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Abstract

The discrepancy of a matrixM ∈ Rd×n is given by DISC(M) := minx∈{−1,1}n ‖Mx‖∞.

An outstanding conjecture, attributed to Komlós, stipulates that DISC(M) = O(1),

whenever M is a Komlós matrix, that is, whenever every column of M lies within the

unit sphere. Our main result asserts that DISC(M + R/
√
d) = O(d−1/2) holds asymp-

totically almost surely, whenever M ∈ Rd×n is Komlós, R ∈ Rd×n is a Rademacher

random matrix, d = ω(1), and n = ω(d log d). The factor d−1/2 normalising R is essen-

tially best possible and the dependency between n and d is asymptotically best possible.

Our main source of inspiration is a result by Bansal, Jiang, Meka, Singla, and Sinha

(ICALP 2022). They obtained an assertion similar to the one above in the case that the

smoothing matrix is Gaussian. They asked whether their result can be attained with the

optimal dependency n = ω(d log d) in the case of Bernoulli random noise or any other

types of discretely distributed noise; the latter types being more conducive for Smoothed

Analysis in other discrepancy settings such as the Beck-Fiala problem. For Bernoulli

noise, their method works if n = ω(d2). In the case of Rademacher noise, we answer the

question posed by Bansal, Jiang, Meka, Singla, and Sinha. Our proof builds upon their

approach in a strong way and provides a discrete version of the latter.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

The discrepancy of a matrix M ∈ Rd×n is given by DISC(M) := minx∈{−1,1}n ‖Mx‖∞. A

celebrated result in this venue is the so-called “six standard deviations” result, put forth by

Spencer [45], asserting that if ‖M‖∞ 6 1 and d = n, then DISC(M) 6 6
√
n. More generally,

if d > n, then DISC(M) = O
(√

n log(2d/n)
)

is known to hold [15, 33, 39, 44]. Spencer’s
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result is essentially tight as n × n matrices M satisfying DISC(M) = Ω(
√
n) are known to

exist [26].

An outstanding conjecture in Discrepancy Theory, attributed to Komlós, stipulates that

DISC(M) = O(1) holds, whenever M ∈ Rd×n has each of its columns v satisfying ‖v‖2 6 1;

we refer to the latter as a Komlós matrix1. Dimension-free (i.e., constant) bounds on the

discrepancy of Komós matrices are of special interest, in particular, because it is NP -hard to

distinguish between Komlós matrices having zero discrepancy and those having discrepancy

one [26].

Given a hypergraph H, taking M = MH to be its e(H)× v(H) incidence matrix retrieves

the well-known (see, e.g., [18, 27]) notion of combinatorial discrepancy, given by

DISC(H) := min
χ

max
e∈E(H)

∣∣∣∣∣∑
v∈e

χ(v)

∣∣∣∣∣ ,
where the minimisation ranges over all mappings χ : V (H) → {−1, 1}. Beck and Fiala [17]

proved that if H has the property that each of its vertices lies in at most t edges, i.e., each

column v of MH satisfies ‖v‖2 6
√
t, then DISC(H) 6 2t−1, and conjectured that DISC(H) =

O(
√
t), in fact, holds in this case. The Beck-Fiala conjecture follows as a special case of the

Komlós conjecture upon rescaling by
√
t. The best known upper bounds for the conjectures

put forth by Komlós and by Beck-Fiala are O
(√

log n
)

and O
(√

t log n
)
, respectively, both

obtained by Banaszczyk [14] in 19982. Despite this partial progress, it seems that these two

conjectures are out of reach of current techniques; consequently, the investigation of these

conjectures in more hospitable settings, so to speak, is well-justified.

One line of research that has attracted much attention of late calls for the determination of

DISC(M) whenever M is a random matrix; in this line of research one is interested in the so-

called average-case discrepancy or the discrepancy of typical matrices, where ‘typical’ depends

on the specific distribution chosen for M . In this realm, we further distinguish between two

strands of study; the first pertains to Gaussian matrices3 and the second deals with discrete

random matrices.

For standard Gaussian matrices M ∈ Rd×n, the estimate DISC(M) = Θ
(
2−n/d

√
n
)

holds

asymptotically almost surely (a.a.s. hereafter) for a wide range of values of d and n; in

particular DISC(M) = O(1) holds as soon as n > Cd log d, where C > 0 is an appropriate

constant. This without M necessarily being Komlós4. The case d = O(1) of the above equality

was settled by Costello [28]. Meka, Rigollet, and Turner [41] extended the result of Costello by

1Komlós’ restriction on the matrix is more stringent than that of Spencer.
2For the Beck-Fiala conjecture, see also [?] for the currently best bound which is independent of n.
3Matrices with each entry an i.i.d. copy of N (µ, σ2); if µ = 0 and σ = 1, then the matrix is called a standard

Gaussian matrix.
4Producing Komlós matrices from standard Gaussian matrices M ∈ Rd×n is straightforward. To see this,

recall that a column v of such a matrix satisfies ‖v‖2 ≈
√
d a.a.s. (see, e.g., [51, Theorem 3.1.1]); this

property extends to all columns of M following an appropriate union-bound calculation. Hence, normalising

all columns by (essentially)
√
d produces a Komlós matrix asymptotically almost surely.
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allowing ω(1) = d = o(n). In fact, their result accommodates any (matrix entry) distribution

whose density function f is symmetric, has a fourth moment, and is square-integrable. The

regime d = Θ(n) was studied in [1, 12, 25, 42].

Proceeding to discrete random matrices, given d > n > t, Ezra and Lovett [31] proved

that DISC(M) = O
(√

t log t
)

holds with probability at least 1− exp(−Ω(t)), whenever each

column of M ∈ {0, 1}d×n is sampled independently and uniformly at random from all 0/1-

vectors containing precisely t non-zero entries. Normalising each column of M by its 2-norm

(i.e.
√
t) produces a Komlós matrix, thus implying that Komós matrices N produced in this

fashion satisfy DISC(N) = O
(√

log t
)

with probability at least 1 − exp(−Ω(t)). For sparser

such matrices satisfying d > t and n � dt, Ezra and Lovett proved that DISC(M) = O(1)

holds asymptotically almost surely. For Bernoulli matrices5 M ∈ Rd×n, Altschuler and Niles-

Weed [11] proved that DISC(M) 6 1 holds a.a.s. for any p := p(n), whenever n > Cd log d,

where C > 0 is an absolute constant6; their result is tight in terms of the lower bound on n.

Moreover, their bound on the discrepancy is also best possible as any binary matrix that has

a row with an odd number of 1’s has discrepancy at least one.

Given a seed matrix M ∈ Rd×n as well as a distribution Rd×n, set over Rd×n, we refer to

the (random) matrix M + R with R ∼ Rd×n as a random perturbation of M . Following the

aforementioned results pertaining to the discrepancy of fully random matrices, the study of

the discrepancy of randomly perturbed ones is the next natural step. The study of the effect

of random noise is widespread in Mathematics and Computer Science. Spielman and Teng [47]

coined the term smoothed analysis to indicate the analysis of algorithms executed on randomly

perturbed inputs. In high dimensional probability (see, e.g., [51]), the study of randomly

perturbed matrices dates back to the works of Tao and Vu [50, 48, 49]. In combinatorics, the

study of randomly perturbed (hyper)graphs has witnessed a burst of activity in recent years;

see, e.g., [2, 3, 4, 6, 5, 7, 8, 9, 10, 13, 19, 20, 21, 24, 23, 29, 32, 37, 36, 38, 40].

The main source of inspiration for our work is a result by Bansal, Jiang, Meka, Singla, and

Sinha [16] who established the first ever perturbed/smoothed version of the Komlós conjecture.

They proved that DISC(M+R) 6 1
poly(d)

holds a.a.s. whenever M ∈ Rd×n is a Komlós matrix,

R ∈ Rd×n is a matrix whose entries are i.i.d. copies of σ√
d
N (0, 1) and n = ω(d log d) · σ−4/3.

In [16, Section 3], Bansal, Jiang, Meka, Singla, and Sinha ask whether analogous results can

be proved if instead of Gaussian noise one uses discrete noise such as the Bernoulli distribution

or some other natural discrete distribution. The interest in discrete noise models is reasoned

in [16] as being more conducive for Smoothed Analysis in other discrepancy settings such as

the Beck-Fiala problem. Bansal, Jiang, Meka, Singla, and Sinha [16, Section 3] note that they

are able to prove the required results if the smoothing noise has the Bernoulli distribution and

n = ω(d2). Attaining the optimal dependency n = ω(d log d) for discrete noise models is then

of interest and seems to require additional tools.

5Each entry is an independent copy of Ber(p) for p := p(n, d).
6Discrepancy of Poisson matrices is also studied in [11]; Bernoulli matrices are also studied in [35, 43].
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1.1 Our contribution

A random variable X is said to be Rademacher if X assumes the values −1 and 1, each with

probability 1/2. A matrix R ∈ Rd×n is said to form a Rademacher matrix if its entries are

independent Rademacher random variables. Our main result reads as follows.

Theorem 1. Let d = ω(1) and n = ω(d log d) be integers. Then, DISC(M +R/
√
d) 6 8d−1/2

holds a.a.s. whenever M ∈ Rd×n is a Komlós matrix and R ∈ Rd×n is a Rademacher matrix.

This resolves the aforementioned question of Bansal, Jiang, Meka, Singla, and Sinha [16,

Section 3] in the case that the smoothing noise has the Rademacher distribution. In the

case that the noise has the Bernoulli distribution, the aforementioned dependency n = ω(d2),

stated in [16, Section 3], is the state of the art.

