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Abstract

Let K
(k)
n be the complete k-graph on n vertices. A k-uniform tight cycle is a k-

graph with its vertices cyclically ordered so that every k consecutive vertices form an
edge and any two consecutive edges share exactly k− 1 vertices. A result of Busta-
mante, Corsten, Frankl, Pokrovskiy and Skokan shows that all r-edge coloured K

(k)
n

can be partitioned into cr,k vertex disjoint monochromatic tight cycles. However,
the constant cr,k is of tower-type. In this work, we show that cr,k is a polynomial
in r.
Mathematics Subject Classifications: 05C65, 05C35, 05C70

1 Introduction

An r-edge-colouring of a graph or a k-uniform hypergraph is a colouring of its edges with r
colours. The set of colours is usually identified with the set {1, 2, . . . , r}. A monochromatic
subgraph of an edge-coloured graph is a subgraph where all the edges are assigned the
same colour. On the other hand, a rainbow subgraph is a subgraph all of whose edges have
a different colour.

Lehel conjectured that for any 2-edge-colouring of a complete graph, there exist two
vertex-disjoint monochromatic cycles (one of each colour) covering all vertices. Isolated
vertices and single-edges are considered to be degenerate cycles. For large n, this conjec-
ture was proved by Łuczak, Rödl and Szemerédi [19] using Szemerédi’s Regularity Lemma.
The bound on n was improved later by Allen [1]. In 2010, Bessy and Thomassé [3] finally
resolved this conjecture for all n ∈ N.

When r > 3, Erdős, Gyárfás and Pyber [8] proved that any r-edge-coloured complete
graph can be partitioned into O(r2 log r) monochromatic cycles and conjectured that r
monochromatic cycles would be enough. This was one of the first instances of using the
absorbing method. Gyárfás, Ruszinkó, Sárközy and Szemerédi [12] improved their result
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and proved that O(r log r) monochromatic cycles suffice. However, Pokrovskiy [22] found
a counter-example disproving the conjecture. A weaker conjecture was proposed stating
that any r-edge-coloured Kn contains r vertex-disjoint monochromatic cycles covering all
but c(r) of the vertices, where c(r) is a constant depending only on r. Pokrovskiy [21]
also proved that c(3) 6 43000. Korándi, Lang, Letzter and Pokrovskiy [15] determined
a tight minimum degree threshold for monochromatic cycle partition of edge-coloured
graphs, namely they showed that there exists a constant c > 0 such that any r-edge-
coloured graph G on n vertices with δ(G) > n/2 + cr log n has a partition into O(r2)
monochromatic cycles.

A local r-colouring of a graph is an edge-colouring such that every vertex is incident
with at most r edges of distinct colours. Sárközy [24] showed that any large locally
r-coloured Kn can be partitioned into O(r log r) monochromatic cycles.

A k-uniform hypergraph (or k-graph) is a pair H = (V (H), E(H)) where E(H) ⊆(
V (H)
k

)
. 1 Let K(k)

n denote the complete graph on n vertices, where all
(
n
k

)
edges are

present. For positive integers 1 6 ` < k 6 n, a k-uniform `-cycle is a k-graph with its
vertices cyclically ordered so that every edge contains k consecutive vertices and any two
consecutive edges share exactly ` vertices. Note that 1-cycles are called loose cycles and
(k − 1)-cycles are called tight cycles.

Lehel’s problem has been generalised for hypergraphs and studied for both tight and
loose cycles. As in the case of graphs, any set of at most k vertices is considered as a
degenerate cycle. Gyárfás and Sárközy [13] showed that for loose cycles, every r-edge-
coloured K(k)

n can be partitioned into C(k, r) vertex-disjoint monochromatic loose cycles.
For sufficiently large n, Sárközy [23] proved that 50kr log(kr) loose cycles suffice. For
an overview of results related to monochromatic partitions of (hyper)graphs we refer the
reader to the surveys [9] and [10].

In this paper, we focus on monochromatic tight cycle partition. For k = 3, Busta-
mante, Han and Stein [5] proved that any 2-edge-colouredK(3)

n contains two vertex-disjoint
monochromatic cycles of distinct colours covering all but at most o(n) vertices. Lo and
Pfenninger [17] proved the corresponding result when k = 4. Recently, Pfenninger [20]
generalised the result to all k improving a previous result [16].

For any r, k > 3, Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [4] proved
that every finite r-edge-coloured K(k)

n can be partitioned into at most C ′(k, r) monochro-
matic tight cycles. In fact, they proved that the result still holds if K(k)

n is replaced
by large k-graphs with bounded independence number. It is used to solve a problem of
Elekes, Soukup, Soukup and Szentmiklóssy [7], that every r-edge-coloured infinite com-
plete graph KN can be partitioned into a finite number of k-th powered paths2. The
bound C ′(k, r) of Bustamante, Corsten, Frankl, Pokrovskiy and Skokan [4] is achieved
using the regularity method for hypergraphs, as a result of which the constant C ′(k, r) is
a tower bound.

In this paper we show that C ′(k, r) is a polynomial of r (for fixed k).
1For a set V and k ∈ N,

(
V
k

)
denotes the set of all subsets of V of size k.

2A k-th powered path is a sequence v1, v2, . . . , v` of distinct vertices such that for every distinct i, j ∈ [`]
such that |i− j| 6 k, vivj is an edge.
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Theorem 1. For all r ∈ N and k > 3, there exists an integer n0 = n0(r, k) such that for
all r-edge-coloured K(k)

n with n > n0, there exists a monochromatic tight cycle partition
of V

(
K(k)
n

)
into at most (2r)2k+4 + 2k+8r log(2r) tight cycles.

We make no attempt to improve the coefficients.
To prove Theorem 1, we use the absorption method motivated by the works of Erdős,

Gyárfás and Pyber [8] and Gyárfás, Ruszinkó, Sárközy and Szemerédi [12], as well as
the connected matching method that is often credited to Łuczak [18]. We first reserve a
special vertex subset. Then we use a result by Allen, Böttcher, Cooley and Mycroft [2]
(Theorem 2) to greedily remove monochromatic tight cycles from the rest of the hyper-
graph, until there is a small leftover set of vertices. We then use properties of the reserved
structures to ‘absorb’ the leftover set with a few monochromatic tight cycles.

We now outline the layout of the paper. We prove Theorem 1 through a series of
reductions. In Section 2, we reduce Theorem 1 to the absorbing lemma, see Lemma 4.
Roughly speaking, Lemma 4 finds a vertex set R such that, given any small vertex sub-
set B, R ∪ B can be partitioned into few monochromatic tight cycles. The rest of this
paper is focused on proving Lemma 4. In Sections 3 and 4, we introduce some basic
notations and the hypergraph regularity lemma. In Section 5, we reduce the size of the
small vertex subset B needed in Lemma 4. In Section 6, we translate the problem into
finding rainbow cycle partitions in edge-coloured multigraphs, see Lemma 31. We prove
this lemma in Sections 7 and 8. In Section 9, we end the paper with some concluding
remarks and further directions. There will be further motivation and discussion in each
section.

2 Proof of Theorem 1

We typically assume n to be a large integer. Let [n] = {1, . . . , n} and for integers a 6 b,
let [a, b] = {a, a+1, . . . , b}. We will use hierarchies in our statements. The phrase “a� b”
means “for every b > 0, there exists a0 > 0, such that for all 0 < a 6 a0 the following
statements hold”. We implicitly assume all constants in such hierarchies are positive and
if 1/m appears we assume m is an integer. For the rest of this paper, r and k will denote
the number of colours and uniformity of the hypergraph, respectively.

We first show that one can cover most vertices of an r-edge-coloured K(k)
n with few

vertex-disjoint monochromatic tight cycles. We need the following theorem on the Turán
density of tight cycles.

Theorem 2. (Allen, Böttcher, Cooley and Mycroft [2]) Let 1/n � δ, 1/k 6 1/3 and
α ∈ [0, 1]. Let G be a k-graph on n vertices with e(G) > (α + δ)

(
n
k

)
. Then G contains a

tight cycle of length ` for every ` 6 αn that is divisible by k.

We use this theorem in the following proposition to greedily remove monochromatic
tight cycles until we have a small leftover.
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Proposition 3. Let 1/n � ε, 1/k, 1/r. Let K(k)
n be r-edge-coloured. Then all but at

most εn vertices of K(k)
n can be covered by 2r log(1/ε) vertex-disjoint monochromatic tight

cycles.

Proof. Since K(k)
n is r-edge-coloured, there exists a monochromatic subgraph G of K(k)

n

such that e(G) >
(
n
k

)
/r edges. Theorem 2 with 1/3r, 2/3r playing the roles of δ, α,

respectively, implies that there is a monochromatic tight cycle of length at least 2n/3r−
k > n/2r. Remove this cycle and repeat the argument. After removing i tight cycles,
there are at most

(
1− 1

2r

)i
n 6 ne−i/2r many vertices left. By setting i = 2r log(1/ε), we

have at most εn vertices uncovered.

We need the following absorbing lemma which will be proved later.

Lemma 4. Let k > 3 and 1/N � 1/r, 1/k. Let H be an r-edge-coloured K(k)
N . Then there

exists a vertex set R ⊆ V (H) such that for any B ⊆ V (H)\R with |B| 6 (2r)−2k+7
k−1N ,

H[R ∪B] can be partitioned into at most 219r(2r)5·2k+1 + 3 monochromatic tight cycles.

We now prove Theorem 1 assuming Lemma 4.

Proof of Theorem 1. Let ε∗ = (2r)−2k+7
k−1 and m = 219r(2r)5·2k+1 + 3. Choose constants

t0, εk, ψ such that 1/n � 1/t0 � εk � ψ � 1/r, 1/k. By Lemma 4 with n playing the
role of N , there exists a vertex set R ⊆ V (H) such that, for any B ⊆ V (H) \ R with
|B| 6 ε∗n, H[R ∪B] can be partitioned into at most m monochromatic tight cycles. Let
H ′ = H \ R and n′ = |V (H ′)|. By Proposition 3 with ε∗, n′ playing the roles of ε, n,
respectively, all but at most ε∗n′ 6 ε∗n vertices of H ′ can be covered by at most

2r log(1/ε∗) = 2k+8r log(2r) + 2r log(k)

vertex-disjoint monochromatic tight cycles. Let B be the set of uncovered vertices,
so |B| 6 ε∗n. Thus H[R ∪ B] can be partitioned into at most m monochromatic tight
cycles. This covers up H with at most

2k+8r log(2r) + 2r log(k) +m 6 220+5·2k+1
r5·2k+1+1 + 2k+8r log(2r)

6 (2r)2k+4 + 2k+8r log(2r)

vertex-disjoint monochromatic tight cycles. This concludes the proof of the theorem.

3 Notation

We omit floors and ceilings if they do not affect the calculations. For two sets A
and B, A∆B denotes their set difference. We often write v1v2 · · · vk for {v1, . . . , vk}.

Let G be a graph. The neighbourhood of a vertex u, denoted NG(u), is the set of
vertices {v ∈ V (G) \ {u} : uv ∈ E(G)}. The closed neighbourhood of a vertex u is defined
as {u}∪NG(u) and denoted as NG[u]. For a path P = v1 · · · v`, the internal vertices of P ,
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denoted by int(P ), are v2, . . . , v`−1. For a vertex set U ⊆ V (G), we denote the compliment
of U as U . When G is a digraph, its minimum out-degree is denoted as δ+(G).

Let H be a k-graph. We write e(H) = |E(H)|. For a set of vertices U ⊆ V (H), H[U ]
denotes the subgraph induced on U . For k-graphs G and H, H \G denotes the subgraph
obtained by deleting V (G) from H and H −G denotes the subgraph after deleting E(G)
from E(H). For a vertex set U ⊆ V (H), H \ U = H[V (H) \ U ]. The link graph of a
vertex z, denoted by H(z), is the (k − 1)-graph on V (H) so that S ∈ E(H(z)) if and
only if S ∪ z ∈ E(H). For S ⊆ V (H), NH(S) = {T ⊆ V (H) \ S : S ∪ T ∈ E(H)} and
dH(S) = |NH(S)|. Denote

δ`(H) = min
S∈(V (H)

` )
d(S) and ∆`(H) = max

S∈(V (H)
` )

d(S).

We write δ and ∆ respectively for the above when ` = 1. For vertex sets V and W , we
define NH(V,W ) to be the set {e ∈

(
W

k−|V |

)
: e∪ V ∈ E(H)}. In particular when V = {v}

and W = V (H), we have |NH(V,W )| = d(v).
A set of edges E in a k-graph H is called tightly connected if for any pair of distinct

edges e, f ∈ E, there exists a sequence of edges e1, . . . , et ∈ E(H) such that e1 = e, et = f
and for i ∈ [t − 1], |ei ∩ ei+1| = k − 1. A tight component of a k-graph is a set of edges
that is maximal with respect to this property. Note that we treat tight components as
k-graphs. A k-partite k-graph H has a partition of its vertex set into distinct and disjoint
vertex classes V1, . . . , Vk such that for any edge e ∈ E(H), |e ∩ Vi| = 1 for each i ∈ [k].
For vertex sets X1, . . . , Xk ⊆ V (H), an X1X2 · · ·Xk-edge is an edge x1 · · ·xk where for
each i ∈ [k], we have xi ∈ Xi.

We work with edge-coloured multigraphs and use the following notation frequently.
We denote the edge-colouring by φ. Let G be an edge-coloured (multi-)k-graph. The
colour set φ(G) of G is the set of colours that appear in G. When G is a multi-k-graph,
for an edge e, φ(e) is known from the context. For a colour subset C ⊆ φ(G), GC is the
induced subgraph of G with edges of colours in C after removing any isolated vertices. Let
c ∈ φ(G) and S ⊆ V (G). We write Nc,G(S) for NGc(S) and dc,G(S) = |Nc,G(S)|. We say S
sees a colour c in a graph G, if dc,G(S) > 0. The set of colours that are seen by S is denoted
by φG(S). We write δmon(G) = minc∈φ(G) δ(Gc).3 Let V ∗(G) = {v ∈ V (G) : |φG(v)| > 2}.
We also define

δ∗mon(G) = min
v∈V ∗(G)

min
c∈φG(v)

dc(v).

An edge-coloured k-graph H is locally r-edge-coloured if any set of k − 1 vertices
see at most r colours in H. It is easy to check that an r-edge-coloured k-graph is also
locally r-edge-coloured. A monochromatic tight component is a tight component that
is monochromatic, i.e. between any two edges in the monochromatic tight component
there is a monochromatic tight path in a colour fixed for that component. Note that a
monochromatic tight component T has colour φH(T ).

3Note that this is different from the monochromatic colour degree in literature, as Gc has no isolated
vertices.
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We drop the subscript when the underlying k-graph is clear from context. Additional
notation will be introduced within a section if only needed there.

We use the following three standard concentration inequalities in this work.

Lemma 5 (Chernoff Bound c.f. [14, Remark 2.5]). Let 0 < δ 6 3/2 and X ∼ Bin(n, p).
Then P(|X − E(X)| > δE(X)) 6 2e−

δ2E(X)
3 .

Let N, n,m be positive integers such that max{n,m} 6 N . The hypergeometric dis-
tribution Hyp(N, n,m) is the distribution of the random variable X obtained by choosing
a set σ of m elements from a set τ of N elements, with X = |σ ∩ τn| where τn is a
random subset of τ with n elements. We need the following concentration inequalities for
hypergeometric random variables and martingales.

Lemma 6 (Hoeffding’s inequality c.f. [14, Theorem 2.10]). Let 0 < ε 6 3/2 and X ∼
Hyp(N, n,m). Then P[|X − E[X]| > εE[X]] 6 2e− ε

2
3 E[X].

Lemma 7 (Azuma’s inequality c.f. [14, Theorem 2.25]). Let Z0, . . . , Zn be a martingale
with |Zi − Zi−1| 6 ci for all i ∈ [n]. Then for all a > 0,

P[|Zn − Z0| > a] 6 2e
− a2

2
∑n

i=1 c
2
i .

4 Hypergraph regularity

In this section, we formulate the notion of hypergraph regularity that we use, closely
following the formulation from Allen, Böttcher, Cooley and Mycroft [2]. Recall that a
hypergraph H is an ordered pair (V (H), E(H)), where E(H) ⊆ 2V (H). We identify the
hypergraph H with its edge set E(H). A subgraph H′ of H is a hypergraph with V (H′) ⊆
V (H) and E(H′) ⊆ E(H). It is spanning if V (H′) = V (H). For U ⊆ V (H), we define
H[U ] to be the subgraph of H with V (H[U ]) = U and E(H[U ]) = {e ∈ E(H) : e ⊆ U}.

