Hahn, dual Hahn, Krawtchouk
β = −2 Bannai/Ito

Remark 35. In the theory of Leonard pairs, for the case β 6= ±2 there is a subcase
called type IA in [3, p. 260] and quantum q-Krawtchouk in [45, Example 20.4]. We
did not include this subcase in the above table, because the subcase does not occur for
Q-polynomial distance-regular graphs [15, Proposition 5.8].

10 Kites

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. In this section we discuss
a certain 4-vertex configuration in Γ, called a kite. We also explain what it means for Γ
to be reinforced.

Definition 36. (See [41, Section 1].) For 2 6 i 6 D, an i-kite in Γ is a 4-tuple of vertices
(x, y, z, w) such that

∂(x, y) = i, ∂(x, z) = 1, ∂(y, z) = i− 1,

∂(x,w) = 1, ∂(y, w) = i− 1, ∂(z, w) = 1.

Definition 37. For 2 6 i 6 D define

zi =
number of i-kites in Γ

|X|kici
.

We call zi the ith kite number of Γ.

Shortly we will give a combinatorial interpretation of zi.

Definition 38. Pick 2 6 i 6 D and x, y, z ∈ X such that

∂(x, y) = i, ∂(x, z) = 1, ∂(y, z) = i− 1.

Define

ζi(x, y, z) = |Γ(x) ∩ Γi−1(y) ∩ Γ(z)|.

Note that ζi(x, y, z) is the number of vertices w ∈ X such that (x, y, z, w) is an i-kite. We
call ζi the ith kite function.
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Lemma 39. Referring to Definition 38, the scalar ζi(x, y, z) is an integer and 0 6
ζi(x, y, z) 6 a1.

Proof. By construction and since a1 = |Γ(x) ∩ Γ(z)|.

Note 40. For 2 6 i 6 D the scalar zi has the following combinatorial interpretation. Let
Ωi denote the set of 3-tuples of vertices (x, y, z) such that

∂(x, y) = i, ∂(x, z) = 1, ∂(y, z) = i− 1.

Note that |Ωi| = |X|kici. We have

zi =

∑
(x,y,z)∈Ωi

ζi(x, y, z)

|Ωi|
.

In other words, zi is the average value of ζi(x, y, z) over all (x, y, z) ∈ Ωi. We have
0 6 zi 6 a1 in view of Lemma 39.

Lemma 41. (See [41, Theorem 2.11].) For 2 6 i 6 D we have zi = z2αi + a1βi, where

αi =
(θ∗1 − θ∗2)(θ∗0 + θ∗1 − θ∗i−1 − θ∗i )

(θ∗0 − θ∗2)(θ∗i−1 − θ∗i )
, (20)

βi =
(θ∗0 − θ∗1)(θ∗2 − θ∗i )− (θ∗1 − θ∗2)(θ∗1 − θ∗i−1)

(θ∗0 − θ∗2)(θ∗i−1 − θ∗i )
. (21)

We mention some handy facts about the scalars {αi}Di=2, {βi}Di=2.

Lemma 42. We have

αi + βi =
θ∗1 − θ∗i
θ∗i−1 − θ∗i

(2 6 i 6 D).

Proof. Use (20), (21).

Lemma 43. For 2 6 i 6 D − 1 we have

αiαi+1 =
(β + 2)(θ∗1 − θ∗2)2(θ∗0 − θ∗i )(θ∗1 − θ∗i )

(θ∗0 − θ∗2)2(θ∗i−1 − θ∗i )(θ∗i − θ∗i+1)
.

Proof. Use (20) and the table above Lemma 34.

In Note 40 we discussed some averages. Next, we refine these averages.

Definition 44. Let 2 6 i 6 D and x, y ∈ X at distance ∂(x, y) = i. Note that ci =
|Γ(x) ∩ Γi−1(y)|. Define

ζi(x, y, ∗) = c−1
i

∑
z∈Γ(x)∩Γi−1(y)

ζi(x, y, z).

In other words, ζi(x, y, ∗) is the average value of ζi(x, y, z) over all z ∈ Γ(x) ∩ Γi−1(y).
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In the next result, we clarify the meaning of ζi(x, y, ∗).

Lemma 45. Referring to Definition 44, the scalar ζi(x, y, ∗) is the average valency of the
induced subgraph Γ(x) ∩ Γi−1(y).

Proof. By the last sentence in Definition 44.

Let us emphasize a few points.

Lemma 46. Let 2 6 i 6 D and x, y ∈ X at distance ∂(x, y) = i. The following are
equivalent:

(i) for z ∈ Γ(x) ∩ Γi−1(y) the integer ζi(x, y, z) is independent of z;

(ii) ζi(x, y, z) = ζi(x, y, ∗) for all z ∈ Γ(x) ∩ Γi−1(y);

(iii) the induced subgraph Γ(x) ∩ Γi−1(y) is regular.

Proof. By Definitions 38, 44 and Lemma 45.

Lemma 47. For 2 6 i 6 D,

zi =
1

|X|ki

∑
x,y∈X
∂(x,y)=i

ζi(x, y, ∗).

Proof. By Note 40 and Definition 44.

Pick an integer i (2 6 i 6 D). It could happen that ζi(x, y, ∗) is independent of x, y(
x, y ∈ X, ∂(x, y) = i

)
.

Lemma 48. For 2 6 i 6 D the following are equivalent:

(i) ζi(x, y, ∗) is independent of x, y
(
x, y ∈ X, ∂(x, y) = i

)
;

(ii) ζi(x, y, ∗) = zi for all x, y ∈ X at distance ∂(x, y) = i.

Proof. By Lemma 47.

Recall the notion of distance-transitivity from [7, p. 136].

Lemma 49. Assume that Γ is distance-transitive. Then for 2 6 i 6 D the equivalent
conditions (i), (ii) hold in Lemma 48.

Proof. Routine.

We have a comment.
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Lemma 50. Pick 2 6 i 6 D and x, y, z ∈ X such that

∂(x, y) = i, ∂(x, z) = 1, ∂(y, z) = i− 1.

Then

a1 − ζi(x, y, z) = |Γ(x) ∩ Γi(y) ∩ Γ(z)|.

Proof. Routine using Definition 38.

Definition 51. Let 2 6 i 6 D and y, z ∈ X at distance ∂(y, z) = i − 1. Note that
bi−1 = |Γi(y) ∩ Γ(z)|. Define

ζi(∗, y, z) =
1

bi−1

∑
x∈Γi(y)∩Γ(z)

ζi(x, y, z).

In other words, ζi(∗, y, z) is the average value of ζi(x, y, z) over all x ∈ Γi(y) ∩ Γ(z).

In the next result, we clarify the meaning of ζi(∗, y, z).

Lemma 52. Referring to Definition 51, the scalar a1 − ζi(∗, y, z) is equal to the average
valency of the induced subgraph Γi(y) ∩ Γ(z).

Proof. By Lemma 50 and the last sentence in Definition 51.

Let us emphasize a few points.

Lemma 53. Let 2 6 i 6 D and y, z ∈ X at distance ∂(y, z) = i − 1. The following are
equivalent:

(i) for x ∈ Γi(y) ∩ Γ(z) the integer ζi(x, y, z) is independent of x;

(ii) ζi(x, y, z) = ζi(∗, y, z) for all x ∈ Γi(y) ∩ Γ(z);

(iii) the induced subgraph Γi(y) ∩ Γ(z) is regular.

Proof. By Definition 51 and Lemma 52.

Lemma 54. For 2 6 i 6 D,

zi =
1

|X|ki−1

∑
y,z∈X

∂(y,z)=i−1

ζi(∗, y, z).

Proof. By Note 40 and Definition 51, along with the fact that kici = ki−1bi−1.

Pick an integer i (2 6 i 6 D). It could happen that ζi(∗, y, z) is independent of y, z(
y, z ∈ X, ∂(y, z) = i− 1

)
.

Lemma 55. For 2 6 i 6 D the following are equivalent:
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(i) ζi(∗, y, z) is independent of y, z
(
y, z ∈ X, ∂(y, z) = i− 1

)
;

(ii) ζi(∗, y, z) = zi for all y, z ∈ X at distance ∂(y, z) = i− 1.

Proof. By Lemma 54.

Lemma 56. Assume that Γ is distance-transitive. Then for 2 6 i 6 D the equivalent
conditions (i), (ii) hold in Lemma 55.

Proof. Routine.

Definition 57. The graph Γ is said to be reinforced whenever the following (i), (ii) holds
for 2 6 i 6 D:

(i) ζi(x, y, ∗) is independent of x, y
(
x, y ∈ X, ∂(x, y) = i

)
;

(ii) ζi(∗, y, z) is independent of y, z
(
y, z ∈ X, ∂(y, z) = i− 1

)
.

Lemma 58. Assume that Γ is distance-transitive. Then Γ is reinforced.

Proof. By Lemmas 49 and 56.

Lemma 59. Assume that the kite function ζi is constant for 2 6 i 6 D. Then Γ is
reinforced.

Proof. For 2 6 i 6 D we have ζi(x, y, z) = zi for all x, y, z ∈ X such that

∂(x, y) = i, ∂(x, z) = 1, ∂(y, z) = i− 1.

11 When are Ex−
y , Ex̂, Eŷ linearly dependent

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. Pick 2 6 i 6 D and
x, y ∈ X at distance ∂(x, y) = i. In this section, our goal is to obtain a necessary and
sufficient condition for the vectors Ex−y , Ex̂, Eŷ to be linearly dependent. In view of
Lemma 5, we assume that i 6= D if Γ is an antipodal 2-cover. By Lemmas 4, 5 the vectors
Ex̂, Eŷ are linearly independent.

Lemma 60. We have

|X|〈Ex−y , Ex̂〉 = ciθ
∗
1, |X|〈Ex−y , Eŷ〉 = ciθ

∗
i−1.

Proof. By Lemma 2(i) and the construction.

Lemma 61. For z ∈ Γ(x) ∩ Γi−1(y) we have

|X|〈Ex−y , Eẑ〉 = θ∗0 + ζi(x, y, z)θ∗1 +
(
ci − ζi(x, y, z)− 1

)
θ∗2. (22)
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Proof. By construction, |Γ(x) ∩ Γi−1(y)| = ci. Also by construction, any two distinct
vertices in Γ(x) ∩ Γi−1(y) are at distance 1 or 2 in Γ. By Definition 38, the vertex z is
adjacent to exactly ζi(x, y, z) vertices in Γ(x) ∩ Γi−1(y). The result follows in view of
Lemma 2(i).

Lemma 62. We have

|X|c−1
i ‖Ex−y ‖2 = θ∗0 + ζi(x, y, ∗)θ∗1 +

(
ci − ζi(x, y, ∗)− 1

)
θ∗2.

Proof. Compute the average of (22) over all z ∈ Γ(x)∩Γi−1(y). Evaluate the result using
Definitions 13, 44.

For notational convenience, define

ri = ci
θ∗0θ
∗
1 − θ∗i−1θ

∗
i

θ∗20 − θ∗2i
, si = ci

θ∗0θ
∗
i−1 − θ∗1θ∗i
θ∗20 − θ∗2i

. (23)

Lemma 63. For r, s ∈ R the following are equivalent:

(i) Ex−y − rEx̂− sEŷ is orthogonal to each of Ex̂, Eŷ;

(ii) both

ciθ
∗
1 = rθ∗0 + sθ∗i , ciθ

∗
i−1 = rθ∗i + sθ∗0.

(iii) r = ri and s = si.

Proof. (i)⇔ (ii) Use Lemma 2(i),(ii) and Lemma 60.
(ii)⇔ (iii) By linear algebra and θ∗20 6= θ∗2i .

Definition 64. Define the real number

z−i =
riθ
∗
1 + siθ

∗
i−1 − θ∗0 − (ci − 1)θ∗2
θ∗1 − θ∗2

.

Lemma 65. We have

‖Ex−y − riEx̂− siEŷ‖2 = |X|−1ci(θ
∗
1 − θ∗2)

(
ζi(x, y, ∗)− z−i

)
. (24)

Proof. By Lemmas 60, 62, 63 each side of (24) is equal to

〈Ex−y − riEx̂− siEŷ, Ex−y 〉.

Lemma 66. We have

ζi(x, y, ∗)− z−i
θ∗1 − θ∗2

> 0. (25)
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Proof. By Lemma 65.

Lemma 67. The following hold.

(i) Assume that θ∗1 > θ∗2. Then ζi(x, y, ∗) > z−i .

(ii) Assume that θ∗1 < θ∗2. Then ζi(x, y, ∗) 6 z−i .

Proof. By Lemma 66.

Proposition 68. The following are equivalent:

(i) equality holds in (25);

(ii) Ex−y = riEx̂+ siEŷ;

(iii) the vectors Ex−y , Ex̂, Eŷ are linearly dependent;

(iv) ζi(x, y, z) = z−i for all z ∈ Γ(x) ∩ Γi−1(y);

(v) ζi(x, y, ∗) = z−i .

Assume that (i)–(v) hold. Then z−i is an integer and 0 6 z−i 6 a1.

Proof. (i)⇔ (ii) By Lemma 65.
(ii)⇒ (iii) Clear.
(iii) ⇒ (ii) The vectors Ex̂, Eŷ are linearly independent, so there exist r, s ∈ R such

that Ex−y = rEx̂+sEŷ. The vector Ex−y − rEx̂−sEŷ is equal to zero, so it is orthogonal
to Ex̂ and Eŷ. We have r = ri and s = si by Lemma 63.

(ii) ⇒ (iv) For z ∈ Γ(x) ∩ Γi−1(y) we take the inner product of Eẑ with each side of
Ex−y = riEx̂+ siEŷ; this yields

θ∗0 + ζi(x, y, z)θ∗1 +
(
ci − ζi(x, y, z)− 1

)
θ∗2 = riθ

∗
1 + siθ

∗
i−1.

Solve this equation for ζi(x, y, z) to find ζi(x, y, z) = z−i .
(iv)⇒ (v) By Definition 44.
(v)⇒ (i) Clear.
We have shown that (i)–(v) are equivalent. We now assume that (i)–(v) hold. By (iv)

and Lemma 39, the scalar z−i is an integer and 0 6 z−i 6 a1.

Lemma 69. Referring to Proposition 68, assume that the equivalent conditions (i)–(v)
hold. Then for all integers j (i 6 j 6 D) we have

θ∗j−1 = θ∗j
θ∗0θ
∗
1 − θ∗i−1θ

∗
i

θ∗20 − θ∗2i
+ θ∗j−i

θ∗0θ
∗
i−1 − θ∗1θ∗i
θ∗20 − θ∗2i

; (26)

θ∗j−i+1 = θ∗j−i
θ∗0θ
∗
1 − θ∗i−1θ

∗
i

θ∗20 − θ∗2i
+ θ∗j

θ∗0θ
∗
i−1 − θ∗1θ∗i
θ∗20 − θ∗2i

. (27)
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Proof. To obtain (26), pick w ∈ X such that ∂(x,w) = j and ∂(y, w) = j− i. Take the in-
ner product of Eŵ with each term in Ex−y = riEx̂+siEŷ. Evaluate the resulting equation
using Lemma 2(i) and (23). To obtain (27), repeat the calculation using ∂(x,w) = j − i
and ∂(y, w) = j.

Lemma 70. Assume that 2 6 i 6 D − 1. Then the following are equivalent:

(i) the equations (26), (27) hold for all integers j (i 6 j 6 D);

(ii) γ∗ = 0.

Proof. Use the forms in the table above Lemma 34.

Corollary 71. Assume that 2 6 i 6 D − 1 and γ∗ 6= 0. Then Ex−y , Ex̂, Eŷ are linearly
independent. Moreover,

ζi(x, y, ∗)− z−i
θ∗1 − θ∗2

> 0.

Proof. By Proposition 68 and Lemmas 69, 70.

12 When are Ex+
y , Ex̂, Eŷ linearly dependent

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. Pick 1 6 i 6 D− 1 and
x, y ∈ X at distance ∂(x, y) = i. In this section, our goal is to obtain a necessary and
sufficient condition for the vectors Ex+

y , Ex̂, Eŷ to be linearly dependent.
By Lemmas 4, 5 the vectors Ex̂, Eŷ are linearly independent.

Lemma 72. We have

|X|〈Ex+
y , Ex̂〉 = biθ

∗
1, |X|〈Ex+

y , Eŷ〉 = biθ
∗
i+1.

Proof. By Lemma 2(i) and the construction.

Lemma 73. For z ∈ Γ(x) ∩ Γi+1(y) we have

|X|〈Ex+
y , Eẑ〉 = θ∗0 +

(
a1 − ζi+1(z, y, x)

)
θ∗1 +

(
bi − 1− a1 + ζi+1(z, y, x)

)
θ∗2. (28)

Proof. By construction, |Γ(x) ∩ Γi+1(y)| = bi. Also by construction, any two distinct
vertices in Γ(x) ∩ Γi+1(y) are at distance 1 or 2 in Γ. By Lemma 50, the vertex z is
adjacent to exactly a1− ζi+1(z, y, x) vertices in Γ(x)∩Γi+1(y). The result follows in view
of Lemma 2(i).

