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Abstract

The noncommutative symmetric functions NSym were first defined abstractly
by Gelfand et al. in 1995 as the free associative algebra generated by noncommut-
ing indeterminates {en}n∈N that were taken as a noncommutative analogue of the
elementary symmetric functions. The resulting space was thus a variation on the
traditional symmetric functions Λ. Giving noncommutative analogues of generating
function relations for other bases of Λ allowed Gelfand et al. to define additional
bases of NSym and then determine change-of-basis formulas using quasidetermi-
nants. In this paper, we aim for a self-contained exposition that expresses these
bases concretely as functions in infinitely many noncommuting variables and avoids
quasideterminants. With the exposition out of the way, we look at the noncommu-
tative analogues of two different interpretations of change of basis in Λ: both as a
product of a minimal number of matrices, mimicking Macdonald’s exposition of Λ
in Symmetric Functions and Hall Polynomials, and as statistics on brick tabloids,
as in work by Eğecioğlu and Remmel, 1990.

Mathematics Subject Classifications: 05E05

1 Introduction

We define three well-known vector spaces: the symmetric functions, Λ, the quasisymmetric
functions, QSym, and lastly, the noncommutative symmetric functions, NSym, the focus
of this work. The noncommutative symmetric functions were first defined in [7] by Gelfand
et al., with a definition inspired by the well-known Fundamental Theorem of Symmetric
Polynomials. Let N be the set of all nonnegative integers.

Theorem 1. Every symmetric function can be written uniquely as a polynomial in the
elementary symmetric functions {en}n∈N.
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Inherent to the statement is the fact that the elementary symmetric functions commute
with each other. The noncommutative symmetric functions were originally defined by
Gelfand et al. in [7], and answer the following question.

“What happens if the elementary symmetric functions are replaced by a non-
commutative multiplicative basis?”

Formally, Gelfand et al. define:

Definition 2. [[7], section 3] The ring of noncommutative symmetric functions is
the free associative algebra

NSym = 〈en〉n∈Z+ ,

where {en}n∈Z+ is a set of algebraically independent indeterminates which do not com-
mute. By convention, we occasionally also use e0 for 1, to parallel the symmetric function
literature, although one should be careful, since e0 commutes with the remainder. The
symbol en is the nth noncommutative elementary symmetric function.

Gelfand et al. proceed to define additional bases by generalizing the relations between
generating series of various well-known bases of Λ. They then determine explicit change-of-
basis formulas between the resulting bases, using their previous work on quasideterminants
as a key tool. Finally, they derive a concrete realization of several of their newly defined
bases in terms of a set of noncommuting variables in Section 7 of their work, but do not
give an explicit characterization of the resulting space as in Definition 18 below. Thus their
presentation, while inherently logical to its inspiration, is the reverse of the traditional
presentation of the symmetric functions in well-known texts in this area (e.g., Stanley,
Chapter 7 in [24], or Macdonald [17]). Such texts start with concrete realizations of these
spaces as subspaces of the space of power series in infinitely many commuting variables,
define explicit bases in those variables, and then derive relations from those definitions.
This convention continues in texts which cover the noncommutative symmetric functions.
For example, Luoto et al. in [16] give a friendly, well-written introduction to Λ, QSym,
and NSym. They define the first two as subspaces of the space of formal power series in
infinitely many variables, but define NSym using Definition 2 above.

Our first goal is an elementary (pun intended) exposition of the noncommutative
symmetric functions, following traditional presentations of the symmetric functions by
emphasizing their realization in terms of a noncommuting set of variables, then deriving
the defining relations of Gelfand et al., emphasizing their similarity to the well-studied
symmetric functions, all while avoiding quasideterminants.

Then in Section 6 and Section 7, we turn to new results, where we will show that many
of the change-of-basis matrices between well-known bases of NSym that were derived in
Gelfand et al. can also be interpreted to generalize well-studied change-of-basis results
in Λ. Particularly, we will give a natural generalization of brick tabloids, introduced by
Eğecioğlu and Remmel in [6] to unify combinatorial interpretations for a number of basis
transitions in Λ, and consider a generalization of the commuting diagram Macdonald gives
in [17] to express change of basis as a product of a few key transition matrices.
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1.1 Additional References

Previous sources introduce bases of NSym as formal power series in noncommuting vari-
ables, first among them Gelfand et al. in Section 7 of [7], where they are shown to span an
isomorphic space to their more abstractly defined free associative algebra. Other papers
in the same series, as for example [12], introduce the bases in noncommuting variables
first. Huang [11] is perhaps the closest to this work; on page 16 NSym is defined as the
span of the noncommutative complete homogeneous symmetric functions, given in terms
of noncommuting variables as a fact (and citing [7] for the equivalence). The noncom-
mutative ribbon and elementary symmetric functions are also given in terms of the same
set of variables in the same work, citing [7]. Other sources prove indirectly that the free
associative algebra defined in [7] can be realized in terms of noncommuting variables: the
equivalence is given indirectly in [9] in Corollary 8.1.14 and is implicit in the proof of
Proposition 6.2 in Meliot’s text [20].

Definition 18 and Corollary 51 below, which give an explicit characterization of when a
polynomial in n noncommuting variables is in NSym (and show that this characterization
gives an isomorphic space to that of Gelfand et al. in [7]) are implicit in section 5 of [7],
where the authors give a natural isomorphism between Solomon’s descent algebra and
NSym, defined by sending the formal sum of permutations with a given descent set to
the ribbon Schur basis defined below. The isomorphism follow easily from previous work
showing the duality of the quasisymmetric functions and Solomon’s decent algebra in [18]
and well summarized and further explored in [21].

1.2 Notation

Before we begin, we offer a few brief remarks on notation. In order to distinguish between
commuting and noncommuting variables, let X = (x1, x2, . . . ) give an infinite sequence
of commuting variables and X = (x1,x2, . . . ) give an infinite sequence of noncommuting
variables. This paper follows the convention of [16]; variable names for bases are delib-
erately reused across Λ, NSym, and QSym. Since this can occasionally cause confusion,
we will use “standard” (lowercase) type for bases of Λ, bold type for bases of NSym,
and capitalization for bases of QSym to make distinguishing them as easy as possible.
Repeatedly, we use 1A, the indicator function that is 1 if statement A is true and is 0 if
A is false.

Finally, throughout we give citations to theorems, indicating where they are stated
in [7]. With few noted exceptions, the proofs in [7] are distinct, and in many places
definitions and theorems are reversed from the presentation below, due to the differences
in what we take to be the definition of the space.

2 Partitions and Compositions

The vector spaces discussed here have bases that are naturally indexed by either partitions
or compositions, so we begin there.
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Definition 3. An infinite sequence of nonnegative integers α = (α1, α2, α3, . . . ) is a
weak integer composition, or simply a weak composition, of n if

∑
αi = n, denoted

α |=w n. The αi are the parts of α, and the size of α is n, written |α| = n.

Definition 4. A strong integer composition of positive integer n, or often just sim-
ply a composition of n, is a finite sequence of positive integers α = (α1, α2, . . . , α`(α))
summing to n, denoted α |= n. In this case, `(α) is the length of α, and α has last part
α`(α). The length of the empty composition is taken to be 0.

We also write strong(α) to denote the composition attained by removing all zeros from
the weak composition α. There is a classical bijection between strong compositions of n
and subsets of [n− 1] = {1, 2, . . . , n− 1}. In particular, if α = (α1, α2, . . . , α`(α)), we say
that

set(α) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ α`(α)−1}.

There are three well-known involutions on the set of strong compositions (and their asso-
ciated sets). Consider α = (α1, α2, . . . , α`(α)) |= n and its associated set, set(α) ⊆ [n− 1].

Definition 5. The reverse of α is αr = (α`(α), α`(α)−1, . . . , α1).

Definition 6. If A ⊆ [n− 1], let Ac = [n− 1] \A, the complement of the set A in [n− 1].
Then the complement of α is the composition αc = set−1(set(α)c).

Definition 7. The transpose of α, written αt, is the composition obtained by applying
the two previous involutions: αt = (αr)c = (αc)r.

It is not hard to check that composing any two of these distinct maps yields the third.
We will also repeatedly use the fact that for any (nonempty) strong composition α, it is
true that `(α) + `(αc)− 1 = |α|.

Example 8. If α = (2, 3, 2, 1) |= 8, then

• αr = (1, 2, 3, 2);

• αc = set−1(set(α)c) = set−1({2, 5, 7}c) = set−1({1, 3, 4, 6}) = (1, 2, 1, 2, 2);

• αt = (αc)r = (1, 2, 1, 2, 2)r = (2, 2, 1, 2, 1).

Also see that `(α) + `(αc)− 1 = 4 + 5− 1 = 8 = |α|.

Definition 9. If α = (α1, . . . , α`(α)) and β = (β1, . . . , β`(β)) are strong compositions of n,
then β is a refinement of α, or β refines α, denoted β � α, if there exists an integer
sequence 0 = j0 < j1 < j2 < · · · < j`(α) = `(β) such that for each i ∈ {1, 2, . . . , `(α)},

αi = βji−1+1 + βji−1+2 + · · ·+ βji .

That is, each part of α can be obtained by summing consecutive parts of β. Equivalently,
β � α if and only if set(β) ⊇ set(α). In this context, let β(i) denote the subcomposition
of β which sums to αi for i = 1, . . . , `(α) so that |β(i)| = αi.
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We note that the direction of refinement (�) is not consistent across the literature in this
area, and in particular, this work uses the opposite convention of [7] and follows that of
[16].

Example 10. Both α = (1, 6, 3, 4) |= 13 and β = (1, 3, 1, 2, 2, 1, 1, 3) |= 13. See that
β � α with β(1) = (1), β(2) = (3, 1, 2), β(3) = (2, 1), and β(4) = (1, 3).

Since strong compositions of n are in bijection with subsets of [n − 1], they inherit the
same Möbius function, µ. We will repeatedly use the following basic facts:

• For S, T ⊆ [n− 1], µ(S, T ) = (−1)|S|−|T |.