A hypergraph H is called a complex if H is down-closed, that is if for an edge e ∈ H
and f ⊆ e, then f ∈ H. A k-complex is a complex having only edges of size at most k.
We denote by H(i) the spanning subgraph of H containing only the edges of size i. Let P
be a partition of V (H) into vertex classes V1, . . . , Vs. Then we say that a set S ⊆ V (H)
is P-partite if |S ∩ Vi| 6 1 for all i ∈ [s]. For P ′ = {Vi1 , . . . , Vir} ⊆ P , we define the
subgraph of H induced by P ′, denoted by H[P ′] or H[Vi1 , . . . , Vir ], to be the subgraph
of H[⋃P ′] containing only the edges that are P ′-partite. The hypergraph H is said to
be P-partite if all of its edges are P-partite. We say that H is s-partite if it is P-partite
for some partition P of V (H) into s parts. Let H be a P-partite hypergraph. If X is
a k-set of vertex classes of H, then we write HX for the k-partite subgraph of H(k) induced
by ⋃X, whose vertex classes are the elements of X. Moreover, we denote by HX< the k-
partite hypergraph with V (HX<) = ⋃

X and E(HX<) = ⋃
X′(X HX′ . In particular, if H

is a complex, then HX< is a (k − 1)-complex because X is a set of size k.
Let i > 2 and let Pi be a partition of a vertex set V into i parts. Let Hi and Hi−1 be

a Pi-partite i-graph and a Pi-partite (i−1)-graph on a common vertex set V , respectively.
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We say that a Pi-partite i-set in V is supported on Hi−1 if it induces a copy of the complete
(i− 1)-graph K(i−1)

i on i vertices in Hi−1. We denote by Ki(Hi−1) the Pi-partite i-graph
on V whose edges are all Pi-partite i-sets contained in V which are supported on Hi−1.
Now we define the density of Hi with respect to Hi−1 to be

d(Hi | Hi−1) = |Ki(Hi−1) ∩Hi|
|Ki(Hi−1)|

if |Ki(Hi−1)| > 0 and d(Hi | Hi−1) = 0 if |Ki(Hi−1)| = 0. So d(Hi | Hi−1) is the
proportion of Pi-partite copies of Ki−1

i in Hi−1 which are also edges of Hi. More generally,
if Q = (Q1, Q2, . . . , Qr) is a collection of r (not necessarily disjoint) subgraphs of Hi−1,
we define Ki(Q) = ⋃r

j=1Ki(Qj) and

d(Hi | Q) = |Ki(Q) ∩Hi|
|Ki(Q)|

if |Ki(Q)| > 0 and d(Hi | Q) = 0 if |Ki(Q)| = 0. We say that Hi is (di, ε, r)-regular with
respect to Hi−1, if we have d(Hi | Q) = di ± ε for every r-set Q of subgraphs of Hi−1
with |Ki(Q)| > ε |Ki(Hi−1)|. We say that Hi is (ε, r)-regular with respect to Hi−1 if there
exists some di for which Hi is (di, ε, r)-regular with respect to Hi−1. Finally, given an i-
graph G whose vertex set contains that of Hi−1, we say that G is (di, ε, r)-regular with
respect to Hi−1 if the i-partite subgraph of G induced by the vertex classes of Hi−1 is
(di, ε, r)-regular with respect to Hi−1. We refer to the density of this i-partite subgraph
of G with respect to Hi−1 as the relative density of G with respect to Hi−1.

Now let s > k > 3 and let H be an s-partite k-complex on vertex classes V1, . . . , Vs.
For any set A ⊆ [s], we write VA for ⋃i∈A Vi. Note that, if e ∈ H(i) for some 2 6 i 6 k,
then the vertices of e induce a copy of Ki−1

i in H(i−1). Therefore, for any set A ∈
(

[s]
i

)
,

the density d(H(i)[VA] | H(i−1)[VA]) is the proportion of ‘possible edges’ of H(i)[VA], which
are indeed edges. We say that H is (dk, . . . , d2, εk, ε, r)-regular if

(a) for any 2 6 i 6 k − 1 and any A ∈
(

[s]
i

)
, the induced subgraph H(i)[VA] is (di, ε, 1)-

regular with respect to H(i−1)[VA] and

(b) for any A ∈
(

[s]
k

)
, the induced subgraph H(k)[VA] is (dk, εk, r)-regular with respect

to H(k−1)[VA].

For d = (dk, . . . , d2), we write (d, εk, ε, r)-regular to mean (dk, . . . , d2, εk, ε, r)-regular. We
say that a (k − 1)-complex J is (t0, t1, ε)-equitable if it has the following properties.

(a) J is P-partite for some P which partitions V (J ) into t parts, where t0 6 t 6 t1, of
equal size. We refer to P as the ground partition of J and to the parts of P as the
clusters of J .

(b) There exists a density vector d = (dk−1, . . . , d2) such that, for each 2 6 i 6 k − 1,
we have di > 1/t1 and 1/di ∈ N and J is (d, ε, ε, 1)-regular.
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For any k-set X of clusters of J , we denote by ĴX the k-partite (k− 1)-graph (JX<)(k−1)

and call ĴX a polyad. Given a (t0, t1, ε)-equitable (k − 1)-complex J and a k-graph G
on V (J ), we say that G is (εk, r)-regular with respect to a k-set X of clusters of J if there
exists some d such that G is (d, εk, r)-regular with respect to the polyad ĴX . Moreover,
we write d∗G,J (X) for the relative density of G with respect to ĴX ; we may drop either
subscript if it is clear from context.

We can now give the crucial definition of a regular slice.

Definition 8 (Regular slice). Given ε, εk > 0, r, t0, t1 ∈ N, a k-graph G, a (k − 1)-
complex J on V (G), is a (t0, t1, ε, εk, r)-regular slice for G if J is (t0, t1, ε)-equitable
and G is (εk, r)-regular with respect to all but at most εk

(
t
k

)
of the k-sets of clusters of J ,

where t is the number of clusters of J .

If we specify the density vector d and the number of clusters t of an equitable complex
or a regular slice, then it is not necessary to specify t0 and t1 (since the only role of
these is to bound d and t). In this situation we write that J is (·, ·, ε)-equitable, or is a
(·, ·, ε, εk, r)-regular slice for G.

Given a regular slice J for a k-graph G, we define the d-reduced k-graph RJd (G) as
follows.

Definition 9 (The d-reduced k-graph). Let k > 3. Let G be a k-graph and let J be a
(t0, t1, ε, εk, r)-regular slice for G. Then, for d > 0, we define the d-reduced k-graph RJd (G)
to be the k-graph whose vertices are the clusters of J and whose edges are all k-sets X
of clusters of J such that G is (εk, r)-regular with respect to X and d∗(X) > d.

We now state the statement of the Regular Slice Lemma that we need, that is a
straightforward consequence of [2, Lemma 10].

Lemma 10 (Regular Slice Lemma [2, Lemma 10]). Let k > 3. For all t0, r, s ∈ N, εk > 0
and all functions r′ : N→ N and ε : N→ (0, 1], there are integers t1 and n0 such that the
following holds for all n > n0 which are divisible by t1!. Let H be an r-edge-coloured K(k)

n

with colour set [r]. For i ∈ [r], let Hi denote the monochromatic subgraph of H in colour i.
Then there exists a (k − 1)-complex J on V (H) which is a (t0, t1, ε(t1), εk, r′(t1))-regular
slice for each Hi.

The following lemma which is a direct generalisation of [17, Lemma 12] shows that
the union of the corresponding reduced graphs ⋃i∈[r]RJd (Hi) is almost complete.

Lemma 11. Let k > 3, ε, εk > 0, r ∈ N and r′ : N→ N. Let H be an r-edge-coloured K(k)
n

and for i ∈ [r] let J be a (·, ·, ε, εk, r′)-regular slice for each Hi. Let t be the number of
clusters of J . Then, provided that d 6 1/r, we have

∣∣∣⋃i∈[r]RJd (Hi)
∣∣∣ > (1− rεk)

(
t
k

)
.

Proof. Since J is a (·, ·, ε, εk, r)-regular slice for each Hi there are at least (1 − rεk)
(
t
k

)
k-sets X of clusters of J such that each Hi is (εk, r)-regular with respect to X. Let X be
such a k-set. Since the Hi are edge-disjoint and

⋃
i∈[r] Hi = H, we have ∑i∈[r] d

∗
Hi

(X) = 1.
Hence for some i ∈ [r], d∗Hi(X) > 1/r and thus, since d 6 1/r, we have
X ∈ ⋃i∈[r]RJd (Hi).
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Let r ∈ N, 0 < d 6 1/r, ε > 0 and 0 < εk < 1/2r. Let H be an r-edge-coloured K(k)
n

on colour set [r]. Let J be a (·, ·, ε, εk, r′)-regular slice for each Hi with partition P
of V (H). By Lemma 11, we have

∣∣∣RJd (H)
∣∣∣ > (1 − rεk)

(
t
k

)
>
(
t
k

)
/2. Given the following

natural edge-colouring, we will be working with an edge-coloured reduced graph. For an
edge X in RJd (H), let eH,i(X) denote the number of edges in colour i among the vertex
clusters in H that are induced by vertices in X. Assign each such k-set X the colour i if
eH,i(X) > eH(X)/r (if multiple colours satisfy this, then choose one of them arbitrarily).
Note that RJd (H) is an r-edge-coloured k-graph with at least

(
t
k

)
/2 edges. We write R

for RJd (H). For each v ∈ V (R), we denote Vv to be the cluster of P corresponding to v.
Let H be a k-graph. A fractional matching in H is a function ω : E(H) → [0, 1]

such that for all v ∈ V (H), ω(v) := ∑
e∈H:v∈e ω(e) 6 1. The weight of the fractional

matching is defined to be ∑e∈H ω(e). A fractional matching is tightly connected if the
subgraph induced by the edges e with ω(e) > 0 is tightly connected in H. For a fractional
matching ω, we write the size of ω as |ω| = ∑

e∈E(G) ω(e).
We would use the following lemma to lift a tightly connected fractional matching in

the reduced graph to a monochromatic tight cycle covering almost all vertices in the
corresponding clusters.

Lemma 12 ([17, Lemma 18]). Let 1/n � 1/r′, ε � εk, dk−1, . . . , d2 and εk � ε′ �
ψ, dk, β, 1/k 6 1/3 and 1/n� 1/t such that t divides n and 1/di ∈ N for all 2 6 i 6 k−1.
Let G be a k-graph on n vertices and J be a (·, ·, ε, εk, r′)-regular slice for G. Further,
let J have t clusters V1, . . . , Vt all of size n/t and density vector d = (dk−1, . . . , d2).
Suppose that the reduced graph RJdk(G) contains a tightly connected fractional matching ϕ
with weight µ. Assume that all edges with non-zero weight have weight at least β. For
each i ∈ [t], let Wi ⊆ Vi be such that |Wi| > ((1 − 3ε′)ϕ(Vi) + ε′)n/t. Then G

[⋃
i∈[t] Wi

]
contains a tight cycle of length ` for each ` 6 (1− ψ)kµn/t that is divisible by k.

Another tool we use in the next section is the notion of a hypergraph being (µ, α)-
dense. For constants µ, α > 0, we say that a k-graph H on n vertices is (µ, α)-dense if,
for each i ∈ [k− 1], we have dH(S) > µ

(
n
k−i

)
for all but at most α

(
n
i

)
sets S ∈

(
V (H)
i

)
and

dH(S) = 0 for all other S ∈
(
V (H)
i

)
. We use the following result from [17].

Proposition 13 ([17, Proposition 5]). Let 1/n � α � 1/k 6 1/2. Let H be a k-graph
on n vertices with |H| > (1 − α)

(
n
k

)
. Then there exists a subgraph H ′ of H such that

V (H ′) = V (H) and H ′ is (1− 2α1/4k2
, 2α1/4k)-dense.

5 The reduction of Lemma 4

We now generalise the triangle cycle from Erdős, Gyárfás and Pyber [8]. Let t, k,m be
positive integers such that m = (k − 1)t. The k-uniform triangle cycle T (k)

m consists of a
k-uniform tight cycle a1 · · · am and a vertex set B = {b1, . . . , bt} such that

a(k−1)i−(k−2)a(k−1)i−(k−3) . . . a(k−1)ibia(k−1)i+1 . . . a(k−1)i+(k−1)
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is a k-uniform tight path for all i ∈ [t] (when subscripts are taken modulo m). Moreover,
there is a tight cycle on V

(
T (k)
m

)
\B′ for all B′ ⊆ B. Note that ∆

(
T (k)
m

)
= 2k.

For a k-graph H and r ∈ N, the multicolour Ramsey number Rr(H) is the minimum
positive integer N such that any r-edge-coloured K

(k)
N contains a monochromatic copy

of H. We use the following result of Conlon, Fox and Sudakov on the Ramsey num-
ber of hypergraphs with bounded maximum degree, to obtain a monochromatic triangle
cycle T (k)

m .

Theorem 14 (Conlon, Fox and Sudakov [6, Theorem 5]). Let ∆, k, r ∈ N. There exists
a constant c(∆, k, r) such that if H is a k-graph on n vertices with maximum degree ∆,
then Rr(H) 6 c(∆, k, r)n.

Note that c(∆, k, r) is a tower-type function in r and k. Since T (k)
m has bounded degree,

we get the following corollary.

Corollary 15. Let m,n, r, k ∈ N and 1/n � α � 1/r, 1/k be such that m = (k − 1)αn.
Then a monochromatic triangle cycle T (k)

m exists in every r-edge-coloured K(k)
n .

The main aim of this section is to reduce Lemma 4 to the following lemma.

Lemma 16. Let k, r ∈ N, δ0 = (2r)−2k+1
and α = 25rk(2r)2k+1. Let H be an r-edge-

coloured K(k)
n and X,Z be disjoint subsets of V (H) such that |X| > α|Z|. Then there

exists a set C of vertex-disjoint monochromatic tight cycles covering Z with |C| 6 218rδ−5
0

and |V (C) ∩X| = (k − 1)|Z|.

Suppose that Lemma 16 holds. A naive approach of proving Lemma 4 is to first reserve
a monochromatic T (k)

m using Corollary 15. We then apply Lemma 16 with B (from T (k)
m )

playing the role of X to cover the remaining vertices. However, T (k)
m obtained is too short

(unless the number of cycles we remove using Proposition 3 in the proof of Theorem 1 is
a super polynomial of r). In order to achieve this, we use the following lemma, which is
motivated by Gyárfás, Ruszinkó, Sárközy and Szemerédi [12].

Lemma 17. Let 1/n � ψ � 1/r, 1/k. Let δ0 = (2r)−2k+1
and ε∗ = (2r)−2k+7

/k. Let H
be an r-edge-coloured K(k)

n . Then there exists a vertex set U∗ with |U∗| 6 3n/4 such that,
for any vertex subset B∗ of V (H) \ U∗ with |B∗| = 4ε∗n, H[B∗ ∪ U∗] can be covered by
at most 218rδ−5

0 + 1 vertex-disjoint monochromatic tight cycles and at most ψn isolated
vertices.

This lemma will be proved in Section 5.2. Observe that this lemma significantly
reduces the size of the leftover vertex set. However, we would require precisely 4ε∗n
leftover vertices, which may not be guaranteed by Proposition 3. We deal with it using
the following lemma.

Lemma 18. Let 1/n � ψ � 1/r, 1/k. Let H be an r-edge-coloured K(k)
n . Then there

exists a vertex subset W ⊆ V (H) such that n/5r 6 |W | 6 n/4r and H[W ] contains a
monochromatic tight cycle of length ` for all ` 6 (1− ψ)|W | with ` ≡ 0 (mod k).
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Proof. Let dk = 1/r,
1/n� 1/t1 � 1/t0,

1/n� 1/r′, ε̃� εk, dk−1, . . . , d2,

εk � ε′ � ψ, β � 1/r, 1/k.
LetH ′ be an induced subgraph ofH such that |V (H ′)| ≡ 0 (mod t1!) and |V (H\H ′)| < t1!.
By Lemma 10 with H ′ playing the role of H, there exists a (·, ·, ε̃, εk, r′)-regular slice J̃
with partition P of V (H ′). Let m = |V | for V ∈ P and t = |P|. Note that mt > n− t1!.

LetR = RJ̃dk(H
′). Recall that for each x ∈ V (R), Vx denotes the corresponding cluster

in P . By Lemma 11 (with d = dk), R contains at least (1− rεk)
(
t
k

)
>
(
t
k

)
/2 edges. There

exists a colour j ∈ [r] such that |E(Rj)| >
(
t
k

)
/2r. By Theorem 2 with δ = α = 1/4r,

Rj contains a monochromatic tight cycle C = v1v2 · · · v` with t/5r 6 ` 6 t/4r and
` ≡ 0 (mod k). Set W = ⋃

i∈[`] Vvi . Let ϕ be a fractional matching on C such that for any
edge e ∈ E(C), we have ϕ(e) = 1/k. Let µ be the total weight of ϕ, so µ = ∑

i∈[`] ϕ(e) =
`/k. For i ∈ [`], note that ϕ(vi) = 1 and |Vvi | = m > ((1− 3ε′)ϕ(vi) + ε′)m. Therefore, by
Lemma 12 with H playing the role of G, we have that H[W ] contains a tight cycle of each
length upto (1−ψ)kµm = (1−ψ)`m = (1−ψ)|W | that is divisible by k, as required.

