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Abstract

The spread of a graph G is the difference between the largest and smallest
eigenvalue of the adjacency matrix of G. In this paper, we consider the family of
graphs which contain no Ks,t-minor. We show that for any t  s  2 and sufficiently
large n, there is an integer ξt such that the extremal n-vertex Ks,t-minor-free graph
attaining the maximum spread is the graph obtained by joining a graph L on (s−1)
vertices to the disjoint union of ⌊2n+ξt

3t ⌋ copies of Kt and n−s+1−t⌊2n+ξt
3t ⌋ isolated

vertices. Furthermore, we give an explicit formula for ξt and an explicit description
for the graph L for t  3

2(s− 3) + 4
s−1 .

Mathematics Subject Classifications: 05C50, 15A42

1 Introduction

Given a square matrix M , the spread of M , denoted by S(M), is defined as S(M) :=
maxi,j |λi − λj|, where the maximum is taken over all pairs of eigenvalues of M , so that
S(M) is the diameter of the spectrum of M . Given a graph G = (V,E) on n vertices, the
spread of G, denoted by S(G), is defined as the spread of the adjacency matrix A(G) of
G. The adjacency matrix A(G) is the n×n matrix with rows and columns indexed by the
vertices of G such that for every pair of vertices u, v ∈ V (G), (A(G))uv = 1 if uv ∈ E(G)
and (A(G))uv = 0 otherwise. Since A(G) is a real symmetric matrix, its eigenvalues are
all real numbers. Let λ1(G)  · · ·  λn(G) be the eigenvalues of A(G), where λ1 is called
the spectral radius of G. Then S(G) = λ1 − λn.

The systematic study of the spread of graphs was initiated by Gregory, Hershkowitz,
and Kirkland [13]. One of the central focuses of this area is to find the maximum or
minimum spread over a fixed family of graphs and characterize the extremal graphs. The
maximum-spread graph over the family of all n-vertex graphs was recently determined for
sufficiently large n by Breen, Riasanovsky, Tait and Urschel [3], building on much prior
work [2, 24, 26, 27, 31]. Other problems of such extremal flavor have been investigated
for trees [1], graphs with few cycles [11, 22, 33], the family of bipartite graphs [3], graphs
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with a given matching number [16], girth [32], or size [15], outerplanar graphs [12, 17] and
planar graphs [17]. We note that the spreads of other matrices associated with a graph
have also been extensively studied (see e.g. references in [12, 6, 8]).

Given two graphs G and H, the join of G and H, denoted by G ∨ H, is the graph
obtained from the disjoint union of G and H by connecting every vertex of G with every
vertex of H. Let Pk denote the path on k vertices. Given two graphs G and H, let
G ∪ H denote the disjoint union of G and H. Given a graph G and a positive integer
k, we use kG to denote the disjoint union of k copies of G. Given v ⊆ V (G), let NG(v)
denote the set of neighbors of v in G, and let dG(v) denote the degree of v in G, i.e.,
dG(v) = |NG(v)|. Given S ⊆ V (G), define NG(S) as NG(S) = ∪v∈S(NG(v)\S). We may
ignore the subscript G when there is no ambiguity. A graph H is called a minor of a
graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting
edges. A graph G is called H-minor-free if H is not a minor of G.

There has been extensive work on finding the maximum spectral radius of Ks,t-minor-
free graphs. Let Gs,t(n) denote the family of all Ks,t-minor-free graphs on n vertices.
Nikiforov [21] proved an upper bound for the maximum spectral radius of a K2,t-minor-
free graph. Nikiforov showed that this bound is tight for graphs with a sufficiently large
number of vertices n with n ≡ 1 (mod t) and determined the extremal graph in these
cases. Tait [28] extended Nikiforov’s result by proving an upper bound on the maximum
spectral radius of Ks,t-minor-free graphs, and determined the extremal graphs when n ≡
s−1 (mod t) and n is sufficiently large. Recently, Zhai and Lin [36] completely determined
the Ks,t-minor-free graph with maximum spectral radius for a sufficiently large number
of vertices n and all t  s  2.

In [18], the authors determined the maximum-spread K2,t-minor-free graph for suffi-
ciently large n for all t  2. In this follow-up paper, we determine the structure of the
maximum-spread Ks,t-minor-free graph on n vertices for sufficiently large n and for all
t  s  2.

Theorem 1. For t  s  2 and n sufficiently large, the graph(s) that maximizes the
spread over the family of Ks,t-minor-free graphs on n vertices has the following form

Lmax ∨ (ℓ0Kt ∪ (n− s+ 1− tℓ0)P1)

where

1. Lmax is a graph on s− 1 vertices which maximizes a function ψ(L) (over all graphs
L on s− 1 vertices) as follows:

ψ(L) = 3


v∈V (L)

d2L(v)−
2

s− 1






v∈V (L)

dL(v)




2

− (t− 1)


v∈V (L)

dL(v). (1)

2. ℓ0 =


2
3t
− 2|E(Lmax)|

3t(t−1)(s−1)


(n− s+ 1) +O(n) for any  > 0.
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In particular, we have

max
G∈Gs,t(n)

S(G) = 2


(s− 1)(n− s+ 1) +
(t− 1)2 + ψ(Lmax)/(s− 1)

3


(s− 1)(n− s+ 1)
+O


1

n3/2


. (2)

We call a pair (s, t) admissible if Lmax = (s−1)K1, i.e., ψ(L)  0 and ψ(L) = 0 only if
L = (s− 1)K1. We determine the value of ℓ0 when (s, t) is admissible and thus determine
the precise extremal graph(s) for these cases.

Theorem 2. Let s and t be integers with t  s  2, and suppose that the pair (s, t) is
admissible. For n sufficiently large, the maximum spread over the family of Ks,t-minor-
free graphs on n vertices is achieved by

(s− 1)K1 ∨ (ℓ0Kt ∪ (n− s+ 1− tℓ0)P1) .

Here ℓ0 is the nearest integer(s) of ℓ1 := 2
3t


n− s+ 1− (t−1)2

9(s−1)


. In particular, the ex-

tremal graph is unique when ℓ1 is not a half-integer. Otherwise, there are two extremal
graphs.

Furthermore, we determine all of the admissible pairs (s, t).

Theorem 3. A pair (s, t) with s  t is admissible if and only if t  3
2
(s− 3) + 4

s−1
.

The smallest non-admissible pair is (s, t) = (8, 8).
Our paper is organized as follows. In Section 2, we recall some useful lemmas and prove

that in any maximum-spreadKs,t-minor-free graphG, there are (s−1) vertices u1, . . . , us−1

which are adjacent to all other vertices in G. In Section 3, we show that G−{u1, . . . , us−1}
is a disjoint union of cliques on t vertices and isolated vertices and complete the proofs
of Theorems 1, 2, and 3. The non-admissible cases are more complicated and will be
handled in a sequel.

2 Notation and Lemmas

Let G be a graph which attains the maximum spread among all n-vertex Ks,t-minor-free
graphs, and λ1  · · ·  λn be the eigenvalues of A(G). We first recall the following result
by Mader [19].