• For S, T ⊆ [n− 1],
∑

S⊆U⊆T µ(U, T ) = 1S=T .

• (Möbius Inversion.) If K is a commutative ring and f, g : [n− 1]→ K, then

g(T ) =
∑
S⊆T

f(S) for all T ⊆ [n− 1]

if and only if

f(T ) =
∑
S⊆T

g(S)µ(S, T ) for all T ⊆ [n− 1].

Definition 11. The sort of α, sort(α), is the composition obtained by rewriting α in
weakly decreasing order.

Definition 12. An integer partition of n, or simply a partition of n, is a composition
λ of n for which sort(λ) = λ, denoted λ ` n.

Where the order of the parts of a composition α is immaterial, such as when α is a
partition, we may write α = (1m1(α)2m2(α) · · ·nmn(α)), where mi(α) gives the number of
parts of size i occurring in α. We may also use partial exponentiation to write certain
compositions, e.g., (1k, n− k) will represent (1, 1, . . . , 1, n− k) |= n.

3 Three Rings

We consider three (graded) rings in this paper: the ring of symmetric functions, Λ, the
ring of quasisymmetric functions, QSym, and the ring of noncommutative symmetric
functions, NSym. Our goal in this section is to briefly introduce all three spaces, with
an emphasis on NSym. The unfamiliar reader may wish to consult [17] or Chapter 7 of
[24] to learn more about the fundamentals of symmetric function theory, and [16] for an
introduction to quasisymmetric functions. There is not, to our knowledge, a well-known
text covering noncommutative symmetric functions in detail. A series of papers exploring
noncommutative symmetric functions and their significance include [7], [12], [5], [13], and
[14]. These comprise perhaps the best known introduction to this area.
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Notation. Let X denote an infinite sequence of commuting variables (x1, x2, . . . ). Given
a composition α = (α1, α2, . . . ), we write xα to denote the monomial xα1

1 x
α2
2 · · · . If

f ∈ C[[x1, x2, . . . ]] is a power series of bounded total degree, we write f |xα to denote the
coefficient of xα in the expansion of f into monomials. Any such f is homogeneous of
degree n if each monomial xα appearing in f is such that |α| = n.

Definition 13. Let f ∈ C[[x1, x2, . . . ]] be a power series of bounded total degree. Then
f is symmetric if for all integers k > 0, all compositions α = (α1, . . . , αk), and all lists
(i1, i2, . . . , ik) of distinct positive integers,

f |xα11 x
α2
2 ···x

αk
k

= f |xα1i1 x
α2
i2
···xαkik

.

Let Λn be the set of all symmetric functions homogeneous of degree n. Then the ring of
symmetric functions is

Λ =
⊕
n>0

Λn.

Example 14. The power series

x21x2 + x21x3 + x21x4 + · · ·+ x1x
2
2 + x22x3 + x22x4 + · · · ∈ Λ3.

Definition 15. Similarly, f is quasisymmetric if for all integers k > 0, all compositions
(α1, . . . , αk), and all increasing lists i1 < i2 < · · · < ik of distinct positive integers,

f |xα11 x
α2
2 ···x

αk
k

= f |xα1i1 x
α2
i2
···xαkik

.

Let QSymn be the set of all quasisymmetric functions homogeneous of degree n. Then
the ring of quasisymmetric functions is

QSym =
⊕
n>0

QSymn.

Example 16. Both of the following power series are quasisymmetric functions in QSym3.

x21x2 + x21x3 + · · ·+ x22x3 + x22x4 + · · ·

x1x
2
2 + x1x

2
3 + · · ·+ x2x

2
3 + x2x

2
4 + · · ·

Bases for Λn are generally indexed by partitions of n, while bases for QSymn are indexed
by strong compositions of n (or subsets of [n− 1]).

Definition 17. Let I = (i1, i2, . . . , ik) be a sequence of nonnegative integers. Then the
descent set of I is

des(I) = {j | ij > ij+1}.

Definition 18. Let NSym be the subset of C[[x1,x2, . . . ]] of all power series f of bounded
total degree with the following property: for all integers k > 0 and all sequences of positive
integers I = (i1, . . . , ik) and J = (j1, . . . , jk) such that des(I) = des(J),

f |xi1 ···xik = f |xj1 ···xjk .

the electronic journal of combinatorics 32(1) (2025), #P1.53 6



Example 19. We give the all the terms below which involve only the variables x1 and
x2 for a particular element of NSym3 :

x3
1 + x2

1x2 − x1x2x1 + x1x
2
2 + 2x2x

2
1 + 2x2x1x2 − x2

2x1 + x3
2 + · · ·

Below, in Corollary 51, we will show that the set of noncommutative elementary symmet-
ric functions freely generate this space, giving a concrete realization of the space originally
defined more abstractly by Gelfand et al. in [7]. Although this characterization is imme-
diate from work in [7], as we will see below, the literature does not appear to include an
explicit characterization of the overall space as above to our knowledge.

Remark. For any n ∈ N, the elements of NSym are constant under the standard Lascoux-
Schützenberger involution paired parenthesis action of Sn, studied for example by Lascoux
and Leclerc in [15], and thus satisfy a reasonable analogue of being “symmetric.”

This well-known algorithm acts on words and specifies a way to exchange the number
of i’s and (i+ 1)’s in a word. In particular, if there are a i’s and b (i+ 1)’s in a word w,
θi acts on w by first picturing each (i + 1) as a left parenthesis ‘(’, and each i as a right
parenthesis ‘)’. If k pairs of parentheses can be paired, they correspond to k i’s and k
(i+1)’s which remain unchanged in θi(w), while the remaining a−k i’s must occur to the
left of the b−k unpaired (i+1)’s in w. In these a+b−2k spaces, place b−k i’s followed by
a− k (i+ 1)’s. This action forms an involution, and satisfies the Moore-Coxeter relations
of the symmetric group. When one starts with the word of a semistandard Young tableau,
the image under the action is also the word of a semistandard Young tableau. Thus the
action can be used to show directly that the (skew) Schur functions, defined using the
semistandard Young tableaux definition, are symmetric.

See [7], Proposition 7.17 for the proof that elements of NSym are fixed by the action,
although it is immediate from the fact that one of the bases of NSym is a noncommutative
version of a subset of the skew Schur functions sometimes referred to as the ribbon Schur
functions. (See just after Example 44.) Not all power series f of bounded total degree in
C[[x1,x2, . . . ]] which are closed under this action are in NSym, however, so one should
be careful not to take this as a definition. (See Example 20 below.)

It is also worth noting that the noncommutative symmetric functions defined here are
completely distinct from “Symmetric Functions in Noncommuting Variables,” developed
more recently, which are defined by being fixed under the more standard Sn action which
simply permutes the indices of the noncommutative variables. (See Rosas and Sagan [22].)

Example 20. For example, f =
∑

i>1 x
2
i is fixed under the standard action of the sym-

metric group, and thus is a symmetric function in noncommuting variables. It is also
closed under the paired parentheses action, and yet, it is not in NSym, since, for exam-
ple the coefficient of x2

1 is not equal to the coefficient of x1x2 in f , although the descent
set of (1, 1) is the same as the descent set of (1, 2).

4 Bases of Λn and QSymn

There are a number of well-known bases for each of the three spaces defined above. In
this section, we will briefly cover some of the relevant ones for Λn and QSymn, before
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moving on to a more careful study of the bases of NSymn and their relations.

4.1 Well-Known Bases of Λn

Definition 21. For λ ` n, the monomial symmetric function (associated to λ ` n)
is

mλ =
∑

α|=w|λ|
sort(α)=λ

xα.

The monomial symmetric function associated to λ ` n is minimal in the following sense:
if f ∈ Λ such that f |xλ = 1, then the support of f contains the support of mλ, i.e.,

{α |=w n : f |xα 6= 0} ⊇ {α |=w n : mλ|xα 6= 0}.

It is easy to see {mλ}λ`n is a basis of Λn.

Definition 22. For n ∈ N, the nth elementary symmetric function is

en =
∑

16i1<i2<···<in

xi1xi2 · · ·xin ,

with e0 = 1. Then, the elementary symmetric function associated to the partition
λ = (λ1, λ2, . . . , λ`(λ)) is defined multiplicatively: eλ = eλ1eλ2 · · · eλ`(λ) . The Fundamental
Theorem of Symmetric Polynomials gives that {eλ}λ`n is a basis for Λn.

Definition 23. For n ∈ N, the (nth) complete homogeneous symmetric function is

hn =
∑

16i16i26···6in

xi1xi2 · · ·xin ,

with h0 = 1. The complete homogeneous symmetric functions are also defined multiplica-
tively: hλ = hλ1hλ2 · · ·hλ`(λ) . The set {hλ}λ`n is also a basis for Λn.

Definition 24. For n ∈ N, the nth power sum symmetric function is

pn =
∑
i∈Z+

xni ,

with p0 = 1. Once more, pλ = pλ1pλ2 · · · pλ`(λ) , and {pλ}λ`n is a basis for Λn.

One additional important basis of Λ, the Schur functions, can be defined using semistan-
dard Young tableaux, which we describe next.

Definition 25. The Young diagram of shape λ = (λ1, λ2, . . . , λ`(λ)) ` n is the
left-justified array of n boxes with λi boxes in its ith row from the bottom (adopting
French notation), 1 6 i 6 `(λ). In particular, we assume the box in the ith row and jth

column has its upper-right-hand corner at the integer lattice point (i, j).
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Definition 26. A filling of a Young diagram of shape λ ` n is one where each of its boxes
is filled with a positive integer. The resulting filled Young diagram is called a Young
tableau.

If in Young tableau T the integers are both weakly increasing in the rows from left-
to-right and strictly increasing in the columns from bottom-to-top, we call T a semi-
standard Young tableau. The set of all semi-standard Young tableaux of shape λ is
denoted SSYT(λ). A standard Young tableau is a semistandard Young tableau in
which each of the integers {1, 2, . . . , |λ|} occurs exactly once.