5.1 Proof of Lemma 4 assuming Lemmas 16 and 17

We now prove Lemma 4 assuming Lemmas 16 and 17.

Proof of Lemma 4. Set

δ0 = (2r)−2k+1
, ε∗ = (2r)−2k+7

/k, α = 25rk(2r)2k+1
, α∆ = 2αψ and m̃ = (k − 1)α∆N.

(5.1)
By Corollary 15 with α∆, m̃ playing the roles of α,m, respectively,H contains a monochro-
matic k-uniform triangle cycle T (k)

m̃ . Note that T (k)
m̃ contains a vertex-set B̃ with

|B̃| = m̃/(k − 1) = α∆N (5.2)

such that for any B̃′ ⊆ B̃, there is a monochromatic tight cycle on V
(
T

(k)
m̃ \ B̃′

)
. Note

that
∣∣∣V (T (k)

m̃

)∣∣∣ = m̃+ α∆N = kα∆N . Let H1 = H \ T (k)
m̃ and

n = |V (H1)| = N − kα∆N > N/2. (5.3)

Lemma 17 with H1 playing the role of H implies that there exists a vertex set U∗ ⊆
V (H1) with |U∗| 6 3n/4 such that, for any B∗ ⊆ V (H1)\U∗ with |B∗| = 4ε∗n, H[B∗∪U∗]
can be covered by at most 218rδ−5

0 + 1 vertex-disjoint monochromatic tight cycles and at
most ψn isolated vertices. Let H2 = H1 \ U∗ and n′ = |V (H2)| = n− |U∗| > n− 3n/4 =
n/4.

By Lemma 18 with H2, n
′ playing the role of H,n, respectively, there exists a vertex

subset W ⊆ V (H2) with

n/20r 6 n′/5r 6 |W | 6 n′/4r 6 n/4r
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such that H[W ] contains a monochromatic tight cycle of length ` for all ` 6 (1− ψ)|W |
with ` ≡ 0 (mod k).

Set R = V
(
T

(k)
m̃

)
∪W ∪ U∗. We now show that R has the desired properties. Let B

be a subset of V (H) \R with

|B| 6 ε∗N
(5.3)
6 2ε∗n.

Let ` be the largest integer such that ` ≡ 0 (mod k) and |B| + |W | − ` > 2ε∗n. Since
ψ � ε∗, ` 6 (1 − ψ)|W | and therefore there exists a monochromatic tight cycle C1 in
H[W ] of length `. Let B+ and L1 be disjoint vertex sets such that

B+ ∪ L1 = B ∪ (W \ V (C1)), |B+| = 4ε∗n and |L1| < k. (5.4)

Thus H[U∗ ∪ B+] can be covered by a set C of monochromatic tight cycles such that
|C| 6 218rδ−5

0 + 1 and
|U∗ \ V (C)| 6 ψn 6 ψN. (5.5)

Let L = L1 ∪ (U∗ \ V (C)). We deduce that

|L| = |L1|+ |U∗ \ V (C)|
(5.4), (5.5)
6 k + ψN

(5.1)
6 α∆N/α

(5.2)= |B̃|/α.

By Lemma 16 with B̃, L playing the roles of X,Z, respectively, H[B̃∪L] contains a set C ′
of vertex-disjoint monochromatic tight cycles such that L ⊆ V (C ′) and |C ′| 6 218rδ−5

0 .
By the property of T (k)

m̃ , there exists a monochromatic tight cycle C2 with vertex set
V
(
T

(k)
m̃

)
\ (B̃ ∩ V (C ′)). Thus, we have partitioned R ∪ B into monochromatic cycles,

namely C ∪ C ′ ∪ {C1, C2}. The total number of cycles created is at most 219rδ−5
0 + 3 =

219r(2r)5·2k+1 + 3. This completes the proof of the lemma.

5.2 Proof of Lemma 17

The proof of Lemma 17 is motivated by Gyárfás, Ruszinkó, Sárközy and Szemerédi [12].
Let t ∈ N. A t-half dense matching in a k-partite k-graphH with vertex classesX1, . . . , Xk

is a matching M = {xi,1xi,2 · · ·xi,k : i ∈ [`]} where for all i ∈ [`], xi,j ∈ Xj and for any
vertex x1 ∈ V (M) ∩X1, we have

|{j ∈ [`] : x1xj,2 · · ·xj,k ∈ E(H)}| > t.

We say a matching M is t-semi-dense if for all i ∈ [`], we have

|{j ∈ [`] : xi,1xi,2 · · ·xi,k−1xj,k ∈ E(H)}| > t.

Note that the order of X1, . . . , Xk matters, but it will be clear from context. When k = 2,
they are both equivalent to every vertex x ∈ X1 having at least t neighbours in X2, leading
to the following simple fact.

Fact 19. A matching in a 2-graph is t-semi-dense if and only if it is t-half-dense.
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We need the following result by Gyárfás, Ruszinkó, Sárközy and Szemerédi [12].

Lemma 20 ([12, Lemma 4]). Every graph of average degree 8k has a connected k-half
dense matching.

Recall that a k-graph H is locally r-edge-coloured if any set of k − 1 vertices sees at
most r colours in H. We use the following result by Gyárfás, Lehel, Nešetřil, Rödl, Schelp
and Tuza [11].

Lemma 21 ([11, Corollary 3]). Let G be a graph with average degree d that is locally-r-
edge-coloured. Then there is a monochromatic subgraph G′ such that |E(G′)| > d2/2r2.

For a k-graph H, we denote by ∂H the (k−1)-graph on V (H) whose edges are all (k−
1)-tuples of vertices contained in some edge in H. Therefore, |E(∂H)| 6 k|E(H)|. Recall
that a monochromatic tight component is a tight component that is monochromatic, i.e.
there is a sequence of edges of the same colour joining any two edges in the monochromatic
tight component, such that any two consecutive edges in the sequence share k−1 vertices.

The following lemma shows that one can find a linear-sized semi-dense matching in a
monochromatic tight component of a locally r-edge-coloured almost complete k-graph.

Lemma 22. Let 0 < 1/t � εk � εk−1 � · · · � ε2 � 1/r, 1/k and let δ(r, k) =(
22k+3k−5r2k−2

)−1
. Let R be a locally r-edge-coloured k-graph on t vertices with |E(R)| >

(1−εk)
(
t
k

)
. Then there exists a monochromatic tight component of R containing a δ(r, k)t-

semi-dense matching.

Proof. We prove the lemma by induction on k. Note that

δ(r, 2) =
(
25r2

)−1
and δ(r, k + 1) = δ(2r2, k)/25r2. (5.6)

Suppose that k = 2. The average degree of R is

2|E(R)|
t

>
2(1− ε2)

(
t
2

)
t

>
t

2 .

By Lemma 21, there is a monochromatic subgraph R′ such that |E(R′)| > t2/8r2. The
average degree of R′ is

2|E(R′)|
t

>
t

4r2 = 8δ(r, 2)t.

By Lemma 20, R′ contains a connected δ(r, 2)t-half-dense matching. By Fact 19, we are
done.

Thus, we may assume k > 3. By Proposition 13 with εk, t playing the role of α, n,
respectively, there exists a spanning subgraph R′ of R that is (1 − 2ε1/4k2

k , 2ε1/4k
k )-dense.

Let T be the set of monochromatic tight components of R′. For T ∈ T , let φR′(T ) be the
colour of T . Let

n = t

8r . (5.7)

the electronic journal of combinatorics 32(1) (2025), #P1.50 13



Partition V (R′) into V,W with |V | = n. Let G = (∂R′) [V ], so G is a (k−1)-graph. Note
that

|E(G)| >
(

n

k − 1

)
− 2ε1/4k2

k

(
t

k − 1

)
> (1− εk−1)

(
n

k − 1

)
.

For every edge e ∈ E(G), we have

dR′(e,W ) > |W | − 2ε1/4k2

k t > |W |/2.

Define an edge-colouring φG of G with colour set T so that, for an edge e ∈ E(G), we
have

φG(e) = T if dT,G(e,W ) > |W |/2r.
If multiple T ∈ T satisfy this, pick one such T arbitrarily.

We now show that G is locally 2r2-edge-coloured. Suppose for a contradiction, there
exists a set S of k − 2 vertices x1, . . . , xk−2 in G such that |φG(S)| > 2r2 + 1. Since
R′ is locally r-edge-coloured, there exist a colour c ∈ φ(R′), vertices y1, . . . , y2r+1 and
distinct tight components T1, . . . , T2r+1 in R′ for which φR′(Ti) = c and φG(S ∪ yi) = Ti
for all i ∈ [2r + 1]. Then there exist distinct i, j ∈ [2r + 1] such that NTi(S ∪ yi,W ) ∩
NTj(S ∪ yj,W ) 6= ∅. Let w ∈ NTi(S ∪ yi,W )∩NTj(S ∪ yj,W ). Note that yix1 · · ·xk−2wyj
is a tight path in R′ where both edges are coloured c implying Ti = Tj, a contradiction.

By our induction hypothesis, G contains a monochromatic (k − 1)-uniform δ(2r2, k −
1)n-semi-dense matching M (k−1) of size `. Note that

δ(2r2, k − 1)n 6 ` 6 n/2 = t/16r.

Let T0 ∈ T be the colour of M (k−1) in G. Let M (k−1) = {xi,1 . . . xi,k−1 : i ∈ [`]} be such
that for each i ∈ [`], we have

|{j ∈ [`] : xi,1 . . . xi,k−2xj,k−1 ∈ E(T0)}| > δ(2r2, k − 1)n.

We now extend M (k−1) to a k-uniform δ(r, k)t-semi-dense matching M (k) in T ⊆ R′ ⊆ R
using vertices from W .

Let η = δ(2r2, k − 1) and m = |W |. For each i ∈ [`], let X i = {xi,1, xi,2, . . . , xi,k−2}
and let Xk−1 = {xi,k−1 : i ∈ [`]}. Delete some edges in T0[V (M (k−1))] if necessary so
that for each i ∈ [`], we have dT0[V (M(k−1))](X

i, Xk−1) = ηn. We now choose vertices
w1, . . . w` from W in turns such that dT0(X i ∪ wi, Xk−1) > δ(r, k)t. Fix i ∈ [`]. For each
x′ ∈ NG[V (M(k−1))](X i, Xk−1), we have dT0(X i ∪ x′,W ) > m/2r. Therefore, T0 contains at
least ηnm/2r many xi,1 . . . xi,k−2Xk−1W -edges. At most `ηn 6 ηn2/2 such edges contain
a vertex in w1, . . . , wi−1. Thus there exists a vertex wi ∈ W \ {wj : j ∈ [i− 1]} such that

dT0(X i ∪ wi, Xk−1) > ηnm/(2r)− ηn2/2
m

>
(
ηn

2r

)(
1− rn

m

)
>
ηn

4r = δ(2r2, k − 1)n
4r

(5.6), (5.7)
> δ(r, k)t.

Let M (k) = {wixi,1 . . . xi,k−2xi,k−1 : i ∈ [`]}. Note that M (k) is the desired k-uniform
semi-dense matching.
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We now convert the semi-dense matching into a half-dense matching. The following
lemma finds a half-dense matching in a bipartite graph where we control the vertex set
with a large minimum degree. Its proof is based on [12, Lemma 3]. For a matching M in
a graph G, an M-augmented path is a path in G where every alternate edge is in M .

Lemma 23. Let 1/n � δ 6 1 and G be a bipartite graph with vertex classes X and Y
such that |X|, |Y | 6 n and |E(G)| > δn2. Then G contains a matching M such that for
all x ∈ X ∩ V (M), we have dG[V (M)](x) > δ2n/8.

Proof. Let X ′ ⊆ X and Y ′ ⊆ Y be such that δ(G[X ′ ∪ Y ′]) > δn/2. Let m =
min{|X ′|, |Y ′|}, so m > δn/2.
Claim 24. There exist subsets X∗ ⊆ X ′ and Y ∗ ⊆ Y ′ such that |X∗| = |Y ∗| = m and
δ (G[X∗ ∪ Y ∗]) > δ2n/8.

Proof of claim. Suppose that |X ′| = m (and the case |Y ′| = m is proved similarly). Let
X∗ = X ′. Pick a subset Y ∗ of Y ′ of size m uniformly at random. Note that for any
y ∈ Y ∗, d(y,X∗) > δn/2. Let x ∈ X∗. Note that d(x, Y ∗) ∼ Hyp(|Y ′|,m, d(x, Y ′)) and

Ed(x, Y ∗) = |Y
∗|d(x, Y ′)
|Y ′|

>
m(δn/2)

n
>
δ2n

4 .

Applying Lemma 6, we deduce that for x ∈ X∗

P
(
d(x, Y ∗) < δ2n

8

)
6 2e− δ

2n
12 .

Taking a union bound over all x ∈ X∗, we have that with high probability, δ(G[X∗∪Y ∗]) >
δ2n/8. Fix such X∗ and Y ∗. �

Let G∗ = G[X∗∪Y ∗]. Pick a largest matchingM∗ in G∗. IfM∗ is spanning on V (G∗),
then we are done by setting M = M∗. Hence we may assume Y ∗ \ V (M∗) 6= ∅. Let X∗1
be the set of vertices in V (M∗)∩X∗ that can be reached by an M∗-augmented path from
X∗\V (M∗). Observe that E(G∗[X∗1 ∪(Y ∗\V (M∗))]) = ∅. Otherwise for a vertex x ∈ X∗1 ,
let xy be an edge in E(G∗[X∗1 ∪ (Y ∗ \ V (M∗))]). There exists an M∗-augmented path P
between x and X∗ \ V (M∗). But (M∗∆E(P )) ∪ {xy} is a larger matching, contradicting
that M∗ is the largest matching.

Let Y ∗1 = NG∗(X∗1 ) ⊆ V (M∗)∩Y ∗, so E(G[X∗1 ∪ (Y ∗∩V (M∗))\Y ∗1 ]) = ∅. Since M∗ is
maximal, E(G∗ \ V (M∗)) = ∅. On the other hand, E(G[X∗ \ V (M∗), Y ∗]) > δ(G∗) > 0.
Hence E(G[X∗ \ V (M∗), Y ∗ ∩ V (M∗)]) 6= ∅ implying that X∗1 6= ∅.

Let M = M∗[X∗1 ∪ Y ∗1 ]. We have δM(x) > δ2n/8 for all x ∈ X∗1 .

This now lets us find a large half-dense matching in the reduced k-graph.

Proposition 25. Let 1/t � δ � 1/r, 1/k and R be a k-graph on t vertices with a δt-
semi-dense matching. Then R contains a δ3t/2-half-dense matching.
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Proof. Let M = {vi,1vi,2 . . . vi,k : i ∈ [`]} be a δt-semi-dense matching and let Vk = {vi,k :
i ∈ [`]}. Note that

δt 6 ` 6 t/2. (5.8)
Let H be the auxiliary bipartite graph with vertex classes [`] and Vk such that, for
each i ∈ [`] and vj,k ∈ Vk, we have ivj,k ∈ E(H) if and only if vi,1vi,2 . . . vi,k−1vj,k ∈ E(R).
We deduce that

e(H) > δt`
(5.8)
> 2δ`2.

By Lemma 23 with H, `, (δ/2) , Vk, [`] playing the roles of G, n, δ,X, Y , respectively, H
contains a matching M ′ such that, for all v ∈ Vk ∩ V (M ′), we have

dH[V (M ′)](v) > δ2`/2
(5.8)
> δ3t/2. (5.9)

Without loss of generality, M ′ = {ivi,k}i∈[`]. Let M ′′ = {vi,kvi,k−1 . . . vi,1 : i ∈ [`]}.
By (5.9), M ′′ is the required half-dense matching.

Corollary 26. Let 1/t � εk � 1/r, 1/k. Let R be an r-edge-coloured k-graph on t

vertices with |E(R)| > (1 − εk)
(
t
k

)
. Then there exists a monochromatic tight component

of R containing a
(
29k(2r)3·2k

)−1
t-half-dense matching.

Proof. Let 1/t � εk � εk−1 � · · · � ε2 � 1/r, 1/k and let δ =
(
22k+3k−5r2k−2

)−1
. By

Lemma 22 there exists a monochromatic tight component of R containing a δt-semi-dense
matching. By Proposition 25, there is a δ3t/2-half-dense matching in R. Note that

δ3t

2 = t

23·2k+9k−14r3·2k−6 >
t

29k(2r)3·2k .