Theorem 4 ([19]). For every positive integer t, there exists a constant Ct such that every
graph with average degree at least Ct contains a Kt minor.

Corollary 5. Let s and t be positive integers with s  t. There exists a constant C0 such
that for any Ks,t-minor-free graph G on n > 0 vertices,

|E(G)|  C0n.

Kostochka and Prince [14] gave a better upper bound on the maximum number of
edges in a Ks,t-minor-free graph when t is sufficiently large compared to s.
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Theorem 6. [14] Let t  (180s log2 s)
1+6s log2 s be a positive integer, and G be a graph on

n  s+ t vertices with no Ks,t minor. Then

|E(G)|  t+ 3s

2
(n− s+ 1).

We mention here that in the case of s = 2, Chudnovsky, Reed and Seymour [7] showed
a tight upper bound |E(G)|  1

2
(t+1)(n−1) for the number of edges in a K2,t-minor-free

graph G for any t  2, which extends an earlier result of Myers [20].
We also need the following theorem by Thomason [30] on the number of edges of

Ks,t-minor-free bipartite graphs.

Theorem 7. [30] Let G be a bipartite graph with at least (s−1)n+4s+1s!tm edges, where
n,m > 0 are the sizes of the two parts of G. Then G has a Ks,t-minor.

Corollary 8. Suppose G is a bipartite graph on n vertices such that one part has at
most c

√
n vertices for some fixed constant c > 0. If G is K1,t-minor-free, then |E(G)| <

16tc
√
n.

As a first step towards proving Theorem 1, we want to show that G must contain
Ks−1,n−s+1 as a subgraph. We recall the result of Tait [28] on the maximum spectral
radius of Ks,t-minor-free graphs.

Theorem 9. [28] Let t  s  2 and let G be a graph of order n with no Ks,t minor. For
sufficiently large n, the spectral radius λ1(G) satisfies

λ1(G)  s+ t− 3 +


(t− s+ 1)2 + 4(s− 1)(n− s+ 1)

2
,

with equality if and only if n ≡ s− 1 (mod t) and G = Ks−1 ∨ ⌊n/t⌋Kt.

We first give some upper and lower bounds on λ1(G) and |λn(G)| when n is sufficiently
large. We use known expressions for the eigenvalues of a join of two regular graphs [4,
pg.19].

Lemma 10. [4] Let G and H be regular graphs with degrees k and ℓ respectively. Suppose
that |V (G)| = m and |V (H)| = n. Then, the characteristic polynomial of G ∨ H is

pG∨H(t) = ((t − k)(t − ℓ) − mn)pG(t)pH(t)
(t−k)(t−ℓ)

. In particular, if the eigenvalues of G are
k = λ1  . . .  λm and the eigenvalues of H are ℓ = µ1  . . .  µn, then the eigenvalues
of G ∨H are {λi : 2  i  m} ∪ {µj : 2  j  n} ∪ {x : (x− k)(x− ℓ)−mn = 0}.

We will apply Lemma 10 to the graph (s− 1)K1 ∨ qKt where q = ⌊(n− s+1)/t⌋. Let
a0 = (s− 1)(n− s+ 1).

Lemma 11. We have

√
a0 −

s+ t− 3

2
−O


1√
n


 |λn|  λ1 

√
a0 +

s+ t− 3

2
+O


1√
n


. (3)
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Proof. The upper bound of λ1 is due to Theorem 9. Now let us prove the lower bound.
By Lemma 10, for sufficiently large n, λ1((s − 1)K1 ∨ qKt) and λn((s − 1)K1 ∨ qKt)

are the roots of the equation

λ(λ− (t− 1))− (s− 1)qt = 0.

Thus, we have

λ1((s− 1)K1 ∨ qKt) =
t− 1 +


(t− 1)2 + 4(s− 1)qt

2
,

λn((s− 1)K1 ∨ qKt) =
t− 1−


(t− 1)2 + 4(s− 1)qt

2
.

Thus S((s − 1)K1 ∨ qKt) =


(t− 1)2 + 4(s− 1)qt. Let q = ⌊(n − s + 1)/t⌋. By the
eigenvalue interlacing theorem, we then have

S(G) 


(t− 1)2 + 4(s− 1)qt




4(s− 1)(n− s+ 1) + (t− 1)2 − 4(s− 1)(t− 1)

= 2
√
a0 +O


1√
n


.

Therefore,

|λn(G)| = S(G)− λ1(G)

 2
√
a0 +O


1√
n


−


√
a0 +

s+ t− 3

2
+O


1√
n



=
√
a0 −

s+ t− 3

2
−O


1√
n


.

For the rest of this paper, let x and z be the eigenvectors of A(G) corresponding to
the eigenvalues λ1 and λn respectively. For convenience, let x and z be indexed by the
vertices of G. By the Perron-Frobenius theorem, we may assume that all entries of x are
positive. We also assume that x and z are normalized so that the maximum absolute
values of the entries of x and z are equal to 1, and so there are vertices u0 and w0 with
xu0 = |zw0 | = 1.

Let V+ = {v : zv > 0}, V0 = {v : zv = 0}, and V− = {v : zv < 0}. Since z is a non-zero
vector, at least one of V+ and V− is non-empty. By considering the eigen-equations of
λn


v∈V+

zv or λn


v∈V−

zv, we obtain that both V+ and V− are non-empty. For any
vertex subset S, we define the volume of S, denoted by Vol(S), as Vol(S) =


v∈S |zv|.

In the following lemmas, we use the bounds of λn to deduce some information on V+, V−
and V0.

Lemma 12. We have
Vol(V (G)) = O(

√
n).
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Proof. For any vertex v ∈ V (G), we have

d(v)  |


y∈N(v)

zy| = |λn||zv|.

Applying Theorem 4 and Corollary 5, we have

|λn|Vol(V ) =


v∈V (G)

|λn||zv| 


v∈V (G)

d(v) = O(n).

By Lemma 11, |λn| 


(n− s+ 1)− s+t−3
2

−O


1√
n


. We thus have Vol(V ) = O(

√
n).

Without loss of generality, we assume |V+|  n
2
.

Lemma 13. We have
Vol(V+) = O(1).