Definition 27. The type or content of a Young tableau T , type(T ), is the composition
(m1,m2, . . . ,mn) |=w |λ| where mi is the number of i’s appearing in T . So in Example 30
below, type(T ) = (2, 2, 3).

We can now define the final well-known basis of Λ, which interpolates between the ele-
mentary and complete homogeneous symmetric functions.

Definition 28. The Schur function associated to partition λ ` n is

sλ =
∑

T∈SSYT(λ)

xtype(T ).

Definition 29. Let λ be a partition of n. If the Young diagram of shape λ is flipped
about the southwest-northeast diagonal, the resulting Young diagram is of shape λt, the
transpose or conjugate partition of λ. Note that (λt)t = λ.

Example 30. The following Young tableau is semistandard, but not standard.

T = 3

2 3

1 1 2 3

∈ SSYT(4, 2, 1).

The conjugate partition of λ = (4, 2, 1) is λt = (3, 2, 1, 1).

4.1.1 Involutions and the Hall inner product on Λ

Since 〈en〉n∈N generates all of Λ, the following defines a homomorphism on Λ:

Definition 31. Define the endomorphism ω : Λ→ Λ by setting ω(en) = hn for all n ∈ N.

Then we have the following well-known theorem:

Theorem 32. For any partition λ,

ω(eλ) = hλ;

ω(hλ) = eλ;

ω(pλ) = (−1)|λ|−`(λ)pλ;

ω(sλ) = sλt .
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By the first two lines, ω is an involution, and since {mλ} is a basis of Λ, the set {ω(mλ)}
must form a basis of Λ as well.

Definition 33. The forgotten symmetric function associated to λ is defined to be
fλ = ω(mλ).

1 Generally, the forgotten symmetric functions are defined indirectly via the
map ω or the Hall inner product and duality.

Definition 34. The Hall inner product, 〈·, ·〉 : Λ× Λ→ C, is determined by

〈mλ, hµ〉 = 1λ=µ. (1)

Theorem 35. The forgotten symmetric functions are dual to the elementary symmetric
functions, and the Schur functions form an orthonormal basis of Λ under the Hall inner
product. That is,

〈fλ, eµ〉 = 〈sλ, sµ〉 = 1λ=µ.

Furthermore, it is also true that

〈pλ, pµ〉 = zλ · 1λ=µ,

where

zλ =

`(λ)∏
i=1

imi(λ)mi(λ)!

is the well-known combinatorial coefficient that measures the size of the centralizer of any
symmetric group element having cycle type λ.

It can be also be shown that ω is an isometry with respect to the Hall inner product, i.e.,
for any g, g′ ∈ Λ,

〈ω(g), ω(g′)〉 = 〈g, g′〉.

Figure 1 on the next page summarizes the results we have provided pertaining to the
relationships between the various bases of Λ under ω and 〈·, ·〉.

4.2 Well-Known Bases of QSym

As mentioned above, bases for QSym are indexed by strong compositions of n or subsets
of [n− 1]. A first basis for QSym is the following:

Definition 36. For any strong composition α, the monomial quasisymmetric func-
tion (associated to α |= n) is

Mα =
∑

β|=w|α|
strong(β)=α

xβ.

1The forgotten symmetric functions are sometimes defined by fλ = (−1)|λ|ω(mλ). (See Doubilet [4]).
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sλ

mλ

fλ

hλ

eλ

pλ

ωω

ω(pλ) = (−1)|λ|−`(λ)pλ

ω(sλ) = sλt

〈pλ, pµ〉 = 1λ=µ · zλ

〈sλ, sµ〉 = 1λ=µ

〈mλ, hµ〉 = 1λ=µ

〈fλ, eµ〉 = 1λ=µ

Figure 1: Images of ω and Self-Duality of Λ

The monomial quasisymmetric function associated to α |= n is minimal in the following
sense: if f ∈ QSym such that f |xα = 1, then the support of f contains the support of
Mα, i.e.,

{β |=w n : f |xβ 6= 0} ⊇ {β |=w n : Mα|xβ 6= 0}.

For any λ ` n,

mλ =
∑
α|=n

sort(α)=λ

Mα.

Another well-known basis of QSymn is Gessel’s fundamental basis, so called since
it was defined by Gessel in [8]. It is one of several bases of quasisymmetric functions
considered a generalization of the Schur symmetric function basis.

Definition 37. For α |= n, the Gessel Fundamental quasisymmetric function
associated to α is

Fα =
∑

i16i26···6in
k∈set(α)⇒ik<ik+1

xi1xi2 · · ·xin .

There are two other commonly studied quasisymmetric analogues of the Schur functions:
the quasisymmetric Schur functions, first defined by Haglund et al. in [10], and the dual
immaculate functions, defined by duality to the immaculate noncommutative symmetric
functions by Berg et al. in [3]. Images of these bases under the automorphisms below are
also sometimes studied. We also mention for completeness that there are two quasisym-
metric analogues of the power sums, which were first defined indirectly as dual bases, as
described in the next section.
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There are not one, but three natural analogues of ω defined on QSym. As in [16], define
ρ, ψ, ω : QSym→ QSym, all automorphisms, by

ρ(Fα) = Fαr ; (2)

ψ(Fα) = Fαc ; (3)

ω(Fα) = Fαt . (4)

The names for these maps are not at all uniform in the literature, so here, as elsewhere,
we follow the convention of [16].

5 Bases for NSym

We begin with the basis for the space with the minimal number of terms, the noncom-
mutative ribbon Schur functions.

Definition 38. The noncommutative ribbon Schur function associated to α |= n is

rα =
∑

I=(i1,i2,...,in)∈(Z+)n s.t.
des(I)=set(α)

xi1xi2 · · ·xin .

Theorem 39 ([7], section 4.4). {rα}α|=n is a basis for NSymn.

Proof. It is clear from the definition of the space that NSym is the span of the noncommu-
tative ribbon Schur functions. To see they are independent, note that for every sequence
of positive integers I = (i1, i2, . . . , in), the monomial xi1xi2 · · ·xin occurs uniquely with
positive coefficient in exactly one rα; in particular, where α = set−1(des(I)).

The following theorem also follows easily from the definition.

Theorem 40. For strong compositions α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βk),

rαrβ = r(α1,...,αn,β1,...,βk) + r(α1,...,αn−1,αn+β1,β2,...,βk)

The noncommutative ribbon Schur function rα is a minimal noncommutive symmetric
function in the following sense: if f ∈ NSym such that f |(x`(α))α1 (x`(α)−1)

α2 ···(x1)
α`(α) = 1,

then the support of f contains the support of rα. That is, for all n,

{(i1, i2, . . . , in) : f |xi1xi2 ···xin 6= 0} ⊇ {(i1, i2, . . . , in) : rα|xi1xi2 ···xin 6= 0}.

While the noncommutative ribbon Schur functions share a minimality condition with the
monomial symmetric functions and the monomial quasisymmetric functions, they, like the
fundamental quasisymmetric functions, are usually considered an analogue of the Schur
functions for a number of reasons.
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Definition 41. A skew Young diagram associated to λ/µ is realized by taking a
Young diagram, say of shape λ, and removing µ, a Young diagram sitting inside it. If
the resulting skew Young diagram is connected and contains no 2× 2 boxes, it is called a
ribbon Young diagram.

Example 42. The skew Young diagram (3, 2, 1)/(1) is a ribbon Young diagram since it
has no 2× 2 boxes, as seen below.

=

To stay consistent with [7], say that this is the ribbon of shape (1, 2, 2), the lengths of
the resulting rows when read from top-to-bottom.

It is from these combinatorial objects that the basis above gets its name. If the
noncommutative ribbon Schur function rα is expanded in the noncommuting variables x,
the indices appearing on the monomials appearing (left-to-right) in rα fill in ribbons of
shape α to yield ribbon tableaux of shape α.

Definition 43. A ribbon tableau of shape α is a filling of the ribbon of shape α
with positive integers that weakly increase across rows, left-to-right, and increase along
columns, bottom-to-top. That is, ribbon tableaux are just semistandard Young tableaux
of ribbon shape.

Example 44. Let α = (1, 2, 2). Then one of infinitely many ribbon tableaux of shape α
is the one corresponding to the monomial x3x1x2x

2
1, depicted below.

3
1 2

1 1

Definition 45. Let χ : C[[x1,x2, · · · ]]→ C[[x1, x2, · · · ]] be the “forgetful” function that
sends the noncommutative variables to their commutative analogues: i.e. χ(xi) = xi.

Then χ(rα) = rα, the commutative ribbon function α; it is also the skew Schur
function of ribbon shape α. The set {rα}α|=n forms a spanning set of Λn, since for λ ` n,
hλ =

∑
set(α)⊆set(λ) rα and thus χ(NSym) = Λ.

With a generalization of the Hall inner product defined in [7], QSym and NSym are
dual spaces. Define 〈·, ·〉 : QSym×NSym→ C, where

〈Fα, rβ〉 = 1α=β. (5)

The combined results of Gessel in [8] and Malvenuto and Reutenauer in [18] imply
that QSym and NSym are dual with respect to this inner product, as first observed in
[7].

There are three natural involutions f on NSym that when composed with the forgetful
map χ give χ ◦ f = ω ◦ χ that correspond to the three involutions on QSym mentioned
above.
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Definition 46. Let ρ,ψ,ω : NSym→ NSym be linear transformations that satisfy the
following:

ρ(rα) = rαr (6)

ψ(rα) = rαc (7)

ω(rα) = rαt (8)

Here again we adopt the notation as in [16] and we note, just as they did, that ψ is an
automorphism, and that ρ and ω are anti-automorphisms. The following theorem follows
easily from Theorem 40 and the above definitions.

Theorem 47. For any strong compositions α and β,

ρ(rαrβ) = ρ(rβ)ρ(rα);

ψ(rαrβ) = ψ(rα)ψ(rβ);

ω(rαrβ) = ω(rβ)ω(rα).