This completes the proof of the corollary.

We need the following lemma on bipartite graphs (Lemma 28) for the main result in
this subsection. The lemma will enable us to find a suitable fractional matching. To prove
it we need the following result by Gyárfás, Ruszinkó, Sárközy and Szemerédi [12].

Lemma 27 ([12, Lemma 5]). Let 1/n� c 6 0.001 and G be a directed graph on n vertices
with minimum out-degree δ+(G) > cn. Then there are subsets Y ⊆ X ⊆ V (G) such that
|Y | > cn/2 and for all x ∈ X and y ∈ Y , there are at least c6n internally vertex-disjoint
paths from x to y of length at most c−3.

The following lemma lets us balance weights in an appropriate fractional matching,
which will be required to prove Lemma 17.

Lemma 28. Let 1/n� c, µ < 1 with c+ µ 6 1/8. Let G be a bipartite graph with vertex
classes X = {xi : i ∈ [n]}, Y = {yi : i ∈ [n]} and a perfect matching M = {xiyi : i ∈ [n]}.
Suppose that for all x ∈ X, d(x, Y ) > δn. Then there exist disjoint subsets I+ and I−
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of [n] with |I+| = |I−| = δn/4 such that the following hold. Let ω be a vertex weighting
of G such that we have

ω(yi) = 1/2 for all i ∈ [n],
ω(xi) ∈ [1/2− c, 1/2] for all i ∈ [n] \ I+,

ω(xi) ∈ [1/2, 1/2 + c] for all i ∈ [n] \ I− and (5.10)∑
i∈I+

(ω(xi)− ω(yi)) =
∑
j∈I−

(ω(yj)− ω(xj)) <
δ9n

8 . (5.11)

Then G has a fractional matching ω∗ of weight at least ∑i∈[n] ω(xi) − µn such that, for
each v ∈ V (G), we have 1/2 − c 6 ω∗(v) 6 ω(v) and each non-zero weighted edge has
weight at least 1/8.

Proof. We start with the following claim identifying I+ and I−.
Claim 29. There exists a subset I of [n] with |I| = δn/2 such that for all distinct i, i′ ∈ I,
there are at least δ6n internally vertex-disjoint M-augmented paths from xi to xi′ of the
form xiyi1xi1 . . . yi′xi′.

Proof of claim. Define an auxiliary digraph H on X such that xixj ∈ E(H) is directed
from xi to xj if xiyj ∈ E(G). Note that δ+(H) > δn. By Lemma 27, there exists
X2 ⊆ X1 ⊆ X such that |X2| > δn/2 and every x1 ∈ X1 has at least δ6n internally
vertex-disjoint paths of length at most δ−3 to every x2 ∈ X2. Let I ⊆ [n] with |I| = δn/2
be such that {xi : i ∈ I} ⊆ X2. Note that a path xi1 . . . xi` in H corresponds to an
M -augmented path in G from xi1 to xi` , namely xi1yi2xi2 . . . yi`xi` . �

Let I be given by Claim 29. Partition I into I+ and I− so that |I+| = |I−| = δn/4.
We write X+ = {xi : i ∈ I+} and write X−, Y +, Y −,M+ and M− similarly. Let ω be a
vertex weighting satisfying the assumptions of the lemma.

Define a fractional matching ω∗0 on G such that, for all xy ∈ E(G) with x ∈ X
and y ∈ Y ,

ω∗0(xy) =


min{ω(x), ω(y)} = 1/2 if xy ∈M \M−,

min{ω(x), ω(y)} = ω(x) if xy ∈M−,

0 otherwise.

For a fractional matching ω∗ on G, let

||ω∗ − ω∗0|| =
∑

e∈E(G)
|ω∗(e)− ω∗0(e)|,

which denotes the sum of the edge-weight differences between ω∗ and ω∗0. Let ω∗ be a
fractional matching on G such that

(a) 1/2− c 6 ω∗(v) 6 ω(v) for all v ∈ V (G);
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(b) ω∗(xiyi) > 1/8 for all i ∈ [`];

(c) ||ω∗ − ω∗0|| 6 2δ−3(|ω∗| − |ω∗0|);

(d) ω∗(v) = ω(v) for all v ∈ V (G) \ (X+ ∪ Y −).
Such an ω∗ exists by taking ω∗ = ω∗0. We further assume that |ω∗| is maximal. We may
also assume that |ω∗| < ∑

i∈[n] ω(xi)−µn or else we are done. By (d), there exist x+ ∈ X+

and y− ∈ Y − such that

ω(x+)− ω∗(x+), ω(y−)− ω∗(y−) > µ. (5.12)

We aim to add weight to x+ and y−. Let x− = NM(y−). Let E0 = {e ∈ E(G) :
|ω∗(e)− ω∗0(e)| > 1/4}. Note that

|E0| 6
||ω∗ − ω∗0||

1/4
(c)
6 8δ−3 (|ω∗| − |ω∗0|)

(d)
6 8δ−3

∑
i∈I+

ω(xi)− ω(yi)
 (5.11)

< δ6n.

Thus, by the definitions of X+ and X−, there exists an M -augmented path P in G
from x+ to x− of length at most δ−3 with E(P ) ∩ E0 = ∅. Without loss of generality,
let P = x1y2x2y3 · · ·x`−1y`x` where x1 = x+, x` = x−, y` = y− and ` 6 δ−3. Define the
fractional matching ω∗1 : E(G)→ [0, 1] such that, for any edge e ∈ E(G), we have

ω∗1(e) =


ω∗(e)− µ if e = yixi with i ∈ [`− 1] \ {1},
ω∗(e) + µ if e = xiyi+1 with i ∈ [`− 1],
ω∗(e) otherwise.

(5.13)

Note that
|ω∗1| = |ω∗|+ µ (5.14)

and for v ∈ V (G),

ω∗1(v) =
ω∗(v) + µ if v ∈ {x+, y−},
ω∗(v) otherwise.

Therefore by (5.12), we have that ω∗1 satisfies (a) and (d).
To see ω∗1 satisfies (b), if e ∈ E(G) \ (E(P ) \ {x`y`}), then ω∗1(e) = ω∗(e). If e ∈

E(P ) \ {x`y`} ⊆ E(G) \ E0, then |ω∗1(e)− ω∗0(e)| = µ and so

ω∗1(e)
> ω∗0(e)− 1/4− µ > 1/8 if e ∈ E(M)
6 ω∗0(e) + 1/4 + µ 6 1/2 if e /∈ E(M).

Thus, ω∗1 indeed satisfies (b) and moreover is a fractional matching on G.
To verify that ω∗1 satisfies (c), recall that P has 2` − 1 6 2δ−3 edges. Therefore, we

deduce that

||ω∗1 − ω∗0|| 6 ||ω∗1 − ω∗||+ ||ω∗ − ω∗0||
(5.13), (c)
6 µ(2`− 1) + 2δ−3(|ω∗| − |ω∗0|)

6 2δ−3µ+ 2δ−3(|ω∗| − |ω∗0|)
(5.14)= 2δ−3(|ω∗1| − |ω∗0|).

Thus, ω∗1 satisfies (a) to (d) and has larger weight than ω∗, a contradiction.
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We now prove Lemma 17 assuming Lemma 16. First, we find a monochromatic tightly
connected half-dense matching in the reduced k-graph and reserve some unbalanced vertex
clusters corresponding to the vertices of the matching, as the vertex set U∗. We then use
Lemma 16 to cover B∗ with a set C of few monochromatic tight cycles using some vertices
from U∗. Finally, we use the half-dense property of the matching and Lemma 28 to find
one long tight cycle covering almost all the vertices in U∗ \ V (C).

Proof of Lemma 17. Let dk = 1/r, δ =
(
29k(2r)3·2k

)−1
,

1/n� 1/t1 � 1/t0 � εk � ε′, µ� ψ � 1/r, 1/k,

1/n� 1/r′, ε̃� εk, d2, . . . , dk−1.

Step 1: Defining U∗.
LetH ′ be an induced subgraph ofH such that |V (H ′)| ≡ 0 (mod t1!) and |V (H\H ′)| <

t1!. By Lemma 10 with H ′ playing the role of H, there exists a (·, ·, ε̃, εk, r′)-regular slice J̃
with partition P of V (H ′). Let m = |V | for V ∈ P , t = |P| and t0 6 t 6 t1. Note that

n > mt > n− t1! > n/2. (5.15)

Let R = RJ̃dk(H
′). Note that |E(R)| > (1 − rεk)

(
t
k

)
by Lemma 11. By Corollary 26

with R, rεk playing the roles of R, ε, respectively, there exists a monochromatic tight
component T of R and a δt-half dense matching M of size `, where

δt 6 ` 6 t/k 6 t/2. (5.16)

Let M = {xiyi,2 . . . yi,k : i ∈ [`]} and X = {xi : i ∈ [`]} be such that, for all x ∈ X, we
have |{i ∈ [`] : xyi,2 . . . yi,k ∈ E(T )}| > δt.

Define an auxiliary bipartite graphG onX and Y = {y1, . . . , y`} such that xiyj ∈ E(G)
if and only if xiyj,2 . . . yj,k ∈ E(T ). Note that M corresponds to a perfect half-dense
matching M ′ = {xiyi : i ∈ [`]} in G and for each x ∈ X,

dG(x, Y ) > δt
(5.16)
> 2δ`.

By Lemma 28 with `, 2δ playing the roles of n, δ, respectively, there exist disjoint I+, I− ⊆
[`] such that

|I+| = |I−| = δ`/2
(5.16)
> δ2t/2

(5.15)
> δ2(n/2m)− δ2t1!/(2m) > δ2n/4m.

Define X+ = {xi ∈ X : i ∈ I+} and define X−, Y +, Y − similarly. Let

α = 25rk(2r)2k+1
, γ = 4ε∗αn

m|I+|
and γa = (k − 1)γ

α
= 4ε∗(k − 1)n

m|I+|
. (5.17)

Note that Lemma 28 also implies that if ω is a vertex-weighting satisfying (5.10) and (5.11)
with γ − γa, ` playing the roles of c, n, respectively, then G has a fractional matching ω∗
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with |ω∗| > ∑
i∈[`] ω(xi) − µ`, where each vertex v has weight between 1/2 − γ + γa and

ω(v) and furthermore each non-zero weighted edge has weight at least 1/8.
For each v ∈ V (R), recall that Vv is the cluster of P corresponding to v. We pick

disjoint Uv, Av ⊆ Vv such that

|Av| =
γm if v ∈ X+,

0 otherwise,

|Uv| =


(

1
2 − γ + γa

)
m if v ∈ X−,

m
2 if v ∈ V (M ′) \X−,
ε′m otherwise.

Let A = ⋃
v∈V (R) Av, U = ⋃

v∈V (R) Uv and U∗ = U∪A. Therefore, we have |A| = |I+|γm =
4αε∗n by (5.17) and

|U∗| = |U |+ |A| = km`/2− (γ − γa)m|X−|+ ε′m(t− k`) + γm|X+|
= km`/2 + γam|X−|+ ε′m(t− k`) = km`/2 + 4(k − 1)ε∗n+ ε′m(t− k`)

(5.16)
6 mt/2 + 4(k − 1)ε∗n+ ε′m(t− k`)

(5.15)
6 3n/4.

Step 2: Verifying properties of U∗.
Let B∗ ⊆ V (H) \ U∗ be such that |B∗| = 4ε∗n.
Step 2A: Covering B∗.
By Lemma 16 with A,B∗ playing the roles of X,Z, respectively, there exists a set C of
vertex-disjoint monochromatic tight cycles covering B∗ with

|C| 6 218rδ−5
0 and |V (C) ∩ A| = 4(k − 1)ε∗n = γam|I+|.

Step 2B: Covering U∗ \ V (C).
Let A′ = A \ V (C), so |A′| = (γ − γa)|I+|m. For each x ∈ V (R), let A′x = A′ ∩ Vx, so⋃
x∈X+ A′x = A′. Note that

km`/2 6 |U ∪ A′| 6 km`/2 + ε′mt. (5.18)

We define a vertex-weighting ω : V (M ′)→ [0, 1] to be such that for v ∈ V (M ′),

ω(v) = |Vv ∩ (U ∪ A′)|
m

= |Uv|+ |A
′
v|

m


∈ [1

2 ,
1
2 + γ] if v ∈ X+,

= 1
2 − γ + γa if v ∈ X−,

= 1
2 if v ∈ V (M ′) \ (X+ ∪X−).

Firstly, note that
∑
i∈I+

(ω(xi)− ω(yi)) =
∑
i∈I+

((
1
2 +
|A′xi |
m

)
− 1

2

)
= |A

′|
m

= (γ − γa)|I+| =
∑
i∈I−

(ω(yi)− ω(xi)).
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Also ∑
i∈I+

(ω(xi)− ω(yi)) = (γ − γa)|I+| 6 γ|I+|

(5.17)= 4ε∗αn/m
(5.15)
6 8ε∗αt

(5.16)
6 8ε∗α`/δ < (2δ)9`/8.

Therefore, all the conditions for Lemma 28 (with 2δ playing the role of δ) are satisfied.
Furthermore, ∑i∈[`] ω(xi) = ∑

i∈[`] ω(yi). We deduce that G has a fractional matching ω∗
with

|ω∗| >
∑
i∈[`]

ω(xi)− µ` =
∑
i∈[`]

ω(yi)− µ` =
(1

2 − µ
)
`, (5.19)

where each vertex v has weight at least 1/2− γ + γa and at most ω(v) and each non-zero
weighted edge has weight at least 1/8. Define a corresponding fractional matching ω∗H
on H such that for an edge e ∈ E(H), ω∗H(e) = ω∗(xiyj) if e = xiyj,2 . . . yj,k and ω∗H(e) = 0
otherwise. Note that |ω∗H | = |ω∗|. For any vertex u /∈ V (M) we have ω∗H(u) = 0, so
|Vu∩ (U ∪A′)| = ε′m = ((1−3ε′)ω∗H(u)+ε′)m. For each u ∈ V (M), we have ω∗H(u) > 1/3
and so

|Vu ∩ (U ∪ A′)| = |Uu ∪ A′u| = ω(u)m > ω∗H(u)m > ((1− 3ε′)ω∗H(u) + ε′)m.

By Lemma 12, H[A′ ∪ U ] contains a tight cycle C of length `0 with

`0 > (1− ψ)k|ω∗H |m− k
(5.19)
> (1− ψ)(1/2− µ)k`m− k > (1− ψ)km`/2− µkm`.

Recall that µ, ε′, 1/t� ψ and 1/m� 1/k. Hence,

|(A′ ∪ U) \ V (C)|
(5.18)
6 ψkm`/2 + µkm`+ ε′mt 6 ψkm`

(5.16)
6 ψmt

(5.15)
6 ψn

as required.

6 Edge-coloured Multigraphs

Let H be a k-partite k-graph with vertex classes X1, . . . , Xk with Xi = {xi,j : j ∈ [n]}. We
denote the 2-blowup of a k-edge by K(k)

k (2). Note that K(k)
k (2) is the complete k-partite

k-graph with each vertex class of order 2. We say that an edge-coloured multigraph G
respects H if the following hold:

• the colour set of G is a subset of Xk;

• V (G) ⊆ {vi : i ∈ [n]};

• if φ(vivi′) = xk,t for some t ∈ [n], then {xi,jxi′,j : j ∈ [k − 1]} forms a K(k−1)
k−1 (2)

in H(xk,t).
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There is a natural correspondence between a tight cycle in H and a rainbow cycle in G.
Fact 30. Let H be a k-partite k-graph with vertex sets X1, . . . , Xk such that for i ∈ [k−1],
Xi = {xi,j : j ∈ [n]}. Let G be an edge-coloured multigraph respecting H. Suppose that G
contains a rainbow cycle v1v2 · · · v` with φ(vivi+1) = xk,i for i ∈ [`− 1] and φ(v`v1) = x1,`.
Then H contains a tight cycle with vertex set {xi,j : i ∈ [k], j ∈ [`]}.