Proof. Let  > 0 be a small constant depending on s and t to be chosen later. Define two
sets L and S as follows:

L = {v ∈ V+ : |N(v) ∩ V−|  n},

and S = V+ \ L. Let C = 4s+1s!t. By Theorem 7, we have

|L|  E(L, V−)

n
 Cn

n
=

C


. (4)

We then have that

λ2
nVol(S) = λ2

n



v∈S

zv

= λn



v∈S



u∈N(v)

zu




v∈S



u∈N(v)∩V−

λnzu




v∈S



u∈N(v)∩V−



y∈V+∩N(u)

zy

=


y∈V+

zy|E(S,N(y) ∩ V−)|

=


y∈L

zy|E(S,N(y) ∩ V−)|+


y∈S

zy|E(S,N(y) ∩ V−)|. (5)

We apply the following estimation. For y ∈ L, we have

|E(S,N(y) ∩ V−)|  |E(S, V−)|  Cn. (6)
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For y ∈ S, by Theorem 7, we have

|E(S,N(y) ∩ V−)|  (s− 1)|S|+ Cn. (7)

Now we apply the assumption that |V+|  n
2
. We have

|E(S,N(y) ∩ V−)|  (s− 1)
n

2
+ Cn. (8)

Plugging Equations (6) and (8) into Equation (5), we get

λ2
nVol(S)  Vol(L)Cn+Vol(S)


(s− 1)

n

2
+ Cn


. (9)

By Lemma 11, |λn| 


(s− 1)(n− s+ 1)− s+t−3
2

−O


1√
n


. Set  = s−1

6C
. We have that

for sufficiently large n,

λ2
n −


(s− 1)

n

2
+ Cn


>

(s− 1)n

4
. (10)

Combining Equations (9) and (10) and solving Vol(S), we get

Vol(S)  4C

s− 1
Vol(L). (11)

This implies

Vol(V+) 

1 +

4C

s− 1


Vol(L)



1 +

4C

s− 1


|L|



1 +

4C

s− 1


C



= O(1).

At the last step, we apply Inequality (4). The proof of this lemma is thus finished.

Corollary 14. For any v ∈ V−, we have

|zv| = O


1√
n


.

In particular, w0 ∈ V+ and |N(w0) ∩ V−| = Ω(n).

Proof. For any v ∈ V−, we have

|λn||zv| = λnzv 


y∈N(v)∩V+

zy  Vol(V+) = O(1).
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This implies zv = O


1√
n


. In particular, we have w0 ∈ V+. Thus zw0 = 1. We then

obtain that

λ2
n = λ2

nzw0

 λn



v∈N(w0)∩V−

zv

 |N(w0) ∩ V−| · zw0 +


y∈V+\{w0}

zy|N(y) ∩N(w0) ∩ V−|

 |N(w0) ∩ V−|Vol(V+).

Since Vol(V+) = O(1) and λ2
n  (s− 1− o(1))n, we have |N(w0) ∩ V−| = Ω(n).

Lemma 15. We have |V−|  n−O(
√
n) and |V+| = O(

√
n).

Proof. We define L now as follows. Let

L = {v ∈ V+ : |N(v) ∩ V−|  C1

√
n},

where C1 is some big constant chosen later. Let S = V+ \ L. We have

|L|  E(L, V−)

C1

√
n

 Cn

C1

√
n
=

C

C1

√
n. (12)

By Corollary 14, we have w0 ∈ L. In particular, Vol(L)  1.
Similar to Inequality (5), we have

λ2
nVol(L) 



y∈V+

zy|E(L,N(y) ∩ V−)|

=


y∈L

zy|E(L,N(y) ∩ V−)|+


y∈S

zy|E(L,N(y) ∩ V−)|. (13)

We apply the following estimation. For y ∈ L, we have

|E(L,N(y) ∩ V−)|  |E(L, V−)|  (s− 1)|V−|+ C|L|. (14)

For y ∈ S, we have

|E(L,N(y) ∩ V−)|  (s− 1)|L|+ CC1

√
n. (15)

Combining Equations (13), (14), and (15), we get

λ2
nVol(L)  Vol(L) ((s− 1)|V−|+ C|L|) + Vol(S)


(s− 1)|L|+ CC1

√
n

. (16)

Equivalently, we have

|V−| 
λ2
n

s− 1
− C|L|− Vol(S)

Vol(L)


(s− 1)|L|+ CC1

√
n


 n− C ′√n

for some sufficiently large constant C ′. Here we apply Inequality (12) that Vol(S) 
Vol(V+) = O(1) and Vol(L)  1. Thus, we have |V+| = O(

√
n).
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Lemma 16. There exist some constant C2 and s− 1 vertices u1, . . . , us−1 satisfying

(i) For any 1  i  s− 1, we have d(ui)  n− C2

√
n.

(ii) For any vertex v ∕∈ {u1, . . . , us−1}, we have d(v)  sC2

√
n.

Proof. This time we define L as follows:

L = {v ∈ V+ : |N(v) ∩ V−|  n− C2

√
n},

where C2 is some big constant chosen later, and let S = V+ \ L.
We first claim that |L|  s − 1. Otherwise, there exist s vertices u1, . . . , us ∈ L. We

have
s

i=1

(N(ui) ∩ V−)  |V−|− sC2

√
n > t,

when n is sufficiently large. Therefore, G contains a subgraph Ks,t, giving a contradiction.
Hence |L|  s− 1.

Now let us consider λ2
nVol(V+). By Lemma 15, we know that |V+|  C ′√n for some

constant C ′. As before, we have

λ2
nVol(V+) 



y∈V+

zy|E(V+, N(y) ∩ V−)|

=


y∈L

zy|E(V+, N(y) ∩ V−)|+


y∈S

zy|E(V+, N(y) ∩ V−)|. (17)

We apply the following estimation. We let C = 4s+1s!t. For y ∈ S, we have

|E(V+, N(y) ∩ V−)|  (s− 1)|N(y) ∩ V−|+ C|V+|  (s− 1)(n− C2

√
n) + CC ′√n. (18)

For y ∈ L, we have

|E(V+, N(y) ∩ V−)|  |E(V+, V−)|  (s− 1)n+ CC ′√n. (19)

Plugging Equations (18) and (19) into Equation (17), we get

λ2
nVol(V+)  Vol(S)


(s− 1)(n− C2

√
n) + CC ′√n


+Vol(L)


(s− 1)n+ CC ′√n)



= Vol(V+)

(s− 1)n+ CC ′√n)


− Vol(S)(s− 1)C2

√
n. (20)

Applying the lower bound of |λn| in Lemma 11, we conclude

Vol(S)  CC ′ + (s− 1)(s+ t− 3) +O(1)

(s− 1)C2

Vol(V+). (21)

Choose C2 large enough such that CC′+(s−1)(s+t−3)+O(1)
(s−1)C2

 1
s2

and C2

√
n− |V+|  t (recall

that |V+| = O(
√
n) by Lemma 15). We then have that

Vol(S)  1

s2
Vol(V+).
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This implies

Vol(S)  1

s2 − 1
Vol(L).

Since Vol(L)  |L|  s− 1, we get

Vol(S)  s− 1

s2 − 1
=

1

s+ 1
.

Now we do the similar calculation for Vol(L). We have

λ2
nVol(L) 



y∈V+

zy|E(L,N(y) ∩ V−)|

=


y∈L

zy|E(L,N(y) ∩ V−)|+


y∈S

zy|E(L,N(y) ∩ V−)|. (22)

We apply the following estimation. For y ∈ S, we have

|E(L,N(y) ∩ V−)|  (s− 1)|N(y) ∩ V−)|+ C|L|  (s− 1)(n− C2

√
n) + C(s− 1). (23)

For y ∈ L, we have
|E(L,N(y) ∩ V−)|  |E(L, V−)|  |L|n. (24)

Plugging Equations (23) and (24) into Equation (22), we get

λ2
nVol(L)  Vol(S)


(s− 1)(n− C2

√
n) + C(s− 1)


+Vol(L)|L|n. (25)

Since w0 ∈ L, we have Vol(L)  1. We then obtain that

|L|  λ2
n

n
− 1

(s2 − 1)n


(s− 1)(n− C2

√
n) + C(s− 1)



 s− 1− 1

s+ 1
+ o(1).

