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Abstract

Dendric shift spaces simultaneously generalize codings of regular interval ex-
changes and episturmian shift spaces, themselves both generalizations of Sturmian
words. One of the key properties enforced by dendricity is the Return Theorem.
In this paper, we prove its converse, providing the following natural algebraic per-
spective on dendricity: A minimal shift space is dendric if and only if every set of
return words is a basis of the free group over the alphabet.

Mathematics Subject Classifications: 37B10, 68R15

1 Introduction

Sturmian words, introduced in [23], are binary sequences well-known for having numerous
properties and characterizations (see the surveys in [21] and [13]). Combinatorially, they
are the simplest aperiodic words; dynamically, they encode irrational rotations on the
circle; geometrically, they approximate lines of irrational slope; and number-theoretically,
they are strongly related to continued fractions.

Among the many generalizations of Sturmian words, two are particularly studied: the
episturmian shift spaces [16] with a combinatorial definition, and the codings of regular
interval exchanges [12] originating in the dynamical approach. Both are examples of the
main protagonists of this paper: dendric shift spaces. They are combinatorially defined
by restricting the context surrounding finite patterns.

The study of dendric shift spaces begins in 2015 when a group of seven researchers
(including the third author of this paper) publish a series of papers in which they consider
so-called tree sets [3, 4, 5], which are precisely the languages of dendric shift spaces.
Dendricity generalizes some of the remarkable combinatorial and dynamical properties of
Sturmian words, such as affine factor complexity [3], constant number of return words [3],
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at most d/2 ergodic measures where d is the size of the alphabet [10], and the existence
of an S-adic characterization [14].

In this paper, we focus on the algebraic aspects of dendric shift spaces, and more
specifically on the following property known as the Return Theorem: In a minimal dendric
shift space, every return set forms a basis of the free group [3]. This result is crucial
to understand various aspects of dendric shift spaces, such as their dimension groups
[7], S-adic representations [15, 14], Schützenberger groups [1], and stabilizers [6]. Our
contribution is a proof that the converse of the Return Theorem also holds, leading to the
following characterization.

Theorem 1. Let X be a minimal shift space over A. The following assertions are equiv-
alent:

1. X is dendric;

2. for each word in the language of X, its set of return words is a tame basis of the
free group FA;

3. for each word in the language of X, its set of return words is a basis of the free
group FA.

The statement of Theorem 1 is reminiscent of Vuillon’s characterization of Sturmian
words stating that an infinite binary word is Sturmian if and only if every factor has
exactly two return words [24]. Observe that our condition is stronger than Vuillon’s on
the number of return words. This is unavoidable as cardinality alone is not sufficient to
infer dendricity on alphabets with more than 2 letters [2].

Theorem 1 provides a natural algebraic interpretation of dendricity, which should be
relevant to establish closure properties of the family of dendric shift spaces. Moreover,
Theorem 1 and its proof emphasize once again the interactions between symbolic dynam-
ics, combinatorics on words, and algebra, opening the door to further research at the
intersection of these topics.

2 Preliminaries

We briefly recall the main notions used in this paper. For more details, we refer to the
following monographs: on combinatorics on word [20]; on the free group [22]; on symbolic
dynamics [19].

Let A be a finite set that we call an alphabet, and let A∗ and FA respectively denote
the free monoid (whose elements are called words) and the free group generated by A. We
let ε denote the neutral element of A∗, i.e., the empty word, and we set A+ = A∗ \ {ε}.
We naturally view A∗ as a subset of FA, and thus we may consider the subgroup of FA
generated by a given set of words W ⊆ A∗, which is then denoted 〈W 〉.

We let AZ denote the set of two-sided infinite words equipped with the product topol-
ogy of the discrete topology over A. A shift space is a closed subset X ⊆ AZ invariant
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under the shift map (xn)n∈Z 7→ (xn+1)n∈Z. The language of a shift space X is the set

L(X) = {xi · · ·xj | x ∈ X, i 6 j} ∪ {ε}.

A shift space is minimal (with respect to the inclusion of shift spaces) precisely when
L(X) is uniformly recurrent, meaning that for every u ∈ L(X), there exists n such that
u is a factor (in the free monoid A∗) of every w ∈ L(X) ∩ An.

Given a shift space X and a word w ∈ L(X), the set of (left) return words to w is

RX(w) = {r ∈ A+ | rw ∈ L(X) ∩ wA∗ \ A+wA+}.

Example 2. Let A = {a, b, c}. The Tribonacci shift space is the shift space X generated
by the monoid morphism σ : a 7→ ab, b 7→ ac, c 7→ a, i.e., its language is the set of factors of
σn(a), n > 0. The return words to aba are the words separating consecutive occurrences
of aba in the elements of X. This can be seen in the following prefix of σ5(a):

abac|aba|abac|ab|abac.