Remark 2. Normalisation factor - lower bound. In Theorem 1, the Rademacher matrix

R is normalised by a
√
d factor. This normalisation factor is warranted. Indeed, requiring

that ‖v‖2 6 1 holds for every column v of the random perturbation is a natural constraint to

impose, for such a restriction guarantees that the columns of the perturbation do not dominate

the columns of M . Writing k := k(d) to denote the normalisation factor and letting v be any

column vector of R/k, we see that 1 > ‖v‖2
2 =

∑d
i=1

1
k2

= d
k2

implies k >
√
d.

Remark 3. Normalisation factor - upper bound. Let k be as defined in Remark 2.

Enlarging k is of interest as this reduces the dominance of the random perturbation further,

allowing one to come ever closer to Komlós’ conjecture. Alas, in the setting of Theorem 1,

there is an upper bound on the normalisation factor k. To see this, note that given k and a

discrepancy bound ∆, the stipulation that DISC(M + R/k) 6 ∆ is equivalent to requiring

the existence of a vector x ∈ {−1, 1}n for which

(Rx)i ∈ [−k(Mx)i − k∆,−k(Mx)i + k∆] (1)

holds for every i ∈ [d]. Given x ∈ {−1, 1}n and i ∈ [d], the term (Rx)i has the same distribu-

tion as the sum
∑n

i=1 ri, whose summands are independent Rademacher random variables. As

such, (Rx)i ∈ [−ω(
√
n), ω(

√
n)] asymptotically almost surely. Consequently, a prerequisite

for (1) holding a.a.s. is that

[−k(Mx)i − k∆,−k(Mx)i + k∆] ∩ [−ω(
√
n), ω(

√
n)] 6= ∅

holds for every i ∈ [d]. Assuming that ∆ is relatively small (as one naturally aims to have),

the latter amounts to essentially requiring that k 6
√
n‖Mx‖−1

∞ . The smaller the value of

‖Mx‖∞ we obtain, the less restrictive on k this inequality becomes. In our current state of

knowledge, the best we can ensure are vectors x ∈ {−1, 1}n for which ‖Mx‖∞ = O(
√

log d)

(see Lemma 7(ii)). Such a vector then yields the upper bound k = O
(√

n/ log d
)

. It follows

that for n = ω(d log d) (as in the premise of Theorem 1), taking k to be roughly
√
d is

essentially best possible, subject to the aforementioned state of the art worst-case bounds in

this venue.
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Remark 4. Dependence between n and d. The requirement n = ω(d log d) appearing in

Theorem 1 is asymptotically best possible. To see this, take M to be the zero matrix (which

is Komlós) and note that it suffices to prove that DISC(R) = O(1) mandates n = ω(d log d).

To this end, fix an arbitrary vector x ∈ {−1, 1}n. Given any constant C > 0 and a row r of

the Rademacher matrix R ∈ {−1, 1}d×n, we may write

P [|〈r,x〉| 6 C] =

C/2∑
k=−C/2

(
n

n/2+k

)
2n

= O
(
n−1/2

)
,

where the first equality holds since 〈r,x〉 has the same distribution as a sum of i.i.d.

Rademacher random variables, and the second equality is supported by Proposition 11 below.

It follows by the independence of the entries of R that P[‖Rx‖∞ 6 C] = O
(
n−d/2

)
. Call a

vector x ∈ {−1, 1}n good if ‖Rx‖∞ 6 C. Then

E[number of good vectors] = O
(
2nn−d/2

)
= O (exp(n− d log n/2)) .

If n = o(d log d), then the above expectation vanishes and it thus follows by Markov’s inequal-

ity that a.a.s. no good vectors exist.

1.2 Our approach

A natural approach towards proving Theorem 1 is to use the CLT in conjunction with the work

of Bansal, Jiang, Meka, Singla, and Sinha [16] for the case of Gaussian noise. Our attempts

to employ this approach stalled at the sub-optimal dependency n = ω(d2); the same bound

attained in [16] for Bernoulli noise. To break the n = ω(d2) barrier and reach the optimal

dependency n = ω(d log d), we utilise and build upon the framework of Bansal, Jiang, Meka,

Singla, and Sinha [16] in a strong way. In that, we provide a discretisation of their argument

without appealing to the CLT. This calls for a meticulous counting argument whose execution

requires new ideas and various adaptations of the arguments of [16].

In the Gaussian case, Bansal, Jiang, Meka, Singla, and Sinha [16] employ the so-called

weighted second moment method through which they equip {−1, 1}n with an appropriate

distribution (see [16, Lemma 2.1] and also Lemma 7) from which a vector x ∈ {−1, 1}n
satisfying ‖(M + R)x‖∞ 6 1/poly(d) is identified, where here R is a (scaled) conformal7

Gaussian matrix. Writing S for the number of vectors x satisfying the above bound, they

employ the Paley-Zygmund inequality (see (10)) in order to prove that P[S > 0] > 1 − o(1).

The bulk of the argument consists of establishing that ER[S2] 6 (1 + o(1))ER[S]2. This is the

core of our proof of Theorem 1 as well; this also provides a very crude high level description

of the approach of [16] which we follow.

Executing the above approach with Rademacher noise summons various challenges. Roughly

put, in [16] one, for instance, encounters the need to estimate the probability that a Gaussian

7Throughout, we use the term conformal to mean that an associated algebraic structure has the adequate

dimensions set for it; the latter, however, are seen as distracting and are thus omitted.
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vector lies, say, within some rectangular region. In the Gaussian case, this can be handled

through a nontrivial estimation (as seen in [16]) of a certain integral involving the probability

density function of an adequate multi-dimensional Gaussian distribution. A similar situation

in the Rademacher case, becomes rather involved, especially in view of the need to not lose

track of the optimal dependency n = ω(d log d); these types of problems require a careful

counting argument, to which we gain initial access through Proposition 11, providing us with

a rather tight estimation for certain binomial coefficients encountered throughout. The need

to take on such discretised estimations abound throughout our proof and these collectively en-

tail that various additional subtle discretised adjustments and adaptations be made to several

ingredients seen in the work of [16]; effect of which is not clear from the offset. For example,

we require an adaption of the original aforementioned distribution defined in [16, Lemma 2.1]

(see Lemma 9).

The rather meticulous nature of our core counting argument makes it so that supplying

additional more concrete examples of the work done in our proof entails the reconstruction of

somewhat vast supporting sceneries required for the context. We thus refrain from providing

further details at this stage and refer the reader to Section 3 for an accurate account.

2 Preliminaries

This section is divided into two subsections, both containing auxiliary results facilitating our

proof of Theorem 1.

Remark 5. Throughout this section we encounter binomial coefficients of the form
(

n
n/2+t

)
,

where n ∈ N is even and t ∈ Z. Owing to the symmetry
(

n
n/2+t

)
=
(

n
n/2−t

)
, whenever it is

convenient, we assume that t > 0.

2.1 Key tools

Our overall goal in Theorem 1 is to prove the existence of a vector x ∈ {−1, 1}n for which a.a.s.

‖(M + R/
√
d)x‖∞ 6 8d−1/2 holds. In order to do so we follow the core innovative technique

put forth by Bansal, Jiang, Meka, Singla, and Sinha [16] and sample the vectors of {−1, 1}n
according to an adaptation of a distribution D := Dn, called the truncated Gram-Schmidt

distribution, defined below in Lemma 7.

A real random variable X is said to be α-subgaussian8 if it satisfies

P[|X| > t] 6 2 exp(−(t/α)2) for every t > 0. A random vector x ∈ Rn is said to be α-

subgaussian if 〈x,y〉 is α-subgaussian for every y ∈ Sn−1, see, e.g., [51, Definition 3.4.1]. The

following is one of the main results of [34].

Theorem 6. [34] Let v(1), . . . ,v(n) ∈ Rm satisfy ‖v(i)‖2 6 1 for every i ∈ [n]. Applying

8Subgaussian random variables admit several equivalent characterisations; see, e.g., [51, Proposition 2.5.2] for

details.
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the Gram-Schmidt walk sampling algorithm9 over the given vectors outputs a random vector

x ∈ {−1, 1}n such that the vector
∑n

i=1 xiv
(i) is 1-subgaussian.

The distribution (implicitly) defined in Theorem 6 is truncated in [16] so as to produce the

following distribution over the vectors in {−1, 1}n.

Lemma 7. [16, Lemma 2.1] Let M ∈ Rd×n be a Komlós matrix. Then, there exists a

constant C7 > 0 as well as a distribution D := Dn, set over the vectors in {−1, 1}n, such that

the following three properties hold simultaneously.

(i) ‖Mx‖2 ∈ [r − T , r + T ] holds for every x ∈ Supp D, where r = O(
√
d) and T = d−C

′

for some constant C ′ > 1.

(ii) ‖Mx‖∞ = O
(√

log d
)

holds for every x ∈ Supp D.

(iii) Px∼D [|〈x,u〉| > t] 6 dC7 exp(−t2/8) and Px∼D [|〈Mx,v〉| > t] 6 dC7 exp(−t2/8) both

hold whenever u ∈ Sn−1, v ∈ Sd−1, and t > 0.

Remark 8. Part (ii) of Lemma 7 is not stated in [16]. Its proof being essentially the same as

the proof of Lemma 7(i) in [16] is thus omitted.

We require certain extensions of the distribution D. These extensions form a key difference

between our discrete setting and the Gaussian case seen in the work of [16]. The contribution

of these extensions is not restricted to a single specific point in our arguments and they are thus

not so easy to motivate at this stage. Roughly put, these extensions allow us to obtain more

control over the structure of the members found in the support of (a deterministic alteration

of) the distribution D used in the Gaussian case. For instance, in Claim 17, the use of such

extensions allows us to generate a distribution which is akin to D and has the added feature

that all members in its support have an even number of entries equal to one.