Lemma 74. We have

|X|b−1
i ‖Ex+

y ‖2 = θ∗0 +
(
a1 − ζi+1(∗, y, x)

)
θ∗1 +

(
bi − 1− a1 + ζi+1(∗, y, x)

)
θ∗2.
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Proof. Compute the average of (28) over all z ∈ Γ(x) ∩ Γi+1(y). Evaluate the resulting
equation using Definitions 13, 51.

For notational convenience, define

Ri = bi
θ∗0θ
∗
1 − θ∗i+1θ

∗
i

θ∗20 − θ∗2i
, Si = bi

θ∗0θ
∗
i+1 − θ∗1θ∗i
θ∗20 − θ∗2i

. (29)

Lemma 75. For R, S ∈ R the following are equivalent:

(i) Ex+
y −REx̂− SEŷ is orthogonal to each of Ex̂, Eŷ;

(ii) both

biθ
∗
1 = Rθ∗0 + Sθ∗i , biθ

∗
i+1 = Rθ∗i + Sθ∗0.

(iii) R = Ri and S = Si.

Proof. Similar to the proof of Lemma 63.

Definition 76. Define the real number

z+
i+1 =

θ∗0 + a1θ
∗
1 + (bi − 1− a1)θ∗2 −Riθ

∗
1 − Siθ∗i+1

θ∗1 − θ∗2
.

Lemma 77. We have

‖Ex+
y −RiEx̂− SiEŷ‖2 = |X|−1bi(θ

∗
1 − θ∗2)

(
z+
i+1 − ζi+1(∗, y, x)

)
. (30)

Proof. By Lemmas 72, 74, 75 each side of (30) is equal to

〈Ex+
y −RiEx̂− SiEŷ, Ex+

y 〉.

Lemma 78. We have

z+
i+1 − ζi+1(∗, y, x)

θ∗1 − θ∗2
> 0. (31)

Proof. By Lemma 77.

Lemma 79. The following hold.

(i) Assume that θ∗1 > θ∗2. Then ζi+1(∗, y, x) 6 z+
i+1.

(ii) Assume that θ∗1 < θ∗2. Then ζi+1(∗, y, x) > z+
i+1.

Proof. By Lemma 78.

Proposition 80. The following are equivalent:

(i) equality holds in (31);
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(ii) Ex+
y = RiEx̂+ SiEŷ;

(iii) the vectors Ex+
y , Ex̂, Eŷ are linearly dependent;

(iv) ζi+1(z, y, x) = z+
i+1 for all z ∈ Γ(x) ∩ Γi+1(y);

(v) ζi+1(∗, y, x) = z+
i+1.

Assume that (i)–(v) hold. Then z+
i+1 is an integer and 0 6 z+

i+1 6 a1.

Proof. Similar to the proof of Proposition 68.

Lemma 81. Referring to Proposition 80, assume that the equivalent conditions (i)–(v)
hold. Then for all integers j (0 6 j 6 i) we have

θ∗j+1 = θ∗j
θ∗0θ
∗
1 − θ∗i+1θ

∗
i

θ∗20 − θ∗2i
+ θ∗i−j

θ∗0θ
∗
i+1 − θ∗1θ∗i
θ∗20 − θ∗2i

. (32)

Proof. Pick w ∈ X such that ∂(x,w) = j and ∂(y, w) = i − j. Take the inner product
of Eŵ with each term in Ex+

y = RiEx̂ + SiEŷ. Evaluate the resulting equation using
Lemma 2(i) and (29).

Recall the parameter γ∗ from (19).

Lemma 82. Assume that 2 6 i 6 D − 1. Then the following are equivalent:

(i) the equation (32) holds for all integers j (0 6 j 6 i);

(ii) γ∗ = 0.

Proof. Use the forms in the table above Lemma 34.

Corollary 83. Assume that 2 6 i 6 D − 1 and γ∗ 6= 0. Then Ex+
y , Ex̂, Eŷ are linearly

independent. Moreover,

z+
i+1 − ζi+1(∗, y, x)

θ∗1 − θ∗2
> 0.

Proof. By Proposition 80 and Lemmas 81, 82.

13 When are Ex−
y , Ex

+
y , Ex̂, Eŷ linearly dependent

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. Pick 2 6 i 6 D− 1 and
x, y ∈ X at distance ∂(x, y) = i. In this section, our goal is to obtain a necessary and
sufficient condition for the vectors Ex−y , Ex

+
y , Ex̂, Eŷ to be linearly dependent.

By Lemmas 4, 5 the vectors Ex̂, Eŷ are linearly independent. Recall the scalars ri, si
from (23). By Lemma 63 the vector Ex−y − riEx̂− siEŷ is orthogonal to each of Ex̂, Eŷ.
Recall the scalars Ri, Si from (29). By Lemma 75 the vector Ex+

y − RiEx̂ − SiEŷ is
orthogonal to each of Ex̂, Eŷ.
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Lemma 84. The following are equivalent:

(i) the vectors Ex−y , Ex
+
y , Ex̂, Eŷ are linearly dependent;

(ii) the vectors Ex−y − riEx̂− siEŷ and Ex+
y −RiEx̂− SiEŷ are linearly dependent.

Proof. By the comments above the lemma statement.

Next we compute the matrix of inner products for Ex−y − riEx̂ − siEŷ and Ex+
y −

RiEx̂−SiEŷ. We computed ‖Ex−y − riEx̂−siEŷ‖2 in Lemma 65. We computed ‖Ex+
y −

RiEx̂− SiEŷ‖2 in Lemma 77.

Lemma 85. We have

|X|〈Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ〉

= cibiθ
∗
2 − ribiθ∗1 − sibiθ∗i+1 = cibiθ

∗
2 −Riciθ

∗
1 − Siciθ∗i−1

= cibi

(
θ∗2 −

θ∗0θ
∗2
1 − θ∗1θ∗i−1θ

∗
i + θ∗0θ

∗
i−1θ

∗
i+1 − θ∗1θ∗i θ∗i+1

θ∗20 − θ∗2i

)
.

Proof. Use (23) and Lemma 63, or else (29) and Lemma 75.

Lemma 86. We have

θ∗2 −
θ∗0θ
∗2
1 − θ∗1θ∗i−1θ

∗
i + θ∗0θ

∗
i−1θ

∗
i+1 − θ∗1θ∗i θ∗i+1

θ∗20 − θ∗2i
= γ∗

θ∗i − θ∗1
θ∗i + θ∗0

. (33)

Proof. Use the forms in the table above Lemma 34.

By the Cauchy-Schwarz inequality,

‖Ex−y − riEx̂− siEŷ‖2‖Ex+
y −RiEx̂− SiEŷ‖2

> 〈Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ〉2.

(34)

Equality holds in (34) if and only if the following vectors are linearly dependent:

Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ.

Lemma 87. We have(
ζi(x, y, ∗)− z−i

)(
z+
i+1 − ζi+1(∗, y, x)

)
> cibi

(
γ∗

θ∗1 − θ∗2
θ∗i − θ∗1
θ∗i + θ∗0

)2

. (35)

Proof. Evaluate the terms in (34) using Lemmas 65, 77, 85, 86.

Proposition 88. The following (i)–(iii) are equivalent:

(i) equality holds in (35);

(ii) the vectors Ex−y , Ex
+
y , Ex̂, Eŷ are linearly dependent;
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(iii) the vectors Ex−y − riEx̂− siEŷ and Ex+
y −RiEx̂− SiEŷ are linearly dependent.

Proof. By Lemma 84 and the comments above Lemma 87.

Assume for the moment that the equivalent conditions (i)–(iii) hold in Proposition 88.
Our next goal is to find the dependency between the vectors in part (iii).

Until further notice, assume that γ∗ = 0. By Lemmas 85, 86 the following vectors are
orthogonal:

Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ. (36)

The inequality (35) becomes(
ζi(x, y, ∗)− z−i

)(
z+
i+1 − ζi+1(∗, y, x)

)
> 0.

Lemma 89. Assume that γ∗ = 0, and the equivalent conditions (i)–(iii) hold in Proposi-
tion 88. Then at least one of the vectors (36) is equal to zero.

Proof. The vectors (36) are orthogonal and linearly dependent.

Lemma 90. Assume that γ∗ = 0, and the equivalent conditions (i)–(iii) hold in Proposi-
tion 88. Then

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

Proof. By (11) and Lemma 89.

For the rest of this section, assume that γ∗ 6= 0. By Corollary 71 the vectors
Ex−y , Ex̂, Eŷ are linearly independent. By Corollary 83 the vectors Ex+

y , Ex̂, Eŷ are
linearly independent.

Lemma 91. Assume that γ∗ 6= 0, and the equivalent conditions (i)–(iii) hold in Proposi-
tion 88. Then

Ex−y − riEx̂− siEŷ = λi
(
Ex+

y −RiEx̂− SiEŷ
)
, (37)

where

λi
θ∗1 − θ∗2

=
ζi(x, y, ∗)− z−i

θ∗i − θ∗1
θ∗i + θ∗0
γ∗bi

,
λ−1
i

θ∗1 − θ∗2
=
z+
i+1 − ζi+1(∗, y, x)

θ∗i − θ∗1
θ∗i + θ∗0
γ∗ci

.

Proof. By Proposition 88(ii) there exists λi ∈ R such that (37) holds. To obtain λi, take
the inner product of each side of (37) with Ex−y −riEx̂−siEŷ or Ex+

y −RiEx̂−SiEŷ.

Lemma 92. Assume that γ∗ 6= 0, and the equivalent conditions (i)–(iii) hold in Proposi-
tion 88. Assume that the scalar λi from Lemma 91 satisfies

λi 6=
θ∗i − θ∗i+1

θ∗i−1 − θ∗i
.

Then

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.
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Proof. By (11) and (37).

Lemma 93. Assume that γ∗ 6= 0, and the equivalent conditions (i)–(iii) hold in Proposi-
tion 88.

(i) For all z ∈ Γ(x) ∩ Γi−1(y),

ζi(x, y, z) = ζi(x, y, ∗).

(ii) For all z ∈ Γ(x) ∩ Γi+1(y),

ζi+1(z, y, x) = ζi+1(∗, y, x).

Proof. (i) Take the inner product of Eẑ with each side of (37). Evaluate the result using
Lemmas 2, 61 and Definition 64.

(ii) Take the inner product of Eẑ with each side of (37). Evaluate the result using
Lemmas 2, 73 and Definition 76.

By a µ-graph for Γ we mean the subgraph induced on Γ(u)∩Γ(v), where u, v ∈ X are
at distance ∂(u, v) = 2.

Corollary 94. Assume that γ∗ 6= 0 and the set {Ex̂|x ∈ X} is Norton-balanced. Then
every µ-graph of Γ is regular.

Proof. Set i = 2 in Lemma 93(i), and interpret the result using Lemma 46.

14 When Γ is reinforced

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. Throughout this section,
we assume that Γ is reinforced in the sense of Definition 57. Under this assumption, we
will describe the main results of the previous three sections. We will treat separately the
cases γ∗ = 0 and γ∗ 6= 0.

Throughout this section, fix 2 6 i 6 D − 1 and x, y ∈ X at distance ∂(x, y) = i.
Recall the scalars ri, si from (23). By Lemma 63 the vector Ex−y − riEx̂ − siEŷ is
orthogonal to each of Ex̂, Eŷ. Recall the scalars Ri, Si from (29). By Lemma 75 the
vector Ex+

y −RiEx̂− SiEŷ is orthogonal to each of Ex̂, Eŷ.
First assume that γ∗ = 0. The following vectors are orthogonal:

Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ.

We have

zi − z−i
θ∗1 − θ∗2

> 0,
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with equality iff Ex−y = riEx̂ + siEŷ iff Ex−y , Ex̂, Eŷ are linearly dependent. We also
have

z+
i+1 − zi+1

θ∗1 − θ∗2
> 0,

with equality iff Ex+
y = RiEx̂+ SiEŷ iff Ex+

y , Ex̂, Eŷ are linearly dependent. We have

(zi − z−i )(z+
i+1 − zi+1) > 0, (38)

with equality iff Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent iff the following are linearly

dependent:

Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ. (39)

In this case, at least one of (39) is zero and

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ}.

For the rest of this section, assume that γ∗ 6= 0. We have

zi − z−i
θ∗1 − θ∗2

> 0,
z+
i+1 − zi+1

θ∗1 − θ∗2
> 0.

The vectors Ex−y , Ex̂, Eŷ are linearly independent and the vectors Ex+
y , Ex̂, Eŷ are

linearly independent. We have(
zi − z−i

)(
z+
i+1 − zi+1

)
> cibi

(
γ∗

θ∗1 − θ∗2
θ∗i − θ∗1
θ∗i + θ∗0

)2

, (40)

with equality iff Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent iff the following are linearly

dependent:

Ex−y − riEx̂− siEŷ, Ex+
y −RiEx̂− SiEŷ.

In this case

Ex−y − riEx̂− siEŷ = λi
(
Ex+

y −RiEx̂− SiEŷ
)
, (41)

where

λi
θ∗1 − θ∗2

=
zi − z−i
θ∗i − θ∗1

θ∗i + θ∗0
γ∗bi

,
λ−1
i

θ∗1 − θ∗2
=
z+
i+1 − zi+1

θ∗i − θ∗1
θ∗i + θ∗0
γ∗ci

. (42)

Also in this case, we have

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ},

provided that

λi 6=
θ∗i − θ∗i+1

θ∗i−1 − θ∗i
.
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15 The polynomials Φi(λ)

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. In this section, we
introduce some polynomials Φi(λ) and use them to determine when the set {Ex̂|x ∈ X}
is Norton-balanced. Recall the scalars αi, βi from Lemma 41.

Definition 95. Let λ denote an indeterminate. For 2 6 i 6 D − 1 define a polynomial

Φi(λ) = uiλ
2 + viλ+ wi,

where

ui = −αiαi+1,

vi = αi
(
z+
i+1 − a1βi+1

)
− αi+1

(
a1βi − z−i

)
,

wi =
(
a1βi − z−i

)(
z+
i+1 − a1βi+1

)
− cibi

(
γ∗

θ∗1 − θ∗2
θ∗i − θ∗1
θ∗i + θ∗0

)2

.

The next result indicates why the polynomials Φi(λ) are of interest.

Lemma 96. For 2 6 i 6 D − 1,

Φi(z2) =
(
zi − z−i

)(
z+
i+1 − zi+1

)
− cibi

(
γ∗

θ∗1 − θ∗2
θ∗i − θ∗1
θ∗i + θ∗0

)2

. (43)

Proof. By Lemma 41 we have

zi = z2αi + a1βi, zi+1 = z2αi+1 + a1βi+1.

Using these equations we eliminate zi, zi+1 from the right-hand side of (43), and evaluate
the result using Definition 95.

Proposition 97. Assume that Γ is reinforced. Then for 2 6 i 6 D − 1,

Φi(z2) > 0. (44)

Moreover, the following are equivalent:

(i) equality holds in (44);

(ii) for all x, y ∈ X at distance ∂(x, y) = i, the vectors Ex−y , Ex+
y , Ex̂, Eŷ are linearly

dependent;

(iii) there exists x, y ∈ X at distance ∂(x, y) = i such that Ex−y , Ex+
y , Ex̂, Eŷ are

linearly dependent.
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Proof. First assume that γ∗ = 0. The inequality (44) follows from (38) and Lemma 96.
The equivalence of (i)–(iii) follows from the discussion below (38). Next assume that
γ∗ 6= 0. The inequality (44) follows from (40) and Lemma 96. The equivalence of (i)–(iii)
follows from the discussion below (40).

Corollary 98. Assume that Γ is reinforced. Then the following are equivalent:

(i) for all x, y ∈ X the vectors Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent;

(ii) Φi(z2) = 0 for 2 6 i 6 D − 1.

Proof. By Proposition 97(i),(ii) and since Ex−y , Ex+
y , Ex̂, Eŷ are linearly dependent for

all x, y ∈ X with ∂(x, y) ∈ {0, 1, D}.

Next, we describe the Norton-balanced condition in terms of the polynomials Φi(λ),
under the assumption that Γ is reinforced. We will treat separately the cases γ∗ = 0 and
γ∗ 6= 0.

Proposition 99. Assume that γ∗ = 0 and Γ is reinforced. Then the following are equiv-
alent:

(i) the set {Ex̂|x ∈ X} is Norton-balanced;

(ii) Φi(z2) = 0 for 2 6 i 6 D − 1.

Proof. (i)⇒ (ii) By Lemma 32 and Corollary 98.
(ii)⇒ (i) By Corollary 98 and the comment below (39).

Proposition 100. Assume that γ∗ 6= 0 and Γ is reinforced. Then the following are
equivalent:

(i) the set {Ex̂|x ∈ X} is Norton-balanced;

(ii) for 2 6 i 6 D − 1 both

Φi(z2) = 0, λi 6=
θ∗i − θ∗i+1

θ∗i−1 − θ∗i
, (45)

where λi is from (41).