Let G be an edge-coloured multigraph. Recall that φ(G) is the set of colours in G and
for a colour c ∈ φ(G), Gc is the subgraph with edges only of the colour c and no isolated
vertices. The monochromatic colour degree of G to be δmon(G) = minc∈φ(G) δ(Gc). A path
system is a collection of vertex-disjoint paths. A rainbow path system is a path system
such that its union (viewed as a graph) is rainbow. A (rainbow) cycle system is defined
similarly. The main goal of this section is to reduce Lemma 16 into the following lemma,
which will be proved in the next section.
Lemma 31. Let 1/n� δ0 6 1/8. Suppose G is an edge-coloured multigraph on n vertices
with δmon(G) > δ0n and |φ(G)| 6 δ0n/16. Then there exists a rainbow cycle system C
with φ(C) = φ(G) and |C| 6 218δ−5

0 .
To reduce Lemma 16 to Lemma 31, we need the help of the following lemma, which

will be proved in the next subsection.
Lemma 32. Let H be an r-edge-coloured K(k)

n with disjoint vertex sets X and Z with
|X| > (k− 1)|Z|. Then for each i ∈ [r], there exist an edge-coloured multigraph Gi and a
subgraph H i of H such that
(A1) H i is a monochromatic k-partite k-graph on vertex classes X i

1, . . . , X
i
k of colour i;

(A2) φ(Gi) = X i
k, Z = ⋃

i∈[r] X
i
k and ⋃j∈[k−1]X

i
j ⊆ X;

(A3) if H i is not empty, then |V (Gi)| =
(
1− 1

4krk
)
|X|

r(k−1) , δmon(Gi) > (2r)−2k |V (Gi)|/8
and Gi respects H i;

(A4) for distinct i, j ∈ [r], we have V (H i) ∩ V (Hj) = ∅.
We now prove Lemma 16 assuming Lemmas 31 and 32.

Proof of Lemma 16. By Lemma 32, for each i ∈ [r], there exist an edge-coloured multi-
graph Gi and a k-partite k-graph H i such that Gi and H i satisfy (A1)− (A4) and hence
Gi respects H i. Fix i ∈ [r]. Observe that if H i is not empty, then δmon(Gi) > δ0|V (Gi)|
by (A3). Moreover∣∣∣φ(Gi)

∣∣∣ (A2)
6 |Z| 6 |X|

α
6

δ0|X|
32r(k − 1) 6

δ0

16

(
1− 1

4krk
) |X|
r(k − 1)

(A3)= δ0|V (Gi)|
16 .

By Lemma 31 with Gi playing the role of G, we deduce that Gi contains a rainbow
cycle system Ci with φ(Ci) = φ(Gi) = X i

k and |Ci| 6 218δ−5
0 . By Fact 30 and (A1), Ci

corresponds to a set Ĉi of vertex-disjoint monochromatic tight cycles in H i covering X i
k.

Therefore by (A4), ⋃i∈[r] Ĉi is a set of vertex-disjoint monochromatic tight cycles covering⋃
i∈[r] X

i
k = Z. Note that

∣∣∣⋃i∈[r] Ĉi
∣∣∣ 6 218rδ−5

0 . This completes the proof of the lemma.
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6.1 Proof of Lemma 32

We start with the following result, which allows us to partition X ∪ Z into the vertex-
disjoint k-partite k-graphs H i for i ∈ [r]. Let H be an r-edge-coloured k-graph. For
vertex sets X1, . . . , Xk, let ej(X1, . . . , Xk) be the number of X1 · · ·Xk-edges of colour j
in H.
Lemma 33. Let 1/N � 1/k, 1/r 6 1/2. Let H be an r-edge-coloured complete k-
partite k-graph with vertex classes X1, X2, . . . , Xk where for all i ∈ [k − 1], |Xi| = N and
|Xk| 6 N . Then there exists a partition of X1, . . . , Xk into {Xj

1 : j ∈ [r] ∪ {0}}, . . . ,
{Xj

k−1 : j ∈ [r] ∪ {0}}, {Xj
k : j ∈ [r]} such that, for each i ∈ [k − 1], j ∈ [r] and x ∈ Xj

k,
we have

|Xj
i | =

(
1− 1

4krk
)(

N

r

)
and ej

(
Xj

1 , . . . , X
j
k−1, x

)
>

∣∣∣Xj
1

∣∣∣ · · · ∣∣∣Xj
k−1

∣∣∣
2r .

Proof. Partition Xk into X1
k , . . . , X

r
k such that for all j ∈ [r] and xk ∈ Xj

k,

ej(X1, . . . , Xk−1, xk) >
|X1| . . . |Xk−1|

r
.

Let ε = (4krk)−1.
Claim 34. There exists a partition of Xi for each i ∈ [k − 1] into X1

i , . . . , X
r
i such that

for all j ∈ [r],
∣∣∣∣∣∣Xj

i

∣∣∣− N
r

∣∣∣ 6 εN
r

and∣∣∣∣∣∣ej
(
Xj

1 , . . . , X
j
i , Xi+1, . . . , Xk−1, xk

)
−
ej
(
Xj

1 , . . . , X
j
i−1, Xi, . . . , Xk

)
r

∣∣∣∣∣∣ < εNk−1.

Proof of claim. We proceed by induction on i. We only prove the base case i = 1 as the
rest can be proved analogously.

LetX1 = X1
1∪· · ·∪Xr

1 be a random partition ofX1, where for all x1 ∈ X1 and i ∈ [r], x1
is assigned to Xj

1 independently with probability 1/r. Consider xi ∈ Xi for i ∈ [2, k] and
j ∈ [r]. Note that E

(
ej(Xj

1 , x2, . . . , xk)
)

= ej(X1,x2,...,xk)
r

. If ej(X1, x2, . . . , xk) 6 εN , then
clearly ej(X i

1, x2, . . . , xk) 6 εN . If ej(Xj
1 , x2, . . . , xk) > εN , then by Lemma 5, we have

P
(∣∣∣∣∣ej(Xj

1 , x2, . . . , xk)−
ej(X1, x2, . . . , xk)

r

∣∣∣∣∣ > ε
ej(X1, x2, . . . , xk)

r

)
6 2e− ε

3N
3r .

Note that E|Xj
1 | = N/r. By Lemma 5, we have

P
(∣∣∣∣|Xj

1 | −
N

r

∣∣∣∣ > ε
N

r

)
< 2e− ε

2N
3r .

Hence by the union bound, with positive probability for all j ∈ [r], i ∈ [2, k] and xi ∈ Xi,
we have

∣∣∣|Xj
1 | − N

r

∣∣∣ < εN
r
and

∣∣∣ej(Xj
1 , x2, . . . , xk)− ej(X1,x2,...xk)

r

∣∣∣ 6 εN . Fix such a parti-
tion. We have∣∣∣∣∣ej(Xj

1 , X2, . . . , Xk−1, xk)−
ej(X1, X2, . . . , Xk−1, xk)

r

∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣
∑

xi∈Xi,
i∈[2,k−1]

(
ej(Xj

1 , x2, . . . , xk)−
ej(X1, x2, . . . , xk−1, xk)

r

)∣∣∣∣∣∣∣∣∣ 6
∑

xi∈Xi,
i∈[2,k−1]

εN 6 εNk−1.

�

Fix a partition of X1, . . . , Xk−1 given by Claim 34. For each i ∈ [k − 1] and j ∈ [r],
remove additional vertices from Xj

i if necessary so that, for all i ∈ [k − 1] and j ∈ [r],∣∣∣Xj
i

∣∣∣ = (1− ε) N
r
. Let X0

i = Xi \
⋃
j∈[r] X

j
i for each i ∈ [k − 1]. Each Xj

i has at most
2εN/r vertices removed. Thus for all j ∈ [r] and xk ∈ Xj

k, we have

ej(Xj
1 , . . . , X

j
k−1, xk) >

ej(X1, . . . , Xk−1, xk)
rk−1 − kεNk−1 −Nk−2

(2εN
r

)

>
Nk−1

rk
− 2kεNk−1 >

Nk−1

2rk >
|Xj

1 | · · · |X
j
k−1|

2r .

We need a lower bound on the number of K(k)
k (2) in a dense k-partite k-graph H.

Lemma 35. Let 1/n� 1/k, d 6 1. Let H be a k-partite k-graph with n vertices in each
vertex class and e(H) > dnk. Then there are at least d2kn2k/2 many K(k)

k (2) in H.
Proof. Let the vertex classes of H be X1, . . . , Xk. For vertices x1, . . . , xk ∈ V (H), we
write 1(x1 · · ·xk) for the indicator function 1(x1 · · ·xk ∈ E(H)). For j ∈ [k] ∪ {0}, let

f(j) =
∑

xi∈Xi,
i∈[k−j]

∑
xs,ys∈Xs,
s∈[k−j+1,k]

∏
vt∈{xt,yt},
t∈[k−j+1,k]

1(x1 · · ·xk−jvk−j+1 . . . vk).

Note that
dnk 6 |E(H)| =

∑
xi∈Xi,i∈[k]

1(x1 · · ·xk) = f(0). (6.1)

Claim 36. For t ∈ [k], we have n2tk−k−tf(t) > f(0)2t.

Proof of claim. For any j ∈ [k − 1] ∪ {0}, we apply the Cauchy-Schwarz inequality to
obtain

f(j)2 =

 ∑
xi∈Xi,

i∈[k−j−1]

∑
xs,ys∈Xs,
s∈[k−j+1,k]

 ∑
xk−j∈Xk−j

∏
vt∈{xt,yt},
t∈[k−j+1,k]

1(x1 · · ·xk−jvk−j+1 . . . vk)




2

6 nk+j−1 ∑
xi∈Xi,

i∈[k−j−1]

∑
xs,ys∈Xs,
s∈[k−j+1,k]

 ∑
xk−j∈Xk−j

∏
vt∈{xt,yt},
t∈[k−j+1,k]

1(x1 · · · xk−jvk−j+1 . . . vk)


2

= nk+j−1 ∑
xi∈Xi,

i∈[k−j−1]

∑
xs,ys∈Xs,
s∈[k−j,k]

∏
vt∈{xt,yt},
t∈[k−j,k]

1(x1 · · · xk−j−1vk−j . . . vk)

= nk+j−1f(j + 1). (6.2)
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We now prove the claim by induction on t. Note that f(0)2 6 nk−1f(1) by (6.2). Suppose
that t > 1. Thus

n2tk−k−tf(t)
(6.2)
> n2tk−k−tn−(k+t−2)f(t− 1)2 =

(
n2t−1k−k−(t+1)f(t− 1)

)2
> f(0)2t , (6.3)

where the last inequality is due to our induction hypotheses. �

The number of K(k)
k (2) in H is

∑
xi,yi∈Xi,
xi 6=yi,
i∈[k]

∏
vt∈{xt,yt},

t∈[k]

1(v1 · · · vk) > f(k)− kn2k−1 Claim 36
> n2k−k2kf(0)2k − kn2k−1

(6.1)
> n2k−k2k(dnk)2k − kn2k−1 > d2kn2k/2.

We now show that there exists a (non-empty) subgraph H0 of H such that each edge
is in many K(k)

k (2).

Lemma 37. Let 1/n � d 6 1, k > 2 and γ = d2k/2. Let H be a k-partite k-graph with
n vertices in each vertex class and e(H) > dnk. Then there exists a subgraph H0 of H
such that |E(H0)| > 2k−1γnk and every edge of H0 is contained in at least γnk/2 many
K

(k)
k (2) in H0.

Proof. Define the auxillary 2k-graph A to be such that V (A) = V (H) and each K(k)
k (2)

of H is an edge of A. By Lemma 35, |E(A)| > γn2k. If there exists S ∈
(
V (A)
k

)
such that

|S ∩ Vi| = 1 for i ∈ [k] and dA(S) < (γ/2)nk, then we delete all edges in A containing S.
Repeat this process and call the resulting 2k-graph A′. Note that S can be chosen in at
most nk ways, so

|E(A′)| > γn2k − nk
(
γnk

2

)
= γn2k

2 .

Let H0 be the subgraph of H induced by e ∈ E(H) with dA′(e) > 1. For each e ∈ E(H0),
we have dA′(e) > γnk/2 and therefore e is contained in at least γnk/2 many K(k)

k (2) in H0.
Since each edge can be contained in at most nk many K(k)

k (2) in H0,

|E(H0)| > 2k|E(A′)|
nk

= 2k−1γnk

as required.

Let Sn denote the set of permutations on [n]. The following lemma shows that if the
vertices within each class of a k-partite k-graph are permuted randomly, then the number
of ‘horizontal’ edges is concentrated around its expectation.
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Lemma 38. Let 1/n � 1/k 6 1/2 and H be a k-partite k-graph with vertex classes
X1, . . . , Xk each of size n. Suppose σ1, . . . , σk−1 ∈ Sn are chosen independently and uni-
formly at random. Let Hσ1,...,σk−1 = {x1,σ1(i) · · · xk−1,σk−1(i)xk,i : i ∈ [n]} ∩ E(H). Then

P
(∣∣∣∣∣E|Hσ1,...,σk−1| −

|E(H)|
nk−1

∣∣∣∣∣ > εn

)
6 2e− ε

2n
32 .

Proof. We consider the martingale obtained by exposing each position of σ1, . . . , σk−1 in
turns as follows. For i ∈ [k− 1] and j ∈ [n], let Zi,j be the jth exposed position of σi. Let

B0 = E
∣∣∣Hσ1,...,σk−1

∣∣∣ =
∑

x1,i1 ...xk−1,ik−1xk,i∈E(H)
P(i1 = σ1(i), . . . , ik−1 = σk−1(i))

=
∑

x1,i1 ...xk−1,ik−1xk,i∈E(H)

∏
j∈[k−1]

P(ij = σj(i)) = |E(H)|
nk−1 .

Define

B(i−1)n+j = E
(∣∣∣Hσ1,...,σk−1

∣∣∣ |Z1,1, . . . , Z1,n, Z2,1, . . . , Z2,n, . . . , Zi,1, . . . , Zi,j
)
.

Note that B0, . . . , B(k−1)n forms a martingale.
Claim 39. For t ∈ [(k − 1)n− 1], we have |Bt −Bt+1| 6 4.

Proof of claim. For simplicity, we only consider the case when t 6 n − 1 (and the other
cases are proved similarly). Thus

Bt = E
(∣∣∣Hσ1,...,σk−1

∣∣∣ |Z1,1, . . . , Z1,t
)

and Bt+1 = E(
∣∣∣Hσ1,...,σk−1

∣∣∣ |Z1,1, . . . , Z1,t+1).

If t = n − 1, then Bt = Bt+1. Thus we may assume t 6 n − 2. For t1, t2 ∈ [n], define
πt1,t2 : Sn → Sn to be such that for all σ′ ∈ Sn and s ∈ [n],

πt1,t2(σ′)(s) =


σ′(t2) if s = t1,

σ′(t1) if s = t2,

σ′(s) otherwise.

Equivalently πt1,t2(σ′) swaps the tth1 and tth2 position of σ′. For all σ′1, . . . , σ′k−1 ∈ Sn,

∣∣∣Hσ′1,...,σ
′
k−1

∆Hπt1,t2 (σ′1)σ′2,...,σ′k−1

∣∣∣
6
∣∣∣{x1,σ′1(i) . . . xk−1,σ′

k−1(i)xk,i, x1,πt1,t2 (σ′1(i)) . . . xk−1,πt1,t2 (σ′
k−1(i))xk,i : i ∈ {t1, t2}}

∣∣∣ 6 4.
(6.4)

Let A = {σ ∈ Sn : σ(j) = Z1,j for j ∈ [t]}. Given Z1,1, . . . , Z1,t, the probability space is
now reduced to A×(Sn)k−2. Pick j0 ∈ [n]\{Z1,1 . . . Z1,t}. Let A′ = {σ ∈ A : σ(t+1) = j0}.
Note that A can be partitioned into {πt,j(A′) : j ∈ [t+1, n]}. Hence the probability space
can be partitioned into {πt,j(A′) × (Sn)k−2 : j ∈ [t + 1, n]}. Hence the claim follows
by (6.4). �
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By Azuma’s inequality (Lemma 7), we have

P
(∣∣∣∣∣E ∣∣∣Hσ1,...,σk−1

∣∣∣− |E(H)|
nk−1

∣∣∣∣∣ > εn

)
6 2e− ε

2n
32

as required.

We are now ready to prove Lemma 32.

Proof of Lemma 32. Let

n =
(

1− 1
4krk

)( |X|
r(k − 1)

)
.

Partition X into equally sized subsets X1, . . . , Xk−1 so that for j ∈ [k − 1], we have
|Xj| = |X|/(k − 1) > |Z|. By Lemma 33, there exists a partition of X1, . . . , Xk−1, Z into
{Xj

1 : j ∈ [r]∪{0}}, . . . , {Xj
k−1 : j ∈ [r]∪{0}}, {Zj : j ∈ [r]} such that for each i ∈ [k−1],

j ∈ [r] and z ∈ Zj, we have

∣∣∣Xj
i

∣∣∣ = n and ej
(
Xj

1 , . . . , X
j
k−1, z

)
>

∣∣∣Xj
1

∣∣∣ · · · ∣∣∣Xj
k−1

∣∣∣
2r = nk−1

2r .

For each j ∈ [r], let Hj be the k-partite k-graph with vertex classes Xj
1 , . . . , X

j
k−1, Z

j and
E(Hj) = E

(
Hj

[
Xj

1 , . . . , X
j
k−1, Z

j
])
.