Given a non-negative integer k and an injective mapping ϕ : {−1, 1}n → {−1, 1}n+k, a

distribution S over {−1, 1}n+k is said to be a deterministic ϕ-extension of Dn if the latter

can be obtained by first sampling a vector x ∼ Dn and then applying ϕ to x. If the specific

nature of the mapping ϕ is inconsequential, then we simply say that S forms a deterministic

extension of Dn. The following is an adaptation of Lemma 7, applicable to S.

Lemma 9. Let i ∈ {1, 2} and let M ∈ Rd×n be a Komlós matrix whose last i columns form

the zero vector 0. Let S be a distribution over {−1, 1}n which forms a deterministic extension

of Dn−i. Then, there exists a constant C9 > 0 such that the following three properties hold

simultaneously.

(i) ‖Mx‖2 ∈ [r − T , r + T ] holds for every x ∈ Supp S, where r = O(
√
d) and T = d−C

′

for some constant C ′ > 1.

(ii) ‖Mx‖∞ = O
(√

log d
)

holds for every x ∈ Supp S.

9See [34] for details.
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(iii) Px∼S [|〈x,u〉| > t] 6 dC9 exp(−t2/9) and Px∼S [|〈Mx,v〉| > t] 6 dC9 exp(−t2/8) both

hold whenever u ∈ Sn−1, v ∈ Sd−1, and t > 0.

Proof. Since the last i columns of M are 0, parts (i) and (ii) and the fact that

Px∼S [|〈Mx,v〉| > t] 6 dC9 exp(−t2/8) holds for every v ∈ Sd−1 and every t > 0, are im-

mediate corollaries of their counterparts in Lemma 7.

Fix t > 0 and an arbitrary vector u ∈ Sn−1. For every vector v ∈ Rn, let v(i) ∈ Rn−i be

the vector consisting of the first n− i coordinates of v. Then

Px∼S [|〈x,u〉| > t] 6 Px(i)∼Dn−i

[∣∣〈x(i),u(i)
〉∣∣ > t− 2

]
= Px(i)∼Dn−i

[∣∣〈x(i), ‖u(i)‖−1
2 u(i)

〉∣∣ > (t− 2)‖u(i)‖−1
2

]
6 dC7+1 exp

(
−(t− 2)2/8

)
6 dC9 exp

(
−t2/9

)
,

where the first inequality holds since x ∈ {−1, 1}n and u ∈ Sn−1, and the second inequality

holds by Lemma 7(iii) and since ‖u(i)‖2 6 ‖u‖2 = 1 (multiplying by d is used to circumvent

the case t 6 2; additionally, if ‖u(i)‖2 = 0, then the claim is trivial).

Given two vectors x,y ∈ {−1, 1}n, let ε := ε(x,y) = 〈x,y〉
n

, let Diff(x,y) = {i ∈ [n] : xi 6=
yi}, and let α := α(x,y) = 1 − |Diff(x,y)|

n
. Note that |Diff(x,y)| is the Hamming distance

between x and y, and α(x,y)n is the number of indices over which these two vectors coincide.

The following result presents simple but useful relations between these parameters.

Claim 10. Let x,y ∈ {−1, 1}n and let ε := ε(x,y) and α := α(x,y) be as above. Then

(a) α = 1+ε
2

;

(b) 1
α(1−α)

= 4
1−ε2 6 4 exp (2ε2), where the inequality holds provided that |ε| 6 1/2.

Proof. Starting with (a), note that

〈x,y〉 =
∑

i∈[n]\Diff(x,y)

xiyi +
∑

i∈Diff(x,y)

xiyi

= (n− |Diff(x,y)|)− |Diff(x,y)|
= n− 2|Diff(x,y)|.

It thus follows that |Diff(x,y)|
n

= n−〈x,y〉
2n

= 1−ε
2

. Hence

α = 1− |Diff(x,y)|
n

= 1− 1− ε
2

=
1 + ε

2
.

Next, we prove (b). Using (a) we obtain

1

α(1− α)
=

1
1+ε

2
· 1−ε

2

=
4

(1 + ε)(1− ε)
=

4

1− ε2
.
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Assume now that |ε| 6 1/2. Since 1− x > exp(−2x) holds whenever 0 6 x 6 1/2, it follows

that

4

1− ε2
6

4

exp (−2ε2)
= 4 exp

(
2ε2
)
.

A key tool in our approach is the following approximation result for binomial coefficients(
n
k

)
, where k is “close” to n/2.

Proposition 11. Let n be a sufficiently large even integer and let t ∈ Z be such that |t| = o(n)

and n+t
2
∈ Z. Then,(

n
n+t

2

)
= (1 + on(1))

√
2

πn
· 2n exp

(
− t

2

2n
+ Θ

(
t3

n2

)
+ o

(
t

n

))
. (2)

Remark 12. Up to small modifications, Proposition 11 and its proof can be found in [46,

Section 5.4]; we include the proposition and its proof here as these modifications are important

for our purposes.

Proof of Proposition 11. Let

Q =

(
n
n+t

2

)
/

(
n

n/2

)
=

(n/2)!(n/2)!(
n+t

2

)
!
(
n−t

2

)
!

=

t/2∏
j=1

n/2− j + 1

n/2 + j
.

Therefore

logQ =

t/2∑
j=1

log

(
1− 4j − 2

n+ 2j

)
=

t/2∑
j=1

[
−4j − 2

n+ 2j
+ Θ

(
j2

n2

)]
, (3)

where for the last equality we use the expansion log(1− x) = −x+ Θ(x2), holding whenever

x ∈ (0, 1). Substituting the identity

4j − 2

n+ 2j
=

4j

n
− 8j2

n(n+ 2j)
− 2

n+ 2j
=

4j

n
− 2

n+ 2j
+ Θ

(
j2

n2

)
into (3) yields

logQ = −
t/2∑
j=1

4j

n
+

t/2∑
j=1

2

n+ 2j
+

t/2∑
j=1

Θ

(
j2

n2

)
= − t

n
− t2

2n
+

t/2∑
j=1

2

n+ 2j
+ Θ(t3/n2), (4)

where for the last equality we employ the identity
∑k

i=1 i = k(k + 1)/2 and the estimate∑k
i=1 i

2 = Θ(k3).

The sum appearing on the right hand side of (4) satisfies

t

n+ t
=

t/2∑
j=1

2

n+ t
6

t/2∑
j=1

2

n+ 2j
6

t/2∑
j=1

2

n
=
t

n
.
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Since t = o(n), it follows that

t/2∑
j=1

2

n+ 2j
= (1 + o(1))t/n = t/n+ o(t/n). (5)

Combining (4) and (5) then implies that

logQ = − t
2

2n
+ Θ

(
t3

n2

)
+ o

(
t

n

)
.

The claim follows since (
n

n/2

)
= (1 + on(1))

√
2

πn
· 2n

holds by a straightforward application of Stirling’s approximation10.

The following lemma captures yet another crucial difference between our argument fitting

the discrete scenario and that seen for the Gaussian case in [16]. Lemma 13 associates with

each member x of the support of a certain deterministic extension S of D, a vector sx capturing

the point-wise gaps between Mx and Rx; see (9) for details.

Lemma 13. Let i ∈ {1, 2} and let M ∈ Rd×n be a Komlós matrix whose last i columns are 0.

Let S be a distribution over {−1, 1}n which forms a deterministic extension of Dn−i. Then,

for every x ∈ Supp S, there exists a vector sx = (sx1 , . . . s
x
d) which satisfies the following three

properties.

(1) sxi ∈ [−4, 4] for every i ∈ [d];

(2) −
√
d(Mx)i + sxi ≡ n (mod 4) for every i ∈ [d];

(3)
∣∣∣∑d

i=1 sxi (Mx)i

∣∣∣ = O(
√

log d).

Proof. Note first that for every positive integer n and any real number a there exists a unique

real number a′ ∈ [0, 4) such that a+ a′ ≡ n (mod 4); let fn : R→ R be defined by fn(a) = a′.

Given any x ∈ S we determine the coordinates of sx sequentially. Set sx1 = fn(−
√
d(Mx)1).

Suppose we have already determined sx1 , . . . s
x
j for some j ∈ [d − 1] and now aim to choose

sxj+1. If (Mx)j+1 ·
∑j

i=1 sxi (Mx)i < 0, then we set sxj+1 = fn(−
√
d(Mx)j+1); in all other cases

we set sxj+1 = fn(−
√
d(Mx)j+1)− 4. Observe that Properties (1) and (2) follow immediately

from the definition of fn and from our process of choosing sx1 , . . . s
x
d . Similarly, Property (3)

follows from our process of choosing sx1 , . . . s
x
d and by Lemma 9(ii).

10Use
√

2πn
(
n
e

)n
e1/(12n+1) 6 n! <

√
2πn

(
n
e

)n
e1/12n.
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2.2 Rudimentary probabilistic estimations

The main results of this section are Lemmas 15 and 16 stated below. The proofs of these being

rudimentary (yet crucial to subsequent arguments) are thus delegated to Appendix A. Roughly

put, these two lemmas deal with determining the probabilities of events of the form 〈r,x〉 = 2k,

where r is a Rademacher vector, x ∈ {−1, 1}n, n ∈ N is even, and k ∈ Z; we refer to such

probabilities as core probabilities. The focus on the inner product being even is owing to the

fact that
∑n

i=1 yi = #1(y)−#−1(y) holds for any vector y ∈ {−1, 1}n. Since n is even, there

exists an integer y such that #1(y) = n/2 + y leading to
∑n

i=1 yi = n/2 + y− (n/2− y) = 2y.