Since |L| is an integer, we have
|L|  s− 1.

Together with the upper bound in Inequality (12), we get |L| = s− 1.
Now we could write L = {u1, . . . , us−1}. We then have that



s−1

i=1

(N(ui) ∩ V−)

  |V−|− (s− 1)C2

√
n. (26)

Now we claim that for any vertex v ∕∈ L, d(v)  sC2

√
n. Otherwise, since C2 is chosen

such that C2

√
n− |V+|  t, we then have

N(v) ∩


s−1

i=1

(N(ui) ∩ V−)

  sC2

√
n− |V+|− (s− 1)C2

√
n  C2

√
n− |V+|  t,

which implies that L ∪ {v} and t of their common neighbors form a Ks,t in G, giving a
contradiction. Thus, dv  sC2

√
n for any v /∈ L.
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Lemma 17. We have

(i) For any 1  i  s− 1, zui
= 1−O


1√
n


.

(ii) For any vertex v ∕∈ {u1, . . . , us−1}, we have |zv| = O( 1√
n
).

Proof. We will prove (ii) first. Let C2 be the same constant obtained from Lemma 16.
Let L = {v ∈ V+ : |N(v) ∩ V−|  n − C2

√
n}, and S = V+ \ L. By Corollary 14, we

know that for every v ∈ V −, |zv| = O( 1√
n
). Thus it suffices to show that for every v ∈ S,

|zv| = O( 1√
n
). Indeed, for every v ∈ S, we have that

|λn|2zv  |λn|


u∈N(v)∩V−

|zu|




u∈N(v)∩V−



y∈N(u)∩V+

zy

=


y∈V+

zy · |N(v) ∩N(y) ∩ V−|

 sC2 ·


y∈V+

zy

 sC2 ·O(1).

Thus, zv = O

1
n


. This completes the proof of (ii).

Finally, we estimate zui
for 1  i  s − 1. By previous lemmas, we know that

w0 ∈ {u1, . . . , us−1}. From the eigen-equations, we obtain that for each ui (1  i  s−1),

|λn|(zw0 − zui
) = −



u∈N(w0)\N(ui)

zu +


u∈N(ui)\N(w0)

zu (27)




u∈(N(w0)\N(ui))∩V−

|zu|+


u∈(N(ui)\N(w0))∩V+

zu (28)




u∈(N(w0)\N(ui))∩V−

|zu|+O(1) (29)

 C2

√
n ·O


1√
n


+O(1) (30)

= O(1). (31)

Therefore, we have zui
 1−O


1√
n


since zw0 = 1 and zw0 − zui

= O( 1√
n
).

Recall that we let L := {u1, u2, · · · , us−1}. Let V ′ = {v ∈ V (G)\L : |N(v)∩L| = s−1}
and let V ′′ = V (G)\(L ∪ V ′). We have the following lemma on the structure of G.

Lemma 18. We have the following properties.
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(i) |V ′|  n− (s− 1)C2

√
n.

(ii) For any v ∈ V (G)\L, |N(v) ∩ V ′|  t− 1.

(iii) In H = G[V (G)\L], for any vertex v ∈ V (H), |NH(NH(v)) ∩ V ′|  t2.

Proof. By Lemma 16, min
u∈L

d(u)  n−C2

√
n. It follows that |V ′|  n− (s− 1)C2

√
n  t.

For any v ∈ V (G)\L, v has at most t − 1 neighbors in V ′, otherwise, L ∪ {v} and t of
their common neighbors in V ′ would form a Ks,t in G.

Now for any v ∈ V (G)\L, we claim that |NH(NH(v)) ∩ V ′|  t2. Indeed, suppose
not, then by (ii) and the Pigeonhole principle, there exist t vertex-disjoint 2-vertex paths
from v to t distinct vertices in V ′. But then it is not hard to see that L ∪ {v} and these
t distinct vertices would form a Ks,t minor, giving a contradiction.

Lemma 19. We have

(i) For any 1  i  s− 1, xui
= 1−O


1√
n


.

(ii) For any vertex v ∕∈ {u1, . . . , us−1}, we have xv = O( 1√
n
).

Proof. Let us prove (ii) first. For any vertex v /∈ {u1, . . . , us−1}, by the eigen-equations,
we have that

λ2
1xv = λ1



u∈N(v)

xu

= λ1






u∈N(v)∩V ′

xu +


u∈N(v)∩L

xu +


u∈N(v)∩V ′′

xu





 λ1



(t− 1) + (s− 1) +


u∈N(v)∩V ′′

xu





= (t+ s− 2)λ1 +


u∈N(v)∩V ′′

λ1xu

= (t+ s− 2)λ1 +


u∈N(v)∩V ′′



w∈N(u)

xw

= (t+ s− 2)λ1 +


u∈N(v)∩V ′′






w∈N(u)∩L

xw +


w∈N(u)∩V ′

xw +


w∈N(u)∩V ′′

xw





 (t+ s− 2)λ1 + (s− 1)|V ′′|+ t2 +


u∈N(v)∩V ′′



w∈N(u)∩V ′′

xw

 (t+ s− 2)λ1 + (s− 1)|V ′′|+ t2 + 2|E(G[V ′′])|
 (t+ s− 2)λ1 + (s− 1)(sC2

√
n) + t2 +O(

√
n)
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= O(
√
n).

It follows that xv = O( 1√
n
).

Now we will prove (i). Recall that u0 is a vertex such that xu0 = 1. Thus u0 ∈ L. Let
ui be an arbitrary vertex in L\{u0}.

If u0ui is not an edge of G, then we have

λ1|xu0 − xui
| 



v∈V ′′

xv +


v∈L

xv

 |V ′′| ·O


1√
n


+ (s− 1)

= O(1).

If u0ui is an edge of G, we have

(λ1 − 1)|xu0 − xui
| 



v∈V ′′

xv +


v∈L

xv

 |V ′′| ·O


1√
n


+ (s− 1)

= O(1).

In both cases, we have

|xu0 − xui
| = O


1√
n


.

It follows that xui
= 1−O


1√
n


for any i ∈ [s− 1].

Now we are ready to show that G has s− 1 vertices that are connected to each of the
rest of the n− s+ 1 vertices.

Lemma 20. G contains the subgraph Ks−1,n−s+1.

Proof. Let x and z be the eigenvectors associated with λ1 and λn respectively. Assume
that x and z are both normalized such that the largest entries of them in absolute value
are 1. By Lemma 16, there exist s − 1 vertices L = {u1, u2, · · · , us−1} such that for
every v ∈ L, d(v)  n − C2

√
n and for every v /∈ L, d(v)  sC2

√
n. Recall that

V ′ = {v ∈ V (G)\L : |N(v) ∩ L| = s− 1} and V ′′ = V (G)\(L ∪ V ′).
To prove the lemma, it suffices to show that V ′′ is empty. Suppose otherwise that

V ′′ is not empty. Note that V ′′ induces a Ks,t-minor-free graph, and by Theorem 4 and
its corollary, we know that there exists some constant C0 and some vertex v0 ∈ V ′′ such
that dG[V ′′](v0)  C0. Moreover, observe that v0 has at most (t − 1) neighbors in V ′, as
otherwise L ∪ {v0} and t of their common neighbors would form a Ks,t in G.