Let d = (2r)−1 and γ = d2k/2. Fix j ∈ [r]. Consider z ∈ Zj and let Hj(z) be
the link graph of z on vertex set Xj

1 , . . . , X
j
k−1. Note that |E(Hj(z))| > dnk−1. By

Lemma 37 with Hj(z) playing the role of H, there exists a (k − 1)-partite (k − 1)-
uniform subhypergraph Jz of Hj(z) such that |E(Jz)| > γ2k−2nk−1 and every edge in Jz
is contained in at least γnk−1/2 many K(k−1)

k−1 (2) in Jz. For each edge e in Jz, let Jz,e be
the (k − 1)-partite (k − 1)-graph on vertex classes Xj

1 , . . . , X
j
k−1 such that f is an edge

in Jz,e if and only if e∪ f forms a K(k−1)
k−1 (2) in Jz. For all z ∈ Zj and e ∈ E(Jz), we have

|E(Jz)| > 2k−2γnk−1 and |E(Jz,e)| > γnk−1/2.

Let Xj
i = {xi,1, . . . , xi,n}. Choose σ1, . . . , σk−2 ∈ Sn independently and uniformly at

random. For a (k − 1)-partite (k − 1)-graph J with vertex classes Xj
1 , . . . X

j
k−1, let

Jσ1,...σk−2 = {x1,σ1(i) . . . xk−2,σk−2(i)xk−1,i : i ∈ [n]} ∩ E(J).

By Lemma 38 we have

P
(∣∣∣Jzσ1,...,σk−2

∣∣∣ < γ2k−3n
)
6 2e−γ222k−11n and P

(∣∣∣Jz,eσ1,...,σk−2

∣∣∣ < γn

4

)
6 2e−

γ2n
512 .

By the union bound, there exist some σ1, . . . , σk−2 ∈ Sn such that for all z ∈ Zj and
all e ∈ E(Jz),

∣∣∣Jzσ1,...,σk−2

∣∣∣ > γ2k−3n = d2k2k−4n and
∣∣∣Jz,eσ1,...,σk−2

∣∣∣ > γn

4 = d2kn

8 = (2r)−2kn

8 . (6.5)
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Without loss of generality (by relabelling vertices of Xj
1 , . . . , X

j
k−2) we may assume σ1 =

· · · = σk−2 = id. For z ∈ Zj, define the edge-coloured graph Gz on V = {vi : i ∈ [n]}
with colour z to be such that vivj ∈ E(G) if and only if x1,i . . . xk−1,ix1,j . . . xk−1,j forms
a K(k−1)

k−1 (2) in Jz. Hence after removing isolated vertices from Gz, δ(Gz) > (2r)−2kn/8
by (6.5). Let Gj = ⋃

z∈Zj Gz. We now show that (A1)− (A4) are satisfied.
Note that by the construction of Hj for each j ∈ [r], (A1) holds, Z = ⋃

j∈[r] Z
j

and ⋃i∈[k−1]X
j
i ⊆ X. We also have

φ(Gj) = φ

 ⋃
z∈Zj

Gz

 =
⋃
z∈Zj

φ(Gz) = Zj.

Thus (A2) holds.
Let Hj be non-empty for some j ∈ [r]. Note that

|V (Gj)| =
∣∣∣∣∣∣
⋃
z∈Zj

V (Gz)
∣∣∣∣∣∣ = n =

(
1− 1

4krk
)( |X|

r(k − 1)

)
.

Since δ(Gz) > (2r)−2kn/8, we have δmon(Gj) > (2r)−2k |V (Gj)|/8 and Gj respects Hj by
construction. So (A3) holds.

To see (A4), recall that Lemma 33 partitions X1, . . . , Xk−1, Z. Hence, for distinct
i, j ∈ [r], H i and Hj are vertex-disjoint. This completes the proof of the lemma.

7 Rainbow Path Systems

From now on, we will work with edge-coloured multigraph G. Note that the colours of G
are different to those in K(k)

n . We often assume that δmon(G) is linear in |V (G)|. Recall
that a rainbow path system is a path system (collection of vertex-disjoint paths) such that
its union (viewed as a graph) is rainbow. Our first goal is to prove the following result,
which shows that there is a rainbow path system in G with few paths.
Lemma 40. Let n, d ∈ N and G be an edge-coloured multigraph on n vertices with
δmon(G) > d > 4|φ(G)|. Then there exists a rainbow path system P such that φ(P) = φ(G)
and |P| 6 2n/d.

To show this, we need the help of the following proposition which lets us start build-
ing P with a rainbow matching.
Proposition 41. Let G be an edge-coloured multigraph with δmon(G) > 2|φ(G)|−1. Then
there exists a rainbow matching M such that φ(M) = φ(G).
Proof. Without loss of generality let φ(G) = [d]. Suppose for some i ∈ [d], we have already
found a rainbow matching Mi−1 such that φ(Mi−1) = [i − 1]. We now construct Mi as
follows. Since

δmon(G) > 2|φ(G)| − 1 > 2|φ(Mi−1)| = |V (Mi−1)|,
there exists a vertex v ∈ V (G) \ V (Mi−1) such that Ni(v, V (Mi−1)) 6= ∅. Pick a vertex
v′ ∈ Ni(v, V (Mi−1)) and let Mi = Mi−1 ∪ {vv′}. Let M = Md.
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We now present the proof of Lemma 40.

Proof of Lemma 40. Let P be a rainbow path system of G with φ(P) = φ(G), which
exists by Proposition 41. Suppose that |P| is minimal. If |P| 6 2n/d, then we are done.
So we may assume |P| > 2n/d. Let P = {P1, P2, . . . , P`} be such that Pi = vi1 · · · viqi and
without loss of generality φ(vi1vi2) = i. Note that

di(vi2, V (P)) > d− |V (P)| > d− 2|φ(G)| > d/2.

Hence there exist distinct i, j ∈ [`] such that (Ni(vi2) ∩ Nj(vj2)) \ V (P) 6= ∅. Let w ∈(
Ni(vi2) ∩Nj(vj2)

)
\ V (P). Let P ′ = (P \ {Pi, Pj}) ∪ {vjq · · · v

j
3v
j
2wv

i
2v
i
3 · · · viq}. Note that

P ′ is also a rainbow path system with φ(P ′) = φ(G) and |P ′| < |P|. This contradicts the
minimality of |P|.

The following lemma is our absorption result, the proof of which will be presented in
the next section.

Lemma 42. Let 1/n � δ and G be an edge-coloured multigraph satisfying |V (G)| = n
and δ∗mon(G) > δn. Then there exists a subgraph G∗ of G such that

|V (G) \ V (G∗)|, |φ(G) \ φ(G∗)| < 2000δ−4.

Moreover, for all rainbow paths P ∗ in G∗ with |V (P ∗)| > 3 and vertex sets S ⊆ V (G∗) \
V (P ∗) such that |V (P ∗) ∪ S| 6 δn/4, G \ S contains a rainbow cycle C∗ with φ(P ∗) ⊆
φ(C∗) ⊆ φ(P ∗) ∪ (φ(G) \ φ(G∗)).

We now prove Lemma 31 using Lemma 42. We iteratively reserve a set of vertices and
colours, which shall be used to close the rainbow path system constructed at the end, one
path at a time.

Proof of Lemma 31. If |φ(G)| 6 218δ−5
0 then we have δmon(G) > 2|φ(G)|. By Proposi-

tion 41, G contains a rainbow matching M such that φ(M) = φ(G). Since each edge is a
degenerate cycle, we are done setting C = M . Therefore, we may assume |φ(G)| > 218δ−5

0 .
Let G1 = G. For each j ∈

[
4δ−1

0

]
in turns, we apply Lemma 42 with Gj, δ0/2 playing

the roles of G, δ, respectively, to obtain a subgraph Gj+1 of G such that

|V (Gj) \ V (Gj+1)|, |φ(Gj) \ φ(Gj+1)| < 2000(δ0/2)−4 6 215δ−4
0 .

Moreover, for all rainbow paths P in Gj+1 with |V (P )| > 3 and a vertex set S ⊆ V (Gj+1)\
V (P ) such that |V (P ) ∪ S| 6 δ0n/8, Gj+1 \ S contains a rainbow cycle C with

φ(P ) ⊆ φ(C) ⊆ φ(P ) ∪ (φ(Gj) \ φ(Gj+1)).

Note that

δmon(Gj+1) > δmon(Gj)− |V (Gj) \ V (Gj+1)| > δmon(Gj)− 215δ−4
0

> δmon(G)− 215δ−4
0 j > δ0n/2. (7.1)
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Let G∗ = G4δ−1
0 . Note that

δmon(G∗) = δmon(G4δ−1
0 ) > δ0n/2 > 8φ(G∗)

and
|φ(G) \ φ(G∗)|, |V (G) \ V (G∗)| 6 215δ−4

0 (4δ−1
0 ) = 217δ−5

0 . (7.2)
By Lemma 40 with G∗, δ0n/2 playing the roles of G, d, respectively, there exists a rainbow
path system P such that φ(P) = φ(G∗) and

|P| 6 2|V (G∗)|
δ0n/2

6 4δ−1
0 . (7.3)

Note that
|V (P)| = |φ(G∗)|+ |P| 6 δ0n

16 + 4δ−1
0 6

δ0n

8 . (7.4)

Moreover
δmon(G \ V (P))

(7.4)
> δ0n−

δ0n

8 >
δ0n

2 > 2φ(G)

and φ(G\V (P)) ⊇ φ(G)\φ(G∗). By Proposition 41, we deduce that there exists a rainbow
matching M in (G \ V (P))φ(G)\φ(G∗) with φ(M) = φ(G) \ φ(G∗). Let Q0 = M ∪ P , so
φ(Q0) = φ(G) and

|Q0| 6 |P|+ |φ(G) \ φ(G∗)|
(7.3), (7.2)
6 4δ−1

0 + 217δ−5
0 6 218δ−5

0 .

Let P1, . . . , P` be paths in Q0 such that for j ∈ [`], |V (Pj)| > 3. Suppose for some
j ∈ [`− 1] ∪ {0}, we have constructed Qj such that

(i) Qj is a union of vertex-disjoint paths and cycles with |Qj| 6 |Q0|;

(ii) Qj is rainbow with φ(Qj) = φ(G);

(iii) the paths in Qj of order at least 3 are precisely Pj+1, . . . , P`;

(iv) all edges in Qj of colours in φ(Gj+1) \ φ(G∗) form a rainbow matching.

We now construct Qj+1 as follows. Note that Pj+1 ⊆ G∗ ⊆ Gj+1. Let S = V (Qj \Pj+1)∩
V (Gj+1). Note that

|S ∪ V (Pj+1)| 6 |V (Qj)| 6 |φ(Qj)|+ |Qj| 6 |φ(G)|+ |Q0|

6
δ0n

16 + 218δ−5
0 6

δ0n

8
(7.1)
6

δmon(Gj+1)
4 .

By the property of Gj+1, there is a rainbow cycle Cj+1 in Gj+1 \ S such that

φ(Pj+1) ⊆ φ(Cj+1) ⊆ φ(Pj) ∪
(
φ(Gj) \ φ(Gj+1)

)
.

the electronic journal of combinatorics 32(1) (2025), #P1.50 30



Since P ⊆ G∗, the subgraph Gφ(Cj+1) ∩ Qj of Qj induced by the colours in φ(Cj+1) is
precisely the path Pj+1 and single edges of colour in φ(Cj+1)\φ(Pj+1) ⊆ φ(Gj)\φ(Gj+1).
Let Qj+1 =

(
Qj −Gφ(Cj+1)

)
∪ Cj+1. Thus Qj+1 consists of the cycles C1, . . . , Cj+1, a

rainbow matching with colours in φ(Gj+2)\φ(G∗) and all paths of length at least 3 from Qj

except Pj+1. Therefore |Qj+1| 6 |Qj| 6 |Q0|. Furthermore φ(Qj+1) = φ(Qj) ∪ φ(Cj+1) =
φ(G) and by construction, Qj+1 is rainbow. Therefore, Qj+1 satisfies (i)–(iv).

Finally, note that Q` consists of cycles and single edges. The proof of the lemma is
complete.

8 Closing rainbow paths

The aim of this section is to prove Lemma 42. To prove Lemma 42, we would need to
reserve some vertices and colours so that we can close any rainbow path. Ideally our aim
is to find a vertex v, small disjoint vertex setsW1,W2 and small disjoint colour sets C1, C2
such that for every x ∈ V (G) and i ∈ [2], there exists a rainbow path Pi,x from x to v such
that V (Pi,x) ⊆ {x, v} ∪Wi and φ(Pi,x) ⊆ Ci. We now reserve the vertex set v ∪W1 ∪W2
and colour set C1∪C2. Given any rainbow path P with end vertices x and y, P ∪P1,x∪P1,y
forms a rainbow cycle. This will motivate our definition of a bowtie (see later). First, we
need the following definition which describes how to reach a vertex v through a vertex
set W using a colour set C.

Recall that V ∗(G) = {v ∈ V (G) : |φG(v)| > 2} and for a path P = v1 · · · v`, we
denote int(P ) = {vi : 2 6 i 6 `− 1}. Let G be an edge-coloured multigraph with vertex
set V . For v ∈ V , C ⊆ φ(G) and W ⊆ V , define UG(v, C ′,W ) to be the subset U ⊆ V
such that for all vertices u ∈ U , there is a rainbow path P from v to u with φ(P ) ⊆ C
and int(P ) ⊆ W . We will always assume that {v} ∪ W ⊆ V ∗(G) ∩ UG(v, C,W ). Let
U = UG(v, C,W ) and g ∈ N. We say that U is g-maximal in G if for all u ∈ U,w1, w2 ∈ V
and distinct c, c1, c2 /∈ C with φ(uw1) = c1 and φ(w1w2) = c2,

dc(u, U), dc1(w1, U), dc2(w2, U) < g.

If U is not g-maximal, then by adding at most two vertices to W and three colours to C,
we can enlarge U by at least g. This leads to the following proposition.

Proposition 43. Let G be an edge-coloured multigraph. Let v ∈ V ∗(G) and c ∈ φG(v).
Then there exists a colour set C ⊆ φ(G) containing c and a vertex-set W ⊆ V ∗(G)\v such
that UG(v, C,W ) is g-maximal, |UG(v, C,W )| > dc(v) and |C|, |W | 6 3|UG(v, C,W )|/g.

Proof. Initially, we set W = ∅ and C = {c}. Note that UG(v, C,W ) = Nc(v), so
|UG(v, C,W )| > dc(v) and |W |, |C| 6 3|UG(v, C,W )|/g.

If UG(v, C,W ) is g-maximal, then we are done. Suppose UG(v, C,W ) is not g-maximal.
If there exists u ∈ UG(v, C,W ) and a colour c′ /∈ C such that dc′(u, UG(v, C,W )) > g then
add c′ to C and u to W . If there exists u ∈ UG(v, C,W ), w ∈ V ∗(G) and a colour c′ /∈ C
such that dc′(w,UG(v, C,W )) > g and φ(uw) /∈ {c′} ∪ C, then add c′, φ(uw) to C and
u,w to W . If there exists u ∈ UG(v, C,W ), w,w′ ∈ V ∗(G) and a colour c′ such that
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dc′(w′, UG(v, C,W )) > g and φ(uw), φ(ww′), c′ are distinct colours not in C, then add
c′, φ(uw), φ(ww′) to C and u,w,w′ to W .

Note that we still have |W |, |C| 6 3|UG(v, C,W )|/g and |UG(v, C,W )| > dc(v). Note
that W ⊆ V ∗(G). We repeat this process until UG(v, C,W ) is g-maximal.

Recall that δ∗mon(G) = minv∈V ∗(G) minc∈φG(v) dc(v). In other words, δ∗mon(G) is the
(non-zero) minimum number of edges seen by a vertex v in a particular colour, minimised
over all the vertices in G that see at least two colours. We are mainly concerned about
vertices in V ∗(G) because if a vertex v /∈ V ∗(G), then it cannot be contained in a non-
degenerate rainbow cycle. Also recall that the closed neighborhood of a vertex w in a
graph G is defined as {w} ∪NG(w) and denoted by NG[w].

Let U = U(v, C,W ) be g-maximal in G. The following crucial lemma says that if a
rainbow path P satisfies int(P ) ∩NG−GC [U ] 6= φ, then int(P ) ⊆ NG−GC [U ].

Lemma 44. Let g ∈ N and let G be an edge-coloured multigraph on n vertices with
δ∗mon(G) > g. Let v ∈ V (G), W ⊆ V (G) and C ⊆ φ(G). Suppose that U = UG(v, C,W )
is g-maximal. Furthermore let G′ = G−GC and U∗ = NG′ [U ]. Then the following hold:

(i) for all x ∈ U∗ ∩ V ∗(G′) and c ∈ φ(G′), we have dc(x, U) < g;

(ii) if P is a rainbow path in G′ such that int(P) ∩ U∗ 6= ∅, then int(P) ⊆ U∗.