The following is then implied.

Observation 14. Let n be a positive even integer and let k ∈ Z. Then,

|Sk| =
(

n

n/2 + k

)
, (6)

where Sk :=
{

v ∈ {−1, 1}n :
∑n

i=1 vi = 2k
}

.

Let

En =
{

v ∈ {−1, 1}n : #1(v) ≡ 0 (mod 2)
}

denote the set of so-called even members of {−1, 1}n. The first main result of this section

reads as follows.

Lemma 15. Let n ∈ N be even, let r be a vector sampled uniformly at random from En, let

x ∈ {−1, 1}n, and let k ∈ Z be such that P[〈r,x〉 = 2k] > 0. Then,

P
[
〈r,x〉 = 2k

]
=

1

2n−1

(
n

n/2 + k

)
. (7)

The second main result of this section reads as follows.

Lemma 16. Let n ∈ N be even, let r be a vector sampled uniformly at random from En,

let x,y ∈ {−1, 1}n satisfying #1(x) ≡ #1(y) (mod 2) be given, and let α = α(x,y) be as in

Claim 10. Then, for any pair of integers kx and ky satisfying P [〈r,x〉 = 2kx, 〈r,y〉 = 2ky] > 0,

the equality

P
[
〈r,x〉 = 2kx, 〈r,y〉 = 2ky

]
=

1

2n−1

(
αn

αn+kx+ky
2

)(
(1− α)n

(1−α)n+kx−ky
2

)
(8)

holds.
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3 Proof of the main result - Theorem 1

Using the fact that ‖M‖∞ 6 1 holds whenever M is Komlós (for indeed ‖v‖∞ 6 ‖v‖2 6 1

holds for every column v of M), we deduce Theorem 1 from the following claim.

Claim 17. Let d = ω(1) be an integer and let n = ω(d log d) be an even integer. Let S be a

distribution over {−1, 1}n which forms a deterministic extension of Dn−i, for some i ∈ {1, 2},
and such that #1(x) ≡ 0 (mod 2) holds for every vector x ∈ Supp S. Let M ∈ Rd×n be

a Komlós matrix whose last i columns are 0, and let R ∈ Rd×n be a Rademacher matrix,

conditioned on #1(r) ≡ 0 (mod 2) holding for every row r of R. Then, a.a.s. there exists a

vector x ∈ Supp S such that ‖(M +R/
√
d)x‖∞ 6 4d−1/2 holds.

Claim 17 implies Theorem 1: Let n and M per the premise of Theorem 1 be given. Set

M1 := [ M | 0 ] ∈ Rd×(n+1) and M2 := [ M | 0 | 0 ] ∈ Rd×(n+2), where 0 denotes the zero

vector in Rd; in particular, M1 and M2 are both Komlós. Let R1 ∈ Rd×(n+1) and R2 ∈ Rd×(n+2)

be Rademacher matrices, each satisfying the row parity condition stated in Claim 17.

Given x ∈ Supp D, define x(1) := [x | `] ∈ {−1, 1}n+1 and x(2) := [x | `1 | `2] ∈ {−1, 1}n+2,

where

` :=

{
−1, #1(x) ≡ 0 (mod 2),

1, #1(x) ≡ 1 (mod 2),

and

(`1, `2) :=

{
(−1,−1), #1(x) ≡ 0 (mod 2),

(−1, 1), #1(x) ≡ 1 (mod 2).

It follows that #1(x(1)) ≡ #1(x(2)) ≡ 0 (mod 2) holds for every x ∈ Supp D. For i ∈ {1, 2},
define Si to be a distribution set over {−1, 1}n+i obtained by first sampling a vector x ∈
{−1, 1}n according to the distribution D and then performing the (injective) deterministic

extension yielding x(i).

If n is odd, then set N := M1, S = S1, and R := R1; otherwise set N := M2, S = S2,

and R = R2. Claim 17 asserts that a.a.s. there exists a vector y ∈ Supp S for which

‖(N + R/
√
d)y‖∞ 6 4d−1/2 holds. Resampling the first entry of every row of R allows for a

conformal Rademacher matrix to be sampled uniformly at random at the price of increasing

the discrepancy by at most 2d−1/2 asymptotically almost surely. Expose R and let R′ be the

matrix obtained from R by dropping its last column, if n is odd, and its last two columns, if

n is even. In addition, let y′ ∈ {−1, 1}n be the vector obtained from y by dropping its last

entry, if n is odd, and its last two entries, if n is even. Note that, ‖(M+R′/
√
d)y′‖∞ 6 8d−1/2.

�

The remainder of this section is devoted to the proof of Claim 17. For every x ∈ Supp S
and every i ∈ [d], let sxi be as in Lemma 13 and let txi = −

√
d(Mx)i + sxi . Set ∆ := 4d−1/2

and define the random variable

S := S(R) =
∑

x∈Supp S
1 {Rx = (tx1 , . . . , t

x
d )} · Py∼S [y = x] = Ex∼S [1 {Rx = (tx1 , . . . , t

x
d )}] (9)
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whose sole source of randomness is R. It suffices to prove that S > 0 holds asymptotically

almost surely. Indeed, if the latter holds, then for almost every Rademacher matrix R, there

exists a vector x ∈ Supp S for which

1 {Rx = (tx1 , . . . , t
x
d)} · Py∼S [y = x] > 0

holds. It then follows by our choice of ∆ and by Lemma 13(1) that for almost every

Rademacher matrix R, there exists a vector x ∈ Supp S for which the event∥∥∥(M +R/
√
d
)

x
∥∥∥
∞
6 ∆ occurs.

Establishing that ER[S] > 0 (in Claim 19 below) enables an appeal to the following conse-

quence of the Paley-Zygmund inequality (see, e.g., [30])

PR[S > 0] >
ER[S]2

ER[S2]
. (10)

Hence, given that ER[S] > 0 holds, it suffices to prove that

ER[S2] 6 (1 + o(1))ER[S]2 (11)

in order to deduce that PR[S > 0] > 1− o(1).

Prior to proving Claim 19, it will be useful to establish the following simple fact.

Claim 18. PR [Rx = (tx1 , . . . , t
x
d)] > 0 for every x ∈ Supp S.

Proof. Fix an arbitrary vector x ∈ Supp S. Then,

‖Mx‖∞ = O(
√

log d) < n/
√
d,

where the equality holds by Lemma 9(ii), and the inequality holds since n is assumed to be

sufficiently large with respect to d. It follows that (Mx)i ∈ [−n/
√
d, n/

√
d] holds for every

i ∈ [d].

Since n is even and #1(r) ≡ 0 (mod 2) holds for every row r of R, it follows that for every

i ∈ [d] and every k ∈ {m ∈ [−n, n] : m ≡ n (mod 4)}, there exists a vector ri ∈ En such that

〈ri,x〉 = k. It then follows by Lemma 13(2) that there exists a choice of R with each of its

rows satisfying the parity condition stated in Claim 17 such that (Rx)i = txi holds for every

i ∈ [d]; this concludes the proof of the claim.

Claim 19. ER[S] > 0.

Proof. Note that

ER[S] = Ex∼S ER [1 {Rx = (tx1 , . . . , t
x
d)}] = Ex∼S PR [Rx = (tx1 , . . . , t

x
d)] > 0,

where the above inequality holds by Claim 18.
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Turning our attention to (11), note that

(ER[S])2 = (Ex∼S PR [Rx = (tx1 , . . . , t
x
d)]) · (Ey∼S PR [Ry = (ty1 , . . . , t

y
d )]) = Ex,y∼S [PxPy] ,

where, for every x ∈ Supp S,

Px := PR [Rx = (tx1 , . . . , t
x
d)] .

Similarly

ER[S2] = ER [Ex∼S [1 {Rx = (tx1 , . . . , t
x
d)}] · Ey∼S [1 {Ry = (ty1 , . . . , t

y
d )}]]

= ER Ex,y∼S [1 {Rx = (tx1 , . . . , t
x
d)} · 1 {Ry = (ty1 , . . . , t

y
d )}]

= Ex,y∼S [PR [Rx = (tx1 , . . . , t
x
d), Ry = (ty1 , . . . , t

y
d )]] = Ex,y∼S [Px,y] ,

where, for every x,y ∈ Supp S,

Px,y := PR [Rx = (tx1 , . . . , t
x
d), Ry = (ty1 , . . . , t

y
d )] .

The goal (11) can then be rewritten as follows

Ex,y∼S [Px,y] 6 (1 + o(1))Ex,y∼S [PxPy] . (12)

We begin by considering the right hand side of (12). Our first result in this respect is an

estimation of Px.

Lemma 20. Suppose that n = ω(d). Then, for every x ∈ Supp S, it holds that

Px = (1 + od(1))

(
8

πn

)d/2
· exp

(
− 1

2n

d∑
i=1

(txi )2

)
· exp(δx),

where δx =
(
O
(
n−2d3/2 log d

)
+ o

(
n−1
√
d
))
|〈Mx,1〉|.