Proof. (i) ⇒ (ii) We have Φi(z2) = 0 by Lemma 32 and Corollary 98. To verify the
inequality on the right in (45), we assume that λi = (θ∗i − θ∗i+1)/(θ∗i−1 − θ∗i ) and get a
contradiction. Pick x, y ∈ X at distance ∂(x, y) = i. Combining (11), (41) we find
Ex̂ ? Eŷ ∈ Span{Ex̂, Eŷ}. By Lemma 23,

Ex−y , Ex
+
y ∈ Span{Ex̂, Eŷ, Ex̂ ? Eŷ} = Span{Ex̂, Eŷ}.

This contradicts Corollary 71 and Corollary 83. Therefore λi 6= (θ∗i − θ∗i+1)/(θ∗i−1 − θ∗i ).
(ii)⇒ (i) By Lemma 23, Corollary 98, and the comment below (42).
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Motivated by Propositions 99 and 100, we next consider how the polynomial Φi(λ)
depends on i for 2 6 i 6 D − 1.

Lemma 101. If β 6= −2 then ui 6= 0 for 2 6 i 6 D − 1. If β = −2 then ui = 0 for
2 6 i 6 D − 1.

Proof. By Lemma 43 and Definition 95, along with the fact that {θ∗j}Dj=0 are mutually
distinct.

Lemma 102. The rank of the following matrix is at most 2:u2 u3 u4 · · · uD−1

v2 v3 v4 · · · vD−1

w2 w3 w4 · · · wD−1

 .

Proof. It suffices to show that for 2 6 h < i < j 6 D − 1,

det

uh ui uj
vh vi vj
wh wi wj

 = 0. (46)

First assume that β = −2. Then (46) holds since the top row is zero by Lemma 101.
Next assume that β 6= −2. To verify (46) in this case, we refer to the table above Remark
35. We verify (46) for each subcase such that β 6= −2. For each of these subcases, the
verification of (46) is done by evaluating the matrix entries using Definition 95 and the
data in [45, Section 20].

For 2 6 i 6 D− 1, by a root of Φi(λ) we mean a scalar ξ ∈ C such that Φi(ξ) = 0. As
we investigate these roots, we will treat separately the cases β 6= −2 and β = −2.

Lemma 103. Assume that β 6= −2. Then for 2 6 i, j 6 D − 1 the following hold.

(i) Assume that Φi(λ), Φj(λ) have no roots in common. Then

(uiwj − ujwi)2 6= (viwj − vjwi)(uivj − ujvi).

(ii) Assume that Φi(λ), Φj(λ) have a root in common, and Φi(λ), Φj(λ) are linearly
independent. Then

(uiwj − ujwi)2 = (viwj − vjwi)(uivj − ujvi)

and uivj − ujvi 6= 0. The common root is

wiuj − wjui
uivj − ujvi

.

(iii) Assume that Φi(λ), Φj(λ) are linearly dependent. Then both

uivj − ujvi = 0, uiwj − ujwi = 0.
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Proof. Write

Φi(λ) = ui(λ− r)(λ− s), Φj(λ) = uj(λ−R)(λ− S).

We have

vi = −ui(r + s), wi = uirs, vj = −uj(R + S), wj = ujRS.

We obtain

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi) = u2
iu

2
j(r −R)(r − S)(s−R)(s− S)

and

uivj − ujvi = uiuj(r + s−R− S), wiuj − wjui = uiuj(rs−RS).

Using these comments we routinely obtain the result.

Lemma 104. Assume that β 6= −2. Then for 2 6 h < i < j 6 D − 1 the following are
equivalent:

(i) any two of Φh(λ),Φi(λ),Φj(λ) have a root in common;

(ii) there exists ξ ∈ C such that Φh(ξ) = Φi(ξ) = Φj(ξ) = 0.

Proof. (i)⇒ (ii) We assume that (ii) is false, and get a contradiction. There exist mutually
distinct r, s, t ∈ C such that

Φh(λ) = uh(λ− r)(λ− s), Φi(λ) = ui(λ− s)(λ− t), Φj(λ) = uj(λ− t)(λ− r).

Using these forms we obtain

det

uh ui uj
vh vi vj
wh wi wj

 = uhuiuj(r − s)(s− t)(t− r) 6= 0.

This contradicts Lemma 102.
(ii)⇒ (i) Clear.

Proposition 105. Assume that β 6= −2. Then the following are equivalent:

(i) there exists ξ ∈ C such that Φi(ξ) = 0 for 2 6 i 6 D − 1;

(ii) for 2 6 i, j 6 D − 1,

(uiwj − ujwi)2 = (viwj − vjwi)(uivj − ujvi).

Proof. (i)⇒ (ii) By Lemma 103.
(ii)⇒ (i) By Lemmas 103, 104.
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Next, we examine condition (ii) of Proposition 105. Under the assumption that β 6=
−2, we compute the scalars

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi) (2 6 i, j 6 D − 1).

Recall the subcases listed in the table above Remark 35. For each subcase such that
β 6= −2, we will do the above computation using the data in [45, Section 20].

Proposition 106. Assume the given Q-polynomial structure has q-Racah type. Then for
2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to

a∗1(r2
1 − s)(r2

2 − s)(r2
3 − s)

times

s+ s∗ − q−1r1 − q−1r2 + r3 + r1r2 − qr2r3 − qr3r1

times

s+ s∗ − q−1r2 − q−1r3 + r1 + r2r3 − qr3r1 − qr1r2

times

s+ s∗ − q−1r3 − q−1r1 + r2 + r3r1 − qr1r2 − qr2r3

times

u2
iu

2
j(θ
∗
i − θ∗j )2h4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2

1− q4s

(1− q2s)3

(1− q3s∗)4

(1− q4s∗)8

q10(q − 1)7

s
,

where r3 = q−D−1.

Proof. Use the data in [45, Example 20.1].

Remark 107. Referring to Proposition 106,

s+ s∗ − q−1r1 − q−1r2 + r3 + r1r2 − qr2r3 − qr3r1 =
a∗D(θ0 − θ1)(θD−1 − θD)

hh∗(q − 1)2(θ0 − θD)
.

Proposition 108. Assume the given Q-polynomial structure has q-Hahn type. Then for
2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)
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is equal to

−a∗1r2r2
3(s∗ − q−1r + r3 − qrr3)(s∗ − q−1r3 + r − qrr3)(s∗ − q−1r3 − q−1r + rr3)

times

u2
iu

2
j(θ
∗
i − θ∗j )2h4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2

(1− q3s∗)4q10(q − 1)7

(1− q4s∗)8
,

where r3 = q−D−1.

Proof. Use the data in [45, Example 20.2].

Remark 109. With reference to Proposition 108,

s∗ − q−1r + r3 − qrr3 =
a∗D(θ0 − θ1)(θD−1 − θD)

hh∗(q − 1)2(θ0 − θD)
.

Proposition 110. Assume the given Q-polynomial structure has dual q-Hahn type. Then
for 2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to

−a∗1(r2 − s)(r2
3 − s)(s− q−1r + r3 − qrr3)(s− q−1r3 + r − qrr3)(s− q−1r3 − q−1r + rr3)

times

u2
iu

2
j(θ
∗
i − θ∗j )2h4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2

(1− q4s)q10(q − 1)7

(1− q2s)3
,

where r3 = q−D−1.

Proof. Use the data in [45, Example 20.3].

Remark 111. With reference to Proposition 110,

s− q−1r + r3 − qrr3 =
a∗D(θ0 − θ1)(θD−1 − θD)

hh∗(q − 1)2(θ0 − θD)
.

Proposition 112. Assume the given Q-polynomial structure has q-Krawtchouk type.
Then for 2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to 0.

Proof. Use the data in [45, Example 20.5].
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Proposition 113. Assume the given Q-polynomial structure has affine q-Krawtchouk
type. Then for 2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to

−a∗1r2r2
3(−q−1r + r3 − qrr3)(−q−1r3 + r − qrr3)(−q−1r3 − q−1r + rr3)

times

u2
iu

2
j(θ
∗
i − θ∗j )2h4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2
q10(q − 1)7,

where r3 = q−D−1.

Proof. Use the data in [45, Example 20.6].

Remark 114. Referring to Proposition 113,

−q−1r + r3 − qrr3 =
a∗D(θ0 − θ1)(θD−1 − θD)

hh∗(q − 1)2(θ0 − θD)
.

Proposition 115. Assume the given Q-polynomial structure has dual q-Krawtchouk type.
Then for 2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to

a∗1s
2(r2

3 − s)(s+ r3)(s− q−1r3)(s− q−1r3)

times

u2
iu

2
j(θ
∗
i − θ∗j )2h4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2

1− q4s

(1− q2s)3

q10(q − 1)7

s
,

where r3 = q−D−1.

Proof. Use the data in [45, Example 20.7].

Remark 116. Referring to Proposition 115,

s+ r3 =
a∗D(θ0 − θ1)(θD−1 − θD)

hh∗(q − 1)2(θ0 − θD)
.
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Proposition 117. Assume the given Q-polynomial structure has Racah type. Then for
2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to

a∗1(2r1 − s)(2r2 − s)(2r3 − s)

times

(2r1r2 − 2r3 − 2− ss∗)(2r2r3 − 2r1 − 2− ss∗)(2r3r1 − 2r2 − 2− ss∗)

times

u2
iu

2
j(θ
∗
i − θ∗j )2h4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2

s+ 4

(s+ 2)3

(s∗ + 3)4

(s∗ + 4)8
,

where r3 = −D − 1.

Proof. Use the data in [45, Example 20.8].

Remark 118. Referring to Proposition 117,

2r1r2 − 2r3 − 2− ss∗ =
a∗D(θ0 − θ1)(θD−1 − θD)

hh∗(θ0 − θD)
.

Proposition 119. Assume the given Q-polynomial structure has Hahn type. Then for
2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to

−a∗1(2r − s∗)(2r3 − s∗)

times

u2
iu

2
j(θ
∗
i − θ∗j )2s4h∗

(θ∗i + θ∗0)2(θ∗j + θ∗0)2

(s∗ + 2)(s∗ + 3)4

(s∗ + 4)8
,

where r3 = −D − 1.

Proof. Use the data in [45, Example 20.9].

Remark 120. Referring to Proposition 119,

2r − s∗ =
a∗D(θ0 − θ1)(θD−1 − θD)

sh∗(θ0 − θD)
.
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Proposition 121. Assume the given Q-polynomial structure has dual Hahn type. Then
for 2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to zero.

Proof. Use the data in [45, Example 20.10].

Proposition 122. Assume the given Q-polynomial structure has Krawtchouk type. Then
for 2 6 i, j 6 D − 1 the scalar

(uiwj − ujwi)2 − (viwj − vjwi)(uivj − ujvi)

is equal to zero.

Proof. Use the data in [45, Example 20.11].

We have been discussing the case β 6= −2. Next, we discuss the case β = −2. This
case is called Bannai/Ito type.

Assume that β = −2. Pick 2 6 i 6 D − 1 and consider the polynomial Φi(λ). We
have ui = 0 by Lemma 101, so Φi(λ) = viλ+ wi. We will show that wi = 0.

Proposition 123. Assume that β = −2. Then wi = 0 and Φi(0) = 0 for 2 6 i 6 D − 1.

Proof. We invoke the classification [37, Theorem 2]. There are three solutions for Γ:
the Odd graph OD+1; the Hamming graph H(D, 2) with D even; and the folded cube
H̃(2D + 1, 2). The graphs OD+1 and H̃(2D + 1, 2) are almost bipartite, and H(D, 2) is
bipartite. For each solution Γ the set {Ex̂|x ∈ X} is Norton-balanced by Proposition
27. Each solution Γ is distance-transitive, and hence reinforced by Lemma 58. By these
comments and Propositions 99, 100 we have Φi(z2) = 0 for 2 6 i 6 D − 1. Each solution
Γ has a1 = 0, so Γ is kite-free. Consequently z2 = 0, so Φi(0) = 0 for 2 6 i 6 D − 1.
Observe that wi = Φi(0) = 0 for 2 6 i 6 D − 1.

A detailed discussion of OD+1, H(D, 2), H̃(2D+ 1, 2) can be found in Sections 18, 23,
25 respectively.

16 The DC condition

We continue to discuss theQ-polynomial distance-regular graph Γ = (X,R) with diameter
D > 3. Let E denote a Q-polynomial primitive idempotent of Γ.

Definition 124. We say that E is a dependency candidate (or DC) whenever there exists
ξ ∈ C such that Φi(ξ) = 0 for 2 6 i 6 D − 1.

Remark 125. Referring to Definition 124, E being DC is a condition on the intersection
numbers of Γ.
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Lemma 126. Assume that Γ is reinforced. Assume that for all x, y ∈ X the vectors Ex−y ,
Ex+

y , Ex̂, Eŷ are linearly dependent. Then E is DC.

Proof. By Corollary 98 and Definition 124.

Lemma 127. Assume that Γ is reinforced. Assume that the set {Ex̂|x ∈ X} is Norton-
balanced. Then E is DC.

Proof. By Propositions 99, 100 and Definition 124.

We now give our main result about DC. In this result we refer to the data in [45,
Section 20].

Theorem 128. For D > 4 the following (i), (ii) hold.

(i) Assume that the type of E is included in the table below. Then E is DC iff at least
one of the listed scalars is zero.

type of E E is DC iff at least one of these scalars is zero
q-Racah a∗1, r2

1 − s, r2
2 − s, r2

3 − s,
s+ s∗ − q−1r1 − q−1r2 + r3 + r1r2 − qr2r3 − qr3r1,
s+ s∗ − q−1r2 − q−1r3 + r1 + r2r3 − qr3r1 − qr1r2,
s+ s∗ − q−1r3 − q−1r1 + r2 + r3r1 − qr1r2 − qr2r3

q-Hahn a∗1, s∗ − q−1r + r3 − qrr3,
s∗ − q−1r3 + r − qrr3, s∗ − q−1r3 − q−1r + rr3

dual q-Hahn a∗1, r2 − s, r2
3 − s, s− q−1r + r3 − qrr3,

s− q−1r3 + r − qrr3, s− q−1r3 − q−1r + rr3

affine q-Krawtchouk a∗1, −q−1r + r3 − qrr3,
−q−1r3 + r − qrr3, −q−1r3 − q−1r + rr3

dual q-Krawtchouk a∗1, r2
3 − s, s+ r3, s− q−1r3

Racah a∗1, 2r1 − s, 2r2 − s, 2r3 − s,
2r1r2 − 2r3 − 2− ss∗, 2r2r3 − 2r1 − 2− ss∗,

2r3r1 − 2r2 − 2− ss∗
Hahn a∗1, 2r − s∗, 2r3 − s∗

(ii) Assume that the type of E is q-Krawtchouk or dual Hahn or Krawtchouk or Ban-
nai/Ito. Then E is DC.

Proof. (i) For Propositions 106, 108, 110, 113, 115, 117, 119, examine the factorization
in the proposition statement. For each factorization, consider which factors could be
zero. Some of the factors are nonzero because of the inequalities in [43, Section 5]. The
remaining factors are listed in the above table.

(ii) By Propositions 112, 121, 122, 123.
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The book [2, Chapter 6.4] gives a list of the known infinite families of Q-polynomial
distance-regular graphs with unbounded diameter. For each listed graph, everyQ-polynomial
structure is described. In Sections 17–29, we will examine these Q-polynomial structures.
For each listed graph Γ = (X,R) and each Q-polynomial primitive idempotent E of Γ, we
will determine if the set {Ex̂|x ∈ X} is Norton-balanced or not. We will also determine
if E is DC or not. Considerable supporting data will be given, using the notation of [45,
Section 20]. We obtained this supporting data using Sections 11–16; the computations
are routine and omitted. For the rest of the paper, the integer D is assumed to be at
least 3.

17 Example: the Johnson graph

Example 129. (See [2, Chapter 6.4], [40, Example 6.1(1)].) The Johnson graph J(N,D)
(N > 2D) has vertex set X consisting of the subsets of {1, 2, . . . , N} that have cardinality
D. Vertices x, y ∈ X are adjacent whenever |x ∩ y| = D − 1. The graph J(N,D) is
distance-regular with diameter D and intersection numbers

ci = i2, bi = (D − i)(N −D − i) (0 6 i 6 D).

The graph J(2D,D) is an antipodal 2-cover.

Example 130. The graph J(N,D) has a Q-polynomial structure such that

θi = (D − i)(N −D − i)− i (0 6 i 6 D),

θ∗i = N − 1− iN(N − 1)

D(N −D)
(0 6 i 6 D).

This Q-polynomial structure has dual Hahn type with

r = D −N − 1, s = −N − 2, h = 1, s∗ =
N(1−N)

D(N −D)
.

This structure is DC with γ∗ = 0.
For 2 6 i 6 D,

αi = i− 1, βi = 0,

ri = i(i− 1), si = i, z−i = 2(i− 1).