For any f ∈ QSym and g ∈ NSym,

〈f, g〉 = 〈ρ(f),ρ(g)〉 = 〈ψ(f),ψ(g)〉 = 〈ω(f),ω(g)〉. (9)

Definition 48. Let e0 = 1, h0 = 1, and for any positive integer n, define

en =
∑

i1>i2>···>in>1

xi1xi2 · · ·xin ; hn =
∑

16i16i26···6in

xi1xi2 · · ·xin . (10)

Then en is the nth noncommutative elementary symmetric function and hn is the
nth noncommutative homogeneous complete symmetric function. For any α |= n,
let

eα = eα1eα2 · · · eα`(α) and hα = hα1hα2 · · ·hα`(α) .

It is easy to see the following from the definitions of hn, en, and rα.

Theorem 49. For all n > 0, and any α |= n,

χ(en) = en, χ(hn) = hn, and χ(rα) = rα.

Theorem 50 ([7], section 4.4 and 4.7).

hα =
∑
β�α

rβ rα =
∑
β�α

(−1)`(α)−`(β)hβ (11)

eα =
∑
βc�α

rβ rα =
∑
β�αc

(−1)`(α
c)−`(β)eβ (12)
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Proof. For α |= n, and any I = (i1, i2, . . . , in) ∈ Zn,

hα|xi1xi2 ···xin = 1set(α)⊇des(I),

giving the left-hand side of (11). Similarly,

eα|xi1xi2 ···xin = 1set(α)c⊆des(I),

giving the left-hand side of (12). Then, as observed in [7] the equations on the right are
an application of Möbius Inversion, applied to the Boolean algebra.

Corollary 51 ([7], p. 16). Both {eα}α|=n and {hα}α|=n are bases of NSymn. In partic-
ular, NSym is generated freely by {en}n∈N or {hn}n∈N.

Thus Definition 18 above, which gives NSym as a subspace of C[[x1,x2, · · · ]], defines
a space which is isomorphic to the more abstractly defined space of Gelfand et al. as
described in Definition 2, justifying the use of the same name. Moreover,

Corollary 52 ([7], p. 15 and p. 19). For any strong compositions α and β,

ρ(hα) = hαr , ψ(hα) = eα, ω(hα) = eαr , (13)

and

〈Mα,hβ〉 = 1α=β. (14)

Theorem 53 ([7], Section 4.1). For n > 1, and any β |= n,

hβ =
∑
α�β

(−1)(`(α)−|β|)eα.

Proof.∑
α�β

(−1)(`(α)−|β|)eα =
∑
α�βc

(−1)(`(α)−1)eαc α→ αc

=
∑
α�βc

(−1)(`(α)−1)
∑
γ�α

rγ by (12)

=
∑
γ|=|β|

rγ
∑
α�γ
α�βc

(−1)(`(α)−1)

=
∑
γ|=|β|

rγ
∑

set(α)⊆set(γ)∩set(β)c
(−1)| set(α))|

=
∑
γ�β

rγ by Möbius function properties

= hβ. by (11)

The second-to-last equality follows from properties of the Möbius function on the Boolean
algebra, since the sum will be nonzero unless set(γ) ∩ set(β)c = ∅.
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As in Λ, the generating series of the noncommutative elementary and complete homoge-
neous symmetric functions are particularly nice:

E(t) =
∑
n∈N

ent
n =

←∏
i>1

(1 + xit) and H(t) =
∑
n∈N

hnt
n =

→∏
i>1

1

(1− xit)
. (15)

Here, we must take t to be a formal variable which commutes with xi for all i. It is easy
to see that, as in the commutative case,

E(−t)H(t) = 1 = H(t)E(−t). (16)

This is taken as the defining relation for the noncommutative homogeneous basis in [7].
As observed there, with this relation it is immediate from comparing the coefficients of tn

in (16) that

Theorem 54 ([7], Proposition 3.3). For any positive integer n,

n∑
i=0

(−1)n−ieihn−i = 0 =
n∑
i=0

(−1)n−ihien−i. (17)

Last, we turn our attention to the noncommutative power sums. The reader expecting a
similarly simple definition of pn, analogous to that of en and hn, will be disappointed. In
particular, as mentioned above for k > 1,∑

i>1

xki /∈ NSym.

Thus, if one wishes to define pn ∈ NSym such that χ(pn) = pn, it must be that pn has
both positive and negative terms, when written as a sum of monomials. There is not a
unique such pn in NSym; Gelfand et al. in [7] define two noncommutative analogues of the
power sums, φn and ψn. While they originally define these bases based on their relation
to the noncommutative complete homogeneous basis, we begin with their expansion in
the noncommutative ribbon basis, since this allows us to easily read off their definition in
terms of monomials.

Definition 55. Let ψ0 = 1, φ0 = 1, and for n > 1, let

ψn =
∑

I=(i1,...,in)∈An

(−1)k(I)−1xi1xi2 · · ·xin (18)

=
n−1∑
k=0

(−1)kr1k(n−k) (19)

and

φn =
∑

I=(i1,i2,...,in)∈(Z+)n

(−1)|des(I)|(
n−1
|des(I)|

) xi1xi2 · · ·xin (20)

=
∑
α|=n

(−1)`(α)−1(
n−1
`(α)−1

) rα, (21)
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where

An =
{

(i1, . . . , in) ∈ (Z+)n
∣∣ ∃k s.t.

1 6 k 6 n and i1 > i2 > · · · > ik−1 > ik 6 ik+1 6 · · · 6 in} ,

and where k(I) is the unique k satisfying the condition required for I = (i1, . . . , in) ∈ An.
For any strong composition α = (α1, α2, . . . ), ψα = ψα1

ψα2
· · · and φα = φα1

φα2
· · · .

Then {ψα}α|=n and {φα}α|=n are the noncommutative power sums of the 1st and
2nd kinds (respectively).

Example 56.

ψ3 = x3
1 + x2

1x2 + x2
1x3 + x1x

2
2 + x1x2x3 + x1x

2
3 − x2x

2
1 − x2x1x2

− x2x1x3 + x3
2 + x2

2x3 + x2x
2
3 − x3x

2
1 − x3x1x2 − x3x1x3

+ x3x2x1 − x3x
2
2 − x3x2x3 + x3

3 + · · ·

and

φ3 = x3
1 + x2

1x2 + x2
1x3 −

1

2
x1x2x1 + x1x

2
2 + x1x2x3 −

1

2
x1x3x1 −

1

2
x1x3x2 + x1x

2
3

− 1

2
x2x

2
1 −

1

2
x2x1x2 −

1

2
x2x1x3 −

1

2
x2
2x1 + x3

2 + x2
2x3 −

1

2
x2x3x1

− 1

2
x2x3x2 + x2x

2
3 −

1

2
x3x

2
1 −

1

2
x3x1x2 −

1

2
x3x1x3 + x3x2x1

− 1

2
x3x

2
2 −

1

2
x3x2x3 −

1

2
x2
3x1 −

1

2
x2
3x2 + x3

3 + · · ·

Several of the places in which symmetric power sums pay a key role do not have
analogues with any of the noncommutative power sums. Their relation to other bases in
terms of generating functions is less straightforward; see the discussion after the proof of
Theorem 61 below. From an algebraic perspective, one important role of the symmetric
power sum basis is as they appear in the definition of the Frobenius character map (as
is explained, for example, in [23]), where they encode the characters of representations of
the symmetric group in Λ. There is a natural analogue of the Frobenius character map
which encodes representations of the 0-Hecke algebra using NSym, as explained in [13].
However, there is no similar character defined on representations of the 0-Hecke algebra, so
the map is defined quite differently, and none of the noncommutative power sums appear.
Similarly, the symmetric power sums play an important role in defining or simplifying
plethysm in the commuting variables, but are not present in the noncommutative story
in the same way as explored in [12].

Using the standard inner product, Definition 55 indirectly defines bases of QSym dual
to the two kinds of noncommutative power sum symmetric functions. These quasisym-
metric power sums, {ψα} and {φα}, were explored in detail by Ballantine et al. in [1],
and satisfy

〈ψα,ψβ〉 = 〈φα,φβ〉 = zα · 1α=β.
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Here, and elsewhere, for any strong composition α, zα = zsort(α), the coefficient seen before.
While the images under the remaining involutions are not as straightforward, it is easy

to see from the expansions of the noncommutative power sums of the first and second
kinds in the noncommutative ribbon basis that we have the following theorem.

Theorem 57 ([7], Section 3). For any strong composition α,

ω(ψα) = (−1)|α|−`(α)ψαr ; (22)

ω(φα) = (−1)|α|−`(α)φαr ; (23)

ψ(φα) = (−1)|α|−`(α)φα; (24)

ρ(φα) = φαr . (25)

These allow us to focus only on change of basis going forward in the noncommutative
complete symmetric function basis, since expansion in the elementary symmetric functions
will follow from applying the ω map to each side.

Theorem 58 ([7], Section 4.2). For n a postive integer,

ψn =
∑
β|=n

(−1)1+`(β)β`(β)hβ.

Proof.

ψn =
n−1∑
k=0

(−1)kr1k(n−k) by Definition 55

=
n−1∑
k=0

∑
β�1k(n−k)

(−1)1+`(β)hβ by (11)

=
∑
β|=n

(−1)1+`(β)hβ

n−1∑
k=0

1β�(1k,n−k)

=
∑
β|=n

(−1)1+`(β)hβ

n−1∑
k=0

1β`(β)>n−k

=
∑
β|=n

(−1)1+`(β)β`(β)hβ.

Before giving an analogous result for the φn, we first need the following lemma.
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Lemma 59. Let n and c be nonnegative integers. Then,

n∑
k=0

(
n
k

)(
n+c
k+c

) =
n+ c+ 1

c+ 1
.

Proof. By induction on n. The base case n = 0 is trivially true. Then

n+1∑
k=0

(
n+1
k

)(
n+1+c
k+c

) = 1 +
n∑
k=0

(
n+1

n+1−k

) (
n
k

)(
n+1+c
n+1−k

) (
n+c
k+c

)
= 1 +

(
n+ 1

n+ 1 + c

) n∑
k=0

(
n
k

)(
n+c
k+c

)
I.H.
= 1 +

(
n+ 1

n+ 1 + c

)(
n+ 1 + c

c+ 1

)
=

(n+ 1) + c+ 1

c+ 1
.