Proof. Fix any x ∈ Supp S. It follows by the independence of the entries of R that

Px = PR [Rx = (tx1 , . . . , t
x
d)] =

d∏
i=1

PR [(Rx)i = txi ] =
d∏
i=1

1

2n−1

(
n

n+txi
2

)

= (1 + od(1))

(
8

πn

)d/2 d∏
i=1

exp

(
Θ

(
(txi )3

n2

))
exp

(
o

(
txi
n

))
exp

(
−(txi )2

2n

)
, (13)

where the penultimate equality holds by Lemma 15 and the last equality holds by Proposi-

tion 11 (note that txi = o(n) holds by Lemma 9(ii) and that (1 + on(1))d = 1 + od(1) holds by

footnote 8 and since n = ω(d log d)).
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In light of (13), in order to complete the proof of the lemma, it suffices to prove that∣∣∣∑d
i=1 txi

∣∣∣ =
√
d|〈Mx,1〉|+o(n) and that

∣∣∣∑d
i=1(txi )3

∣∣∣ = O
(
d3/2 log d|〈Mx,1〉|

)
+o(n2), which

would in turn imply that

d∏
i=1

exp

(
Θ

(
(txi )3

n2

))
exp

(
o

(
txi
n

))
= exp

(
Θ

(∑d
i=1(txi )3

n2

)
+ o

(∑d
i=1 txi
n

))
= (1 + od(1)) exp

((
O
(
n−2d3/2 log d

)
+ o

(
n−1
√
d
))
|〈Mx,1〉|

)
.

Since txi = −
√
d(Mx)i + sxi holds for every i ∈ [d], it follows that∣∣∣∣∣

d∑
i=1

txi

∣∣∣∣∣ =

∣∣∣∣∣
d∑
i=1

−
√
d(Mx)i + sxi

∣∣∣∣∣ 6 √d
∣∣∣∣∣
d∑
i=1

(Mx)i

∣∣∣∣∣+O(d) =
√
d|〈Mx,1〉|+ o(n), (14)

where the last equality holds since n = ω(d) by the premise of the lemma.

Similarly, for every i ∈ [d],

(txi )3 = −d3/2((Mx)i)
3 + 3dsxi ((Mx)i)

2 − 3
√
d(sxi )2(Mx)i + (sxi )3.

It thus follows that∣∣∣∣∣
d∑
i=1

(txi )3

∣∣∣∣∣ 6 d3/2

∣∣∣∣∣
d∑
i=1

((Mx)i)
3

∣∣∣∣∣+ 3d

∣∣∣∣∣
d∑
i=1

sxi ((Mx)i)
2

∣∣∣∣∣− 3
√
d

∣∣∣∣∣
d∑
i=1

(sxi )2(Mx)i

∣∣∣∣∣+

∣∣∣∣∣
d∑
i=1

(sxi )3

∣∣∣∣∣
6 d3/2‖Mx‖2

∞

∣∣∣∣∣
d∑
i=1

(Mx)i

∣∣∣∣∣+ 12d‖Mx‖2
2 + 48

√
d

∣∣∣∣∣
d∑
i=1

((Mx)i)
2 + 1

∣∣∣∣∣+O(d)

6 d3/2 log d|〈Mx,1〉|+O(d2) + 48
√
d‖Mx‖2

2 +O(d3/2) +O(d)

6 d3/2 log d|〈Mx,1〉|+ o(n2), (15)

where the second inequality holds since |sxi | 6 4 by Lemma 13(1), the penultimate inequality

holds by parts (i) and (ii) of Lemma 9, and the last inequality holds by Lemma 9(i) and since

n = ω(d) by the premise of the lemma.

Lemma 20 provides the following useful uniform estimation on the probabilities Px.

Lemma 21. Suppose that n = ω(d) and let p =
(

8
πn

)d/2 · exp (−r2δ2/2), where r is as in

Lemma 7(i) and δ =
√
d/n. Then, Px = (1 + od(1))p · exp (δx) holds for every x ∈ Supp S,

where δx is as in Lemma 20.

Remark 22. We refer above to the estimation of Px, appearing in Lemma 21, as being uniform

even though it does depend on x due to the term exp (δx). This is because (the asymptotic

value of the expectation of) this term turns out to be essentially 1 (see Lemma 25). An

analogous result for the Gaussian case (with a somewhat simpler expression for δx) appears

in [16] (see Claim 2.3 there).
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Proof of Lemma 21. Fix any x ∈ Supp S. In light of Lemma 20 it suffices to show that

1

2n

d∑
i=1

(txi )2 = r2δ2/2 + od(1).

Since txi = −
√
d(Mx)i + sxi , where sxi ∈ [−4, 4] by Lemma 13(1), holds for every i ∈ [d], it

follows that
d∑
i=1

(txi )2 = d
d∑
i=1

((Mx)i)
2 − 2

√
d

d∑
i=1

sxi (Mx)i +
d∑
i=1

(sxi )2

= d‖Mx‖2
2 − 2

√
d

d∑
i=1

sxi (Mx)i +O(d), (16)

where the last equality holds by Lemma 13(1). For r = O(
√
d) and T = d−C

′
, with

C ′ > 1 some constant, ‖Mx‖2 ∈ [r − T , r + T ] holds, by Lemma 9(i); this, in turn, implies

that

r2 −O(1) 6 (r − T )2 6 ‖Mx‖2
2 6 (r + T )2 6 r2 +O(1).

Since, moreover, n = ω(d), r = O(
√
d), and δ =

√
d/n, it follows that

δ2‖Mx‖2
2/2 = δ2r2/2±O

(
dn−1

)
= δ2r2/2 + od(1). (17)

Combining (16) and (17), leads to

1

2n

d∑
i=1

(txi )2 =
1

2n
d‖Mx‖2

2 −
1

n

√
d

d∑
i=1

sxi (Mx)i +O
(
n−1d

)
= δ2r2/2− 1

n

√
d

d∑
i=1

sxi (Mx)i + od(1).

In order to conclude the proof of the lemma, it remains to prove that∣∣∣n−1
√
d
∑d

i=1 s
x
i (Mx)i

∣∣∣ = od(1). Indeed, it follows by Lemma 13(3) that∣∣∣∣∣n−1
√
d

d∑
i=1

sxi (Mx)i

∣∣∣∣∣ = n−1
√
d

∣∣∣∣∣
d∑
i=1

sxi (Mx)i

∣∣∣∣∣ = O
(
n−1
√
d log d

)
= od(1).

We turn our attention to the left hand side of (12).

Lemma 23. Let n = ω(d) be an even integer and let δ =
√
d/n. Let x,y ∈ Supp S satisfying

−1/2 6 ε := ε(x,y) 6 1/2 be given, and let

β(x,y) := exp
(
dε2 + 2δ2|ε〈Mx,My〉|+ 2n−1

√
d |ε〈Mx, sy〉|+ 2n−1

√
d |ε〈My, sx〉|

)
· exp

((
O
(
n−2d3/2 log d

)
+ o

(
n−1
√
d
))

(|〈Mx,1〉|+ |〈My,1〉|)
)
.

Then

Px,y 6 (1 + od(1)) · PxPy · β(x,y) · exp (−δx − δy) .
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Remark 24. Ignoring the expression β(x,y) · exp (−δx − δy), Lemma 23 provides an upper

bound on Px,y that constitutes a major step towards proving (12). This expression is handled

formally by Lemmas 21 and 26. An analogous result for the Gaussian case (with a somewhat

simpler expression for β(x,y)) appears in [16] (see Claim 2.2 there).

Proof of Lemma 23. Owing to our assumption that |ε| 6 1/2, we may restrict our attention

to pairs (x,y) ∈ (Supp S)2 such that x 6= y. Given such a pair, let kxi and kyi be integers

satisfying txi = 2kxi and tyi = 2kyi . In a manner similar to that seen in the proof of Lemma 20,

it holds that

Px,y = PR [Rx = (tx1 , . . . , t
x
d), Ry = (ty1 , . . . , t

y
d )] =

d∏
i=1

PR [(Rx)i = txi , (Ry)i = tyi ]

=
d∏
i=1

1

2n−1

(
αn

αn+kxi +kyi
2

)(
(1− α)n

(1−α)n+kxi −k
y
i

2

)
, (18)

where the last equality holds by (8). For

L
(1)
i :=

(
αn

αn+kxi +kyi
2

)
,

we obtain

L
(1)
i =

(
1 + on(1)

)
2αn
√

2

παn
exp

(
Θ

(
(kxi + kyi )3

(αn)2

)
+ o

(
kxi + kyi
αn

))
exp

(
−(kxi + kyi )

2

2αn

)
,

where the equality holds by Proposition 11. Similarly, for

L
(2)
i :=

(
(1− α)n

(1−α)n+kxi −k
y
i

2

)
,

we obtain

L
(2)
i =

(
1 + on(1)

)
2(1−α)n

√
2

π(1− α)n
exp

(
Θ

(
(kxi − k

y
i )3

((1− α)n)2

)
+ o

(
kxi − k

y
i

(1− α)n

))
exp

(
− (kxi − k

y
i )

2

2(1− α)n

)
.

It thus follows by (18) that

Px,y =
d∏
i=1

1

2n−1
L

(1)
i L

(2)
i = (1 + od(1))

d∏
i=1

4

πn

√
1

α(1− α)
· exp (Di + Ei + Fi) , (19)

where

Di := −(kxi + kyi )2

2αn
− (kxi − k

y
i )2

2(1− α)n
;

Ei := Θ

(
(kxi + kyi )3

(αn)2
+

(kxi − k
y
i )3

((1− α)n)2

)
;
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Fi := o

(
kxi + kyi
αn

+
kxi − k

y
i

(1− α)n

)
.