Hence the words ab, aba, and abac are return words to aba. As a matter of fact, they are
the only return words (see [18, Corollary 4.5] for example). Moreover, they form a basis
of the free group FA, since

a = (ab)−1(aba), b = (aba)−1(ab)2, c = (aba)−1(abac).

For a shift space X and a word w ∈ L(X), we consider the sets of extensions

E−X(w) = {a ∈ A | aw ∈ L(X)},
E+
X(w) = {b ∈ A | wb ∈ L(X)},

EX(w) = {(a, b) ∈ A×A | awb ∈ L(X)}.

The extension graph of w ∈ L(X) is the bipartite graph EX(w) where the vertex set is
the disjoint union of E−X(w) and E+

X(w), and there is an edge between a ∈ E−X(w) and
b ∈ E+

X(w) if (a, b) ∈ EX(w).
A word w ∈ L(X) is said to be dendric if EX(w) is a tree. We naturally extend this

terminology to a shift space X when it is true for all w ∈ L(X).

Example 3. Continuing with the example of the Tribonacci shift space X, the extension
graph EX(a) is given in below.

a

b

c

a

b

c

Again, the factors aab, baa, bab, bac, and cab can be seen in abacabaabacababac. Observe
that EX(a) is a tree, so a is dendric. More generally, the Tribonacci shift space is epistur-
mian, and therefore, dendric [3].
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3 Proof of the main result

The proof of the converse of the Return Theorem uses techniques and results from sym-
bolic dynamics, group theory, and combinatorics. We start with some results at the
intersection between symbolic dynamics and combinatorics.

The first ingredient needed for the proof is the notion of derived shift space, which
was introduced in [11] to characterize substitutive sequences. Let X be a minimal shift
space and w ∈ L(X). Let B be an alphabet with a bijection θw : B → RX(w), which
we naturally extend to maps θw : FB → FA and θw : BZ → AZ whenever convenient. The
derived shift space of X with respect to w is the shift space

Dw(X) = θ−1w (X).

We call θw the derivating substitution. Note that the operation X 7→ Dw(X) only depends
on w, up to a relabeling of the alphabet of Dw(X). It is direct to check that Dw(X) is
also minimal. Moreover, the derived shift space of a dendric shift space is again dendric
by [4, Theorem 5.13]. Using ideas from the proof of this result, we obtain the following
technical lemma.

Lemma 4. Let X be a minimal shift space and w ∈ L(X). Then EX(w) is the image of
EDw(X)(ε) under a graph morphism.

Proof. Let θw : B → RX(w) be the derivating substitution used to define Dw(X). We
consider the set

R′X(w) = {r′ ∈ A+ | wr′ ∈ L(X) ∩ A∗w \ A+wA+}

of right return words to w and the morphism θ′w : B∗ → A∗ defined by θ′w(u) = w−1θw(u)w
(thus it restricts to a bijection between B and R′X(w)). Observe that z ∈ L(Dw(X)) if
and only if θw(z)w ∈ L(X), if and only if wθ′w(z) ∈ L(X).

Consider the map Θ defined on the vertices of EDw(X)(ε) as follows:

• r ∈ E−Dw(X)(ε) is mapped to the last letter of θw(r);

• s ∈ E+
Dw(X)(ε) is mapped to the first letter of θ′w(s).

Assume that r ∈ E−Dw(X)(ε) and s ∈ E+
Dw(X)(ε) are connected by an edge in EDw(X)(ε); in

other words, rs ∈ L(Dw(X)). It then follows that θw(rs)w = θw(r)wθ′w(s) ∈ L(X), and
thus Θ(r)wΘ(s) ∈ L(X). This shows that Θ defines a graph morphism from EDw(X)(ε) to
a subgraph of EX(w).

To show that it is onto, assume that a ∈ E−X(w) and b ∈ E+
X(w) are connected by an

edge in EX(w); in other words awb ∈ L(X). By uniform recurrence, there exist words u
and v such that uw starts with w and ends with aw, wv starts with wb and ends with
w, and uwv ∈ L(X). Assuming that u and v are of minimal lengths, we get u ∈ RX(w)
and v ∈ R′X(w), hence there exist r, s ∈ B such that θw(r) = u and θ′w(s) = v. Moreover,
θw(r)wθ′w(s) = θw(rs)w ∈ L(X) so rs ∈ L(Dw(X)). Considering r as an element of
E−Dw(X)(ε) and s as an element of E+

Dw(X)(ε), r and s are connected in EDw(X)(ε) and

satisfy Θ(r) = a and Θ(s) = b, which proves that Θ is onto.
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We will also need the following result.