For 1 6 i 6 D − 1,

Ri =
(D − i)(N −D − i)(2D2 − 2DN + iN +N)

iN − 2DN + 2D2
,

Si =
N(D − i)(N −D − i)
iN − 2DN + 2D2

,

z+
i+1 =

N(N − 2i)i

2DN − 2D2 − iN
.
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For 2 6 i 6 D − 1,

ui = −i(i− 1), vi =
i(i− 1)

(
2N(2i−N) + (N − 2D)2

)
iN − 2DN + 2D2

,

wi =
2i(i− 1)N(N − 2i)

iN − 2DN + 2D2
,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 2, ξi =
N(2i−N)

iN − 2DN + 2D2
.

If N = 2D then ξi = 2.

Lemma 131. For J(N,D) the kite function ζi is constant for 2 6 i 6 D. Moreover
zi = 2(i− 1) for 2 6 i 6 D.

Proof. By combinatorial counting.

Lemma 132. We refer to Example 130 and write E = E1. Pick distinct x, y ∈ X and
write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = i(i− 1)Ex̂+ iEŷ. (47)

For 1 6 i 6 D − 1 and N = 2D,

Ex+
y = (D − i)(D − i− 1)Ex̂+ (i−D)Eŷ. (48)

In any case, the set {Ex̂|x ∈ X} is Norton-balanced.

Proof. First assume that N > 2D. Then Γ is not an antipodal 2-cover. To get (47), use
Proposition 68 and z−i = zi. Next assume that N = 2D. Then Γ is an antipodal 2-cover.
To get (47) for 1 6 i 6 D − 1, use Proposition 68 and z−i = zi. To get (47) for i = D,
use Ex̂+ Eŷ = 0 and x−y = Ax̂ and θ1 = D(D − 2). To get (48), use Proposition 80 and
z+
i+1 = zi+1. Next assume that N > 2D. It follows from Lemma 24 and (47) that the set
{Ex̂|x ∈ X} is Norton-balanced.

18 Example: the Odd graph

Example 133. (See [2, Chapter 6.4], [40, Example 6.1(2)].) The Odd graph OD+1 has
vertex set X consisting of the D-element subsets of the set {1, 2, . . . , 2D + 1}. Vertices
x, y ∈ X are adjacent whenever they are disjoint. The graph OD+1 is distance-regular
with diameter D and intersection numbers

ci =
2i+ 1− (−1)i

4
(1 6 i 6 D),

bi = D +
3− 2i+ (−1)i

4
(0 6 i 6 D − 1).

The graph OD+1 is almost bipartite.
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Example 134. The graph OD+1 has a Q-polynomial structure such that

θi = (−1)i(D − i+ 1) (0 6 i 6 D),

θ∗i =
(−1)i(4D2 − 4iD + 4D − 2i+ 1)− 1

2(D + 1)
(0 6 i 6 D).

This Q-polynomial structure has Bannai/Ito type with

r1 = −D − 1, r2 = −2D − 3, s = 2D + 3,

s∗ = 2D + 2, h = −1/2, h∗ = − 2D + 1

2(D + 1)
.

This structure is DC with

γ∗ = − 2

D + 1
6= 0.

For 2 6 i 6 D,

αi =
D − 1

2

(−1)i + 1

D − i+ 1
, βi =

3− 2i+ (−1)i

4(D − i+ 1)
,

ri =
1

2

2i+ 1− (−1)i

(−1)i(2D − 2i+ 1)− 2D − 1

× 8iD2 − 4i2D − 8D2 + 12iD − 2i2 − 8D + 4i− 1 + (−1)i

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
,

si = D
2i+ 1− (−1)i

(−1)i(2D − 2i+ 1)− 2D − 1

× (−1)i(4D − 2i+ 3) + 1

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
,

z−i = − 1

D − 1

1

(−1)i(2D − 2i+ 1)− 2D − 1

×
(−1)i

(
(2D − i)2 + 4D − 3i+ 1

)
+ (2D − i)(4iD − 2i2 − 2D + 5i− 2) + i− 1

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
.

For 1 6 i 6 D − 1,

Ri =
1

2

4D − 2i+ 3 + (−1)i

(−1)i(2D − 2i+ 1)− 2D − 1

× 8iD2 − 4i2D + 4iD − 2i2 + 1− (−1)i

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
,

Si = D
1− (−1)i(2i+ 1)

(−1)i(2D − 2i+ 1)− 2D − 1

× 4D − 2i+ 3 + (−1)i

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
,
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z+
i+1 =

1

D − 1

1

(−1)i(2D − 2i+ 1)− 2D − 1

× (−1)i(2D − i2 − i+ 1) + 4i2D − 2i3 + i2 − 2D + i− 1

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
.

For 2 6 i 6 D − 1,

ui = 0,

vi = − (−1)i

2(D − i)(D − i+ 1)

× (−1)i(2D2 − 6iD + 3i2 + 3D − 3i+ 1) + (2iD − i2 −D + i− 1)(2D − 2i+ 1)

(−1)i(4D2 − 4iD + 4D − 2i+ 1) + 4D2 + 4D − 1
,

wi = 0, Φi(λ) = vi(λ− ξ), ξ = 0.

Lemma 135. For OD+1 the kite function ζi is constant for 2 6 i 6 D. Moreover zi = 0
for 2 6 i 6 D.

Proof. The graph OD+1 is almost bipartite, and hence kite-free.

Lemma 136. We refer to Example 134 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. For 0 6 i 6 D − 1 and x, y ∈ X at distance ∂(x, y) = i,

0 = Ex−y + Ex+
y +DEx̂.

Proof. The graph OD+1 is almost bipartite and θ1 = −D.

19 Example: the Grassmann graph

Example 137. (See [2, Chapter 6.4], [40, Example 6.1(5)].) Let GF (q) denote a finite
field with cardinality q. Fix an integer N > 2D, and let U denote a vector space over
GF (q) that has dimension N . The Grassmann graph Jq(N,D) has vertex set X consisting
of the subspaces of U that have dimension D. Vertices x, y ∈ X are adjacent whenever
x∩ y has dimension D− 1. The graph Jq(N,D) is distance-regular with diameter D and
intersection numbers

ci =

(
qi − 1

q − 1

)2

, bi = q
qD − qi

q − 1

qN−D − qi

q − 1
(0 6 i 6 D).

Example 138. The graph Jq(N,D) has a Q-polynomial structure such that

θi = q1−i q
D − qi

q − 1

qN−D − qi

q − 1
− qi − 1

q − 1
(0 6 i 6 D),

θ∗i =
qN − q
q − 1

− q−i q
N − q
qD − 1

qN − 1

qN−D − 1

qi − 1

q − 1
(0 6 i 6 D).
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This Q-polynomial structure has dual q-Hahn type with

r = qD−N−1, s = q−N−2, h =
qN+1

(q − 1)2
,

h∗ =
q(qN − 1)(qN−1 − 1)

(q − 1)(qD − 1)(qN−D − 1)
.

Q-polynomial structure is DC if and only if N = 2D (provided that D > 4). Assume that
N = 2D. We have

γ∗ =
2(q − 1)(q2D−1 − 1)

qD − 1
6= 0.

For 2 6 i 6 D,

αi =
qi−1 − 1

q − 1
, βi = 0,

ri =
qi − 1

q − 1

qi−1 − 1

q − 1

qi(qD − 2q − 1) + qD+1 + q

qi(qD − 3) + qD + 1
,

si =
qi−1(qi − 1)

q − 1

qD+1 + qD + 1− q − 2qi

qi(qD − 3) + qD + 1
,

z−i = 2q
qi−1 − 1

q − 1

q2i − qi(q + 3) + qD+1 + qD + 1

qi(qD − 3) + qD + 1
.

For 1 6 i 6 D − 1,

Ri =

(
qD − qi

q − 1

)2
qi(qD − 2q − 1) + qD + 1

qi(qD − 3) + qD + 1
,

Si = − 2qi

q − 1

(qD − qi)2

qi(qD − 3) + qD + 1
,

z+
i+1 = 2q

qi − 1

q − 1

1 + 2qi(qD − 1)− q2i

qi(qD − 3) + qD + 1
.

For 2 6 i 6 D − 1,

ui = −q
i − 1

q − 1

qi−1 − 1

q − 1
,

vi = 2q
qi − 1

q − 1

qi−1 − 1

q − 1

qi(2qD − q − 5) + qD+1 + qD + 2

qi(qD − 3) + qD + 1
,

wi = −4q2 q
i − 1

q − 1

qi−1 − 1

q − 1

qi(qD − q − 2) + qD+1 + 1

qi(qD − 3) + qD + 1
,

Φi(λ) = ui(λ− ξ)(λ− ξi) ξ = 2q, ξi = 2q
qi(qD − q − 2) + qD+1 + 1

qi(qD − 3) + qD + 1
.
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Lemma 139. For Jq(N,D) the kite function ζi is constant for 2 6 i 6 D. Moreover

zi = 2q
qi−1 − 1

q − 1
(2 6 i 6 D).

Proof. By combinatorial counting.

Lemma 140. We refer to Example 138 with N = 2D. Write E = E1. Then the set
{Ex̂|x ∈ X} is Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For
2 6 i 6 D − 1,

0 = Ex−y +
qi−1 − 1

qD − qi
Ex+

y −
qi−1 − 1

q − 1

qD − q
q − 1

Ex̂− qi−1Eŷ. (49)

For i = D,

0 = Ex−y − q
(
qD−1 − 1

q − 1

)2

Ex̂− qD−1Eŷ. (50)

Proof. To get the first assertion, we use Proposition 100(ii). Pick an integer i (2 6 i 6
D − 1). We verify the conditions in (45). We have z2 = ξ, so Φi(z2) = 0. We have

λi = −q
i−1 − 1

qD − qi
,

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
= q−1.

Therefore

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

qD−1 − 1

qD − qi
6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced. The
linear dependence (49) is obtained using (41), (42). To obtain (50), use Proposition 68
and z−D = zD.

20 Example: the dual polar graphs

Example 141. (See [2, Chapter 6.4], [40, Example 6.1(6)].) Let U denote a finite vector
space with one of the following nondegenerate forms:

name dim(U) field form e
BD(pn) 2D + 1 GF (pn) quadratic 0
CD(pn) 2D GF (pn) symplectic 0
DD(pn) 2D GF (pn) quadratic −1

(Witt index D)
2DD+1(pn) 2D + 2 GF (pn) quadratic 1

(Witt index D)
2A2D(pn) 2D + 1 GF (p2n) Hermitean 1/2

2A2D−1(pn) 2D GF (p2n) Hermitean −1/2
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A subspace of U is called isotropic whenever the form vanishes completely on that sub-
space. In each of the above cases, the dimension of any maximal isotropic subspace is
D. The corresponding dual polar graph Γ has vertex set X consisting of the maximal
isotropic subspaces of U . Vertices x, y ∈ X are adjacent whenever x ∩ y has dimension
D − 1. The graph Γ is distance-regular with diameter D and intersection numbers

ci =
qi − 1

q − 1
, bi = qe+1 q

D − qi

q − 1
(0 6 i 6 D),

where q = pn, pn, pn, pn, p2n, p2n. The dual polar graph DD(q) is bipartite.

Example 142. The dual polar graph Γ has a Q-polynomial structure such that

θi = qe+1 q
D − 1

q − 1
− (qi − 1)(qD+e+1−i + 1)

q − 1
(0 6 i 6 D),

θ∗i =
qD+e + q

qe + 1

q−i(qD+e + 1)− qe − 1

q − 1
(0 6 i 6 D).

This Q-polynomial structure has dual q-Krawtchouk type with

s = −q−D−e−2, h =
qD+e+1

q − 1
, h∗ =

(qD+e + 1)(qD+e + q)

(q − 1)(qe + 1)
.

This Q-polynomial structure is DC if and only if Γ = DD(q) (provided that D > 4). For
Γ = DD(q) we have the following.

γ∗ = (q − 1)(qD−2 + 1) 6= 0.

For 2 6 i 6 D,

αi =
qi−1 − 1

q − 1
, βi = 0,

ri =
qi−1 − 1

q − 1

qi(qD − q2 − q − 1) + qD+1 + q2

qi(qD − q − 2) + qD + q
,

si =
(q + 1)qi−1(qD − qi)

qi(qD − q − 2) + qD + q
,

z−i = − (q + 1)(qi − q)(qD − qi)
qi(qD − q − 2) + qD + q

.

For 1 6 i 6 D − 1,

Ri =
1

q

qD − qi

q − 1

qi(qD − q2 − q − 1) + qD + q

qi(qD − q − 2) + qD + q
,

Si = − (q + 1)qi−1(qD − qi)
qi(qD − q − 2) + qD + q

,

z+
i+1 =

(q + 1)(qi − 1)(qi − q)
qi(qD − q − 2) + qD + q

.
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For 2 6 i 6 D − 1,

ui = −q
i − 1

q − 1

qi−1 − 1

q − 1
,

vi =
(q + 1)(qi − 1)(qi−1 − 1)

q − 1

qi(q + 1)− qD+1 − q
qi(qD − q − 2) + qD + q

,

wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi) ξ = 0, ξi = (q2 − 1)
qi(q + 1)− qD+1 − q

qi(qD − q − 2) + qD + q
.

Lemma 143. For a dual polar graph Γ the kite function ζi is constant for 2 6 i 6 D.
Moreover

zi = 0 (2 6 i 6 D).

Proof. The graph Γ is a regular near polygon [7, Section 6.4] and hence kite-free.

Lemma 144. We refer to Example 142 with Γ = DD(q). Write E = E1. Then the set
{Ex̂|x ∈ X} is Norton-balanced. For x, y ∈ X we have

0 = Ex−y + Ex+
y −

qD−1 − q
q − 1

Ex̂.

Proof. The graph DD(q) is bipartite and θ1 = (qD−1 − q)/(q − 1).

The dual polar graph 2A2D−1(pn) has a second Q-polynomial structure, which we now
describe.

Example 145. (See [2, Chapter 6.4], [40, Example 6.1(7)].) The intersection numbers of
2A2D−1(pn) can be expressed as

ci =
q2i − 1

q2 − 1
, bi = −q2i+1 q

2D−2i − 1

q2 − 1
(0 6 i 6 D),

where q = −pn. The graph 2A2D−1(pn) has a Q-polynomial structure such that

θi =
(qi − 1)(q2D−i+1 − 1)

q2 − 1
− q q

2D − 1

q2 − 1
(0 6 i 6 D),

θ∗i = −q−i q
2D − q
q − 1

(0 6 i 6 D).

This Q-polynomial structure is almost dual-bipartite. It has dual q-Hahn type with

r = −q−D−1, s = q−2D−2, h = − q
2D+1

q2 − 1
, h∗ = −q

2D − q
q − 1

.

the electronic journal of combinatorics 32(1) (2025), #P1.49 49



This Q-polynomial structure is DC with γ∗ = 0. For 2 6 i 6 D,

αi =
qi−1 − 1

q − 1
, βi = 0,

ri = q
q2i−2 − 1

q2 − 1
, si = qi−1, z−i = 0.

For 1 6 i 6 D − 1,

Ri = −q
2D − q2i

q2 − 1
, Si = 0, z+

i+1 = 0.

For 2 6 i 6 D − 1,

ui = −q
i − 1

q − 1

qi−1 − 1

q − 1
, vi = 0, wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 0, ξi = 0.

Lemma 146. We refer to Example 145 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = q
q2i−2 − 1

q2 − 1
Ex̂+ qi−1Eŷ. (51)

For 1 6 i 6 D − 1,

Ex+
y = −q

2D − q2i

q2 − 1
Ex̂. (52)

Proof. To get (51), use Proposition 68 and z−i = zi. To get (52), use Proposition 80 and
z+
i+1 = zi+1. It follows from (51), (52) that the set {Ex̂|x ∈ X} is Norton-balanced.

21 Example: the halved bipartite dual polar graph

Recall that the dual polar graph DD(pn) is bipartite.

Example 147. (See [2, Chapter 6.4], [40, Example 6.1(8)].) The halved graph 1
2
D2D(pn)

is distance-regular, with diameter D and intersection numbers

ci =
qi − 1

q − 1

qi−
1
2 − 1

q
1
2 − 1

, bi =
qD − qi

q − 1

qD − qi+ 1
2

q
1
2 − 1

(0 6 i 6 D),

where q = p2n.
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Example 148. The graph 1
2
D2D(pn) has a Q-polynomial structure such that

θi = q
1
2
qD − 1

q − 1

qD−
1
2 − 1

q
1
2 − 1

− qi − 1

q − 1

q2D−i − 1

q
1
2 − 1

(0 6 i 6 D),

θ∗i = q
1
2
qD − 1

q − 1

q2D−1 − q
qD − q

− qD−
1
2 + 1

qi−1

qi − 1

q − 1

q2D−1 − q
qD − q

(0 6 i 6 D).