In the sequel we prove that

d∑
i=1

(Di + Ei + Fi) 6−
1

2n

(
d∑
i=1

(txi )2 +
d∑
i=1

(tyi )2

)
+ 2δ2|ε〈Mx,My〉|

+ 2n−1
√
d |ε〈Mx, sy〉|+ 2n−1

√
d |ε〈My, sx〉|

+O
(
n−2d3/2 log d

)
(|〈Mx,1〉|+ |〈My,1〉|)

+ o
(
n−1
√
d
)

(|〈Mx,1〉|+ |〈My,1〉|) + o(1). (20)

Using (19) and (20) the proof concludes as follows. First, note that

Px,y = (1 + od(1))
d∏
i=1

4

πn

√
1

α(1− α)
· exp (Di + Ei + Fi)

6 (1 + od(1))

(
8

πn

)d
exp

(
dε2 +

d∑
i=1

(Di + Ei + Fi)

)

6 (1 + od(1))

(
8

πn

)d
exp

(
− 1

2n

(
d∑
i=1

(txi )2 +
d∑
i=1

(tyi )2

))
· β(x,y),

where the first inequality holds by Claim 10(b).

Second, note that since Px = (1 + od(1))
(

8
πn

)d/2 · exp
(
− 1

2n

∑d
i=1(txi )2

)
· exp (δx) holds by

Lemma 20, it follows that

Px,y 6 (1 + od(1))PxPy · β(x,y) · exp (−δx − δy) ,

as claimed. It remains to prove (20); to do so, we estimate each of the sums
∑
Di,

∑
Ei, and∑

Fi separately.

Estimating
∑

Di. Start by writing

Di = −(1− α)(kxi + kyi )2 + α(kxi − k
y
i )2

2α(1− α)n

= −4(1− α) ((kxi )2 + 2kxi k
y
i + (kyi )2) + 4α ((kxi )2 − 2kxi k

y
i + (kyi )2)

2(1− ε2)n

= −4 ((kxi )2 + (kyi )2)

2(1− ε2)n
− 4(1− 2α) · 2kxi k

y
i

2(1− ε2)n

= −(txi )2 + (tyi )2

2n
− ε2 ((txi )2 + (tyi )2)

2(1− ε2)n
+

εtxi t
y
i

(1− ε2)n

6 −(txi )2 + (tyi )2

2n
+

εtxi t
y
i

(1− ε2)n
, (21)
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where the second equality holds by Claim 10(b); the last equality holds since (1− 2α) = −ε,
txi = 2kxi and tyi = 2kyi , and by the following equality

A

(1− z)B
=
A

B
+

zA

(1− z)B
,

holding for every A,B and z. Finally, the inequality follows by discarding the middle term

appearing on the preceding line; the latter is negative owing to (1 − ε2) > 1/2, which holds

since |ε| 6 1/2.

For the term txi t
y
i appearing on the right hand side of (21), we may write

txi t
y
i =

(
−
√
d(Mx)i + sxi

)(
−
√
d(My)i + syi

)
= d(Mx)i(My)i − syi

√
d(Mx)i − sxi

√
d(My)i + sxi s

y
i ;

indeed, for every i ∈ [d] and z ∈ {x,y}, the equality tzi = −
√
d(Mz)i + szi holds, where

szi ∈ [−4, 4]. Set

N :=
d∑
i=1

√
dεsyi (Mx)i
(1− ε2)n

+
d∑
i=1

√
dεsxi (My)i
(1− ε2)n

−
d∑
i=1

εsxi s
y
i

(1− ε2)n

and note that

d∑
i=1

Di 6 −
d∑
i=1

(txi )2 + (tyi )2

2n
+

d∑
i=1

dε(Mx)i(My)i
(1− ε2)n

−N

6 − 1

2n

(
d∑
i=1

(txi )2 +
d∑
i=1

(tyi )2

)
+ 2δ2|ε〈Mx,My〉|+ |N |

then holds, where in the last inequality we use the fact that (1− ε2) > 1/2. Additionally,

|N | 6
√
d

(1− ε2)n

∣∣∣∣∣
d∑
i=1

εsyi (Mx)i

∣∣∣∣∣+

√
d

(1− ε2)n

∣∣∣∣∣
d∑
i=1

εsxi (My)i

∣∣∣∣∣+
d∑
i=1

16|ε|
(1− ε2)n

6 2n−1
√
d |ε〈Mx, sy〉|+ 2n−1

√
d |ε〈My, sx〉|+O

(
dn−1

)
6 2n−1

√
d |ε〈Mx, sy〉|+ 2n−1

√
d |ε〈My, sx〉|+ od(1),

where the second inequality holds since |ε| 6 1/2 and thus (1− ε2) > 1/2; the last inequality

holds since n = ω(d) by the premise of the lemma; the constant 16 comes about from the fact

that szi ∈ [−4, 4] upheld by definition for every i ∈ [d] and every z ∈ {x,y}.

We conclude that

d∑
i=1

Di 6 −
1

2n

(
d∑
i=1

(txi )2 +
d∑
i=1

(tyi )2

)
+ 2δ2|ε〈Mx,My〉|
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+ 2n−1
√
d |ε〈Mx, sy〉|+ 2n−1

√
d |ε〈My, sx〉|+ od(1). (22)

Estimating
∑

Ei. Start by writing

d∑
i=1

(
(kxi + kyi )3

(αn)2
+

(kxi − k
y
i )3

((1− α)n)2

)
6
c1

∣∣∣∑d
i=1(txi )3

∣∣∣+ c2

∣∣∣∑d
i=1(tyi )3

∣∣∣
n2

+
c3

∣∣∣∑d
i=1(txi )2tyi

∣∣∣+ c4

∣∣∣∑d
i=1 txi (tyi )2

∣∣∣
n2

, (23)

where c1, c2, c3, and c4 are some constants, depending only on α (recall that 1/4 6 α 6 3/4

holds by Claim 10(a) and since |ε| 6 1/2 by the premise of the lemma). As in (15), it follows

by Lemma 9(ii) that∣∣∣∣∣
d∑
i=1

(txi )3

∣∣∣∣∣ 6 d3/2‖Mx‖2
∞|〈Mx,1〉|+ o(n2) = O

(
d3/2 log d · |〈Mx,1〉|

)
+ o(n2)

and, similarly,∣∣∣∣∣
d∑
i=1

(tyi )3

∣∣∣∣∣ 6 d3/2‖My‖2
∞|〈My,1〉|+ o(n2) = O

(
d3/2 log d · |〈My,1〉|

)
+ o(n2).

An analogous argument shows that∣∣∣∣∣
d∑
i=1

(txi )2tyi

∣∣∣∣∣ 6 d3/2‖Mx‖2
∞|〈My,1〉|+ o(n2) = O

(
d3/2 log d · |〈My,1〉|

)
+ o(n2)

and ∣∣∣∣∣
d∑
i=1

txi (tyi )2

∣∣∣∣∣ 6 d3/2‖My‖2
∞|〈Mx,1〉|+ o(n2) = O

(
d3/2 log d · |〈Mx,1〉|

)
+ o(n2).

It thus follows by (23) that

d∑
i=1

Ei =
d∑
i=1

Θ

(
(kxi + kyi )3

(αn)2
+

(kxi − k
y
i )3

((1− α)n)2

)
= O

(
n−2d3/2 log d

)
(|〈Mx,1〉|+ |〈My,1〉|) + o(1). (24)

Estimating
∑

Fi. It follows by (14) that∣∣∣∣∣
d∑
i=1

txi

∣∣∣∣∣ 6 √d|〈Mx,1〉|+ o(n) and

∣∣∣∣∣
d∑
i=1

tyi

∣∣∣∣∣ 6 √d|〈My,1〉|+ o(n).
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both hold. Hence,

d∑
i=1

Fi =
d∑
i=1

o

(
kxi + kyi
αn

+
kxi − k

y
i

(1− α)n

)
= o


∣∣∣∑d

i=1 txi

∣∣∣
n

+ o


∣∣∣∑d

i=1 tyi

∣∣∣
n


= o

(
n−1
√
d
)

(|〈Mx,1〉|+ |〈My,1〉|) + o(1). (25)

We conclude the proof by noticing that combining (22), (24), and (25) implies (20).

Following Lemma 23, we turn to estimate the terms exp (−δx − δy) and β(x,y); in fact,

estimations of these in expectation suffices. In the sequel, we prove the following two lemmas.

Lemma 25. If n = ω(d log d), then

Ex∼S [exp (δx)] = 1 + od(1).

Lemma 26. If n = ω(d log d), then

Ex,y∼S [β(x,y)] = 1 + od(1).

Postponing the proofs of Lemmas 25 and 26 until later, we first deduce (12) from these and

thus conclude the proof of Claim 17; this deduction is captured in the following lemma.

Lemma 27. If n = ω(d log d), then

Ex,y∼S [Px,y] 6 (1 + od(1))Ex,y∼S [PxPy].

Proof. First, note that

Ex,y∼S [PxPy] = Ex,y∼S
[
(1 + od(1))p2 exp (δx + δy)

]
= (1 + od(1))p2 · Ex,y∼S [exp (δx) · exp (δy)]

= (1 + od(1))p2 · Ex,y∼S [exp (δx)] · Ex,y∼S [exp (δy)]

> (1− od(1))p2,

where the first equality holds by Lemma 21, the last equality holds since x and y are sampled

independently and thus exp (δx) and exp (δy) are independent, and the inequality holds by

Lemma 25.

Next, let E denote the event that |ε| > 1/2. Since p is fixed, it follows that

Ex,y∼S [Px,y] 6 Ex,y∼S [Px,y|Ē ] + Ex,y∼S [Px,y|E ] · Px,y∼S [E ]

6 Ex,y∼S [Px,y|Ē ] + Ex,y∼S [(1 + od(1))p · exp(δx)| E ] · Px,y∼S [E ]

= Ex,y∼S [Px,y|Ē ] + (1 + od(1))p2 · p−1 · Ex∼S [exp(δx)] · Px,y∼S [E ]
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6 Ex,y∼S [Px,y|Ē ] + (1 + od(1))p2 · p−1 · Px,y∼S [E ] (26)

where the second inequality holds since Px,y 6 min{Px, Py} 6 (1 + od(1))p · exp (δx) by

Lemma 21, the equality holds since, once y becomes irrelevant, so does the event E , and the

last inequality holds by Lemma 25.