Lemma 5 ([11, Proposition 2.6]). Let X be a minimal shift space. If θw is the derivating
substitution for w ∈ L(X) used to define Dw(X), then for every u ∈ L(Dw(X))

θw(RDw(X)(u)) = RX(θw(u)w).

Proposition 6 below is the key to prove the converse of the Return Theorem. It
relies on the previous lemmas and uses the notion of Rauzy graphs. The order-m Rauzy
graph of a shift space X, denoted Γm(X), is the directed graph whose vertices are the
elements of Lm(X), and there is an edge from u to v if there are letters a and b such that
ub = av ∈ L(X); this edge is labeled by a. The label of a path is the concatenation of
the labels of the edges.

Proposition 6. Let X be a minimal shift space and w ∈ L(X). If the set RX(w) is a
basis of 〈RX(w)〉, and if there exists u ∈ RX(w)w for which 〈RX(u)〉 = 〈RX(w)〉, then
EX(w) is connected.

Proof. Let θw : B → RX(w) be a derivating substitution for w and let a ∈ B be such
that θw(a)w = u. By Lemma 5, we have 〈θw(RDw(X)(a))〉 = 〈RX(u)〉 = 〈RX(w)〉. Since
RX(w) is a basis of 〈RX(w)〉, one can naturally extend θw into a group isomorphism from
FB to 〈RX(w)〉. It follows that

〈RDw(X)(a)〉 = θ−1w 〈θw(RDw(X)(a))〉 = FB.

Let us show that EX(w) is connected. Let H be the subgroup of FB generated by
the labels of the loops based at the vertex a in Γ1(Dw(X)) (this is sometimes called the
Rauzy group with respect to a, detailed definitions may be found in [17, Section 4]). As
return words are particular examples of labels of loops, 〈RDw(X)(a)〉 is a subgroup of H.
Hence, H = FB. By [17, Lemma 7.2], this implies that EDw(X)(ε) is connected. As, by
Lemma 4, EX(w) is the image of EDw(X)(ε) under a graph morphism, this shows that
EX(w) is connected.

To prove the main result, we need one last combinatorial ingredient: The multiplicity
(or bilateral order [2, 9]) of a word w ∈ L(X) is the quantity

mX(w) = # EX(w)−# E−X(w)−# E+
X(w) + 1.

A word is strong if mX(w) > 0, neutral if mX(w) = 0, and weak if mX(w) < 0.
Multiplicity is related to the factor complexity pX(n) = # (L(X) ∩ An) as follows (see

[9, Proposition 3.5]): If sX(n) = pX(n+ 1)− pX(n) and bX(n) = sX(n+ 1)− sX(n), then

bX(n) =
∑

w∈L(X)∩An

mX(w). (1)

Multiplicity is also related to dendricity. Indeed, if we say that a word w ∈ L(X)
is connected whenever the graph EX(w) is connected, then we have the following simple
observations.
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Lemma 7. Let X be a shift space and w ∈ L(X).

1. If w is connected, then w is strong or neutral.

2. If w is connected and neutral, then w is dendric.

Proof. This directly follows from the observation that mX(w)−1 is the difference between
the number of edges and the number of vertices in EX(w). By a classical graph theory
result (see [8, Exercise 2.1.5 and Corollary 2.4.2] for example), if w is connected then
mX(w) > 0, with equality if and only if EX(w) is a tree.

We can now prove the converse of the Return Theorem.

Theorem 8. Let X be a minimal shift space over A such that, for all w ∈ L(X), RX(w)
is a basis of the free group FA. Then X is dendric.

Proof. We first observe that any w ∈ L(X) is connected by Proposition 6. In particular,
L(X) has no weak factor by Lemma 7. Moreover, all the return sets have the same
cardinality #A by assumption, therefore, the factor complexity of X is given by pX(n) =
(#A − 1)n + 1 for all n by [2, Theorem 4.5]. It follows that sX(n) = #A − 1 and
bX(n) = 0. Using again the fact that X has no weak factor, this implies, by Equation (1),
that mX(w) = 0 for all w ∈ L(X), and so X is dendric by Lemma 7.

Using [4, Theorem 5.19], we can strengthen the Return Theorem by observing that,
for any factor w in a dendric shift space X, RX(w) is a tame basis of FA. A basis is
said to be tame if it is obtained by applying to A a composition of permutations and
morphisms of the form αa,b and α̃a,b where, for a 6= b in A,

αa,b(c) =

{
ab, if c = a;

c, otherwise
and α̃a,b(c) =

{
ba, if c = a;

c, otherwise.

Putting Theorem 8 together with [4, Theorem 5.19] and the Return Theorem, we
obtain the claimed algebraic characterization of dendricity (Theorem 1).
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