This Q-polynomial structure has dual q-Hahn type with

r = q−D−
1
2 , s = q−2D−1, h =

q2D

(q − 1)(q
1
2 − 1)

,

h∗ =
(qD−

1
2 + 1)(q2D − q2)

(q − 1)(qD − q)
.

This Q-polynomial structure is DC and

γ∗ =
(q − 1)(q

1
2 + 1)(q2D − q2)

q
3
2 (qD − q)

6= 0.

For 2 6 i 6 D,

αi =
qi−1 − 1

q − 1
, βi = 0,

ri =
qi−1 − 1

q − 1

qi−
1
2 − 1

q
1
2 − 1

qi(qD+ 1
2 − q2 − q 3

2 − q 1
2 ) + qD+ 3

2 + q2

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
,

si =
qi−1(qi−

1
2 − 1)

q
1
2 − 1

qD+ 3
2 + qD+ 1

2 − q 3
2 + q − qi(q + q

1
2 )

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
,

z−i = (q + q
1
2 )
qi−1 − 1

q
1
2 − 1

q2iq
1
2 − qi(q 3

2 + q + 2q
1
2 ) + qD+ 3

2 + qD+ 1
2 + q

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
.

For 1 6 i 6 D − 1,

Ri = q−
1
2
qD − qi

q − 1

qD−
1
2 − qi

q
1
2 − 1

qi(qD+ 1
2 − q2 − q 3

2 − q 1
2 ) + qD+ 1

2 + q

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
,

Si = −q
D − qi

q
1
2 − 1

(q
1
2 + 1)qi(qD−

1
2 − qi)

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
,

z+
i+1 =

(q
1
2 + 1)(qi − 1)

q
1
2 (q

1
2 − 1)

q2 + qi(qD+ 3
2 + qD+1 − 2q

3
2 )− q2iq

3
2

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
.
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For 2 6 i 6 D − 1,

ui = −q
i − 1

q − 1

qi−1 − 1

q − 1
,

vi =
qi − 1

q − 1

(qi−1 − 1)(q
1
2 + 1)

q
1
2 (q

1
2 − 1)

qi(qD+ 3
2 + qD+1 − q 5

2 − q2 − 4q
3
2 ) + qD+ 5

2 + qD+ 3
2 + 2q2

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
,

wi = −(q
1
2 + 1)2(qi − 1)(qi−1 − 1)

(q
1
2 − 1)2

qi(qD+1 − q 5
2 − 2q

3
2 ) + qD+ 5

2 + q2

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = q
1
2 (q

1
2 + 1)2,

ξi =
(q

1
2 + 1)2

q
1
2

qi(qD+1 − q 5
2 − 2q

3
2 ) + qD+ 5

2 + q2

qi(qD+ 1
2 − q − 2q

1
2 ) + qD+ 1

2 + q
.

Lemma 149. For the graph 1
2
D2D(pn) the kite function ζi is constant for 2 6 i 6 D.

Moreover

zi = q
1
2

(q − 1)(qi−1 − 1)

(q
1
2 − 1)2

(2 6 i 6 D).

Proof. By combinatorial counting using [31, Section 5].

Lemma 150. We refer to Example 148 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D − 1,

0 = Ex−y +
qi−1 − 1

qD−
1
2 − qi

Ex+
y −

qi−1 − 1

q − 1

qD−
1
2 − q

q
1
2 − 1

Ex̂− qi−1Eŷ. (53)

For i = D,

0 = Ex−y −
qD−1 − 1

q − 1

qD−
1
2 − q

q
1
2 − 1

Ex̂− qD−1Eŷ. (54)

Proof. To get the first assertion, we use Proposition 100(ii). Pick an integer i (2 6 i 6
D − 1). We verify the conditions in (45). We have z2 = ξ, so Φi(z2) = 0. We have

λi =
qi−1 − 1

qi − qD− 1
2

,
θ∗i − θ∗i+1

θ∗i−1 − θ∗i
= q−1.

Therefore

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

qD−1 − q 1
2

qD − qi+ 1
2

6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced. The
linear dependence (53) is obtained using (41), (42). To obtain (54), use Proposition 68
and z−D = zD.
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Example 151. (See[2, Chapter 6.4], [40, Example 6.1(9)].) The halved graph
1
2
D2D+1(pn) is distance-regular, with diameter D and intersection numbers

ci =
qi − 1

q − 1

qi−
1
2 − 1

q
1
2 − 1

, bi = q
1
2
qD − qi

q − 1

qD+ 1
2 − qi

q
1
2 − 1

(0 6 i 6 D),

where q = p2n.

Example 152. The graph 1
2
D2D+1(pn) has a Q-polynomial structure such that

θi = q
1
2
qD − 1

q − 1

qD+ 1
2 − 1

q
1
2 − 1

− qi − 1

q − 1

q2D−i+1 − 1

q
1
2 − 1

(0 6 i 6 D),

θ∗i =
qD+ 1

2 − 1

q − 1

q2D − q
qD − q 1

2

− qD + 1

qi
qi − 1

q − 1

q2D − q
qD−

1
2 − 1

(0 6 i 6 D).

This Q-polynomial structure has dual q-Hahn type with

r = q−D−
3
2 , s = q−2D−2, h =

q2D+1

(q − 1)(q
1
2 − 1)

,

h∗ =
(qD + 1)(q2D − q)
(q − 1)(qD−

1
2 − 1)

.

This Q-polynomial structure is DC and

γ∗ =
(q − 1)(q

1
2 + 1)(q2D−1 − 1)

qD − q 1
2

6= 0.

For 2 6 i 6 D,

αi =
qi−1 − 1

q − 1
, βi = 0,

ri =
qi−1 − 1

q − 1

qi−
1
2 − 1

q
1
2 − 1

qi(qD+ 1
2 − q 3

2 − q − 1) + qD+ 3
2 + q

3
2

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

,

si =
qi−1(qi−

1
2 − 1)

q
1
2 − 1

qD+ 3
2 + qD+ 1

2 − q + q
1
2 − qi(q 1

2 + 1)

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

,

z−i = (q + q
1
2 )
qi−1 − 1

q
1
2 − 1

q2i − qi(q + q
1
2 + 2) + qD+ 3

2 + qD+ 1
2 + q

1
2

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

.

For 1 6 i 6 D − 1,

Ri =
qD − qi

q − 1

qD − qi− 1
2

q
1
2 − 1

qi(qD+ 1
2 − q 3

2 − q − 1) + qD+ 1
2 + q

1
2

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

,

Si = −q
D − qi

q
1
2 − 1

(q
1
2 + 1)qi(qD − qi− 1

2 )

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

,

z+
i+1 = q

1
2

(q
1
2 + 1)(qi − 1)

q
1
2 − 1

q
1
2 + qi(qD+ 1

2 + qD − 2)− q2i

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

.
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For 2 6 i 6 D − 1,

ui = −q
i − 1

q − 1

qi−1 − 1

q − 1
,

vi =
qi − 1

q − 1

(qi−1 − 1)(q + q
1
2 )

q
1
2 − 1

qi(qD+ 1
2 + qD − q − q 1

2 − 4) + qD+ 3
2 + qD+ 1

2 + 2q
1
2

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

,

wi = −q(q
1
2 + 1)2(qi − 1)(qi−1 − 1)

(q
1
2 − 1)2

qi(qD − q − 2) + qD+ 3
2 + q

1
2

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = q
1
2 (q

1
2 + 1)2,

ξi = q
1
2 (q

1
2 + 1)2 qi(qD − q − 2) + qD+ 3

2 + q
1
2

qi(qD+ 1
2 − q 1

2 − 2) + qD+ 1
2 + q

1
2

.

Lemma 153. For the graph 1
2
D2D+1(pn) the kite function ζi is constant for 2 6 i 6 D.

Moreover

zi = q
1
2

(q − 1)(qi−1 − 1)

(q
1
2 − 1)2

(2 6 i 6 D).

Proof. By combinatorial counting using [31, Section 5].

Lemma 154. We refer to Example 152 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. For 2 6 i 6 D − 1 and x, y ∈ X at distance ∂(x, y) = i,

0 = Ex−y +
qi−1 − 1

qD − qi
Ex+

y −
qi−1 − 1

q − 1

qD − q
q

1
2 − 1

Ex̂− qi−1Eŷ. (55)

Proof. To get the first assertion, we use Proposition 100(ii). Pick an integer i (2 6 i 6
D − 1). We verify the conditions in (45). We have z2 = ξ, so Φi(z2) = 0. We have

λi =
qi−1 − 1

qi − qD
,

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
= q−1.

Therefore

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

qD−1 − 1

qD − qi
6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced. The
linear dependence (55) is obtained using (41), (42).

22 Example: the Hemmeter graph

Example 155. (See [2, Chapter 6.4], [40, Example 6.1(10)–(12)].) Let GF (pn) denote a
finite field with p odd. The Hemmeter graph HemD(pn) is described in [2, p. 383]; it is
distance-regular with diameter D and intersection numbers

ci =
qi − 1

q − 1
, bi =

qD − qi

q − 1
(0 6 i 6 D),
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where q = pn. Note that HemD(pn) has the same intersection numbers as DD(pn).
The graphs HemD(pn) and DD(pn) are not isomorphic. The assertions about DD(pn) in
Example 142 and Lemmas 143, 144 hold for HemD(pn) as well. Note that HemD(pn)
is bipartite. The assertions about 1

2
D2D(pn) in Section 21 hold for 1

2
Hem2D(pn) as well.

The assertions about 1
2
D2D+1(pn) in Section 21 hold for 1

2
Hem2D+1(pn) as well.

23 Example: the Hamming graph

Example 156. (See [2, Chapter 6.4], [40, Example 6.1(13)].) For an integer N > 2, the
Hamming graph H(D,N) has vertex set X consisting of the D-tuples of elements taken
from the set {1, 2, . . . , N}. Vertices x, y ∈ X are adjacent whenever x, y differ in exactly
one coordinate. The graph H(D,N) is distance-regular with diameter D and intersection
numbers

ci = i, bi = (N − 1)(D − i) (0 6 i 6 D).

The graph H(D, 2) is often called a D-cube or hypercube. It is bipartite and an antipodal
2-cover.

Example 157. The graph H(D,N) has a Q-polynomial structure such that

θi = θ∗i = D(N − 1)− iN (0 6 i 6 D).

This Q-polynomial structure has Krawtchouk type, with

s = −N, s∗ = −N, r = N(N − 1).

This Q-polynomial structure is DC with γ∗ = 0.
Until further notice, assume that N > 3. For 2 6 i 6 D,

αi = i− 1, βi = 0,

ri = i− 1, si = 1, z−i = 0.

For 1 6 i 6 D − 1,

Ri =
(N − 1)(D − i)(2DN − iN −N − 2D)

2DN − iN − 2D
,

Si = −N(N − 1)(D − i)
2DN − iN − 2D

,

z+
i+1 =

N(N − 2)i

2DN − iN − 2D
.

For 2 6 i 6 D − 1,

ui = −i(i− 1), vi =
i(i− 1)N(N − 2)

2DN − iN − 2D
, wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 0, ξi =
N(N − 2)

2DN − iN − 2D
.
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We have been assuming that N > 3. From now until the beginning of Lemma 158, we
assume that N = 2. For 2 6 i 6 D,

αi = i− 1, βi = 0.

For 2 6 i 6 D − 1,

ri = i− 1, si = 1, z−i = 0.

For 1 6 i 6 D − 1,

Ri = D − i− 1, Si = −1, z+
i+1 = 0.

For 2 6 i 6 D − 1,

ui = −i(i− 1), vi = 0, wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 0, ξi = 0.

Lemma 158. For H(D,N) the kite function ζi is constant for 2 6 i 6 D. Moreover
zi = 0 for 2 6 i 6 D.

Proof. The graph H(D,N) is a regular near polygon, and hence kite-free.

Lemma 159. We refer to Example 157 and write E = E1. Pick distinct x, y ∈ X and
write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = (i− 1)Ex̂+ Eŷ. (56)

For 1 6 i 6 D − 1 and N = 2,

Ex+
y = (D − i− 1)Ex̂− Eŷ. (57)

In any case, the set {Ex̂|x ∈ X} is Norton-balanced.

Proof. To get (56), use Proposition 68 and z−i = zi. To get (57), use Proposition 80 and
z+
i+1 = zi+1. It follows from Lemma 24 and (56) that the set {Ex̂|x ∈ X} is Norton-

balanced.

For D even, the hypercube H(D, 2) has a second Q-polynomial structure that we now
describe.

Example 160. (See [2, Chapter 6.4], [40, Example 6.1(14)].) Assume that D is even.
The hypercube H(D, 2) has a Q-polynomial structure such that

θi = θ∗i = (−1)i(D − 2i) (0 6 i 6 D).

This Q-polynomial structure has Bannai/Ito type, with

r1 = r2 = −(D + 1)/2, s = s∗ = D + 1, h = h∗ = −1.
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This Q-polynomial structure is DC with γ∗ = 0.

For 2 6 i 6 D,

αi =
(D − 3)

(
1 + (−1)i

)
2(−1)i(D − 2i+ 1)

, βi =
1− (−1)i(2i− 3)

2(−1)i(D − 2i+ 1)
.

For 2 6 i 6 D − 1,

ri = 1− i, si = (−1)i−1, z−i = 0.

For 1 6 i 6 D − 1,

Ri = i+ 1−D, Si = (−1)i, z+
i+1 = 0.

For 2 6 i 6 D − 1,

ui = 0, vi = 0, wi = 0, Φi(λ) = 0.

Lemma 161. We refer to Example 160 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = (1− i)Ex̂− (−1)iEŷ. (58)

For 1 6 i 6 D − 1,

Ex+
y = (i+ 1−D)Ex̂+ (−1)iEŷ. (59)

Proof. To get (58), use Proposition 68 and z−i = zi. To get (59), use Proposition 80 and
z+
i+1 = zi+1. It follows from (58), (59) that the set {Ex̂|x ∈ X} is Norton-balanced.

24 Example: the halved hypercube

Recall that the hypercube H(D, 2) is bipartite.

Example 162. (See [2, Chapter 6.4], [40, Example 6.1(15)].) The halved graph 1
2
H(2D, 2)

is distance-regular, with diameter D and intersection numbers

ci = i(2i− 1), bi = (D − i)(2D − 1− 2i) (0 6 i 6 D).

The graph 1
2
H(2D, 2) is an antipodal 2-cover.

Example 163. The graph 1
2
H(2D, 2) has a Q-polynomial structure such that

θi = D(2D − 1)− 2i(2D − i), θ∗i = 2D − 4i (0 6 i 6 D).

This Q-polynomial structure has dual Hahn type with

r = −D − 1/2, s = −2D − 1, s∗ = −4, h = 2.
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This Q-polynomial structure is DC with γ∗ = 0. For 2 6 i 6 D,

αi = i− 1, βi = 0.

For 2 6 i 6 D − 1,

ri = (2i− 1)(i− 1), si = 2i− 1, z−i = 4(i− 1).

For 1 6 i 6 D − 1,

Ri = (2D − 2i− 1)(D − i− 1), Si = 2i+ 1− 2D, z+
i+1 = 4i.

For 2 6 i 6 D − 1,

ui = −i(i− 1), vi = 8i(i− 1), wi = −16i(i− 1),

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 4, ξi = 4.

Lemma 164. For the graph 1
2
H(2D, 2) the kite function ζi is constant for 2 6 i 6 D.

Moreover

zi = 4(i− 1) (2 6 i 6 D).

Proof. By combinatorial counting.

Lemma 165. We refer to Example 163 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = (2i− 1)(i− 1)Ex̂+ (2i− 1)Eŷ. (60)

For 1 6 i 6 D − 1,

Ex+
y = (2D − 2i− 1)(D − i− 1)Ex̂+ (2i+ 1− 2D)Eŷ. (61)

Proof. To get (60), use Proposition 68 and z−i = zi. To get (61), use Proposition 80 and
z+
i+1 = zi+1. It follows from (60), (61) that the set {Ex̂|x ∈ X} is Norton-balanced.

Example 166. (See [2, Chapter 6.4], [40, Example 6.1(16)].) The halved graph 1
2
H(2D+

1, 2) is distance-regular, with diameter D and intersection numbers

ci = i(2i− 1), bi = (D − i)(2D + 1− 2i) (0 6 i 6 D).

Example 167. The graph 1
2
H(2D + 1, 2) has a Q-polynomial structure such that

θi = D(2D + 1)− 2i(2D − i+ 1), θ∗i = 2D + 1− 4i (0 6 i 6 D).

This Q-polynomial structure has dual Hahn type with

r = −D − 3/2, s = −2D − 2, s∗ = −4, h = 2.

the electronic journal of combinatorics 32(1) (2025), #P1.49 58



This Q-polynomial structure is DC with γ∗ = 0. For 2 6 i 6 D,

αi = i− 1, βi = 0,

ri = (2i− 1)(i− 1), si = 2i− 1, z−i = 4(i− 1).

For 1 6 i 6 D − 1,

Ri = (2D − 2i− 1)(D − i), Si = 2(i−D), z+
i+1 = 4i.