Given any vector y ∈ {−1, 1}n, note that n−1/2y ∈ Sn−1. It thus follows by Lemma 9(iii)

that

Px∼S
[
|n−1〈x,y〉| > 1/2

]
= Px∼S

[∣∣〈x, n−1/2y
〉∣∣ > √n/2]

6 dC9 · exp (−n/36) 6 exp (−n/40) ,

holds for every y ∈ {−1, 1}n. It then follows by the law of total probability that

Px,y∼S [E ] = Px,y∼S [|ε| > 1/2] 6 exp(−Θ(n)). (27)

On the other hand, since p =
(

8
πn

)d/2 · exp (−r2δ2/2) and n = ω (d log d), it follows that

p−1 =
(πn

8

)d/2
· exp(r2δ2/2) 6 exp

(
O (d log n) +O

(
d2/n

))
= exp (o(n)) . (28)

It then follows by (26), (27) and (28) that

Ex,y∼S [Px,y] 6 Ex,y∼S [Px,y|Ē ] + p2 · on(1). (29)

Conditioning on Ē and recalling that n = ω (d log d) holds by the premise of the lemma, we

obtain

Px,y 6 (1 + od(1))PxPy · β(x,y) · exp (−δx − δy) = (1 + od(1)) · p2 · β(x,y), (30)

where the inequality holds by Lemma 23 and the equality holds by Lemma 21.

Combining (29) and (30) we conclude that

Ex,y∼S [Px,y] 6 Ex,y∼S [(1 + od(1)) · p2 · β(x,y)|Ē ] + p2 · on(1)

6 (1 + od(1)) · p2 · Ex,y∼S [β(x,y)|Ē ] + p2 · on(1)

6 (1 + od(1)) · p2 · Ex,y∼S [β(x,y)] + p2 · on(1)

= (1 + od(1)) · p2 + p2 · on(1)

= (1 + od(1)) · p2,

where the last inequality holds since P[Ē ] = 1 − o(1) and β is non-negative, and the first

equality holds by Lemma 26.

It remains to prove Lemmas 25 and 26. The following result facilitates our proofs of these

lemmas; proof of the latter is essentially that seen for [16, Lemma 2.4] and is thus omitted.
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Lemma 28. [16, Lemma 2.4] Let X be a non-negative random variable which satisfies

P[X > t] 6 dξ1 · e−t2/ξ2 for any t > 0,

for some positive constants ξ1 and ξ2. Then, for any λ = κ
√

log d, where κ > 2
√
ξ1ξ2, we have

E
[
exp

(
X2/λ2

)]
6 1 + 4ξ1ξ2/κ

2 + od(1).

Proof of Lemma 25. Starting with the upper bound, given any x ∈ S, let

Z := Z(x) =
(
cn−2d3/2 log d+ ζn−1

√
d
)
|〈Mx,1〉|,

where c is a constant and ζ = o(1) are chosen so as to ensure that |δx| 6 Z holds. If∣∣〈Mx, d−1/21
〉∣∣ < 1, then the assumption that n = ω(d log d) implies that Z = od(1) and thus

Ex∼S [exp (δx)] 6 Ex∼S [exp (Z)] 6 1 + od(1).

Assume then that
∣∣〈Mx, d−1/21

〉∣∣ > 1. In this case

Z =
(
cn−2d2 log d+ ζn−1

√
d
) ∣∣〈Mx, d−1/21

〉∣∣ 6 (cn−2d2 log d+ ζn−1
√
d
) ∣∣〈Mx, d−1/21

〉∣∣2 .
Writing γ :=

〈
Mx, d−1/21

〉
and λ :=

√
n/d, it then follows that

Z 6
(
cn−2d2 log d+ ζn−1d

)
|γ|2 6 n−1d|γ|2 = |γ|2/λ2,

where the second inequality holds since ζ = o(1) and since n = ω(d log d) implies that

n−2d2 log d = o (n−1d).

Then,

Px∼S [|γ| > t] = Px∼S
[
|〈Mx, d−1/21〉| > t

]
6 dC9 exp

(
−t2/8

)
holds for any t > 0, by Lemma 9(iii). We conclude that the non-negative random variable

X := |γ| satisfies the conditions of Lemma 28, implying that

Ex∼S [exp (δx)] 6 Ex∼S [exp (|δx|)] 6 Ex,y∼S [exp(Z)] 6 Ex,y∼S
[
exp

(
X2/λ2

)]
= 1 + od(1),

(31)

where the last equality holds since n = ω(d log d) by the premise of the lemma and thus

λ = ω(
√

log d).

Next, we prove that Ex,y∼S [exp (δx)] > 1 − od(1). Let Y = exp (|δx|); note that Y is

positive. Let g : R+ → R+ be defined by g(x) = 1/x; note that g is convex. It thus follows by

Jensen’s inequality11 that

Ex∼S [exp (δx)] > Ex∼S [exp (− |δx|)] = Ex∼S [g(Y )] > g (Ex∼S [Y ])

=
1

Ex∼S [exp (|δx|)]
>

1

1 + od(1)
= 1− od(1),

where the last inequality holds by (31).
11Jensen’s inequality, see, e.g. [30], asserts that g(E(X)) 6 E(g(X)) holds whenever X is a random variable

and g is a convex function.
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Proof of Lemma 26. Let

Z1 := Z1(x,y) = dε2 + 2δ2|ε〈Mx,My〉|+ 2n−1
√
d |ε〈Mx, sy〉|+ 2n−1

√
d |ε〈My, sx〉|

and let

Z2 := Z2(x,y) =
(
cn−2d3/2 log d+ ζn−1

√
d
)

(|〈Mx,1〉|+ |〈My,1〉|) ,

where c is a constant and ζ = o(1).

Set

ε̄ := ε̄(x,y) =
〈
x, n−1/2y

〉
,

µ := µ(x,y) =
〈
Mx, ‖My‖−1

2 My
〉
,

η1 := η1(x,y) =
〈
Mx, ‖sy‖−1

2 sy
〉
,

η2 := η2(x,y) =
〈
My, ‖sx‖−1

2 sx
〉
.

Recalling that δ =
√
d/n, we obtain

Z1 =
d

n
· |ε̄|2 + 2

d‖My‖2

n3/2
|ε̄||µ|+ 2

√
d‖sy‖2

n3/2
|ε̄||η1|+ 2

√
d‖sx‖2

n3/2
|ε̄||η2|

6
d

n
· |ε̄|2 +O

(
d3/2

n3/2

)
|ε̄||µ|+ 8

d

n3/2
|ε̄||η1|+ 8

d

n3/2
|ε̄||η2|

6

(
d

n
+O

(
d3/2

n3/2

)
+

16d

n3/2

)
(|ε̄|+ |µ|+ |η1|+ |η2|)2

6 2n−1d(|ε̄|+ |µ|+ |η1|+ |η2|)2, (32)

where the first inequality holds by Lemma 9(i) and by Lemma 13(1), and the last inequality

holds since n = ω(d).

Let γ =
∣∣〈Mx, d−1/21

〉∣∣+
∣∣〈My, d−1/21

〉∣∣. If γ < 1, then Z2 = od(1); otherwise

Z2 =
(
cn−2d2 log d+ ζn−1d

) (∣∣〈Mx, d−1/21
〉∣∣+

∣∣〈My, d−1/21
〉∣∣)

= O
(
n−2d2 log d+ ζn−1d

)
γ2 6 n−1dγ2, (33)

where the last inequality holds since ζ = o(1) and since n = ω(d log d) implies that

n−2d2 log d = o (n−1d).

Let λ :=
√
n/(2d). Combining (32) and (33) we obtain

Z1 + Z2 6 2n−1d(|ε̄|+ |µ|+ |η1|+ |η2|)2 + n−1dγ2 6 2n−1d(|ε̄|+ |µ|+ |η1|+ |η2|+ γ)2

6 (|ε̄|+ |µ|+ |η1|+ |η2|+ γ)2/λ2. (34)

Given any vector y ∈ {−1, 1}n, note that n−1/2y ∈ Sn−1. It thus follows by Lemma 9(iii)

that

Px∼S
[∣∣〈x, n−1/2y

〉∣∣ > t
]
6 dC9 exp

(
−t2/9

)
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holds for any t > 0. It then follows by the law of total probability that

P[|ε̄| > t] = Px,y∼S
[
|〈x, n−1/2y〉| > t

]
6 dC9 exp

(
−t2/9

)
for any t > 0. (35)

Similarly, since ‖My‖−1
2 My ∈ Sd−1 and ‖sy‖−1

2 sy ∈ Sd−1 hold for every y ∈ Supp S,

‖sx‖−1
2 sx ∈ Sd−1 holds for every x ∈ Supp S, and d−1/21 ∈ Sd−1, it follows that

P[|µ| > t] 6 dC9 exp
(
−t2/9

)
for any t > 0

P[|η1| > t] 6 dC9 exp
(
−t2/9

)
for any t > 0

P[|η2| > t] 6 dC9 exp
(
−t2/9

)
for any t > 0

P[γ > t] 6 dC9 exp
(
−t2/9

)
for any t > 0.