Theorem 60 ([7], Section 4.3). If n is a positive integer,

φn =
∑
β|=n

(−1)`(β)+1 n

`(β)
hβ.

Proof.

φn =
∑
α|=n

(−1)`(α)−1(
n−1
`(α)−1

) rα by Definition 55

=
∑
α|=n

(−1)`(α)−1(
n−1
`(α)−1

) ∑
β�α

(−1)`(α)−`(β)hβ by (11)

=
∑
β|=n

hβ(−1)`(β)+1
∑
α�β

1(
n−1
`(α)−1

)
=
∑
β|=n

hβ(−1)`(β)+1

n∑
k=1

1(
n−1
k−1

)∑
α�β

1`(α)=k

=
∑
β|=n

hβ(−1)`(β)+1

n∑
k=`(β)

(
n−`(β)
k−`(β)

)(
n−1
k−1

)
=
∑
β|=n

hβ(−1)`(β)+1

n−`(β)∑
k=0

(
n−`(β)

k

)(
n−1

k+`(β)−1

)
=
∑
β|=n

(−1)`(β)+1 n

`(β)
hβ. by Lemma 59
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Theorem 61 ([7], Proposition 3.3). For n > 1,

n−1∑
i=0

hiψn−i = nhn.

Proof.

n−1∑
i=0

hiψn−i = ψn +
n−1∑
i=1

hiψn−i

=
∑
β|=n

(−1)1+`(β)β`(β)hβ +
n−1∑
i=1

hi
∑
β|=n−i

(−1)1+`(β)β`(β)hβ

=
∑
β|=n

(−1)1+`(β)β`(β)hβ +
∑
β|=n
`(β)>2

(−1)(`(β))β`(β)hβ

= nhn.

There are other equally natural choices for an analogue of the power sums. Gelfand
et al. chose these based on two generating series relations on the symmetric functions,
whose analogues below are each satisfied by only one of the noncommutative power sum
symmetric functions.

Theorem 62 ([7], Section 3.1). Let

ψ(t) =
∑
n∈Z+

ψn

n
tn and φ(t) =

∑
n∈Z+

φn
n
tn.

Then

d

dt
(H(t)) = H(t)

d

dt
ψ(t), (26)

and

H(t) = exp(φ(t)), (27)

or equivalently

φ(t) = log

(
1 +

∑
k>1

hkt
k

)
. (28)

Proof. As explained briefly in [7], Equation (26) follows immediately from Theorem 61
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and equation (27) is only slightly less straightforward:

log

(
1 +

∑
k>1

hkt
k

)
=
∞∑
n=1

(−1)n−1

n

(∑
k>1

hkt
k

)n

=
∞∑
n=1

(−1)n−1

n

∑
`(α)=n

hα1hα2 · · ·hαnt
∑
i αi

=
∞∑
s=1

ts

s

∑
β|=s

(−1)`(β)+1 s

`(β)
hβ

=
∞∑
s=1

ts

s
φs,

where the last equality follows from Theorem 60.

Note that while the analogous differential equation in commuting variables,

d

dt
(H(t)) = H(t)P (t),

defines a unique basis of power sums from the basis of homogeneous complete symmetric
functions, there are many equivalent ways to write the same relationship that yield distinct
noncommutative analogues. (To see one additional easy example, reversing the order of
the right-hand side of (26) would yield a different basis than {ψn}, which Gelfand et al.
do not name, as the result is sufficiently similar as to not be interesting.)

Corollary 63 ([7], Section 3.1). For n a nonnegative integer,

χ(ψn) = pn and χ(φn) = pn.

Theorem 64 ([7], Section 4.2). For n a nonnegative integer,

hn =
∑
β|=n

1∏`(β)
i=1

∑i
j=1 βj

ψβ.

Proof. By strong induction on n, with the base case of n = 0 being trivial:

hn =
1

n

n−1∑
i=0

hiψn−i

=
1

n

n−1∑
i=0

∑
β|=i

1∏`(β)
k=1

∑k
j=1 βj

ψβψn−i

=
∑
γ|=n

1∏`(γ)
i=1

∑i
j=1 γj

ψγ,

where γ = (β, n− i).
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Theorem 65 ([7], Section 4.3). For n a nonnegative integer,

hn =
∑
β|=n

1

`(β)!
∏`(β)

i=1 βi
φβ.

Proof. By induction on n, with the base case of n = 0 being trivial. We simultaneously
prove both the statement, and its image under the ω map:

en =
∑
β|=n

1

`(β)!
∏`(β)

i=1 βi
(−1)|β|−`(β)φβ.

Then

hn =
n−1∑
i=0

(−1)n−i−1hien−i by (17)

=
n−1∑
i=0

(−1)n−i−1
∑
β|=i

(
1

`(β)!
∏`(β)

i=1 βi
φβ

)
 ∑
γ|=n−i

1

`(γ)!
∏`(γ)

i=1 γi
(−1)|γ|−`(γ)φγ

 by I.H.

=
∑
δ|=n

φδ
1

`(δ)!
∏`(δ)

i=1 δi

`(δ)∑
j=1

(−1)j−1
(
`(δ)

j

)
δ = (β, γ) and j = `(β)

=
∑
δ|=n

1

`(δ)!
∏`(δ)

i=1 δi
φδ. by Binomial Theorem

Applying the ω map again completes the induction.

Corollary 66 (Gelfand et al. [7]). Both {ψα}α|=n and {φα}α|=n are bases of NSymn.

A number of the reoccurring statistics above are given names in [7] and repeated here.
They need to be generalized to cover extending the above results to the multiplicative
bases.

Definition 67. Let β = (β1, β2, . . . , β`(β)) be a strong composition. Denote the last part
of β by

lp(β) = β`(β).

Also say β’s product of partial sums, product, and special product, respectively,
are

πu(β) =

`(β)∏
i=1

i∑
k=1

βk = β1(β1 + β2) · · · (β1 + β2 + · · ·+ β`(β)); (29)

∏
β = β1β2 · · · β`(β); (30)

sp(β) = `(β)!
∏

β. (31)
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Recall that if β � α, β(i) is the subcomposition of β which sums to αi for i = 1, . . . , `(α).
Extend the above definitions to refinements β � α, with |β(i)| = αi, i ∈ [`(α)]:

lp(β, α) =

`(α)∏
i=1

lp(β(i)) (32)

`(β, α) =

`(α)∏
i=1

`(β(i)) (33)

πu(β, α) =

`(α)∏
i=1

πu(β
(i)) (34)

sp(β, α) =

`(α)∏
i=1

sp(β(i)) (35)

In [7], all of the following change-of-basis equations were established.

Theorem 68. For α |= n,

hα =
∑
β�α

(−1)|α|−`(β)eβ; eα =
∑
β�α

(−1)|α|−`(β)hβ (36)

hα =
∑
β�α

rβ rα =
∑
β�α

(−1)`(α)−`(β)hβ (37)

eα =
∑
βt�αr

rβ rα =
∑
βr�αt

(−1)`(α
t)−`(β)eβ (38)

hα =
∑
β�α

1

πu(β, α)
ψβ ψα =

∑
β�α

(−1)`(β)−`(α) lp(β, α)hβ (39)

hα =
∑
β�α

1

sp(β, α)
φβ φα =

∑
β�α

(−1)`(β)−`(α)
∏
α

`(β, α)
hβ (40)

eα =
∑
β�α

(−1)|α|−`(β)

πu(βr, αr)
ψβ ψα =

∑
β�α

(−1)|α|−`(β) lp(βr, αr)eβ (41)

eα =
∑
β�α

(−1)|α|−`(β)

sp(β, α)
φβ φα =

∑
β�α

(−1)|α|−`(β)
∏
α

`(β, α)
eβ (42)

Proof. Line (36) comes from Theorem 53 and an application of the ψ map (see line (13)).
Lines (37) and (38) were shown in Theorem 50. The remaining lines follow from Theorems
60, 64, and 65, the multiplicative definitions of hα, eα, φα, and ψα, and applications of
the ω map (see Theorem 57).

There are two remaining explicit change-of-basis formulas in [7], both of which follow from
the product formula for rα, Theorem 40 above. We need the following definition.
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Definition 69. Let α and β be strong compositions of n. Let γ = set−1(set(α)∪ set(β)).
Then γ � β, so we can let γ = (γ(1), γ(2), . . . , γ(k)) give the subsequences such that
|γ(j)| = βj. Then the ribbon decomposition of α with respect to β is

rd(α, β) = (γ(1), γ(2), · · · , γ(k)).

Furthermore, let

psr(α, β) = (−1)|γ
(1)|−1(−1)|γ

(2)|−1 · · · (−1)|γ
(k)|−1

1γ(1) is a hook 1γ(2) is a hook · · ·1γ(k) is a hook

and

phr(α, β) =
(−1)`(γ

(1))−1(
n−1

`(γ(1))−1

) · · · (−1)`(γ
(k))−1(

n−1
`(γ(k))−1

) .

Example 70. Let α = (1, 3, 2, 4, 4) and β = (4, 3, 5, 2). Then γ = (1, 3, 2, 1, 3, 2, 2) and
we have a ribbon decomposition of α with respect to β is

rd(α, β) = ((1, 3), (2, 1), (3, 2), (2))

As first observed by Gelfand et al., it is easy to see from Definition 55 that

Theorem 71 ([7], Prop. 4.23 and Prop. 4.27). Let α be a strong composition. Then

ψα =
∑
β|=n

psr(β, α)rα and φα =
∑
β|=n

phr(β, α)rα.

Remark. Omitted here is the work in [7] towards change of basis between φ and ψ, which
did not result in as nice of change-of-basis formulas. The interested reader should consult
Section 4.10 in [7], where there is a somewhat more complex formula for φn in terms of
{ψα}α|=n.