For 2 6 i 6 D − 1,

ui = −i(i− 1), vi = 8i(i− 1), wi = −16i(i− 1),

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 4, ξi = 4.

Lemma 168. For the graph 1
2
H(2D+ 1, 2) the kite function ζi is constant for 2 6 i 6 D.

Moreover

zi = 4(i− 1) (2 6 i 6 D).

Proof. By combinatorial counting.

Lemma 169. We refer to Example 167 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = (2i− 1)(i− 1)Ex̂+ (2i− 1)Eŷ. (62)

For 1 6 i 6 D − 1,

Ex+
y = (2D − 2i− 1)(D − i)Ex̂+ 2(i−D)Eŷ. (63)

Proof. To get (62), use Proposition 68 and z−i = zi. To get (63), use Proposition 80 and
z+
i+1 = zi+1. It follows from (62), (63) that the set {Ex̂|x ∈ X} is Norton-balanced.

We now give a second Q-polynomial structure for 1
2
H(2D + 1, 2).

Example 170. (See [2, Chapter 6.4], [40, Example 6.1(18)].) The graph 1
2
H(2D + 1, 2)

has a Q-polynomial structure such that

θi = θ∗i = D(2D + 1)− 4i(2D − 2i+ 1) (0 6 i 6 D).

This Q-polynomial structure has Racah type with

r1 = −D/2− 3/4, r2 = −D/2− 5/4,

s = s∗ = −D − 3/2, h = h∗ = 8.
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This Q-polynomial structure is DC with γ∗ = 16. For 2 6 i 6 D,

αi =
(i− 1)(2D − 5)(2D − 2i+ 1)

(2D − 3)(2D − 4i+ 3)
,

βi = − 4(i− 1)(i− 2)

(2D − 3)(2D − 4i+ 3)
,

ri =
(i− 1)(2i− 1)

(
4i2 − 2i(2D + 3) + 2D2 +D

)
4i2 − 2i(2D + 1) + 2D2 +D

,

si =
(2i− 1)

(
2D2 +D − 2i(2D − 1)

)
4i2 − 2i(2D + 1) + 2D2 +D

,

z−i =
4(i− 1)

2D − 5

4D3 −D − i(16D2 + 4D − 6) + 8i2(3D − 1)− 8i3

4i2 − 2i(2D + 1) + 2D2 +D
.

For 1 6 i 6 D − 1,

Ri =
(D − i)(2D − 2i− 1)

(
4i2 − 2i(2D − 1) + 2D2 − 3D − 2

)
4i2 − 2i(2D + 1) + 2D2 +D

,

Si = −
2(D − i)

(
2D2 −D − 1− 2i(2D − 1)

)
4i2 − 2i(2D + 1) + 2D2 +D

,

z+
i+1 =

4i

2D − 5

8i3 − 8i2(D + 2) + 8i(2D + 1) + 4D3 − 12D2 −D − 1

4i2 − 2i(2D + 1) + 2D2 +D
.

For 2 6 i 6 D − 1,

ui = −i(i− 1)(2D − 5)2(2D − 2i+ 1)(2D − 2i− 1)

(2D − 3)2(2D − 4i+ 3)(2D − 4i− 1)
,

vi =
4i(i− 1)(2D − 2i+ 1)(2D − 2i− 1)

(2D − 3)2(2D − 4i+ 3)(2D − 4i− 1)

× 16D4 − 64D3 + 80D2 + 3− 4i(8D3 − 20D2 + 14D + 13) + 8i2(4D2 − 12D + 13)

4i2 − 2i(2D + 1) + 2D2 +D
,

wi = −16i(i− 1)(2D − 1)(2D − 2i+ 1)(2D − 2i− 1)

(2D − 3)2(2D − 4i− 1)(2D − 4i+ 3)

× 4D3 − 12D2 + 19D − 3− 2i(4D2 − 1) + 4i2(2D − 1)

4i2 − 2i(2D + 1) + 2D2 +D
,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 4,

ξi =
4(2D − 1)

(2D − 5)2

4D3 − 12D2 + 19D − 3− 2i(4D2 − 1) + 4i2(2D − 1)

4i2 − 2i(2D + 1) + 2D2 +D
.

Lemma 171. We refer to Example 170 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D − 1,

0 = Ex−y +
2(i− 1)

2D − 2i− 1
Ex+

y − (i− 1)(2D − 5)Ex̂+
2D − 3

2i− 2D + 1
Eŷ. (64)
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For i = D,

0 = Ex−y − (D − 1)(2D − 5)Ex̂+ (2D − 3)Eŷ. (65)

Proof. To get the first assertion, we use Proposition 100(ii). Pick an integer i (2 6 i 6
D − 1). We verify the conditions in (45). We have z2 = ξ, so Φi(z2) = 0. We have

λi =
2(i− 1)

2i− 2D + 1
,

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
=

2D − 4i− 1

2D − 4i+ 3
.

Therefore

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

(2D − 5)(2D − 4i+ 1)

(2D − 2i− 1)(2D − 4i+ 3)
6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced. The
linear dependence (64) is obtained using (41), (42). To obtain (65), use Proposition 68
and z−D = zD.

25 Example: the folded hypercube

Recall that the hypercube H(D, 2) is an antipodal 2-cover. Its antipodal quotient is called
a folded cube.

Example 172. (See [2, Chapter 6.4], [40, Example 6.1(20)].) The folded cube H̃(2D, 2)
is distance-regular, with diameter D and intersection numbers

ci = i (1 6 i 6 D − 1), cD = 2D,

bi = 2D − i (0 6 i 6 D − 1).

Example 173. The graph H̃(2D, 2) has a Q-polynomial structure such that

θi = 2D − 4i (0 6 i 6 D),

θ∗i = D(2D − 1)− 2i(2D − i) (0 6 i 6 D).

This Q-polynomial structure has Hahn type with

r = −D − 1/2, s = −4, s∗ = −2D − 1, h∗ = 2.

This Q-polynomial structure is DC with γ∗ = 4. We have

αi =
(2D − 3)(i− 1)(2D − i)
2(D − 1)(2D − 2i+ 1)

(2 6 i 6 D),

βi = − (i− 1)(i− 2)

2(D − 1)(2D − 2i+ 1)
(2 6 i 6 D),

ri =
(i− 1)(i2 − i(2D + 1) + 2D2 −D)

i2 − 2iD + 2D2 −D
(2 6 i 6 D − 1), rD = 2(D − 2),

si =
(2D − 1)(D − i)

i2 − 2iD + 2D2 −D
(2 6 i 6 D),

z−i = − 2(i− 1)(2D − i)(2D − i− 1)

(2D − 3)(i2 − 2iD + 2D2 −D)
(2 6 i 6 D − 1), z−D = 0.
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For 1 6 i 6 D − 1,

Ri =
(2D − i− 1)(i2 − i(2D − 1) + 2D2 − 3D)

i2 − 2iD + 2D2 −D
,

Si = − (2D − 1)(D − i)
i2 − 2iD + 2D2 −D

,

z+
i+1 =

2i(i− 1)(2D − i− 1)

(2D − 3)(i2 − 2iD + 2D2 −D)
.

For 2 6 i 6 D − 1,

ui = −i(i− 1)(2D − 3)2(2D − i)(2D − i− 1)

4(D − 1)2(2D − 2i+ 1)(2D − 2i− 1)
,

vi = − 2i(i− 1)(2D − i)(2D − i− 1)(2i2 − 4iD + 2D2 +D − 1)

(D − 1)(2D − 2i+ 1)(2D − 2i− 1)(i2 − 2iD + 2D2 −D)
,

wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 0,

ξi = −8(D − 1)(2i2 − 4iD + 2D2 +D − 1)

(2D − 3)2(i2 − 2iD + 2D2 −D)
.

Lemma 174. For the graph H̃(2D, 2) the kite function ζi is constant for 2 6 i 6 D.
Moreover

zi = 0 (2 6 i 6 D).

Proof. The graph H̃(2D, 2) is bipartite, and hence kite-free.

Lemma 175. We refer to Example 173 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. For x, y ∈ X we have

0 = Ex−y + Ex+
y − 2(D − 2)Ex̂.

Proof. The graph H̃(2D, 2) is bipartite and θ1 = 2(D − 2).

Example 176. (See [2, Chapter 6.4], [40, Example 6.1(19)].) The folded cube H̃(2D +
1, 2) is distance-regular, with diameter D and intersection numbers

ci = i (1 6 i 6 D),

bi = 2D + 1− i (0 6 i 6 D − 1).

Example 177. The graph H̃(2D + 1, 2) has a Q-polynomial structure such that

θi = 2D + 1− 4i (0 6 i 6 D),

θ∗i = D(2D + 1)− 2i(2D − i+ 1) (0 6 i 6 D).
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This Q-polynomial structure has Hahn type with

r = −D − 3/2, s = −4, s∗ = −2D − 2, h∗ = 2.

This Q-polynomial structure is DC with γ∗ = 4. For 2 6 i 6 D,

αi =
(D − 1)(i− 1)(2D − i+ 1)

(2D − 1)(D − i+ 1)
,

βi = − (i− 1)(i− 2)

2(2D − 1)(D − i+ 1)
,

ri =
(i− 1)(i2 − 2i(D + 1) + 2D2 +D)

i2 − i(2D + 1) + 2D2 +D
,

si =
D(2D − 2i+ 1)

i2 − i(2D + 1) + 2D2 +D
,

z−i = − (i− 1)(2D − i)(2D − i+ 1)

(D − 1)(i2 − i(2D + 1) + 2D2 +D)
.

For 1 6 i 6 D − 1,

Ri =
(2D − i)(i2 − 2iD + 2D2 −D − 1)

i2 − i(2D + 1) + 2D2 +D
,

Si = − D(2D − 2i+ 1)

i2 − i(2D + 1) + 2D2 +D
,

z+
i+1 =

i(i− 1)(2D − i)
(D − 1)(i2 − i(2D + 1) + 2D2 +D)

.

For 2 6 i 6 D − 1,

ui = −i(i− 1)(D − 1)2(2D − i)(2D − i+ 1)

(2D − 1)2(D − i)(D − i+ 1)
,

vi = −i(i− 1)(2D − i)(2D − i+ 1)(2i2 − 2i(2D + 1) + 2D2 + 3D)

(D − i)(2D − 1)(D − i+ 1)(i2 − i(2D + 1) + 2D2 +D)
,

wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 0,

ξi = −(2D − 1)(2i2 − 2i(2D + 1) + 2D2 + 3D)

(D − 1)2(i2 − i(2D + 1) + 2D2 +D)
.

Lemma 178. For the graph H̃(2D + 1, 2) the kite function ζi is constant for 2 6 i 6 D.
Moreover

zi = 0 (2 6 i 6 D).

Proof. The graph H̃(2D + 1, 2) is almost bipartite, and hence kite-free.
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Lemma 179. We refer to Example 177 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. For 0 6 i 6 D − 1 and x, y ∈ X at distance ∂(x, y) = i,

0 = Ex−y + Ex+
y + (3− 2D)Ex̂.

Proof. The graph H̃(2D + 1, 2) is almost bipartite and θ1 = 2D − 3.

Example 180. (See [2, Chapter 6.4], [40, Example 6.1(17)].) The graph H̃(2D + 1, 2)
has a second Q-polynomial structure such that

θi = θ∗i = (−1)i(2D − 2i+ 1) (0 6 i 6 D).

This Q-polynomial structure has Bannai/Ito type, with

r1 = −D − 1, r2 = −2D − 2, s = s∗ = 2D + 2, h = h∗ = −1.

This Q-polynomial structure is DC with γ∗ = 0.

For 2 6 i 6 D,

αi =
(D − 1)

(
1 + (−1)i

)
2(−1)i(D − i+ 1)

, βi =
1− (−1)i(2i− 3)

4(−1)i(D − i+ 1)
,

ri = 1− i, si = (−1)i−1, z−i = 0.

For 1 6 i 6 D − 1,

Ri = i− 2D, Si = (−1)i, z+
i+1 = 0.

For 2 6 i 6 D − 1,

ui = 0, vi = 0, wi = 0, Φi(λ) = 0.

Lemma 181. We refer to Example 180 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D,

Ex−y = (1− i)Ex̂− (−1)iEŷ. (66)

For 1 6 i 6 D − 1,

Ex+
y = (i− 2D)Ex̂+ (−1)iEŷ. (67)

Proof. To get (66), use Proposition 68 and z−i = 0 = zi. To get (67), use Proposition
80 and z+

i+1 = 0 = zi+1. It follows from (66), (67) that the set {Ex̂|x ∈ X} is Norton-
balanced.
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26 Example: the folded-half hypercube

Example 182. (See [2, Chapter 6.4], [40, Example 6.1(21)].) The folded-half graph
1
2
H̃(4D, 2) is distance-regular, with diameter D and intersection numbers

ci = i(2i− 1) (1 6 i 6 D − 1), cD = 2D(2D − 1),

bi = (2D − i)(4D − 2i− 1) (0 6 i 6 D − 1).

Example 183. The graph 1
2
H̃(4D, 2) has a Q-polynomial structure such that

θi = θ∗i = 2D(4D − 1)− 8i(2D − i) (0 6 i 6 D).

This Q-polynomial structure has Racah type with

r1 = −D − 1/2, r2 = −2D − 1/2, s = s∗ = −2D − 1, h = h∗ = 8.

This Q-polynomial structure is DC with γ∗ = 16. We have

αi =
(i− 1)(2D − 3)(2D − i)
2(D − 1)(2D − 2i+ 1)

(2 6 i 6 D),

βi = − (i− 1)(i− 2)

2(D − 1)(2D − 2i+ 1)
(2 6 i 6 D),

ri =
(i− 1)(2i− 1)

(
2i2 − 2i(2D + 1) + 4D2 −D

)
2i2 − 4iD + 4D2 −D

(2 6 i 6 D − 1),

rD = 2(D − 1)(2D − 3),

si =
(2i− 1)(2i− 4iD + 4D2 −D)

2i2 − 4iD + 4D2 −D
(2 6 i 6 D − 1), sD = 2,

z−i =
4(i− 1)

(
8D3 − 6D2 +D − i(16D2 − 6D − 1) + i2(12D − 5)− 2i3

)
(2D − 3)(2i2 − 4iD + 4D2 −D)

(2 6 i 6 D − 1), z−D = 4(D − 1).

For 1 6 i 6 D − 1,

Ri =
(2D − i− 1)(4D − 2i− 1)

(
2i2 − 2i(2D − 1) + 4D2 − 5D

)
2i2 − 4iD + 4D2 −D

,

Si = −(4D − 2i− 1)(2i− 4iD + 4D2 − 3D)

2i2 − 4iD + 4D2 −D
,

z+
i+1 =

4i
(
2i3 − i2(4D + 3) + 8iD + 8D3 − 18D2 + 7D − 1

)
(2D − 3)(2i2 − 4iD + 4D2 −D)

.

For 2 6 i 6 D − 1,

ui = −i(i− 1)(2D − 3)2(2D − i)(2D − i− 1)

4(D − 1)2(2D − 2i+ 1)(2D − 2i− 1)
,

the electronic journal of combinatorics 32(1) (2025), #P1.49 65



vi =
2i(i− 1)(2D − i)(2D − i− 1)

(D − 1)2(2D − 2i+ 1)(2D − 2i− 1)

× i2(8D2 − 16D + 10)− i(16D3 − 32D2 + 20D) + 16D4 − 48D3 + 50D2 − 17D + 2

2i2 − 4iD + 4D2 −D
,

wi = −4i(i− 1)(2D − 1)(2D − i)(2D − i− 1)

(D − 1)2(2D − 2i− 1)(2D − 2i+ 1)

× i2(4D − 2)− i(8D2 − 4D) + 8D3 − 18D2 + 17D − 4

2i2 − 4iD + 4D2 −D
,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 4,

ξi =
4(2D − 1)

(
i2(4D − 2)− i(8D2 − 4D) + 8D3 − 18D2 + 17D − 4

)
(2D − 3)2(2i2 − 4iD + 4D2 −D)

.

Lemma 184. For the graph 1
2
H̃(4D, 2) the kite function ζi is constant for 2 6 i 6 D.

Moreover

zi = 4(i− 1) (2 6 i 6 D).

Proof. By combinatorial counting.

Lemma 185. We refer to Example 183 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. Pick distinct x, y ∈ X and write i = ∂(x, y). For 2 6 i 6 D − 1,

0 = Ex−y +
i− 1

2D − i− 1
Ex+

y + 2(i− 1)(3− 2D)Ex̂+
2(D − 1)

i+ 1− 2D
Eŷ. (68)

For i = D,

0 = Ex−y + 2(D − 1)(3− 2D)Ex̂− 2Eŷ. (69)

Proof. To get the first assertion, we use Proposition 100(ii). Pick an integer i (2 6 i 6
D − 1). We verify the conditions in (45). We have z2 = ξ, so Φi(z2) = 0. We have

λi =
i− 1

i+ 1− 2D
,

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
=

2D − 2i− 1

2D − 2i+ 1
.