We conclude that the non-negative random variable X := |ε̄| + |µ| + |η1| + |η2| + γ satisfies

the conditions of Lemma 28, implying that

Ex,y∼S [β(x,y)] = Ex,y∼S [exp(Z1 + Z2)] 6 Ex,y∼S
[
exp

(
X2/λ2

)]
= 1 + od(1),

where the last equality holds since n = ω(d log d) by the premise of the lemma and thus

λ = ω(
√

log d).

4 Concluding remarks

We have proved that DISC(M+R/
√
d) = O(d−1/2) holds asymptotically almost surely, when-

ever M ∈ Rd×n is Komlós, R ∈ Rd×n is Rademacher, d = ω(1), and n = ω(d log d).

As stated by Bansal, Jiang, Meka, Singla, and Sinha [16, Section 3], considering other

distributions for the entries of the random perturbation and specifically discrete ones is of high

interest as well. In view of the aforementioned result in [11] pertaining to the discrepancy of

Bernoulli matrices, as well as the proclaimed n = ω(d2) bound attained in [16] in the smoothed

setting with Bernoulli noise, the following question seems to be a natural next step.

Question 29. Let d = ω(1) and n = ω(d log d) be integers, and set p := p(n, d) > 0. Is it true

that DISC(M+R) = O(1) holds a.a.s. whenever M ∈ Rd×n is a Komlós matrix and R ∈ Rd×n

is a random matrix with each of its entries being an independent copy of Θ
(
(pd)−1/2

)
Ber(p)?

It is conceivable that for certain ranges of p, the O(1) bound on the discrepancy, appearing

in Question 29, can be replaced with 1/poly(d).
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A Proofs of Lemmas 15 and 16

Prior to proving Lemmas 15 and 16, we collect several auxiliary results.

Observation 30. Let n ∈ N be even and let x,y ∈ {−1, 1}n satisfying #1(x) ≡ #1(y)

(mod 2) be given. Then, |Diff(x,y)| is even.

Proof. Let A := A(x,y) = |{i ∈ [n] : xi = yi = 1}|, let B := B(x,y) = |{i ∈ [n] : xi = yi =

−1}|, let C := C(x,y) = |{i ∈ [n] : xi = 1,yi = −1}|, and let D := D(x,y) = |{i ∈ [n] : xi =

−1,yi = 1}|. Suppose for a contradiction that |Diff(x,y)| is odd. Since |Diff(x,y)| = C +D,

we may assume without loss of generality that C is even and D is odd. Since, moreover,

n = A+B +C +D is even, we may further assume without loss of generality that A is even

and B is odd. It then follows that #1(x) = A + C is even, whereas #1(y) = A + D is odd;

this contradicts the premise of the observation and concludes its proof.

Lemma 31. Let n ∈ N, let k ∈ Z, and let u,v ∈ {−1, 1}n be vectors satisfying
∑n

i=1 ui =

2k =
∑n

i=1 vi. Then, |Diff(v,u)| is even.

Proof. Set

O = {i ∈ Diff(v,u) : ui = 1} and M = {i ∈ Diff(v,u) : ui = −1} .

Then

2k =
n∑
i=1

vi =
∑

i/∈Diff(v,u)

ui +
∑
i∈O

(ui − 2) +
∑
i∈M

(ui + 2)

=
n∑
i=1

ui − 2|O|+ 2|M | = 2k − 2|O|+ 2|M |.

It follows that |O| = |M |, and thus |Diff(v,u)| = |O|+ |M | is even.

Lemma 32. Let u ∈ {−1, 1}n and let v ∈ En. If |Diff(v,u)| is even, then u ∈ En.

Proof. The proof is via induction on |Diff(v,u)|. If |Diff(v,u)| = 0, then u = v ∈ En. Suppose

then that |Diff(v,u)| = 2 and let i, j ∈ [n] be the (sole) two distinct indices over which u and

v differ. The equality #1(u) = #1(v)− (vi + vj) coupled with the assumption that #1(v) is

even as well as the fact that vi + vj ∈ {−2, 0, 2}, imply that #1(u) is even as well and thus

u ∈ En as required.

For the induction step, consider v ∈ En and u ∈ {−1, 1}n satisfying |Diff(v,u)| = 2m + 2

for some positive integer m and assume that the claim holds true for any pair of vectors

x ∈ En and y ∈ {−1, 1}n satisfying |Diff(x,y)| = 2k for some positive integer k 6 m. Let

1 6 i < j 6 n be any two distinct indices for which vi 6= ui and vj 6= uj both hold. The

vector

v′ := (v1, . . . ,vi−1,−vi,vi+1, . . . ,vj−1,−vj,vj+1, . . . ,vn)
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satisfies |Diff(v,v′)| = 2; hence, v′ ∈ En holds by the induction hypothesis. Since, moreover,

|Diff(u,v′)| = 2m, it follows by the induction hypothesis that u ∈ En. This concludes the

proof of the lemma.

We are now in position to prove the first main result of this section, namely Lemma 15.

Proof of Lemma 15. A vector r ∈ {−1, 1}n is said to be valid if r ∈ En and 〈r,x〉 = 2k. Since

|En| = 2n−1, it suffices to prove that there are
(

n
n/2+k

)
valid vectors. In light of (6), it remains

to prove that there is a bijection from the set of valid vectors to the set Sk.

Given a valid vector r (such a vector exists by the premise of the lemma), define ϕ(r) :=

(r1x1, . . . , rnxn) ∈ {−1, 1}n. The validity of r implies that
∑n

i=1 ϕ(r)i = 2k and thus ϕ(r) ∈
Sk. To see that ϕ(·) is injective, note that given two different valid vectors r and r′, there exists

an index i ∈ [n] such that ri 6= r′i. As x is fixed, this compels that ϕ(r)i = rixi 6= r′ixi = ϕ(r′)i
so that ϕ(r) 6= ϕ(r′).

To prove that ϕ(·) is surjective, fix v ∈ Sk and define the vector y ∈ {−1, 1}n whose entries

are uniquely determined by the equalities vi = yixi, that is, for every i ∈ [n], if vi = xi,

then yi = 1, and otherwise yi = −1. It is evident that, if y is valid, then v = ϕ(y). Since,

moreover, v ∈ Sk, it suffices to prove that y ∈ En. To that end, let r be an arbitrary valid

vector. Since
∑n

i=1 ϕ(r)i = 2k =
∑n

i=1 vi, it follows by Lemma 31 that |Diff(v, ϕ(r))| is

even. Note that yi = ri whenever i /∈ Diff(v, ϕ(r)), and yi = −ri whenever i ∈ Diff(v, ϕ(r)).

Consequently, |Diff(y, r)| is even and thus y is even by Lemma 32.

We conclude this section with a proof of Lemma 16.

Proof of Lemma 16. Since #1(x) ≡ #1(y) (mod 2) holds by assumption, it follows by Obser-

vation 30 that |Diff(x,y)| = 2m for some non-negative integer m. The set Diff(x,y) having

even cardinality has two useful implications. The first is that n− |Diff(x,y)| is an even inte-

ger; this on account of n being even by assumption. Using the previously introduced notation

αn := α(x,y)n := n− |Diff(x,y)|, we infer that αn and (1− α)n are both even integers.

The second implication is that 〈v,x〉 = 〈v,y〉+ `, for some ` ∈ {4k : k ∈ Z,−m 6 k 6 m},
holds for every v ∈ {−1, 1}n. Indeed, reaching 〈v,x〉 starting from 〈v,y〉 entails iterating over

each member of the even-sized set Diff(x,y) and adding or subtracting two from the current

value accumulated thus far.

If, additionally, 〈v,x〉 = 2kx and 〈v,y〉 = 2ky, where kx and ky are integers, then kx ≡ ky
(mod 2), for indeed

kx − ky =
〈v,x〉 − 〈v,y〉

2
=
`

2
∈ 2Z.

Given v ∈ {−1, 1}n, set

S1(v) := {i ∈ [n] \Diff(x,y) : vixi = 1} and S2(v) := {i ∈ Diff(x,y) : vixi = 1}.

Additionally, set

S̄1(v) :=
(

[n] \Diff(x,y)
)
\ S1(v) and S̄2(v) := Diff(x,y) \ S2(v).
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There exist integers m1 := m1(v) and m2 := m2(v) such that |S1(v)| = αn
2

+m1 and |S2(v)| =
(1−α)n

2
+m2. If 〈v,x〉 = 2kx for some integer kx, then

2kx =
∑

i∈S1(v)

1 +
∑

i∈S̄1(v)

(−1) +
∑

i∈S2(v)

1 +
∑

i∈S̄2(v)

(−1) = 2m1 + 2m2.

Using the definition of Diff(x,y), an analogous argument shows that if 〈v,y〉 = 2ky for some

integer ky, then 2ky = 2m1 − 2m2.

Therefore12

m1 =
kx + ky

2
and m2 =

kx − ky
2

;

in particular, m1 and m2 are independent of v. We conclude that the number of vectors r ∈ En
for which 〈r,x〉 = 2kx and 〈r,y〉 = 2ky both hold is(

αn
αn
2

+m1

)(
(1− α)n

(1−α)n
2

+m2

)
.

Since, moreover, |En| = 2n−1, it follows that

P
[
〈r,x〉 = 2kx, 〈r,y〉 = 2ky

]
=

1

2n−1

(
αn

αn+kx+ky
2

)(
(1− α)n

(1−α)n+kx−ky
2

)
as claimed.

12Recall that kx ≡ ky (mod 2) so that kx ± ky is even.

the electronic journal of combinatorics 32(1) (2025), #P1.52 32


	Introduction
	Our contribution
	Our approach

	Preliminaries
	Key tools
	Rudimentary probabilistic estimations

	Proof of the main result - Theorem 1
	Concluding remarks
	Proofs of Lemmas 15 and 16