Note. In [16], the authors mention that {ω(Mα)} yields the dual basis to {eα}. For our
purposes later, it will be most natural to utilize ψ to define a quasisymmetric analogue
to the forgotten symmetric functions. While the result is not quite a dual to {eα}, the
resulting basis still restricts to the forgotten symmetric functions under the forgetful map.
Therefore, define the forgotten quasisymmetric function (associated to α) to be

Forα = ψ(Mα).

Then, by duality, the following corresponding equations can be established.

the electronic journal of combinatorics 32(1) (2025), #P1.53 24



Corollary 72. For α |= n,

Fα =
∑
β�α

Mβ Mα =
∑
β�α

(−1)`(β)−`(α)Fβ (43)

Fα =
∑
βr�αt

Forβ Forα =
∑
βt�αr

(−1)`(β
t)−`(α)Fβ (44)

Forα =
∑
β�α

(−1)`(α)−|β|Mβ Mα =
∑
β�α

(−1)`(α)−|β| Forβ . (45)

ψα = zα
∑
β�α

1

πu(α, β)
Mβ Mα =

∑
β�α

(−1)`(α)−`(β) lp(α, β)
ψβ
zβ

(46)

φα = zα
∑
β�α

1

sp(α, β)
Mβ Mα =

∑
β�α

(−1)`(α)−`(β)
∏
β

`(α, β)

φβ
zβ

(47)

ψα = zα
∑
β�α

(−1)|β|−`(α)

πu(αr, βr)
Forβ Forα =

∑
β�α

(−1)|β|−`(α) lp(αr, βr)
ψβ
zβ

(48)

φα = zα
∑
β�α

(−1)|β|−`(α)

sp(α, β)
Forβ Forα =

∑
β�α

(−1)|β|−`(α)
∏
β

`(α, β)

φβ
zβ

(49)

Figure 2, on the next page, gives a diagram analogous to Figure 1 depicting the results
from this section. Horizontal dashed segments indicate duality once again, unless marked
by an ‘r’ to denote reversing the order. Note the vertical edges labeled ψ and ψ indicate
that a basis element indexed by α is sent to its counterpart (also indexed by α) in the
other basis. All other edges, outside set braces, indicate basis elements are most often not
sent to their exact counterparts in the image set. Suppressed are four loops that would
be labeled with either ρ or ρ, as well as the combinatorial coefficients zα at the bottom,
for readability.

We end by discussing two ways in which a number of the change-of-basis results in Λ
have been condensed, and show analogous results in the dual bases of QSym and NSym.
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{Fα} {rα}

{hα}{Mα}

{ψα}
{φα}

{ψα}
{φα}

{Forα}
r {eα}

ψ ψω ω

ρ, ψ, ω ρ,ψ,ω

QSym NSym

Figure 2: Automorphisms and Duality of QSym and NSym

6 Relations between transition matrices

A well-known diagram in Macdonald [17], p.105, reproduced in Figure 3 (on the next
page), summarizes the relationship between various transitions matrices in Λ. Our next
goal is to reproduce a similar diagram for QSym and NSym.

Notation. Let b = {bβ}β∈B and a = {aα}α∈A be bases of some vector space V with ordered
indexing sets B and A, respectively. Then the change-of-basis matrix from {bβ}β∈B
to {aα}α∈A is the matrix M(a, b) for which

[aα]α∈A = M(a, b)[bβ]β∈B.

Here, [aα]α∈A and [bβ]β∈B denote the column vectors of all the basis elements aα and bβ,
respectively.

Let n be a positive integer and let p(n) be the number of integer partitions of n. Then,
in the context of Λn, Macdonald defines the following p(n)× p(n) matrices:

• K = M(s,m) = [Kλ,µ]λ,µ, where Kλ,µ is the Kostka number Kλ,µ, the number of
semi-standard Young tableaux of shape λ ` n and type µ;

• J = (1λ=µt)µ,λ;

• z = (zλ · 1λ=µ)µ,λ;

• L = L(p,m) = [Lλ,µ]λ,µ, where Lλ,µ =
∣∣∣{f : [`(λ)]→ Z+

∣∣∣ µ =
(∑

f(j)=i λj

)∞
i=1

}∣∣∣
.

(See the language of (6.9) in [17].)
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sλ

mλ

fλ

hλ

eλ

pλ

K−1JK KtJ
(
K−1

)t

K Kt

KtK

JK KtJ

KtK

z−1LtL

εz−1LtεL

Figure 3: Matrix Change-of-Basis Expressions in Λ

6.1 Change-of-Basis Expressions in NSym and QSym

In this subsection, we generalize the results on matrix equations in [17] to the spaces of
QSym and NSym. The proofs in this section are quite similar to the originals in [17],
with only minor additional complexity from the multiple isometries and power sum bases
in QSym and NSym.
It is helpful to recall three well-known facts about general change of basis, and two
additional facts pertaining to our involutions:

(I) For any bases {aα}, {bα}, and {dα} in a fixed vector space, M(d, b)M(b, a) = M(d, a);

(II) For any bases {aα}, and {bα}, M(b, a) = M(a, b)−1.

(III) For any bases {Aα}, {Bα} ⊂ QSym, and their respective dual bases {aα}, {bα} ⊂
NSym, M(A,B) = M(b,a)t.

(IV) For any bases {Aα}, {Bα} ⊂ QSym, M(A,B) = M(ψ(A), ψ(B)) = M(ρ(A), ρ(B)) =
M(ω(A), ω(B));

(V) For any bases {aα}, {bα} ⊂ NSym,M(a, b) = M(ψ(a),ψ(b)) = M(ρ(a),ρ(b)) =
M(ω(a),ω(b)).

With these at our disposal, we imitate the approach from Chapter 6 of [17].
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In the classical case, the matrix of Kostka numbers is defined, K = M(s,m). Now let n be
a positive integer and define the quasisymmetric analogue to K indexed by the 2n−1×2n−1

strong compositions of n (see (43)),

K = M(F,M) = (1β�α)α,β , (50)

where {Fα} and {Mα} are the Gessel Fundamental and monomial quasisymmetric function
bases, respectively. Reusing the same labels, similarly define the analogous matrices

• ε = (ε(α) · 1α=β)α,β =
(
(−1)|α|−`(α) · 1α=β

)
α,β

and

• z = (zα · 1α=β)α,β.

Then, by (II) and (III), and from lines (37) and (43), we immediately have the following
change-of-basis matrices as well.

K−1 = M(M,F ) =
(
(−1)`(β)−`(α) · 1β�α

)
α,β

= εKε (51)

(Kt)−1 = M(r,h) =
(
(−1)`(α)−`(β) · 1α�β

)
α,β

= εKtε (52)

Kt = M(h, r) = (1α�β)α,β (53)

Here, {rα} and {hα} are the noncommutative ribbon and noncommutative complete
homogeneous symmetric function bases of NSym, respectively. Note that in contrast to
Λ, we do not need to use a separate matrix K−1 (and note that ε−1 = ε).

Remark. There are several change-of-basis matrices in Λ that do not make sense with the
defined bases for NSym and QSym. For example M(h,m) is well defined, but {hα}α|=n
and {Mα}α|=n are in different spaces and thus there is no analogous matrix here. In
principle, one could define a new basis based on these change-of-basis results; for example,
we could define {mα}α|=n ⊂ NSym so that M(m,h) = KtK. The result is consistent (so
we can define m by its relation to any of the other bases and get the same basis), but a
bit algebraically uninteresting. Because of duality, this definition would yield

mα =
∑
β�α

(−1)`(β)−`(α)rβ,

which is not far from
Mα =

∑
β�α

(−1)`(β)−`(α)Fβ.

In some cases, where the hypothetical resulting basis is either r- (or F )-positive, it would
encode some representation via one of the two Frobenius maps of Krob and Thibon in
[13], which encode modules of the type A 0-Hecke Algebra. See [19] for additional details.

Remark. Once again, our definition of mα does not depend on which basis we “start
from” in Λ, as indicated by the three equalities above.

To continue, we would like to imitate the usage of the matrix J from Chapter 6 of
[17]. With three analogs to the involution ω to choose from, there are three natural
generalizations in each of QSym and NSym.
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Definition 73. Let Jf = (Jf )α,β = (1f(Fα)=Fβ)α,β for f = ψ, ρ, or ω.

Remark. Equivalently, Jf = (Jf )α,β = (1f(rα)=rβ)α,β for any of f = ψ,ρ, or ω. Further-
more, since all of the maps f under consideration are involutions, it follows that J2

f is the

identity matrix, and thus J−1f = Jf , just as we saw in the classical case. Since Jf is a
permutation matrix, it must also be orthogonal, and thus its own transpose, J tf = Jf .

As we alluded to when defining the forgotten quasisymmetric functions, it turns out
most useful to us will be Jψ, corresponding to the involutions ψ : QSym → QSym and
ψ : NSym → NSym, which respectively preserve the indexing on the relevant bases
(see Figure 3.1). In fact, if we choose to order the integer compositions which index these
matrices J with any ordering consistent with reverse lexicographic ordering, the matrix
Jψ has the particularly simple form with 1s on the anti diagonal and 0s elsewhere.

Our first result shows that each of the remaining permissible relations from the table
on page 101 of [17] generalize appropriately to the spaces of QSym (or NSym), with Jψ
in place of J .

Theorem 74. We have the following change-of-basis relations.

(i) M(M,For) = M(For,M) = εKεJψK;

(ii) M(For, F ) = εKεJψ;

(iii) M(F,For) = JψK;

(iv) M(h, e) = M(e,h) = KtJψεKtε;

(v) M(e, r) = KtJψ;

(vi) M(r, e) = JψεKtε.

Proof. Utilizing (52), (I), and (V), we can immediately establish (vi):

M(r, e) = M(ψr,ψe) = M(ψr,h) = M(ψr, r)M(r,h) = JψεKtε.

Then (II) gives (v):

M(e, r) = M(r, e)−1 =
(
Jψ(Kt)−1

)−1
= KtJψ.