Therefore

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

2(2D − 3)(D − i)
(2D − i− 1)(2D − 2i+ 1)

6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced. The
linear dependence (68) is obtained using (41), (42). To obtain (69), use Proposition 68
and z−D = zD.

Example 186. (See [2, Chapter 6.4], [40, Example 6.1(22)].) The folded-half graph
1
2
H̃(4D + 2, 2) is distance-regular, with diameter D and intersection numbers

ci = i(2i− 1) (1 6 i 6 D),

bi = (2D − i+ 1)(4D − 2i+ 1) (0 6 i 6 D − 1).
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Example 187. The graph 1
2
H̃(4D + 2, 2) has a Q-polynomial structure such that

θi = θ∗i = (2D + 1)(4D + 1)− 8i(2D − i+ 1) (0 6 i 6 D).

This Q-polynomial structure has Racah type with

r1 = −D − 3/2, r2 = −2D − 3/2, s = s∗ = −2D − 2, h = h∗ = 8.

This Q-polynomial structure is DC with γ∗ = 16.

For 2 6 i 6 D,

αi =
(i− 1)(D − 1)(2D − i+ 1)

(2D − 1)(D − i+ 1)
,

βi = − (i− 1)(i− 2)

2(2D − 1)(D − i+ 1)
,

ri =
(i− 1)(2i− 1)

(
4i2 − 8i(D + 1) + 8D2 + 6D + 1

)
4i2 − 4i(2D + 1) + 8D2 + 6D + 1

,

si =
(2i− 1)(8D2 + 6D + 1− 8iD)

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
,

z−i =
4(i− 1)

(
8D3 + 6D2 +D − i(16D2 + 10D) + i2(12D + 1)− 2i3

)
(D − 1)

(
4i2 − 4i(2D + 1) + 8D2 + 6D + 1

) .

For 1 6 i 6 D − 1,

Ri =
(2D − i)(4D − 2i+ 1)(4i2 − 8iD + 8D2 − 2D − 3)

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
,

Si = −(4D − 2i+ 1)(8D2 + 2D − 1− 8iD)

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
,

z+
i+1 =

4i

D − 1

2i3 − i2(4D + 5) + 4i(2D + 1) + 8D3 − 6D2 − 5D − 1

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
.

For 2 6 i 6 D − 1,

ui = −i(i− 1)(D − 1)2(2D − i)(2D − i+ 1)

(2D − 1)2(D − i)(D − i+ 1)
,

vi =
4i(i− 1)(2D − i)(2D − i+ 1)

(2D − 1)2(D − i)(D − i+ 1)

× 16D4 − 16D3 + 2D2 + 5D + 1− 4i(4D3 − 2D2 + 1) + 4i2(2D2 − 2D + 1)

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
,

wi = −16Di(i− 1)(2D − i)(2D − i+ 1)

(2D − 1)2(D − i)(D − i+ 1)

× 4i2D − 4iD(2D + 1) + 8D3 − 6D2 + 5D + 1

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
,

the electronic journal of combinatorics 32(1) (2025), #P1.49 67



Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 4,

ξi =
4D

(D − 1)2

4i2D − 4iD(2D + 1) + 8D3 − 6D2 + 5D + 1

4i2 − 4i(2D + 1) + 8D2 + 6D + 1
.

Lemma 188. For the graph 1
2
H̃(4D+ 2, 2) the kite function ζi is constant for 2 6 i 6 D.

Moreover

zi = 4(i− 1) (2 6 i 6 D).

Proof. By combinatorial counting.

Lemma 189. We refer to Example 187 and write E = E1. The set {Ex̂|x ∈ X} is
Norton-balanced. For 2 6 i 6 D − 1 and x, y ∈ X at distance i = ∂(x, y),

0 = Ex−y +
i− 1

2D − i
Ex+

y − 4(D − 1)(i− 1)Ex̂+
2D − 1

i− 2D
Eŷ. (70)

Proof. To get the first assertion, we use Proposition 100(ii). Pick an integer i (2 6 i 6
D − 1). We verify the conditions in (45). We have z2 = ξ, so Φi(z2) = 0. We have

λi =
i− 1

i− 2D
,

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
=

D − i
D − i+ 1

.

Therefore

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

(D − 1)(2D − 2i+ 1)

(2D − i)(D − i+ 1)
6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced. The
linear dependence (70) is obtained using (41), (42).

27 Example: the Hermitean forms graph

Example 190. (See [2, Chapter 6.4], [40, Note 6.2].) let GF (pn) denote a finite field. The
Hermitean forms graph HerD(pn) is distance-regular with diameter D and intersection
numbers

ci = qi−1 q
i − 1

q − 1
, bi = −q

2D − q2i

q − 1
(0 6 i 6 D),

where q = −pn.

Example 191. The graph HerD(pn) has a Q-polynomial structure such that

θi = θ∗i = −q
2D−i − 1

q − 1
(0 6 i 6 D).
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This Q-polynomial structure has affine q-Krawtchouk type, with

r = −q−D−1, h = − q2D

q − 1
, h∗ = − q2D

q − 1
.

This Q-polynomial structure is DC iff a∗1 = 0 iff a1 = 0 iff pn = 2 iff q = −2 (provided
that D > 4). Assume that q = −2. We have

γ∗ = q−1 − 1 6= 0.

For 2 6 i 6 D,

αi =
qi−1 − 1

q − 1
, βi = 0,

ri = qi−1 q
i−1 − 1

q − 1

q2D+i + q2D+1 + qi

q2D+i + q2D − 2qi
,

si = q2i−2 q
2D+1 + q2D − qi − q
q2D+i + q2D − 2qi

,

z−i = (qi−1 − 1)
q2D+1 + q2D + q2i

q2D+i + q2D − 2qi
.

For 1 6 i 6 D − 1,

Ri = −1

q

q2D − q2i

q − 1

q2D+i + q2D + qi

q2D+i + q2D − 2qi
,

Si = qi−1 q2D − q2i

q2D+i + q2D − 2qi
,

z+
i+1 = − q

i(qi − 1)(qi − q)
q2D+i + q2D − 2qi

.

For 2 6 i 6 D − 1,

ui = −q
i − 1

q − 1

qi−1 − 1

q − 1
,

vi =
(qi − 1)(qi−1 − 1)

q − 1

q2D+1 + q2D − 2qi

q2D+i + q2D − 2qi
wi = 0,

Φi(λ) = ui(λ− ξ)(λ− ξi), ξ = 0, ξi = (q − 1)
q2D+1 + q2D − 2qi

q2D+i + q2D − 2qi
.

Lemma 192. For HerD(pn) the kite function ζi is constant for 2 6 i 6 D. Moreover

zi = 0 (2 6 i 6 D).

Proof. The graph HerD(pn) is kite-free by [41, Theorem 2.12].
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Lemma 193. We refer to Example 191 with q = −2. Write E = E1. The set {Ex̂|x ∈ X}
is not Norton-balanced. However the following linear dependencies hold. Pick distinct
x, y ∈ X and write i = ∂(x, y). For 1 6 i 6 D − 1,

0 = Ex−y − q−1Ex+
y +

1

q2

qi − q2D

q − 1
Ex̂+ qi−2Eŷ. (71)

For i = D,

0 = Ex−y − qD−2 q
D − 1

q − 1
Ex̂+ qD−2Eŷ. (72)

Proof. The first assertion follows from Lemma 33(i). To obtain (71), use (41), (42) and

λi = q−1 (2 6 i 6 D − 1).

To obtain (72), use Proposition 68 and z−D = 0 = zD. Alternatively, (71) and (72) follow
from Lemma 33(ii).

28 Example: the Doob graphs

In this section, we will discuss the Doob graphs and their relationship to the Hamming
graphs. In this discussion the Shrikhande graph makes an appearance. The Shrikhande
graph is distance-regular with diameter 2; it has the same intersection numbers as the
Hamming graph H(2, 4). The Shrikhande graph is not isomorphic to H(2, 4), because
the Shrikhande graph has a 2-kite and H(2, 4) does not. See [2, Example 2.10] for more
information about the Shrikhande graph.

Example 194. (See [2, Chapter 6.4], [7, p. 262].) By a Doob graph, we mean a Cartesian
product of graphs, with each factor isomorphic to the Shrikhande graph or the complete
graph K4. We require that in the Cartesian product, at least one factor is isomorphic to
the Shrikhande graph. Let Γ denote a Doob graph with diameter D. We have D = 2n+m,
where n (resp. m) is the number of factors isomorphic to the Shrikhande graph (resp.
K4). The graph Γ is distance-regular and has the same intersection numbers as H(D, 4).
However Γ is not isomorphic to H(D, 4). Both H(D, 4) and Γ have a Q-polynomial
structure such that

θi = θ∗i = 3D − 4i (0 6 i 6 D).

Every assertion aboutH(D, 4) in Example 157 holds for Γ. In particular, theQ-polynomial
structure for Γ is DC and γ∗ = 0. Moreover

z−i = 0, z+
i+1 =

4i

3D − 2i
(2 6 i 6 D − 1). (73)

Lemma 195. Assume that Γ = (X,R) is a Doob graph, and write E = E1. Then the set
{Ex̂|x ∈ X} is not Norton-balanced.
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Proof. We assume that the set {Ex̂|x ∈ X} is Norton-balanced, and get a contradiction.
There exists a subset S ⊆ X such that (i) the subgraph of Γ induced on S is isomorphic to
the Shrikhande graph; (ii) for all x, y ∈ S and all z ∈ X\S, ∂(x, z) +∂(y, z) > ∂(x, y) + 2.
Since the Shrikhande graph has a 2-kite, there exist x, y ∈ S at distance ∂(x, y) = 2 such
that Γ(x) ∩ Γ(y) contains an edge. By Definition 44, ζ2(x, y, ∗) = 1. By Definition 51
and the construction, ζ3(∗, y, x) = 0. We have ζ2(x, y, ∗) 6= z−2 , so Ex−y 6= r2Ex̂ + s2Eŷ
by Proposition 68. We have ζ3(∗, y, x) 6= z+

3 , so Ex+
y 6= R2Ex̂+ S2Eŷ by Proposition 80.

The vectors Ex−y , Ex
+
y , Ex̂, Eŷ are linearly dependent by Lemma 32. This contradicts

Lemma 89, and the result follows.

29 Further examples

Below we list some Q-polynomial distance-regular graphs Γ = (X,R) with diameter
D > 4. We describe theQ-polynomial structure of Γ, using the data in [2, Chapter 6.4] and
the notation of [45, Section 20]. In each case (i)–(vi) below, the Q-polynomial structure is
not DC because the condition in Theorem 128(i) is violated. In each case, γ∗ 6= 0. In each
case the set {Ex̂|x ∈ X} is not Norton-balanced, where E is the Q-polynomial primitive
idempotent of Γ attached to the given Q-polynomial structure. For the cases (i)–(iv) this
Norton-balanced assertion follows from Lemma 127, because Γ is distance-transitive and
therefore reinforced. For case (vi) the assertion follows from Corollary 94 and the fact
that Γ has a non-regular µ-graph [16, 1]. For case (v) the assertion is proved in Lemma
201 below. Let GF (q) denote a finite field.

(i) The folded graph J̃(4D, 2D) has Racah type with

r1 = −D − 1/2, r2 = −2D − 1, s = −2D − 3/2, s∗ = −2D − 1.

(ii) The folded graph J̃(4D + 2, 2D + 1) has Racah type with

r1 = −D − 3/2, r2 = −2D − 2, s = −2D − 5/2, s∗ = −2D − 2.

(iii) The bilinear forms graph Hq(D,N) (N > D) has affine q-Krawtchouk type with

r = q−N−1.

(iv) The alternating forms graph Altq(N) (D = bN/2c) has affine q-Krawtchouk type
with

r = q−D−
1
2 (if N is even), r = q−D−

3
2 (if N is odd).

(v) The quadratic forms graph Quadq(N) (D = b(N + 1)/2c) has affine q-Krawtchouk
type with

r = q−D−
3
2 (if N is even), r = q−D−

1
2 (if N is odd).
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(vi) The twisted Grassmann graph 2Jq(2D + 1, D) has dual q-Hahn type with

r = q−D−2, s = q−2D−3.

This graph has the same intersection numbers as Jq(2D + 1, D).

For the rest of this section, our goal is to show that the graph from item (v) is not
Norton-balanced. To reach the goal, we will derive some preliminary results that apply
to more general Q-polynomial distance-regular graphs. We will be discussing Lemma 91,
which involves two vertices x, y and a scalar λi. Going forward, the scalar λi will be
denoted by λi(x, y) in order to emphasize that it might depend on x, y as well as i.

Assumption 1. Let Γ = (X,R) denote a Q-polynomial distance-regular graph with di-
ameter D > 4. Let E denote a Q-polynomial primitive idempotent of Γ with γ∗ 6= 0.
Assume that the set {Ex̂|x ∈ X} is Norton-balanced.

Lemma 196. With reference to Assumption 1, pick an integer i (3 6 i 6 D − 1) and
x, y, z ∈ X such that

∂(x, y) = i, ∂(x, z) = 1, ∂(y, z) = i− 1.

Then

ζi(x, y, z) = ζi(x, y, ∗) = z−i + λi(x, y)
γ∗bi

θ∗i + θ∗0

θ∗i − θ∗1
θ∗1 − θ∗2

= ζi(∗, y, z) = z+
i −

1

λi−1(z, y)

γ∗ci−1

θ∗i−1 + θ∗0

θ∗i−1 − θ∗1
θ∗1 − θ∗2

.

Proof. To get the first two equalities, apply Lemmas 32, 91, 93(i) to x, y. To get the last
two equalities, apply Lemmas 32, 91 and 93(ii) to z, y.

Definition 197. With reference to Assumption 1, pick y ∈ X and an integer n > 0. A
path {xi}ni=0 in Γ is called raising/lowering with respect to y whenever the following (i),
(ii) hold:

(i) 2 6 ∂(xi, y) 6 D − 1 for 0 6 i 6 n;

(ii) ∂(xi−1, y) 6= ∂(xi, y) for 1 6 i 6 n.

Lemma 198. With reference to Assumption 1, pick y ∈ X. Pick an integer i (2 6 i 6
D−1) and x, x′ ∈ Γi(y). Assume that x, x′ are connected by a path that is raising/lowering
with respect to y. Then λi(x, y) = λi(x

′, y).

Proof. Routine using Lemma 196 and Definition 197.
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Lemma 199. With reference to Assumption 1, pick y ∈ X. Pick an integer i (2 6 i 6
D − 1) and adjacent x, x′ ∈ Γi(y). Then

|Γ(x) ∩ Γ(x′) ∩ Γi−1(y)|+ ciθ
∗
2 − riθ∗1 − siθ∗i
θ∗1 − θ∗2

= λi(x, y)

(
|Γ(x) ∩ Γ(x′) ∩ Γi+1(y)|+ biθ

∗
2 −Riθ

∗
1 − Siθ∗i

θ∗1 − θ∗2

)
= λi(x

′, y)

(
|Γ(x) ∩ Γ(x′) ∩ Γi+1(y)|+ biθ

∗
2 −Riθ

∗
1 − Siθ∗i

θ∗1 − θ∗2

)
.

Proof. To get the first equality, take the inner product of Ex̂′ with each side of (37), and
evaluate the result using Lemma 2(i). To get the second equality, apply the first equality
with x, x′ interchanged.

Lemma 200. With reference to Assumption 1, pick y ∈ X. Pick an integer i (2 6 i 6
D−1) and adjacent x, x′ ∈ Γi(y) such that λi(x, y) 6= λi(x

′, y). Then the following (i)–(iv)
hold:

(i) |Γ(x) ∩ Γ(x′) ∩ Γi−1(y)|+ ciθ
∗
2 − riθ∗1 − siθ∗i
θ∗1 − θ∗2

= 0;

(ii) |Γ(x) ∩ Γ(x′) ∩ Γi+1(y)|+ biθ
∗
2 −Riθ

∗
1 − Siθ∗i

θ∗1 − θ∗2
= 0;

(iii) Γ(x) ∩ Γ(x′) ∩ Γi−1(y) = ∅ if 3 6 i 6 D − 1;

(iv) Γ(x) ∩ Γ(x′) ∩ Γi+1(y) = ∅ if 2 6 i 6 D − 2.

Proof. (i), (ii) By Lemma 199.
(iii) Assume that 3 6 i 6 D − 1 and Γ(x) ∩ Γ(x′) ∩ Γi−1(y) 6= ∅. There exists

z ∈ Γ(x) ∩ Γ(x′) ∩ Γi−1(y). The sequence x, z, x′ is a path in Γ that is lowering/raising
with respect to y, forcing λi(x, y) = λi(x

′, y) by Lemma 198. This is a contradiction.
(iv) Assume that 2 6 i 6 D − 2 and Γ(x) ∩ Γ(x′) ∩ Γi+1(y) 6= ∅. There exists

z ∈ Γ(x) ∩ Γ(x′) ∩ Γi+1(y). The sequence x, z, x′ is a path in Γ that is lowering/raising
with respect to y, forcing λi(x, y) = λi(x

′, y) by Lemma 198. This is a contradiction.