Proof. Consider x ∈ U∗ ∩ V ∗(G′) and c ∈ φ(G′). If x ∈ U , then since c /∈ C, by the
g-maximality of U , we have dc(x, U) < g. If x ∈ U∗ \ U , then there exists a vertex
u ∈ U and a colour c′ /∈ C such that φ(ux) = c′. If c′ 6= c, then dc(x, U) < g by the
g-maximality of U . If c = c′, then there exists a colour c′′ ∈ φG′(v) \ {c} as v ∈ V ∗(G′).
By the argument above, we have dc′′(x, U) < g. Since δ∗mon(G) > g, we deduce that
Nc′′(x, U) 6= ∅. Pick u′ ∈ Nc′′(x, U). Now, φ(u′x) = c′′ 6= c. Again by the previous
argument we have dc(x, U) < g. Hence (i) holds.

We now prove (ii). Let P = x1 · · ·x` be a rainbow path in G′ with int(P ) ∩ U∗ 6= ∅.
Suppose that φ(xj−1xj) = j for j ∈ [`]\{1}. Furthermore assume that x2 ∈ U∗ and ` > 4.
(Indeed, if xi ∈ U∗ with i ∈ [3, ` − 2], then consider the two rainbow paths xi−1xi · · ·x`
and xi+1xi · · · x1 separately.) Thus it is enough to show that x3 ∈ U∗, as we can then
consider the rainbow path x2x3 · · ·x`. If x2 ∈ U , then x3 ∈ U∗. If x2 ∈ U∗ \ U , then (i)
implies d2(x2, U) < g and so N2(x2, U) 6= ∅. Then by g-maximality of U , d4(x3, U) < g
and so N4(x3, U) 6= ∅. Thus x3 ∈ U∗ as required.

Let G be an edge-coloured multigraph. We say that B = (v, C1,W1, C2,W2) is a
bowtie in G if v ∈ V (G), W1,W2 ⊆ V (G) \ {v} are disjoint, C1 and C2 are disjoint
nonempty colour sets. Denote φ(B) = C1 ∪ C2, W (B) = {v} ∪W1 ∪W2 and for i ∈ [2],
Ui(B|G) = UG\W3−i−GC3−i

(v, Ci,Wi). A bowtie B is g-maximal in G if for i ∈ [2], Ui(B|G)
is g-maximal in G \W3−i −GC3−i .

The following corollary shows that a g-maximal bowtie exists, which follows from
Proposition 43.
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Corollary 45. Let g ∈ N and G be an edge-coloured multigraph on n vertices. Let v be
a vertex such that dc1(v), dc2(v) > g + 3n/g for distinct colours c1, c2. Then there exists
a g-maximal bowtie B(v, C1,W1, C2,W2) such that for i ∈ [2], ci ∈ Ci, W (B) ⊆ V ∗(G),
|Ui(B|G)| > dci(v)− 3n/g and |φ(B)|, |W (B)| 6 6n/g.

Proof. Apply Proposition 43 with v, c1, G − Gc2 playing the roles of v, c, G, respectively
and obtain a colour set C1 and a vertex set W1 such that c1 ∈ C1 and UG−Gc2

(v, C1,W1)
is g-maximal in G−Gc2 and |UG−Gc2

(v, C1,W1)| > dc1(v). Note that

|C1|, |W1| 6 3|UG−Gc2
(v, C1,W1)|/g 6 3n/g.

Let G′ = G \W1 − GC1 . Apply Proposition 43 again with v, c2, G
′, playing the roles of

v, c,G, respectively and obtain a colour set C2 and a vertex set W2 such that c2 ∈ C2 and
UG′(v, C2,W2) is g-maximal in G′ and

|UG′(v, C2,W2)| > dc2,G′(v) > dc2,G(v)− |W1| > dc2,G(v)− 3n/g.

Set B = (v, C1,W1, C2,W2). Note that B is g-maximal and for i ∈ [2], |Ui(B|G)| >
dci(v)− 3n/g. Furthermore,

|φ(B)|, |W (B)| 6 3
g

∑
i∈[2]
|Ui(B|G)|

 6 6n
g
.

We now continue our motivation for the proof of Lemma 42. Recall that our aim is
to use a bowtie to close a rainbow path. First, we show that there exist a small set of
bowties B1, . . . , Bt such that {U2(Bi|G) : i ∈ [t]} partitions V ∗(G). This will ensure that
any rainbow path can be extended via one of these bowties (but we may not be able to
close it).

Let d, g ∈ N and G be an edge-coloured multigraph. Let B be a family of bowties
B1, . . . , Bt in G. Let φ(B) = ⋃

i∈[t] φ(Bi) and W (B) = ⋃
i∈[t] W (Bi). We write G − B for

G\W (B)−Gφ(B). For a bowtie B ∈ B and i ∈ [2], we denote Ui(B|G,B) = Ui(B|G− (B\
B)) and U∗i (B|G,B) = NG−Gφ(B) [Ui(B|G,B)] ∩ V ∗(G− B). We say B is a (d, g)-partition
of G if the following hold

(P1) for all i ∈ [2] and j ∈ [t], we have |Ui(Bj|G,B)| > d;

(P2) W (B1), . . . ,W (Bt) are all disjoint and W (B) ⊆ V ∗(G);

(P3) φ(B1), . . . , φ(Bt) are all disjoint;

(P4) for all j ∈ [t], Bj is g-maximal in G− (B \Bj);

(P5) for all distinct j, j′ ∈ [t], U∗2 (Bj|G,B) ∩ U∗2 (Bj′|G,B) = ∅;

(P6) U∗2 (B1|G,B), U∗2 (B2|G,B), . . . , U∗2 (Bt|G,B) partition V ∗(G− B).

We say that B is a weak (d, g)-partition of G if only (P1) to (P5) hold.
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Fact 46. Let d, g, n ∈ N and G be a graph on n vertices. Let B be a weak (d, g)-partition
of G. Then |B| 6 n/d.

Proof. Consider B ∈ B. By (P1), |U∗2 (B|G,B) ∪W (B)| > |U2(B|G,B)| > d. Note that
U∗2 (B|G,B) ⊆ V ∗(G−B) ⊆ V (G)\W (B). By (P2) and (P3), for any distinct B,B′ ∈ B,

(U∗2 (B|G,B) ∪W (B)) ∩ (U∗2 (B′|G,B) ∪W (B′)) = ∅.

Therefore, |B| 6 n/d.

The next lemma shows that one can extend a weak (d, g)-partition into a (d, g)-
partition.

Lemma 47. Let d, g, n ∈ N with d > 4g and g > max{3n/g, 12n2/gd}. Let G be an
edge-coloured multigraph on n vertices such that δ∗mon(G) > d. Suppose B0 is a weak
(d/2, g)-partition of G with |φ(B0)|, |W (B0)| 6 6n|B0|/g. Then there exists a (d/2, g)-
partition B∗ so that B0 ⊆ B∗ and |φ(B∗)|, |W (B∗)| 6 6n|B∗|/g 6 12n2/gd.

Proof. Suppose we have already constructed a weak (d/2, g)-partition B = {B1, . . . , Bt}
with B0 ⊆ B and |φ(B)|, |W (B)| 6 t(6n/g). By Fact 46,

t 6 2n/d. (8.1)

Hence
|φ(B∗)|, |W (B∗)| 6

(2n
d

)(6n
g

)
= 12n2

gd
.

We further assume that t is maximal. If B satisfies (P6) then we are done by setting
B∗ = B.

Thus we may assume that (P6) does not hold. We now construct a bowtie Bt+1 as
follows. Let G′ = G − B. Pick vt+1 ∈ V ∗(G′) \ ⋃i∈[t] U

∗
2 (Bi|G,B) and c1, c2 ∈ φG′(vt+1),

which exist as (P6) does not hold for B. Note that

δ∗mon(G′) > δ∗mon(G)− |W (B)| > d− (12n2/gd) > d− g > d/2 > 2g > g + 3n/g.

By Corollary 45, G′ contains a g-maximal bowtie Bt+1 such that |φ(Bt+1)|, |W (Bt+1)| 6
6n/g and W (Bt+1) ⊆ V ∗(G′).

Let B′ = B ∪Bt+1. Clearly, |φ(B′)|, |W (B′)| 6 (t+ 1)(6n/g). We now show that B′ is
a weak (d/2, g)-partition, contradicting the maximality of t. Fix i ∈ [2] and j ∈ [t + 1].
Note that

δ∗mon(G− (B′ \Bj)) > d− |W (B′ \Bj)| > d− (12n2/gd) > d/2.

Thus, |Ui(Bj|G,B′)| > δ∗mon(G − (B′ \ Bj)) > d/2 and so (P1) holds. Note that (P2)
and (P3) hold by our construction. For j ∈ [t], Bj is g-maximal in G− (B \ Bj) so it is
g-maximal in G− (B′ \ Bj). Recall Bt+1 is g-maximal in G′ = G− B = G− (B′ \ Bt+1).
Thus (P4) holds for B′.
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It remains to show (P5) holds for B′. For i ∈ [t], U∗2 (Bi|G,B′) ⊆ U∗2 (Bi|G,B). Since
B is a weak (d/2, g)-partition of G, (P5) of B implies that U∗2 (B1|G,B′), . . . , U∗2 (Bt|G,B′)
are disjoint. Suppose that U∗2 (Bt+1|G,B′) ∩ U∗2 (Bj|G,B′) 6= ∅ for some j ∈ [t]. Let
u ∈ U∗2 (Bt+1|G,B′) ∩ U∗2 (Bj|G,B′) ⊆ V ∗(G− B) and c ∈ φG−B′(u). Note that

dc,G−B′(u) > δ∗mon(G− B′) > d− (12n2/gd) > g.

Lemma 44(i) and (P4) imply that dc,G−B′(u, U2(Bj|G,B′)) < g. Therefore,

dc,G(u, U2(Bj|G,B′)) > dc,G(u)− |W (B′)| − dc,G−B′(u, U2(Bj|G,B′))

> dc,G(u)− 12n2

gd
− g > dc,G(u)

2 .

Similarly, we have dc,G(u, U2(Bt+1|G,B′)) > dc,G(u)/2. Hence,

|U2(Bj|G,B′) ∩ U2(Bt+1|G,B′)| > |U2(Bj|G,B′) ∩ U2(Bt+1|G,B′) ∩Nc,G(u)|
>dc,G(u, U2(Bj|G,B′)) + dc,G(u, U2(Bt+1|G,B′))− dc,G(u) > 0.

Let w ∈ U2(Bj|G,B′) ∩ U2(Bt+1|G,B′). Let Bt+1 = (vt+1, Ct+1
1 ,W t+1

1 , Ct+1
2 ,W t+1

2 ). Since
w ∈ U2(Bt+1|G,B′), there exists a rainbow path P = wv1 · · · v`vt+1 with φ(P ) ⊆ Ct+1

2
and int(P) ⊆Wt+1

2 . By (P3), φ(P ) ∩ φ(Bj) = ∅. We deduce that v1 ∈ U∗2 (Bj|G,B′). Let
c1 ∈ Ct+1

1 ∩ φG(vt+1). Note that

dc1,G′(vt+1) > δ∗mon(G′) > d/2 > |Ct+1
2 | > |V (P )|.

Pick v′ ∈ Nc1,G′(vt+1) \V (P ). Then the path P ′ = wv1 · · · v`vt+1v′ is a rainbow path with
φ(P ′) ∩ φ(Bj) = ∅. By Lemma 44(ii), vt+1 ∈ int(P ′) ⊆ U∗2 (Bj|G,B), contradicting the
fact that vt+1 was chosen from V ∗(G′) \ ⋃i∈[t] U

∗
2 (Bi|G,B).

8.1 Proof of Lemma 42

We now present the ideas in the proof of Lemma 42. Let d = δn.
We apply Lemma 47 to obtain a (d/2, g)-partition B of G. Let P be a rainbow path

in G− B. Since int(P) ⊆ V∗(G− B), we deduce (by (P4), (P6) and Lemma 44(ii)) that
there exists B ∈ B such that int(P) ⊆ U∗2(B|G,B). We now discuss how to augment P
into a rainbow cycle using B.

Let P = x1x2 · · ·x` with φ(x1x2) = 2 and φ(x`−1x`) = `.
Case 1: |U2(B|G,B)| 6 3d/4. By Lemma 44(i), we can find x ∈ U2(B|G,B) to replace
both x1 and x` in P . This transforms P into a rainbow cycle.
Case 2: U∗2 (B|G,B) = U∗1 (B|G,B). By Lemma 44(i), we may assume that x1 ∈
U1(B|G,B) and x` ∈ U2(B|G,B). Let B = (v, C1,W1, C2,W2). There exists a rain-
bow path P ′ from x1 to x` through v such that φ(P ′) ⊆ φ(B) and int(P′) ⊆W(B). Hence
PP ′ is a rainbow cycle.

Therefore we would like to ensure Case 1 or 2 hold. Our aim is to refine B by replacing
bowties with smaller ones so that Case 1 will hold eventually. In particular, we will
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increase the number of bowties in each step. For simplicity, suppose V ∗(G−B) = V (G).
Note that B ∈ B is g-maximal in G−(B\B). Lemma 44(i) implies that “the subgraph HB

induced by U∗2 (B|G,B) satisfies δ∗mon(HB) > d−g > d/2". Hence we can apply Lemma 47
to obtain a (d/4, g)-partition B′ of HB. Thus, we refine B by replacing B with B′.

Suppose that we are unable to refine B further and for simplicity B consists of only
one bowtie B = (v, C1,W1, C2,W2). If Case 2 fails, then U∗1 (B|G,B) is smaller than
U∗2 (B|G,B). We consider the ‘swapped’ bowtie B′ = (v, C2,W2, C1,W1) instead. We
extend this weak partition {B′} into a (d/4, g)-partition of G (using Lemma 47). Note
that we increase the number of bowties in the partition.

Proof of Lemma 42. Set d = δn, γ = δ2/16 and g = γn. Note that

d > 4g + 2 and g > max{6n/g, 12n2/gd}.

Let G0 = G, J0 = G and H0 = G. By Lemma 47 with H0, d, g, ∅ playing the roles of
G, d, g,B0, respectively, we obtain a (d/2, g)-partition B1 of H0 and |φ(B1)|, |W (B1)| 6
2n|B1|/g and W (B1) ⊆ V ∗(H0).

Suppose for some i ∈ N we have already constructed families B1,B2, . . . ,Bi of bowties,
edge-coloured multigraphs J0, G0, H0, . . . , J i−1, Gi−1, H i−1 whose properties will be spec-
ified later. Let

J i = Gi−1 − Bi,
Gi = J i −

⋃
B,B′∈Bi
B 6=B′

J i[U∗2 (B|H i−1,Bi), U∗2 (B′|H i−1,Bi)].

In other words, Gi is obtained from Gi−1−Bi by removing all the edges that are between
U∗2 (B|H i−1,Bi) and U∗2 (B′|H i−1,Bi) for distinct B,B′ ∈ Bi.

Let Bi1 = {B ∈ Bi : |U2(B|H i−1,Bi)| 6 3d/4}. (These will consist of bowties that
satisfy Case 1.) Consider i ∈ N and B ∈ Bi. For a bowtie family B′ in H i, define

∂B′(B) = {B′ ∈ B′ : W (B′) ⊆ U∗2 (B|H i−1,Bi)}.

We say B is covered by B′ if ∂B′(B) = {B′} and U∗2 (B′|H i,B′) = U∗1 (B′|H i,B′). We write
∂B for ∂Bi+1B. Let

Bi2 =

⋃{∂B : B ∈ Bi−1 is covered by Bi} if i > 2,
∅ if i = 1.

(These bowties in Bi2 will satisfy Case 2.) Let Bi3 = Bi \ (Bi1 ∪ Bi2) and

H i = Gi \

V ∗(Gi) \
⋃
B∈Bi3

U∗2 (B|H i−1,Bi)


= Gi

(V (Gi) \ V ∗(Gi)) ∪
⋃
B∈Bi3

U∗2 (B|H i−1,Bi)

 .
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In other words, H i is induced by U∗2 (B|H i−1,Bi) for all B ∈ Bi3 and the vertices in Gi that
see at most one colour. From now on, for B ∈ Bj, we write U∗i (B) for U∗i (B|Hj−1,Bj).
We now list the desired properties of Gi and H i. Suppose that for all j ∈ [i],

(i) Bj is a (d/4, g)-partition of Hj−1 with |φ(Bj)|, |W (Bj)| < 384δ−3 and W (Bj) ⊆
V ∗(Hj−1);

(ii) if B′ ∈ Bj−1 and |∂B′| = 1, then B′ is covered by Bj;

(iii) if j > 2, then Bj = ⋃
B∈Bj−1

3
∂B;

(iv) for all B ∈ Bj3, |U∗2 (B)| 6 n− j(d/4);

(v) δmon(Gj) > d− j(g + 12n2/gd) > d− 2gj;

(vi) if V ∗(Hj) is not empty, then δ∗mon(Hj) > d− j(g + 12n2/gd) > d− 2gj;

(vii) V ∗(Hj) ⊆ ⋃B∈Bj3 U∗2 (B);

(viii) φ(Gj) = φ(Gj−1) \ φ(Bj);

(ix) Gj has no edge between U∗2 (B) and V ∗(Gj) \ U∗2 (B) for all B ∈ Bj;

(x) for each B ∈ Bj, B is g-maximal in Gj−1 − (Bj \B).