With (52), (53), (vi), and (v), we may use (I) again to establish (iv):

M(e,h) = M(e, r)M(r,h)

= KtJψ(Kt)−1

= M(h, r)M(r, e)

= M(h, e).

Recalling that 〈Fα, rβ〉 = 〈Forα, eβ〉 = 1α=β, (III) along with (v) establish (iii):

M(F,For) = M(e, r)t = (KtJψ)t = JψK.
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By (II) once again, (iii), and (53), we get (ii):

M(For, F ) = M(F,For)−1 = (JψK)−1 = K−1Jψ = εKεJψ.

Lastly, with (50), (51), and (I) once again, we finally establish (i):

M(For,M) = M(For, F )M(F,M)

= K−1JψK
= M(M,F )M(F,For)

= M(M,For),

concluding the proof.

These provide all of the change-of-basis matrices between all the bases considered thus
far, excluding both kinds of power sums in each of QSym and NSym. We now aim to
generalize the results on the power sums in Λ.

Definition 75. Let

Lφ = M(φ,M); (54)

Lψ = M(ψ,M), (55)

where {φα} and {ψα} are the quasisymmetric power sum bases of the second and first
kinds, respectively.

The results of the following lemma can be found in [1], derived from [7], and can be seen
from Theorem 57 and duality.

Lemma 76. In QSym, for any α, both ψ(φα) = ε(α)φα and ω(ψα) = ε(α)ψαr .

The reversals on the bases appearing in the expansions (41) and (48) will force Jρ to
appear in several of the expressions involving the power sums of the first kind we give in
the next theorem, adding some complexity that does not appear in the classical case.

Theorem 77. In QSym,

M(φ,For) = εLφ and M(ψ,For) = εLψJρ;

M(φ, F ) = LφεKε and M(φ, F ) = LφεKε.

In NSym,
M(h,φ) = z−1Ltφ and M(h,ψ) = z−1Ltψ;

M(e,φ) = εz−1Ltφ and M(e,ψ) = εz−1JρLtψ;

M(r,φ) = z−1LφεKε and M(r,ψ) = z−1LψεKε.
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Proof. By Lemma 57 and (IV),

M(φ,For) = M(ψ(φ), ψ(For)) = M(εφ,M) = ε ·M(φ,M) = εLφ.

Similarly, but also with use of (I) and (IV),

M(ψ,For) = M(ψ, ω(For))M(ω(For),For)

= M(ω(ψ), ω2(For))Jρ

= M(εψ,For)Jρ

= εLψJρ.

By (I),
M(φ, F ) = M(φ,M)M(M,F ) = LφK−1 = LφεKε;
M(ψ, F ) = M(ψ,M)M(M,F ) = LψK−1 = LψεKε.

Next, by (III),
M(h,φ) = M(z−1φ,M)t = z−1Ltφ;

M(h,ψ) = M(z−1ψ,M)t = z−1Ltψ.
Similarly,

M(e,φ) = M(z−1φ,For)t = z−1εLtφ;

M(e,ψ) = M(z−1ψ,For)t = εz−1JρLtψ.
Lastly, by (III) and (I),

M(r,φ) = M(z−1φ, F )t = z−1(M(φ,M)M(M,F ))t = z−1(Kt)−1Ltφ = z−1εKtεLtφ;

M(r,ψ) = M(z−1ψ, F )t = z−1(M(ψ,M)M(M,F ))t = z−1(Kt)−1Ltψ = z−1εKtεLtψ.

Remark. We may also give the change-of-basis relations between the two kinds of power
sums in both spaces as matrix products, but they would each involve either the inverse
of Lφ or Lψ. For example, in QSym,

M(φ, ψ) = M(φ,M)M(M,ψ) = LφL−1ψ .

We provide a figure similar to Figure 3 (you guessed it, on the next page) depicting the
results from this subsection. Just as in Figure 3, an arrow from an element from the basis
{bα} to {aα} is labeled with M(a, b). We suppress several edges, including the repetitive
ones to/from the power sums of the two kinds. The hatted terms Ĵρ along the bottom
edges correspond only to the power sum bases of the first kind, ψ and ψ.

7 Combinatorial Models for Change of Basis

Many of the statistics occurring in the change-of-basis matrices in NSym are natural
generalizations of the statistics on brick tabloids found in [2, 6], which give combinatorial
descriptions of the transition matrices in Λ. In this section we look at generalizing this
work to change of basis in QSym and NSym.
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z−1(Kt)−1Ltψ

Figure 4: Matrix Change-of-Basis Expressions in QSym and NSym

7.1 Combinatorial Models in Λ

Before we summarize the results of Eğecioğlu and Remmel [6], we note that we have taken
the liberty of adjusting some of the authors’ notation and conventions. As examples, they
choose integer partitions to be written in weakly increasing order, and their change-of-
basis matrices multiply on the right of row vectors; both of these conventions are opposite
of the presentation in this work. Our goal is to generalize the following theorem, which
gives a unified combinatorial model for most of the change-of-basis matrices in Λ discussed
above. Let n be a positive integer.

Theorem 78 (Eğecioğlu and Remmel, [6]). For λ ` n,

eλ =
∑
T∈Bλ

(−1)|λ|−`(type(T ))htype(T) (56)

hλ =
∑
T∈Bλ

(−1)|λ|−`(type(T ))etype(T ) (57)

mλ =
∑
T∈Bλ

(−1)| shape(T )|−`(λ)fshape(T ) (58)

fλ =
∑
T∈Bλ

(−1)| shape(T )|−`(λ)mshape(T ) (59)

pλ =
∑
T∈Bλ

(−1)|λ|−`(type(T ))w(B
type(T )
λ )etype(T ) (60)
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pλ =
∑
T∈Bλ

(−1)`(λ)−`(type(T ))w(B
type(T )
λ )htype(T ) (61)

fλ =
∑
T∈Bλ

(−1)|λ|−`(type(T ))
w(Bλ

shape(T ))

zshape(T )
pshape(T ) (62)

mλ =
∑
T∈Bλ

(−1)`(λ)−`(type(T ))
w(B

type(T )
λ )

ztype(T )
ptype(T ) (63)

pλ =
∑
T∈Bλ

|OBλ
shape(T )|mshape(T ) (64)

pλ =
∑
T∈Bλ

(−1)| type(T )|−`(λ)|OBλ
shape(T )|fshape(T ) (65)

hλ =
∑
T∈Bλ

|OBtype(T )
λ |

ztype(T )
ptype(T) (66)

eλ =
∑
T∈Bλ

(−1)|λ|−`(type(T ))
|OBtype(T )

λ |
ztype(T )

ptype(T) (67)

To understand the theorem, the following definitions are necessary.

Definition 79 (Eğecioğlu and Remmel [6]). A brick b of length k is a horizontal strip
of k boxes (a Young diagram of shape (k)). If µ = (µ1, µ2, . . . , µ`(µ)) ` n, associate the
set of bricks {b1, b2, . . . , b`(µ)} with µ if brick |bi| = µi for each i ∈ [`(µ)]. Then, T is
a µ-brick tabloid of shape λ if T gives a filling of the Young diagram of shape λ ` n
with the set of bricks associated to µ such that
(i) each brick bi covers exactly µi boxes in a single row of the diagram of shape λ;
(ii) no two bricks overlap.

Say that Bλ is the set of all possible brick tabloids of shape λ, Bµ is the set of all
possible µ-brick tabloids (with type µ), and let Bµ

λ denote the set of all µ-brick tabloids
of shape λ.

Note. In the above definition, it is important to note that bricks of the same size are
indistinguishable.

Example 80. Below are the eight (3, 3, 2, 1)-brick tabloids of shape (6, 3).

Note the 8 in parentheses in the equation below, attained from (56) with λ = (6, 3):

M(e, h)(3,3,2,1),(6,3) = (−1)|(6,3)|−`((3,3,2,1))|B(3,3,2,1)
(6,3) | = (−1)9−4(8) = −8.
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Definition 81. Define a weight function on brick tabloids, wt : T → Z+, as follows. Let
µ, λ ` n and let T be any µ-brick tabloid of shape λ. If B(T ) = {bi}i∈[`(µ)] is the set of
bricks associated to T , let Br(T ) ⊆ B(T ) be the subset of `(λ) bricks that appear at the
rightmost ends of the rows in T . Then, the weight of the brick tabloid T is

wt(T ) =
∏

b∈Br(T )

|b|.

The weight of the entire set of µ-brick tabloids of shape λ is the sum of their weights,

w(Bµ
λ) =

∑
T∈Bµλ

wt(T ).

Example 82. The brick tabloids from Example 80, in reading order, have weights
6, 3, 6, 3, 9, 6, 9, and 3, respectively. Thus w(B

(3,3,2,1)
(6,3) ) = 45. From (60), we have

M(p, e)(3,3,2,1),(6,3) = (−1)|(6,3)|−`((3,3,2,1))|B(3,3,2,1)
(6,3) | = (−1)9−4(45) = −45.

Definition 83. Given a partition µ = (µ1, µ2, . . . , µ`(µ)) and associated set of bricks
{bi}i∈[`(µ)] (|bi| = µi), index each brick bi with the subscript `(µ) − i + 1, i ∈ [`(µ)].
That is, index the bricks from smallest to largest with the integers 1, 2, . . . , `(µ). Then,
an ordered µ-brick tabloid of shape λ is a µ-brick tabloid of shape λ filled with
associated indexed bricks such that in each row, the subscripts on the bricks increase
from left-to-right. Denote the set of all µ-ordered brick tabloids of shape λ by OBµ

λ .

Example 84. Below are the three (3, 3, 2, 1)-ordered brick tabloids of shape (6, 3).

3 4

1 2

1 2 3

4

1 2 4

3

Applying (64), we have

M(p,m)(6,3),(3,3,2,1) = |OB(3,3,2,1)
(6,3) | = 3.