Let G′ be obtained from G by removing all the edges of G incident with v0 and adding
an edge from v0 to every vertex of L, so that E(G′) = E(G−v0)∪{v0u1, v0u2, · · · , v0us−1}.
Observe G′ is still Ks,t-minor-free.
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We claim that λn(G
′) < λn(G). Indeed, consider the vector z̃ such that z̃u = zu for

u ∕= v0 and z̃v0 = −|zv0 |. Then

z̃′A(G′)z̃ =


uv∈E(G−v0)

2zuzv + 2z̃v0 · Vol(L)

=


uv∈E(G)

2zuzv − 2


y∼v0

zyzv0 − 2|zv0 |Vol(L)

 z′A(G)z+ 2


y∼v0

|zyzv0 |− 2|zv0 | · Vol(L)

 z′A(G)z+ 2 · (t+ C0) ·O


1√
n


· |zv0 |− 2


1−O


1√
n


|zv0 |

< z′A(G)z.

Similarly, we claim that λ1(G
′) > λ1(G). Indeed,

x′xλ1(G
′) = x′A(G′)x

= x′A(G)x− 2


y∼v0

xyxv0 + 2xv0Vol(L)

 x′xλ1(G)− 2 · (t+ C0) ·O


1√
n


· xv0 + 2


1−O


1√
n


xv0

> x′xλ1(G).

Hence we have S(G′) = λ1(G
′)−λn(G

′) > λ1(G)−λn(G) = S(G), giving a contradiction.

3 Proof of Theorem 1

By Lemma 20, a maximum-spread Ks,t-minor-free graph G contains a complete bipartite
subgraph Ks−1,n−s+1. We denote the part of s − 1 vertices by L and the other part of
n−s+1 vertices by R. Let α be a normalized eigenvector corresponding to an eigenvalue
λ of the adjacency matrix of G. Let AL (or AR) be the adjacency matrix of the induced
subgraph G[L] (or G[R]) respectively.

Let αL (respectively, αR) denote the restriction of α to L (respectively, R). The
following lemma computes the vectors αL and αR.

Lemma 21. If |λ| > t− 1, then

αR = (1′αL)
∞

k=0

λ−(k+1)Ak
R1, (32)

αL = (1′αR)
∞

k=0

λ−(k+1)Ak
L1. (33)

the electronic journal of combinatorics 32(1) (2025), #P1.5 14



Proof. Note that since G is Ks,t-minor-free and every vertex in L is adjacent to every
vertex in R, it follows that G[R] is K1,t-minor-free, and thus the maximum degree of G[R]
is at most t− 1. For n sufficiently large, both λ1(G) and |λn(G)| are greater than t− 1.
Hence when restricting the coordinates of A(G)α to R, we have that

ARαR + (1′αL)1 = λαR. (34)

It then follows that

αR = (1′αL)(λI − AR)
−11

= (1′αL)λ
−1(I − λ−1AR)

−11

= (1′αL)λ
−1

∞

k=0

(λ−1AR)
k1

= (1′αL)
∞

k=0

λ−(k+1)Ak
R1. (35)

Here we use the assumption that |λ| > t−1  λ1(AR) so that the infinite series converges.
Similarly, we have

αL = (1′αR)
∞

k=0

λ−(k+1)Ak
L1.

Lemma 22. Both λ1 and λn satisfy the following equation.

λ2 =

 ∞

k=0

λ−k1′Ak
L1


·
 ∞

k=0

λ−k1′Ak
R1


. (36)

Proof. From Equations (32) and (33), we have

1′αR = (1′αL)
∞

k=0

1′λ−(k+1)Ak
R1, (37)

1′αL = (1′αR)
∞

k=0

1′λ−(k+1)Ak
L1. (38)

Thus

1′αR = (1′αR)

 ∞

k=0

1′λ−(k+1)Ak
L1


·
 ∞

k=0

λ−(k+1)1′Ak
R1


. (39)

Since 1′αR > 0, equation (36) is obtained by canceling 1′αR.

For k = 1, 2, 3 . . ., let lk = 1′Ak
L1, rk = 1′Ak

R1, and ak =
k

j=0 ljrk−j. Then Equation
(36) can be written as:

λ2 =
∞

k=0

akλ
−k. (40)
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In particular, we have

l0 = s− 1; (41)

l1 = 2|E(G[L])|; (42)

r0 = n− s+ 1; (43)

r1 = 2|E(G[R])|; (44)

a0 = l0r0 = (s− 1)(n− s+ 1), (45)

a1 = l0r1 + l1r0. (46)

Lemma 23. We have the following estimation on the spread of G:

S(G) = 2
√
a0 +

2c2√
a0

+
2c4

a
3/2
0

+
2c6

a
5/2
0

+O

a
−7/2
0


. (47)

Here

a0 = (s− 1)(n− s+ 1) (48)

c2 = −3

8


a1
a0

2

+
1

2

a2
a0

, (49)

c4 = −105

128


a1
a0

4

+
35

16


a1
a0

2
a2
a0

− 5

8


a2
a0

2

− 5

4

a1
a0

a3
a0

+
1

2

a4
a0

(50)

c6 = −3003

1024


a1
a0

6

+
3003

256


a1
a0

4
a2
a0

− 693

64


a1
a0

2 
a2
a0

2

+
21

16


a2
a0

3

− 21

32


11


a1
a0

3

− 12


a1
a0


a2
a0


a3
a0


− 7

8


a3
a0

2

+
7

16


9


a1
a0

2

− 4
a2
a0


a4
a0

− 7

4

a1
a0

a5
a0

+
1

2

a6
a0

. (51)

Proof. Recall that by (40), we have that for λ ∈ {λ1,λn},

λ2 = a0 +
∞

k=1

akλ
−k.

By the main lemma in the appendix of [17], λ has the following series expansion:

λ1 =
√
a0 + c1 +

c2√
a0

+
c3
a0

+
c4

a
3/2
0

+
c5
a20

+
c6

a
5/2
0

+O

a
−7/2
0


.

Similarly,

λn = −
√
a0 + c1 −

c2√
a0

+
c3
a0

− c4

a
3/2
0

+
c5
a20

− c6

a
5/2
0

+O

a
−7/2
0


.
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Using SageMath, we get that c2, c4, c6 are the values in Equations (49), (50), (51)
respectively. It follows that

S(G) = λ1 − λn = 2
√
a0 +

2c2√
a0

+
2c4

a
3/2
0

+
2c6

a
5/2
0

+O

a
−7/2
0


.