It should be noted that (i) and (ii) imply (iii) to (x). Hence we technically only require
B1, . . . ,Bj to satisfy (i) and (ii). Note that (iv) implies that

i 6 4n/d = 4/δ. (8.2)

Case A: V ∗(H i) 6= ∅. We now construct Bi+1 as follows. We have

δ∗mon(H i)
(8.2), (vi)
> d− 2g(4δ−1) > d/2.

By Lemma 47 with H i, d/2, g, ∅ playing the roles of G, d, g,B0, respectively, there exists
a (d/4, g)-partition B of H i with |φ(B)|, |W (B)| 6 6n|B|/g = 192δ−3.
Claim 48. Let B be a (d/4, g)-partition of H i with |φ(B)|, |W (B)| 6 12n2/gd. Let B+ ∈
Bi and B ∈ ∂BB+. Then for t ∈ [2], U∗t (B|H i,B) ⊆ U∗2 (B+). Moreover, if ∂BB+ = {B},
then U∗2 (B|H i,B) = U∗2 (B+) ∩ V ∗(H i − B).

Proof of claim. We prove the case for t = 2 (and the case for t = 1 is proven analogously).
Let B = (v, C1,W1, C2,W2), so v ∈ U∗2 (B+). Suppose there exists a vertex

u ∈ U∗2 (B|H i,B) \ U∗2 (B+). (8.3)
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Then there exists a rainbow path P = vw1 · · ·w`u such that w1, . . . , w`−1 ∈ W2, φ(P ) ⊆
C2 ∪ φ(w`u) ⊆ φ(H i) and C1 ∩ φ(P ) = ∅. Note that

|P | 6 |W (B)|+ 2 6 192δ−3 + 2 < d/2 (8.4)

and u ∈ V ∗(H i − B). Thus, there exists a colour c′ ∈ φHi−B(u) \ φ(w`v). By (vi),

dc′,Hi(u) > d− 2ig > d− 8g
δ

(8.4)
> |P |.

Pick u′ ∈ Nc′,Hi(u) \ V (P ). Recall that φ(H i) ⊇ φ(B) ⊇ C1 6= ∅. Pick c1 ∈ C1 ∩ φHi(v) ⊆
φ(H i). By (vi),

dc1,Hi−1(v) > d− 2g(i− 1) > d− 8g
δ

(8.4)
> |P |+ 1.

Pick v′ ∈ Nc1,Hi−1(u) \ (V (P ) ∪ {u′}). Then the path P ′ = v′Pu′ = v′vw1 · · ·w`uu′ is
rainbow in H i−1 with

φ(P ′) ∩ φ(Bi) ⊆ φ(H i) ∩ φ(Bi) ⊆ φ(Gi) ∩ φ(Bi) = ∅

by (viii). Recall that U∗2 (B+) is g-maximal in H i−1 − (Bi \ B+). Lemma 44(ii) implies
that u ∈ int(P′) ⊆ U∗2(B+) contradicting (8.3). The moreover statement follows. �

For each B+ ∈ Bi with ∂BB+ = {B} that is not covered by B, we replace the bowtie
B = (v, C1,W1, C2,W2) with B′ = (v, C2,W2, C1,W1). We call the resulting family B′.
We now show that B′ is a weak (d/4, g)-partition of H i. Note that (P1) to (P4) hold.
To show (P5), note that if B′ ∈ B′ \ B, then there exist unique B ∈ B \ B′ and B+ ∈ Bi
with

B = (v, C1,W1, C2,W2), B′ = (v, C2,W2, C1,W1) and ∂BB+ = {B}.
By Claim 48 and the fact ∂BB+ = {B}, we deduce that

U∗2 (B′|H i,B′) = U∗1 (B|H i,B) ⊆ U∗2 (B+) ∩ V ∗(Gi+1) = U∗2 (B|H i,B).

Recall that B is a (d/4, g)-partition of H i, in particular this implies that {U∗2 (B|H i,B) :
B ∈ B} are pairwise disjoint. Thus, B′ satisfies (P5) and is a weak (d/4, g)-partition.
Apply Lemma 47 withH i, d/2, g,B′ playing the roles of G, d, g,B0, respectively and obtain
(d/4, g)-partition Bi+1 containing B′ and satisfying W (Bi+1) ⊆ V ∗(H i) and

|φ(Bi+1)|, |W (Bi+1)| 6 2(6n|Bi+1|/g) 6 24n2/gd 6 384δ−3.

Claim 49. Bi+1, Gi+1, H i+1 satisfy (i) to (x).

Proof of claim. Note that (i) holds by construction.
Consider B+ ∈ Bi. If |∂BB+| = 1 and B+ is not covered by B, then we have

|∂Bi+1B+| > 1. Otherwise ∂BB+ = ∂Bi+1B+. Suppose that ∂B+ = {B}. By (P6)
and Claim 48, U∗2 (B|H i,Bi+1) = U∗2 (B+|H i−1,Bi) ∩ V ∗(H i − Bi+1). Note that B+ is
covered by B, therefore covered by Bi+1. Thus (ii) holds.
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Consider B = (v, C1,W1, C2,W2) ∈ Bi+1. For each w ∈ W (B) \ {v}, there is a
path from v to w in H i. Thus W (B) is contained in a component of H i[V ∗(H i)]. Since
H i ⊆ Gi, (ix) for Gi implies that W (B) ⊆ U∗2 (B+) for some B+ ∈ Bi3. Therefore (iii)
holds for Gi+1.

We now show that (iv) holds. Let B ∈ Bi+1
3 . Then there exists B+ ∈ Bi and B′ ∈ Bi+1

3
such that B,B′ ∈ ∂B+. By (P1), (P5) and Claim 48, we deduce that U∗2 (B)∪W (B) and
U∗2 (B′) ∪W (B′) each has size at least d/4, are disjoint and contained in U∗2 (B+). Hence,

|U∗2 (B)| 6 |U∗2 (B+)− |U∗2 (B′) ∪W (B′)|
(iv)
6 n− i(d/4)− (d/4) = n− (i+ 1)(d/4).

To show (v), consider a vertex u ∈ V (Gi+1) and a colour c ∈ φGi+1(u). It is enough
to show that dc,Gi+1(u) > d − (i + 1)(g + 12n2/gd). By (v) for Gi, we have dc,Gi(u) >
d− i(g + 12n2/gd). Then

dc,Ji+1(u) > dc,Gi(u)− |W (Bi+1)| > d− ig − (i+ 1)(12n2/gd).

If u ∈ V (Gi+1) \ V ∗(Gi+1), then dc,Gi+1(u) = dc,Ji+1(u). If u ∈ V ∗(Gi+1), then by (P6),
u ∈ U∗2 (B) for some B ∈ Bi+1. Then by g-maximality of B in H i−(Bi+1\B), Lemma 44(i)
implies that dc,Gi+1(u, U∗2 (B)) < g. We deduce that

dc,Gi+1(u) > dc,Ji+1(u)− dc,Gi+1(u, U∗2 (B))) > d− (i+ 1)(g + 12n2/gd).

This argument also implies (vi), (vii) and φ(J i+1) = φ(Gi+1). Since δmon(Gi) > d/4 >
|W (Bi+1)|, we have φ(J i+1) = φ(Gi) \ φ(Bi+1) implying (viii).

To show (ix), consider B ∈ Bi+1. Let B+ ∈ Bi with B ∈ ∂B+. By Claim 48, U2(B) ⊆
U∗2 (B+). Hence Gi+1 contains no edge between U∗2 (B) and U∗2 (B+) \ U∗2 (B). By (ix)
for Gi, there are no edges in Gi (and so in Gi+1) between U∗2 (B+) and V ∗(Gi) \ U∗2 (B+)
in Gi and so in Gi+1. Thus (ix) holds for Gi+1.

Suppose for contradiction (x) does not hold. That is, some bowtie B ∈ Bi+1 is not
g-maximal in Gi − (Bi+1 \ B). Note that B is g-maximal in H i − (Bi+1 \ B). Let
B+ ∈ Bi with B ∈ ∂B+. By (ix), Gi has no edge between U∗2 (B+|H i−1,Bi) and V ∗(Gi) \
U∗2 (B+|H i−1,Bi). Thus for any v ∈ V ∗(H i), the neighbourhoods of v are the same in H i

and in Gi. Hence any vertices u,w,w′ that could prevent g-maximality must also be
contained in V ∗(H i). Therefore B is g-maximal in Gi − (Bi+1 \B). �

Case B: V ∗(H i) = ∅. Set C∗ = ⋃
j∈[i] φ(Bj) and W ∗ = ⋃

j∈[i] W (Bj). Let G∗ = Gi.
Clearly,

|W ∗| 6
∑
j∈[i]

∣∣∣W (Bj)
∣∣∣ (i), (8.2)
6 (384δ−3)(4δ−1) < 2000δ−4. (8.5)

There is a similar upper bound on |C∗|. Note that φ(G∗) = φ(G)\C∗ by (viii). Moreover,
by (v),

δmon(G∗) > d− |W ∗|
(8.5)
> d− 2000δ−4.
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Consider a rainbow path P in G∗ with |V (P )| > 3 and S ⊆ V ∗(G) \ V (P ) such that
|V (P ) ∪ S| 6 d/4. We shall find a rainbow cycle C∗ in G \ S, which closes P with
φ(P ) ⊆ φ(C∗) ⊆ φ(P ) ∪ φ(G) \ φ(G∗).
Claim 50. There exists j ∈ [i] and B ∈ Bj1 ∪ B

j
2 such that int(P) ⊆ U∗2(B).

Proof of claim. Let v ∈ int(P) ⊆ V∗(G∗) ⊆ V∗(G). Note that V ∗(G) = V ∗(H0) ⊇ · · · ⊇
V ∗(H i) = ∅. Let j ∈ [i] be such that v ∈ V ∗(Hj) but v /∈ V ∗(Hj+1). By (vii), there exists
B ∈ Bj1 ∪ B

j
2 such that v ∈ U∗2 (B). By (x), B is g-maximal in Gj−1 − (Bj \B). Therefore

Lemma 44(ii) implies that int(P) ⊆ U∗2(B). �

Let B and j be as given by the claim. Let P = x1 · · ·x` with φ(x1x2) = 2 and
φ(x`−1x`) = `. Let H ′ = Hj−1 − (Bj \B).
Case B(i): B ∈ Bj1. Note that int(P ) ⊆ U∗2 (B) ⊆ V ∗(Hj−1). Moreover, |int(P ) ∪ S| <
d/4. Let U2 = U2(B), so |U2| 6 3d/4 as B ∈ Bj1. By Lemma 44(i), d2,H′(x2, U2) < g.
Then by (vi),

d2,H′(x2, U2) > δ∗mon

(
Hj−1

)
− g − |W ∗|

(8.5)
> d− 2g(j − 1)− g − 2000δ−4 > d/2.

Similarly, we have d`,H′(x`−1, U2) > d/2. We deduce that

|N2,H′(x2, U2) ∩N`,H′(x`−1, U2) \ (S ∪ V (P ))|
>d2,H′(x2, U2) + d`,H′(x`−1, U2)− |U2| − |S ∪ V (P )|
>d/2 + d/2− 3d/4− d/4 = 0.

Pick x ∈ (N2,H′(x2, U2) ∩ N`,H′(x`−1, U2)) \ (S ∪ V (P )). Then C∗ = xx2 · · ·x`−1x is a
rainbow cycle with φ(C∗) = φ(P ).
Case B(ii): B ∈ Bj2. There exists a bowtie B′ ∈ Bj−1 with ∂B′ = {B}. Let B =
(v, C1,W1, C2,W2) and furthermore, V ∗(Gj) ∩ U∗2 (B′) = U∗1 (B) = U∗2 (B). Since P is
in G∗, we have int(P) ⊆ V∗(G∗). Note that B is g-maximal in H ′. We deduce that

d2,H′(x2, U1(B|Hj−1,Bj)) > δ∗mon(Hj)− d2,H′(x2, U1(B))
(vi), Lemma 44(i)

> d− 2gj − g > d− (2i+ 1)g
(8.2),(8.5)
> |S ∪ V (P )|+ |V (G) \ V (G∗)|.

Pick y1 ∈ U1(B) ∩ (V (G∗) \ (S ∪ V (P ))) such that φ(y1x2) = 2. Similarly, we can find
a distinct vertex y2 ∈ U2(B) ∩ (V (G∗) \ (S ∪ V (P ))) such that φ(y2x`−1) = `. Let Py1,v

be the rainbow path from y1 to v with int(Py1,v) ⊆ W1 and φ(Py1,v) ⊆ C1; and Pv,y2

be a rainbow path from y2 to v with int(Pv,y2) ⊆ W2 and φ(Pv,y2) ⊆ C2. Then C∗ =
y1Py1,vPv,y2y2x`−1x`−2 · · · x2y1 is a rainbow cycle in G \ S. Note that

φ(P ) ⊆ φ(C∗) ⊆ φ(P ) ∪ φ(G) \ φ(G∗).

This concludes the proof of the lemma.
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9 Concluding Remarks

In this work, we showed that there exists a monochromatic tight cycle partition of any
large r-edge-coloured K(k)

n with a number of cycles that is a polynomial of r. For k > 3,
it is easy to construct an r-edge-coloured hypergraph which needs at least r monochro-
matic tight cycles to partition all the vertices. We show such a construction below for
completeness.

Proposition 51. Let k, r ∈ N such that k > 2. There exists an r-edge-coloured com-
plete k-graph such that at least r monochromatic cycles are required for a monochromatic
tight cycle partition of its vertex set.

Proof. Let H be a complete k-graph with vertex set partitioned as V = ⋃
i∈[r] Vi, where

V1 6= ∅, for distinct i, j ∈ [r], Vi ∩ Vj = ∅ and for each i ∈ [r] \ {1},

|Vi| > (k − 1)
∑

j∈[i−1]
|Vj|. (9.1)

We colour each e ∈ E(G) with colour φ(e) = min{i ∈ [r] : Vi ∩ e 6= ∅}. Let C be a set
of vertex-disjoint monochromatic tight cycles that partition V (H). It is enough to show
that for each i ∈ [r], there is a tight cycle in C coloured i. Clearly, a monochromatic tight
cycle C that contains at least one vertex from Vi satisfies φ(C) 6 i. Let

C<i = {C ∈ C : V (C) ∩ Vi 6= ∅ and φ(C) < i}.

It suffices to show that Vi * V (C<i). Note that each C ∈ C<i satisfies
∣∣∣V (C) ∩ ⋃j<i Vj∣∣∣ >

|V (C)|/k and therefore |V (C) ∩ Vi| 6 (k − 1)
∣∣∣V (C) ∩ ⋃j<i Vj∣∣∣. We deduce that

|V
(
C<i

)
∩ Vi| 6

∑
C∈C<i

|V (C) ∩ Vi| 6 (k − 1)
∑

j∈[i−1]
|Vj|

(9.1)
< |Vi|.

This completes the proof of the proposition.

When k = 2 and r > 3, Pokrovskiy [22] showed that there exist infinitely many r-edge-
coloured Kn which require at least r + 1 monochromatic cycles. Lo and Pfenninger [17]
showed that for any k > 3, there are 2-edge-coloured K(k)

n that cannot be partitioned into
two monochromatic tight cycles of distinct colours. It is interesting to consider whether
the same holds for r-edge-coloured complete k-graphs when r, k > 3.

We believe that an r-edge-coloured K(k)
n can be partitioned into a linear number of

monochromatic tight cycles.

Conjecture 52. Let r, k ∈ N with r, k > 2. Then there exists a constant C = C(k) such
that every r-edge-coloured K(k)

n can be partitioned into at most Cr monochromatic tight
cycles.
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If one can strengthen Lemma 16 to show that f(r, k) monochromatic tight cycles
suffice, then our proof method would imply O(r log r) + 2f(r, k) + 3 cycles partition any
r-edge-coloured K(k)

n . The O(r log r) term corresponds to the number of monochromatic
cycles required to cover almost all the vertices.

Conjecture 53. For all r, k > 2, there exists C = C(k) such that any r-edge-coloured
K(k)
n contains at most Cr cycles covering (1− o(1))n vertices.

Note that the case k = 2 and general r is still open.
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