7.2 Brick Walls and Change of Basis in QSym and NSym.

This section generalizes the concepts in Eğecioğlu and Remmel [6] to QSym and NSym,
where the statistics from the change-of-basis equations in Gelfand et al. [7] are often very
natural extensions of the original statistics on brick tabloids. These first four equations
easily generalize the first four equations in Theorem 78. Let n be a positive integer.

Theorem 85. For α |= n,

eα =
∑

W∈Wα

(−1)`(type(W ))−|W |htype(W ) (68)
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hα =
∑

W∈Wα

(−1)`(type(W ))−|W |etype(W ) (69)

Forα =
∑

W∈Wα

(−1)`(type(W ))−|W |Msh(W ) (70)

Mα =
∑

W∈Wα

(−1)`(type(W ))−|W | Forsh(W ) (71)

We need the following generalizations of brick tabloids, referred to here as walls, which
are simpler in the this case.

Definition 86. If β � α with β(i) |= αi, for all i ∈ [`(α)], let the ordered set of bricks
B = (b1, . . . , b`(β)) be associated to β (where |bj| = βj for j ∈ [`(β)]). Then, the (unique)
β-wall of shape α, or αβ-wall, is the filling of the bricks from B into the Young diagram
of shape α in order from left-to-right, bottom-up (adopting French notation).

It is clear that the αβ-wall exists if and only if β � α. (See Definition 9.) For some
integers 0 < j1 < · · · < j`(α) = `(β), the equations below correspond to courses in the
αβ-wall. (A “course” is a continuous horizontal stretch of bricks (or stone) laid to build
a wall.)

α`(α) = βj`(α)−1+1 + βj`(α)−1+2 + · · ·+ β`(β);

...

α2 = βj1+1 + βj1+2 + · · ·+ βj2 ;

α1 = β1 + β2 + · · ·+ βj1 .

Example 87. Let α = (1, 6, 2, 4) and let β = (1, 1, 3, 2, 2, 3, 1). Then β � α, so the
(1, 6, 2, 4)(1, 1, 3, 2, 2, 3, 1)-wall exists, and is shown below.

Definition 88. Say the αβ-wall has shape sh(W ) = α, size |W | = |α|, and type
type(W ) = β. For a fixed composition α, let Wα denote the set of all walls of shape
α. Similarly, for composition β, let Wβ be the set of all walls of type β. Clearly there
are one-to-one correspondences between walls and compositions Wα ↔ {β | β � α} and
Wβ ↔ {α | α � β}.

Although Eğecioğlu and Remmel do not mention the Schur functions in their work, the
corresponding bases {Fα}α|=n and {rα}α|=n fit nicely here into the same framework:

Theorem 89. For α |= n,

hα =
∑

W∈Wα

rsh(W ) (72)
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rα =
∑

W∈Wα

(−1)`(sh(W ))−`(type(W ))hsh(W ) (73)

eα =
∑

W∈Wα

rsh(W )c (74)

rα =
∑

W∈Wαc

(−1)`(sh(W ))−`(type(W ))esh(W ) (75)

Fα =
∑

W∈Wα

Mtype(W ) (76)

Mα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W ))Ftype(W ) (77)

Fα =
∑

W∈Wαc

Fortype(W ) (78)

Forα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W ))Ftype(W )c (79)

In order to establish combinatorial versions of their other equations, we must define several
more statistics on walls. Three of them, below, are imitations of the weight function
defined in [6] utilizing (32) (taken from [7]).

Definition 90. If β � α with β(i) |= αi for all i ∈ [`(α)], and W is the αβ-wall, say the
last parts product and first parts product of W are

lp(W ) = lp(β, α) =

`(α)∏
i=1

βji ; (80)

fp(W ) = lp(βr, αr) =

`(α)−1∏
i=0

βji+1. (81)

Thus the statistic lp(W ) (respectively fp(W )) gives the product of the sizes of the bricks
at the right (respectively left) ends of the rows in W .

A less obvious replacement for the weight function in this context is required to cover
the power sums of the second kind.

Definition 91. If W is an α, β-wall, let pb(W ) give the product of the number of bricks
in each row (or course).

Example 92. For the wall W in Example 87, pb(W ) = 1 · 3 · 1 · 2 = 6.

Theorem 93. For α |= n,

ψα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W )) lp(W )htype(W )

ψα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W )) fp(W )etype(W )
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Mα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W )) lp(W )
ψsh(W )

zsh(W )

Forα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W )) fp(W )
ψsh(W )

zsh(W )

φα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W ))

∏
sh(W )

pb(W )
htype(W )

φα =
∑

W∈Wα

(−1)| sh(W )|−`(type(W ))

∏
sh(W )

pb(W )
etype(W )

Mα =
∑

W∈Wα

(−1)`(type(W ))−`(sh(W ))

∏
sh(W )

pb(W )

φsh(W )

zsh(W )

Forα =
∑

W∈Wα

(−1)| sh(W )|−`(type(W ))

∏
sh(W )

pb(W )

φsh(W )

zsh(W )

Proof. These simply give combinatorial translations of the right-hand equations in the
last four lines in both Theorem 68 and Corollary 72.

Next, we imitate the alteration made on brick tabloids to give ordered brick tabloids
in [6]. Before we give the definition, we remark that there are always (weakly) fewer
µ-ordered brick tabloids of shape λ than there are brick tabloids of the same shape and
type. (Consult Examples 80 and 84.) The opposite will be true of our analogous objects,
next.

Definition 94. Let β � α and let W be the αβ-wall. Then, a β-indexed wall of shape
α, or indexed αβ-wall, is an indexing of the bricks in W (associated to β) in order of
increasing size with the integers from [`(β)].

Thus, in an indexed wall, bricks of the same size are distinguishable.

Example 95. There are four indexed (2, 4, 3)(2, 2, 1, 1, 3)-walls, shown below.

3

4 1 2

5

3

4 2 1

5

4

3 1 2

5

4

3 2 1

5

Note that there is no alteration on the order in which the bricks associated to β are laid
to build (an indexed) αβ-wall, unlike in the case of ordered brick tabloids. (Compare
with Examples 80 and 84 once more).

Definition 96. Let IWα denote the set of all ordered walls of shape α, let IWβ denote
the set of all ordered walls of type β, and let IWβ

α be the set of indexed αβ-walls.
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Theorem 97. For any fixed strong compositions β � α,

|IWβ
α| = m1(β)!m2(β)! · · ·mn(β)!.

Proof. Since the bricks in the αβ-wall must be indexed in order of increasing size, there
are mi(β)! ways to index the bricks of size i for each i ∈ [n].

Definition 98. If W is an indexed wall of shape α and type β, let fb(W ) give the product
of the factorial of the number of bricks in each row.

fb(W ) =

`(α)∏
i=1

`(β(i))!

Example 99. For the wall W in Example 87, fb(W ) = 1! · 3! · 1! · 2! = 12.

Theorem 100. For α |= n,

hα =
∑

W∈IWα

1

fb(W )

φtype(W )

ztype(W )

eα =
∑

W∈IWα

(−1)| sh(W )|−`(type(W ))

fb(W )

φtype(W )

ztype(W )

φα =
∑

W∈IWα

1

fb(W )
Msh(W ) (82)

φα =
∑

W∈IWα

(−1)| sh(W )|−`(type(W ))

fb(W )
Forsh(W )

The (incredibly) attentive reader will notice that to this point we have not given combi-
natorial interpretations for a number of change-of-basis equations involving {ψα}. While
it is possible to give such an interpretation, there does not appear to be an analogue of
indexed walls that is natural and simplifies their presentation from the original in [7], so
we omit them.
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[6] Ömer Eğecioğlu and Jeffrey B. Remmel. Brick tabloids and the connection matrices
between bases of symmetric functions. Discrete Applied Mathematics, 34(1–3):107–
120, 1991.

[7] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Re-
takh, and Jean-Yves Thibon. Noncommutative symmetric functions. Adv. Math.,
112(2):218–348, 1995.

[8] Ira M Gessel. Multipartite p-partitions and inner products of skew Schur functions.
Contemporary Mathematics, 34:289–301, 1984.

[9] Darij Grinberg and Victor Reiner. Hopf algebras in combinatorics. arXiv:1409.8356,
2014.

[10] James Haglund, Kurt Luoto, Sarah Mason, and Stephanie van Willigenburg. Qua-
sisymmetric Schur functions. Journal of Combinatorial Theory, Series A, 118(2):463–
490, 2011.

[11] Jia Huang. A tableau approach to the representation theory of 0-Hecke algebras.
Annals of Combinatorics, 20(4):831–868, 2016.

[12] Daniel Krob, Bernard Leclerc, and J-Y Thibon. Noncommutative symmetric func-
tions II: Transformations of alphabets. International Journal of Algebra and Com-
putation, 7(02):181–264, 1997.

[13] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions IV: Quan-
tum linear groups and Hecke algebras at q = 0. Journal of Algebraic Combinatorics,
6(4):339–376, 1997.

[14] Daniel Krob and Jean-Yves Thibon. Noncommutative symmetric functions V: A
degenerate version of Uq (glN). International Journal of Algebra and Computation,
9:405–430, 1999.

[15] Alain Lascoux and Bernard Leclerc. The plactic monoid. In Monsieur Lothaire,
editor, Algebraic combinatorics on words, volume 90. Cambridge University Press,
2002.

the electronic journal of combinatorics 32(1) (2025), #P1.53 39

https://arxiv.org/abs/1409.8356


[16] Kurt Luoto, Stefan Mykytiuk, and Stephanie van Willigenburg. An Introduction to
Quasisymmetric Schur Functions. Springer Briefs in Mathematics. Springer, 2013.

[17] Ian G. Macdonald. Symmetric Functions and Hall Polynomials, Second Edition.
Oxford Mathematical Monographs. Oxford University Press, 1998.

[18] Clauda Malvenuto and Christophe Reutenauer. Duality between quasi-symmetrical
functions and the Solomon descent algebra. Journal of Algebra, 177(3):967–982, 1995.

[19] Robert McCloskey. On Change-of-Basis of Quasisymmetric and Noncommutative
Symmetric Functions. PhD thesis, Lehigh University, 2024.
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