Proof of Theorem 1. Recall that by Lemma 23, we have the following estimation of the
spread of G:

S(G) = 2
√
a0 +

2c2√
a0

+
2c4

(n− 1)3/2
+

2c6
(n− 1)5/2

+O

n−7/2


. (52)

where c2, c4 and c6 are as in Lemma 23.
Since G is Ks,t-minor free, G[R] is K1,t-minor free. Thus the maximum degree of G[R]

is at most t−1. In particular, r2  (t−1)r1. All ci’s are bounded by constants depending
on t. Note that

c2 = −3

8


a1
a0

2

+
1

2

a2
a0

= −3

8


l1r0 + l0r1

l0r0

2

+
1

2

l2r0 + l1r1 + l0r2
r0l0

= −3

8


l1
l0

+
r1
r0

2

+
1

2


l2
l0

+
l1
l0

r1
r0

+
r2
r0



= −3

8


l1
3l0

+
r1
r0

2

+
l2
2l0

− l21
3l20

+
r2
2r0

=
(t− 1)2

6
− 3

8


l1
3l0

+
r1
r0

− 2

3
(t− 1)

2

+
l2
2l0

− (t− 1)l1
6l0

− l21
3l20

+
r2 − (t− 1)r1

2r0

=
(t− 1)2

6
− 3

8


l1
3l0

+
r1
r0

− 2

3
(t− 1)

2

+
ψ(G[L])

6l0
+

r2 − (t− 1)r1
2r0

 (t− 1)2

6
+

ψ(Lmax)

6l0
.

At the last step, the equality holds only if

1. ψ(L) = ψ(Lmax),

2. r2 = (t− 1)r1,

3. l1
3l0

+ r1
r0
− 2

3
(t− 1) = 0.

Thus, we have

S(G)  2
√
a0 +

(t− 1)2 + ψ(Lmax)/(s− 1)

3
√
a0

+O


1

n3/2


.
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This upper bound is asymptotically tight. Consider

G0 = Lmax ∨ (ℓ0Kt ∪ (n− s+ 1− tℓ0)P1)

where ℓ0 is an integer such that l1
3l0

+ r1
r0
− 2

3
(t− 1) is close to zero. Thus

S(G0) = 2
√
a0 +

(t− 1)2 + ψ(Lmax)/(s− 1)

3
√
a0

+O


1

n3/2


.

Claim 24. G[L] = Lmax.

Proof. Otherwise, we have ψ(G[L]) < ψ(Lmax). Also, by the definition of ψ, we have that
ψ(G[L])  ψ(Lmax)− 1

s−1
. It then follows that for sufficiently large n,

S(G)  2
√
a0 +

(t− 1)2 + ψ(G[L])/(s− 1)

3
√
a0

+O


1

n3/2



< 2
√
a0 +

(t− 1)2 + ψ(Lmax)/(s− 1)

3
√
a0

+O


1

n3/2



= S(G0),

giving a contradiction.

Claim 25. There is a constant C such that the value of l1
3l0

+ r1
r0

that maximizes S(G) lies

in the interval

2
3
(t− 1)− Cn−1/2, 2

3
(t− 1) + Cn−1/2


.

Proof. Otherwise, for any l1
3l0

+ r1
r0

not in this interval (where C is chosen later), we have

c2 
(t− 1)2

6
− 3

8
C2n−1 +

ψ(Lmax)

6l0
+

r2 − (t− 1)r1
2r0

 (t− 1)2

6
− 3

8
C2n−1 +

ψ(Lmax)

6l0
.

This implies that

S(G)− S(G0)  −
3
4
C2n−1

√
a0

+O


1

n3/2


< 0,

giving a contradiction when C is chosen to be large enough such that −
3
4
C2n−1

√
a0

+O


1
n3/2


<

0.

From now on, we assume that l1
3l0

+ r1
r0

∈

2
3
(t− 1)− Cn1/2, 2

3
(t− 1) + Cn1/2


.

Claim 26. There is a constant C2 such that the value of r2 lies in the interval [(t−1)r1−
C2, (t− 1)r1].
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Proof. Otherwise, we assume r2 < (t− 1)r1 −C2 for some C2 chosen later. We then have

S(G)  2
√
a0 +

(t− 1)2 + ψ(Lmax)/(s− 1)

3
√
a0

− C2

r0
√
a0

+O


1

n3/2


< S(G0),

when C2 is chosen to be sufficiently large, giving a contradiction.

Claim 27. For i  3, we have ri ∈ [(t− 1)i−1(r1 − (i− 1)C2), r1(t− 1)i−1].

Proof. Let R′ be the set of vertices in R such that its degree is in the interval [1, t − 2].
We have

C2  (t− 1)r1 − r2 =


v∈R′

(t− 1− d(v))d(v)  (t− 2)|R′|.

This implies

|R′|  C2

t− 2
.

We have
(t− 1)ri−1 − ri  (t− 2)|R′|(t− 1)i−1  C2(t− 1)i−1. (53)

Thus,

ri  (t− 1)ri−1 − C2(t− 1)i−1

 (t− 1)((t− 1)ri−2 − C2(t− 1)i−2)− C2(t− 1)i−1 by induction

= (t− 1)2ri−2 − 2C2(t− 1)i−1

 · · ·
 (t− 1)i−1r1 − (i− 1)C2(t− 1)i−1.

Claim 28. r2 = (t− 1)r1 and l1
3l0

+ r1
r0
− 2

3
(t− 1) = O(n−(1−)) for any given  > 0.

Proof. Assume that l1
3l0

+ r1
r0

− 2
3
(t − 1) = A, and r2 = (t − 1)r1 − B, where A ∈

[−Cn−1/2, Cn−1/2] and 0  B  C2. It follows that

c2(G)− c2(G0) = O

n−2


− 3A2

8
− B

2r0
,

and

c4(G)− c4(G0) = O(n−1/2).

Thus

S(G)− S(G0) = 2
c2(G)− c2(G0)√

a0
+ 2

c4(G)− c4(G0)

a
3/2
0

+

a
−5/2
0
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 2
O (n−2)− 3A2

8
− B

2r0√
a0

+ 2
O(n−1/2)

a
3/2
0

+

a
−5/2
0


.

This implies B = 0 and A = O(n−3/4).
Notice that A = O(n−3/4) implies c4(G) − c4(G0) = O(n−1/4), which implies A =

O(n−7/8). Iterate this process finitely many times. We get A = O(n−(1−)) for any given
 > 0.

Claim 29. G[R] is the union of vertex disjoint Kts and isolated vertices.

Proof. Recall that r1 = 1′AR1 =


i∈R dG[R](i) = 2|E(G[R])|, and r2 = 1′A2
R1 =

i∈R dG[R](i)
2. By Claim 28, we have that



i∈R

dG[R](i)
2 = (t− 1)



i∈R

dG[R](i).

Since dG[R](v)  t − 1 for every v ∈ R, it follows that G[R] is the disjoint union of
(t− 1)-regular graphs and isolated vertices. Let K be an arbitrary non-trivial component
of G[R]. We will show that K is a clique on t vertices.