We return our attention to the graph Γ from item (v) above.

Lemma 201. Assume that Γ is from item (v), with D > 4. Then the set {Ex̂|x ∈ X} is
not Norton-balanced.

Proof. We assume that the set {Ex̂|x ∈ X} is Norton-balanced, and get a contradiction.
To obtain the contradiction, we show that the kite function ζi is constant for 2 6 i 6 D.
Until further notice, fix y ∈ X. Our first step is to show that λ2(x, y) is independent of x
for all x ∈ Γ2(y). To this end, we define a set of vertices ∆ = ∆(y) by ∆ = ∪2

i=0Γi(y). We
consider the subgraph of Γ induced on ∆. In the subgraph ∆, each vertex is connected to
y by a path of length at most 2. Therefore the subgraph ∆ is connected. One checks that
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the subgraph ∆ has diameter 4. Let ∂∆ denote the distance function for the subgraph ∆.
Suppose that there exists a pair of vertices x, x′ ∈ Γ2(y) such that λ2(x, y) 6= λ2(x′, y). Of
all such pairs of vertices, choose a pair x, x′ such that ∂∆(x, x′) is minimal. By construction
1 6 ∂∆(x, x′) 6 4. We now examine the cases.
Case ∂∆(x, x′) = 1. We have ∂(x, x′) = 1. Setting i = 2 in Lemma 200(ii),(iv) we
obtain Γ(x) ∩ Γ(x′) ∩ Γ3(y) = ∅ and

b2θ
∗
2 −R2θ

∗
1 − S2θ

∗
2 = 0.

Using the data in [45, Example 20.6], we obtain for N even:

b2θ
∗
2 −R2θ

∗
1 − S2θ

∗
2 = −(qD+ 1

2 + qD − 1)(qD − q2)(qD+ 1
2 − q2)q2D+ 1

2

q2D+2+ 1
2 + q2D+ 1

2 − 2qD+2+ 1
2 − 2qD+2 + 2q2

6= 0,

and for N odd:

b2θ
∗
2 −R2θ

∗
1 − S2θ

∗
2 = −(qD−

1
2 + qD − 1)(qD − q2)(qD−

1
2 − q2)q2D− 1

2

q2D+2− 1
2 + q2D− 1

2 − 2qD+2− 1
2 − 2qD+2 + 2q2

6= 0.

This is a contradiction.
Case ∂∆(x, x′) = 2. We have ∂(x, x′) = 2. By the triangle inequality,

Γ(x) ∩ Γ(x′) = ∪3
i=1

(
Γ(x) ∩ Γ(x′) ∩ Γi(y)

)
.

The set Γ(x) ∩ Γ(x′) ∩ Γ3(y) must be empty, because if it contains a vertex z then the
sequence x, z, x′ is a path in Γ that is raising/lowering with respect to y, contradicting
Lemma 198. The set Γ(x) ∩ Γ(x′) ∩ Γ2(y) must be empty, because if it contains a vertex
z then x, z, x′ is a path in the subgraph ∆, forcing λ2(x, y) = λ2(z, y) = λ2(x′, y) by the
minimality of ∂∆(x, x′). By the above comments,

Γ(x) ∩ Γ(x′) = Γ(x) ∩ Γ(x′) ∩ Γ(y).

Note that

|Γ(x) ∩ Γ(x′) ∩ Γ(y)| = |Γ(x) ∩ Γ(x′)| = c2.

We have

Γ(x) ∩ Γ(y) = Γ(x′) ∩ Γ(y) = Γ(x) ∩ Γ(x′) ∩ Γ(y),

because the first two sets have cardinality c2 and contain the third set. By Lemma 45, the
scalar ζ2(x, y, ∗) is the average valency of the induced subgraph Γ(x) ∩ Γ(y). Similarly,
ζ2(x′, y, ∗) is the average valency of the induced subgraph Γ(x′) ∩ Γ(y). These subgraphs
coincide, so ζ2(x, y, ∗) = ζ2(x′, y, ∗). By this and Lemma 91 (with i = 2), we obtain
λ2(x, y) = λ2(x′, y). This is a contradiction.
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Case ∂∆(x, x′) = 3. In the subgraph ∆, the vertices x, x′ are connected by a path of
length 3. Denote such a path by x, z, z′, x′. The vertices x, z′ are not adjacent; otherwise
x, z′, x′ is a path in ∆, contradicting ∂∆(x, x′) = 3. Similarly, the vertices x′, z are not
adjacent. The vertex z is contained in ∆ and adjacent to x, so z ∈ Γ(y) ∪ Γ2(y). If
z ∈ Γ2(y) then λ2(x, y) = λ2(z, y) = λ2(x′, y) by the minimality of ∂∆(x, x′). This is
a contradiction, so z ∈ Γ(y). We have z ∈ Γ(x) ∩ Γ(y). Similarly, z′ ∈ Γ(x′) ∩ Γ(y).
These comments apply to every choice of z, z′. For each choice of z there are c2 choices
for z′, and these are all contained in Γ(x′) ∩ Γ(y). For each choice of z′ there are c2

choices for z, and these are all contained in Γ(x) ∩ Γ(y). We have |Γ(x) ∩ Γ(y)| = c2

and |Γ(x′) ∩ Γ(y)| = c2. By these comments, every vertex in Γ(x) ∩ Γ(y) is adjacent
to every vertex in Γ(x′) ∩ Γ(y). Pick z ∈ Γ(x) ∩ Γ(y) and w′ ∈ Γ(x′) ∩ Γ3(y). By
construction ∂(z, w′) ∈ {2, 3}. Suppose for the moment that ∂(z, w′) = 2. Then there
exists v ∈ Γ(z) ∩ Γ(w′). By construction v ∈ Γ2(y). We have ∂∆(x, v) 6 2 since x, z, v
is a path in ∆. Therefore, λ2(x, y) = λ2(v, y) by the minimality of ∂∆(x, x′). We have
λ2(v, y) = λ2(x′, y) by Lemma 198 and since v, w′, x′ is a path in Γ that is lowering/raising
with respect to y. By these comments, λ2(x, y) = λ2(v, y) = λ2(x′, y) for a contradiction.
We have shown that ∂(z, w′) 6= 2, so ∂(z, w′) = 3. It follows that in the graph Γ, every
vertex in Γ(x)∩ Γ(y) is at distance 3 from every vertex in Γ(x′)∩ Γ3(y). Similarly, in the
graph Γ every vertex in Γ(x′) ∩ Γ(y) is at distance 3 from every vertex in Γ(x) ∩ Γ3(y).
Pick z′ ∈ Γ(x′)∩Γ(y). Take the inner product of Eẑ′ with each side of (37), and evaluate
the result using Lemma 2(i); this yields

c2θ
∗
1 − r2θ

∗
2 − s2θ

∗
1 = λ2(x, y)

(
b2θ
∗
3 −R2θ

∗
2 − S2θ

∗
1

)
.

Interchanging the roles of x, x′ we obtain

c2θ
∗
1 − r2θ

∗
2 − s2θ

∗
1 = λ2(x′, y)

(
b2θ
∗
3 −R2θ

∗
2 − S2θ

∗
1

)
.

By these comments and λ2(x, y) 6= λ2(x′, y), we obtain

c2θ
∗
1 − r2θ

∗
2 − s2θ

∗
1 = 0, b2θ

∗
3 −R2θ

∗
2 − S2θ

∗
1 = 0.

Using the data in [45, Example 20.6], we obtain

b2θ
∗
3 −R2θ

∗
2 − S2θ

∗
1 = b2θ

∗
2 −R2θ

∗
1 − S2θ

∗
2 6= 0.

This is a contradiction.
Case ∂∆(x, x′) = 4. Pick z ∈ Γ(x) ∩ Γ(y) and z′ ∈ Γ(x′) ∩ Γ(y). Note that ∂∆(z, z′) =
2 = ∂(z, z′). Since c2 > 1, there exists u ∈ Γ(z) ∩ Γ(z′) with u 6= y. By construction
u ∈ Γ(y) ∪ Γ2(y), so u ∈ ∆. The sequence x, z, u is a path in ∆. The vertices x, u
are not adjacent; otherwise x, u, z′, x′ is a path in ∆ of length 3. By these comments,
∂∆(x, u) = 2. Similarly, ∂∆(x′, u) = 2. Suppose for the moment that u ∈ Γ2(y). Then
λ2(x, y) = λ2(u, y) = λ2(x′, y) by the minimality of ∂∆(x, x′). This is a contradiction, so
u ∈ Γ(y). Note that |Γ(u) ∩ Γ2(y)| = b1, so Γ(u) ∩ Γ2(y) 6= ∅. Pick v ∈ Γ(u) ∩ Γ2(y). In
the graph ∆, the sequence x, z, u, v is path, so ∂∆(x, v) 6 3. Also in the graph ∆, the
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sequence x′, z′, u, v is path, so ∂∆(x′, v) 6 3. Now λ2(x, y) = λ2(v, y) = λ2(x′, y) by the
minimality of ∂∆(x, x′). This is a contradiction.
Conclusion. We have shown that there does not exist a pair of vertices x, x′ ∈ Γ2(y)
such that λ2(x, y) 6= λ2(x′, y). Consequently λ2(x, y) is independent of x for all x ∈ Γ2(y);
we call this common value the λ2-value of y. Until now, the vertex y has been fixed. Next,
we let y vary. Pick any x, y ∈ X at distance ∂(x, y) = 2. We have ζ2(x, y, ∗) = ζ2(y, x, ∗)
because each side is equal to the average valency of the subgraph induced on Γ(x)∩Γ(y).
By this and Lemma 91 (with i = 2) we obtain λ2(x, y) = λ2(y, x). Therefore x, y have the
same λ2-value. By this and since Γ is not bipartite, we find that every vertex in X has
the same λ2-value. This means that λ2(x, y) is independent of x, y for all x, y ∈ X with
∂(x, y) = 2. By this and Lemma 196, for 2 6 i 6 D− 1 the scalar λi(x, y) is independent
of x, y for all x, y ∈ X with ∂(x, y) = i. By this and Lemmas 91, 93, the kite function ζi
is constant for 2 6 i 6 D. On one hand, Γ is reinforced by Lemma 59, so E is DC by
Lemma 127. On the other hand, E is not DC because the condition in Theorem 128(i) is
violated. This is a contradiction, so the set {Ex̂|x ∈ X} is not Norton-balanced.

30 When Γ affords a spin model

We are done discussing the known infinite families of Q-polynomial distance-regular
graphs with unbounded diameter. There is one more family of Q-polynomial distance-
regular graphs that we would like to discuss; members of this family afford a spin model
[9, 12, 13, 14, 25, 33, 34]. Very few examples are known; see [13, Section 9] or [33,
Section 15].

Throughout this section, the following assumptions and notation are in effect. Let
Γ = (X,R) denote a distance-regular graph with diameter D > 3. Assume that Γ affords
a spin model in the sense of [33, Definition 11.1]. By [33, Lemma 11.4] there exists an
ordering {Ei}Di=0 of the primitive idempotents of Γ that is formally self-dual in the sense
of [33, Definition 10.1]. By [33, Lemma 10.2] the ordering {Ei}Di=0 is Q-polynomial; to
avoid trivialities we assume that this ordering has q-Racah type [45, Example 20.1]. Write
E = E1.

We discuss some cases. Throughout this paragraph, assume that Γ is bipartite or
almost bipartite. The given Q-polynomial structure is formally self-dual, so E is dual-
bipartite or almost dual-bipartite. The set {Ex̂|x ∈ X} is strongly balanced by Lemma
21. The set {Ex̂|x ∈ X} is Norton-balanced by Definitions 20, 22. The kite function ζi
is constant for 2 6 i 6 D, because Γ has no kites. The graph Γ is reinforced by Lemma
59, so E is DC in view of Lemma 127.

For the rest of this section, assume that Γ is not bipartite and not almost bipartite.
By [9, Remark 6.10] or [34, Remark 7.4], [34, Appendix 18] the parameters q, r1, r2, s, s

∗

from [45, Example 20.1] satisfy

r1 = −q−1η, r2 = −η3qD−2, s = s∗ = r2
1
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for an appropriate η ∈ C. By [33, Lemma 12.2] and [34, Remark 7.4], we have

qi 6= 1 (1 6 i 6 D), qiη2 6= 1 (0 6 i 6 2D − 2),

qiη3 6= −1 (D − 1 6 i 6 2D − 2).

The intersection numbers of Γ are given in [9, Theorems 6.6, 6.8] and [9, Corollary 6.9].
By [9, Corollary 6.9] and since Γ is not bipartite, qD−1η2 6= −1. By [9, Corollary 6.9] and
since Γ is not almost bipartite, qDη 6= 1. The primitive idempotent E is DC by Theorem
128(i) and s = r2

1. By (19) and [45, Example 20.1],

γ∗ =
(q − 1)(qη2 − 1)(qD−1η2 + 1)(qDη − 1)

qη(qDη2 − 1)(qD−1η + 1)
6= 0.

By [34, Remark 15.6] the kite function ζi is constant for 2 6 i 6 D. Therefore Γ is
reinforced. By [34, Remark 7.4] and [34, Lemma 15.7],

zi = − (qi − q)(qη2 − 1)(qD−1η2 + 1)(qDη − 1)

(qiη − q)(qDη2 − 1)(qD−1η + 1)(qη − 1)
(2 6 i 6 D). (74)

Lemma 202. With the above notation, the set {Ex̂|x ∈ X} is Norton-balanced. Pick
distinct x, y ∈ X and write i = ∂(x, y). There is a linear dependence with the following
terms and coefficients:

0 = term coefficient
Ex−y 1

Ex+
y

η(qi−q)(qiη−1)
(qiη−q)(qiη2−1)

Ex̂ − qD−1(η−1)(qη+1)(qη2−1)(qi−q)
(q−1)(qiη−q)(qD−1η+1)(qDη2−1)

Eŷ − qi(η−1)(qη2−1)
(qiη2−1)(qiη−q)

Proof. We first verify the linear dependence in the above table. For 2 6 i 6 D − 1 we
compute the polynomial Φi(λ) using Definition 95 along with Lemma 41, Definitions 64,
76 and the data in [45, Example 20.1]. We check using (74) that Φi(z2) = 0. By this and
Corollary 98, the vectors Ex−y , Ex+

y , Ex̂, Eŷ are linearly dependent. The coefficients in
this linear dependence are found using (41), (42). This yields the linear dependence in the
above table, for 2 6 i 6 D − 1. Next, assume that i = D. Using Definition 64 and (74),
we obtain z−D = zD. This and Proposition 68 yield the linear dependence in the above
table for i = D. For i = 1 the linear dependence in the above table holds vacuously. We
have shown that the linear dependence in the above table holds in every case. Next, we
verify that the set {Ex̂|x ∈ X} is Norton-balanced. We will use Proposition 100(ii). We
mentioned earlier that γ∗ 6= 0 and Γ is reinforced. Pick an integer i (2 6 i 6 D − 1). We
verify the conditions in (45). The condition Φi(z2) = 0 is already verified. Referring to
the above table, in our calculation of the Ex+

y coefficient we found that the scalar λi from
(41), (42) is given by

λi = − η(qi − q)(qiη − 1)

(qiη − q)(qiη2 − 1)
.
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By the data in [45, Example 20.1],

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
=

q2iη2 − 1

q(q2i−2η2 − 1)
.

We have

θ∗i − θ∗i+1

θ∗i−1 − θ∗i
− λi =

(qη + 1)(qiη − 1)(q2i−1η2 − 1)

q(qiη2 − 1)(q2i−2η2 − 1)
6= 0.

We have verified the conditions in (45), so the set {Ex̂|x ∈ X} is Norton-balanced.

31 Directions for future research

In this section, we give some suggestions for future research.

Problem 203. Classify up to isomorphism the Q-polynomial distance-regular graphs
with diameter D > 3 that are Norton-balanced.

Problem 204. Classify up to isomorphism the distance-regular graphs with diameter
D > 4 that have a Q-polynomial primitive idempotent that is DC.

Problem 205. Classify up to isomorphism the distance-regular graphs with diameter
D > 3 that have a Q-polynomial structure such that γ∗ = 0.

Conjecture 206. Let Γ = (X,R) denote a Q-polynomial distance-regular graph with
diameter D > 3. Let E denote a Q-polynomial primitive idempotent of Γ. Assume
that the set {Ex̂|x ∈ X} is Norton-balanced. Then the kite function ζi is constant for
2 6 i 6 D.
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[4] P. Bernard, N. Crampé, L. Vinet. The Terwilliger algebra of symplectic dual polar
graphs, the subspace lattices and Uq(sl2). Discrete Math. 345(12): Paper No. 113169,
19 pp., 2022.
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