For any u, v ∈ V (K) with uv /∈ E(K), we claim that |NK(u) ∩ NK(v)|  t − 2.
Otherwise, |NK(u)\NK(v)|  2 and |NK(v)\NK(u)|  2. Pick an arbitrary vertex w ∈
NK(u)∩NK(v) and contract uw and wv, we then obtain aK1,t-minor inK, and thus aKs,t-
minor in G. Similarly, for any u, v ∈ V (K) with uv ∈ E(K), we have |NK(u)∩NK(v)| 
t− 3.

We claim now that for any u, v ∈ V (K), |NK(u)∩NK(v)|  t− 2. Suppose otherwise
that there exist vertices u, v ∈ V (K) such that |NK(u) ∩ NK(v)| = t − 1. Let w be an
arbitrary vertex in L. Note that when n is sufficiently large, we could find a length-two
path from w to each vertex in L\{w} using distinct vertices in R\V (K) as the internal
vertices of these paths. It follows that (L\{w})∪{u, v} and (NK(u)∩NK(v))∪{w} would
form a Ks,t-minor in G.

Hence, we have that for any u, v ∈ V (K) with uv /∈ E(K), |NK(u) ∩NK(v)| = t− 2.
It then follows that there exist u′, v′ ∈ V (K) such that u′ ∈ NK(u)\NK(v) and v′ ∈
NK(v)\NK(u). We claim that u′v′ /∈ E(K). Indeed, if u′v′ ∈ E(K), we could contract
v′u′ into w′ and obtain a Ks,t minor the same way as above.

Now note that since u′v /∈ E(K), we have |NK(u
′) ∩ NK(v)| = t − 2. It follows that

NK(u
′)∩NK(v) = NK(u)∩NK(v). Similarly, NK(v

′)∩NK(u) = NK(u)∩NK(v). We will
now analyze NK(u) ∩NK(v).

Let G1 = G[NK(u) ∩ NK(v)]. Note that for each vertex w ∈ V (G1), w must have at
most two non-neighbors in G1, otherwise |NK(u)∩NK(w)|  t−4, giving a contradiction.
Moreover, each vertex w ∈ V (G1) has at least two non-neighbors inG1, otherwise dK(w) 
t − 4 + 4 = t, giving a contradiction. It follows that each vertex in G1 has exactly two
non-neighbors in G1.

Now, if G1 is a clique, we could easily find a K1,t in K (by identifying one of the
vertices in N(u)∩N(v) as the center). Hence together with L, we have a Ks,t-minor in G.
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Otherwise, we find a, b ∈ G1 such that ab /∈ E(K). Since |NK(a)∩NK(b)| = t−2 and each
of a and b has exactly one non-neighbor in G1, we then obtain that |NG1(a) ∩NG1(b)| =
t−6, and there exist a′, b′ ∈ V (G1) such that a′ ∈ NG1(a)\NG1(b) and b′ ∈ NG1(b)\NG1(a).
Similar to before, we have a′b′ /∈ E(K), and a′, b′ is each adjacent to NG1(a) ∩ NG1(b).
Repeat this process, eventually, this process has to terminate, and we will have a K1,t-
minor in K, thus a Ks,t minor in G.

This completes the proof of Theorem 1.

We now determine the maximum spread Ks,t-minor-free graphs for all admissible pairs
(s, t).

Proof of Theorem 2 . Since (s, t) is admissible, we have G[L] = (s− 1)K1. We only need
to consider the graph Gℓ = (s− 1)K1 ∨ (ℓKt ∪ (n− s+ 1− ℓt)P1). We have l0 = (s− 1)
and li = 0 for i  1. We have r0 = (n− s+ 1), and ri = ℓt(t− 1)i for each i  1.

Now we apply Lemma 22 to simplify the equation satisfied by both λ1 and λn. Equa-
tion (36) can be simplified as

λ2 =

 ∞

k=0

λ−k1′Ak
L1


·
 ∞

k=0

λ−k1′Ak
R1



= (s− 1)


n− s+ 1 +

∞

k=1

λ−kℓt(t− 1)k



= (s− 1)


n− s+ 1 +

ℓt t−1
λ

1− t−1
λ



=
(s− 1) ((n− s+ 1)λ− (n− s+ 1− ℓt)(t− 1))

λ− (t− 1)
.

Simplifying it, we get the following cubic equation:

λ3 − (t− 1)λ2 − (s− 1)(n− s+ 1)λ+ (s− 1)(t− 1)(n− s+ 1− ℓt) = 0. (54)

Now let λ = x+ t−1
3
. We get the following reduced cubic equation φ(x) = 0.

x3 − px+ q = 0, (55)

where p = (s−1)(n−s+1)+ 1
3
(t−1)2 and q = (s−1)(t−1)


2
3
(n− s+ 1)− ℓt


− 2

27
(t−1)3.

Since φ(x) has at least two real roots, we know from number theory that p3  27
4
q2.

We now need a lemma on the spread of a cubic polynomial. If f is a cubic polynomial
with three real roots, then the spread S(f) is defined to be the difference between the
largest and smallest roots of f .

Lemma 30. Assume p3 > 27
4
q2. Let S(q) (with p fixed) be the spread of the cubic equation

x3 − px+ q = 0. (56)

If 2

p
3

3/2
> |q1| > |q2|, then

S(q1) < S(q2).
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Before we give the proof of Lemma 30, we complete the proof of Theorem 2 using
Lemma 30.

Applying Lemma 30, we conclude that S(Gℓ) = S(φ) reaches the maximum if and
only if |q| reaches the minimum. Let ℓ1 be the real root of the equation q = 0. We have

ℓ1 =
2

3t


n− s+ 1− (t− 1)2

9(s− 1)


.

Since q is a linear function on ℓ, the function |q| reaches the minimum at the nearest
integer of ℓ1. This completes the proof of Theorem 2.

We now give the proof of Lemma 30.

Proof of Lemma 30. Since p3 > 27
4
q2, the equation x3 − px+ q = 0 has three distinct real

roots, say x1 > x2 > x3. Observe that −x1,−x2,−x3 are the roots of x3 − px − q = 0.
Thus, these two cubic polynomials have the same spread. Without loss of generality, we
can assume q  0. Let α = 1

3
arccos(− q/2

(p/3)3/2
) ∈ [π

6
, π
3
). We have

cos(3α) = − q/2

(p/3)3/2
.

Applying the triple angle cosine formula, we have

4 cos3(α)− 3 cos(α) = − q/2

(p/3)3/2
.

Plugging cos(α) = x
2(p/3)1/2

and simplifying it, we get

x3 − px+ q = 0.

Thus x1 = 2(p/3)1/2 cos(α) is a root of Equation (56). Similarly, we get that x2 =
2(p/3)1/2 cos


α− 2π

3


, and x3 = 2(p/3)1/2 cos


α + 2π

3


are also the roots of Equation

(56). Since α ∈ [π
6
, π
3
), we have

5π

6
 α +

2π

3
< π.

−π

2
 α− 2π

3
< −π

3
.

Therefore
x1 > x2 > 0 > x3.

In particular, we have

S(q) = x1 − x3

= 2(p/3)1/2

cos(α)− cos(α +

2π

3
)
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= 2(p/3)1/2 · 2 sin
π
3


sin


α +

π

3



= 2
√
p sin


α +

π

3


.

Since α is an increasing function on q and S(q) is a decreasing function on α, we conclude
S(q) is a decreasing function on q.

We now determine all admissible pairs (s, t).

Proof of Theorem 3. We will first show the ‘only if’ direction of Theorem 3. Recall that
by definition, the pair (s, t) is admissible if ψ(L)  0 for all graphs L on s − 1 vertices,
and ψ(L) = 0 only if L = (s− 1)K1. For L = K1,s−2, we have that

ψ(K1,s−2) = 3

(s− 2)2 + s− 2


− 2

s− 1
(2(s− 2))2 − (t− 1)2(s− 2)

= 3(s− 2)(s− 1)− 8

s− 1
(s− 2)2 − 2(t− 1)(s− 2),

from which it easily follows that ψ(K1,s−2) > 0 if and only if

t− 1 <
3

2
(s− 1)− 4(s− 2)

s− 1
=⇒ t <

3

2
(s− 3) +

4

s− 1
.

Thus we can conclude that if (s, t) is admissible, then t  3
2
(s− 3) + 4

s−1
.

Before we show the ‘if’ direction of Theorem 3, we need two upper bounds on the sum
of the squared degrees of a graph due to de Caen [5] and Das [9], respectively.

Theorem 31 (de Caen [5]). Let G be a graph with n vertices, e edges and degrees d1 
d2  · · ·  dn. Then,

n

i=1

d2i  e


2e

n− 1
+ n− 2


.

Theorem 32 (Das [9]). Let G be a graph with n vertices and e edges. Let d1 and dn be,
respectively, the highest and lowest degrees of G. Then,

n

i=1

d2i  2e(d1 + dn)− nd1dn.

We first prove a lemma that almost covers the entire range of t using only Theorem 31.

Lemma 33. If t  s and t  3
2
(s− 3) + 1, then the pair (s, t) is admissible.

Proof of Lemma 33. We may assume s  3. Let L be a graph on s − 1 vertices with at
least one edge. By Theorem 31,

3


i∈V (L)

d2i  3


i∈V (L) di

2


i∈V (L) di

s− 2
+ s− 3
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=
3


i∈V (L) di

2

2(s− 2)
+

3(s− 3)


i∈V (L) di

2
.

Therefore,

ψ(L) 


3

2(s− 2)
− 2

s− 1






i∈V (L)

di




2

+


3(s− 3)

2
− (t− 1)

 

i∈V (L)

di.

It follows that ψ(L) < 0, as 3
2(s−2)

− 2
s−1

< 0 for s  6, and by assumption 3(s−3)
2

− (t−
1)  0. For s ∈ {3, 4, 5}, it could be easily checked by hand that ψ(L) < 0 for all L on
s− 1 vertices with at least one edge (by computing ψ(L) for all two-vertex, three-vertex
and four-vertex graphs L).

This implies that the pair (s, t) is admissible for all t  s and t  3
2
(s− 3) + 1.

The only cases missed by Lemma 33 are the following: s  10 is even and t = 3
2
s− 4.

To take care of these cases, we use both Theorem 31 and Theorem 32.
Assume t = 3

2
s− 4, where s  10 and s is even. As in the proof of Lemma 33, we can

use Theorem 31 to bound ψ(L) by

ψ(L) 


3

2(s− 2)
− 2

s− 1






i∈V (L)

di




2

+
1

2



i∈V (L)

di, (57)

where L is any graph on s−1 vertices with at least one edge. Viewing the right-hand side
of (57) as a quadratic polynomial in the variable


i∈V (L) di, we see that the quadratic

polynomial has two solutions: one with


i∈V (L) di = 0, and one with



i∈V (L)

di =
1
2

2
s−1

− 3
2(s−2)

=
(s− 1)(s− 2)

s− 5
.

Since 3
2(s−2)

− 2
s−1

< 0, it follows that if



i∈V (L)

di >
(s− 1)(s− 2)

s− 5
,

then ψ(L) < 0. Thus, assume that


i∈V (L) di 
(s−1)(s−2)

s−5
, i.e., that the number of edges

e in L is bounded as e < 1
2
(s−1)(s−2)

s−5
.

We distinguish two cases: (1) the graph L has at least two isolated vertices; (2) the
graph L has no isolated vertices or one isolated vertex. We assume s  12 as the case
s = 10 can be directly checked by computer.

Suppose L has at least two isolated vertices. Let L−2 be the graph obtained by
deleting two of the isolated vertices. Then,


i∈V (L) d

2
i =


i∈V (L−2)

d2i and


i∈V (L) di =
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i∈V (L−2)

di. We use induction on s. So, we assume s  12, whence by the inductive
hypothesis,

ψ(L−2) = 3


i∈V (L−2)

d2i −
2

(s− 2)− 1






i∈V (L−2)

di




2

−


3

2
(s− 2)− 4


− 1

 

i∈V (L−2)

di

< 0.

We show ψ(L−2) > ψ(L). We have

ψ(L−2)− ψ(L) =


2

s− 1
− 2

s− 3






i∈V (L)

di




2

+ 3


i∈V (L)

di

=
−4

(s− 1)(s− 3)






i∈V (L)

di




2

+ 3


i∈V (L)

di.

Viewing ψ(L−2)−ψ(L) as a quadratic polynomial in


i∈V (L) di, it follows that ψ(L−2)−
ψ(L) > 0 if


i∈V (L) di <

3
4
(s − 1)(s − 3). Indeed we have that


i∈V (L) di 

(s−1)(s−2)
s−5

<
3
4
(s− 1)(s− 3) if s  10. Therefore, ψ(L) < ψ(L−2) < 0.
Now, assume that instead L has at most one isolated vertex. Recall that by our

assumption,


i∈V (L)

di 
(s− 1)(s− 2)

s− 5
= s+ 2 +

12

s− 5
.

Without loss of generality, let d1  d2  · · ·  ds−1 be the degree sequence of L. We
could easily check by hand that ψ(L) < 0 for all L with degree sequence of the form
(d1, 1, · · · , 1, 1), (d1, 1, · · · , 1, 0), (d1, 2, 1, 1, · · · , 1, 1), or (d1, 2, 1, 1, · · · , 1, 0).

Otherwise, we have that d1  s + 2 + 12
s−5

− (s − 1) = 3 + 12
s−5

if ds−1 = 0 and

similarly d1  2 + 12
s−5

if ds−1 = 1. In either case, d1 + ds−1  3 + 12
s−5

if s  12. Since
d1 + ds−1 is an integer, we have that d1 + ds−1  4 for s  12. Therefore, by Theorem 32,

i∈V (L) d
2
i  4


i∈V (L) di, so

ψ(L) = 3


i∈V (L)

d2i −
2

s− 1






i∈V (L)

di




2

−

3

2
s− 5

 

i∈V (L)

di



12−


3

2
s− 5

 

i∈V (L)

di −
2

s− 1






i∈V (L)

di




2

.
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But now we see that ψ(L) < 0, since − 2
s−1


i∈V (L) di

2

< 0 and 17− 3
2
s < 0 if s  12.

This completes the proof of Theorem 3.
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