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Abstract

Let M denote the Bose–Mesner algebra of a commutative d-class association
scheme X (not necessarily symmetric), and Γ denote a (strongly) connected (di-
rected) graph with adjacency matrix A. Under the assumption that A belongs
to M, we describe the combinatorial structure of Γ. Moreover, we provide an
algebraic-combinatorial characterization of Γ when A generates M.

Among else, we show that, if X is a commutative 3-class association scheme that
is not an amorphic symmetric scheme, then we can always find a (directed) graph
Γ such that the adjacency matrix A of Γ generates the Bose–Mesner algebra M of
X.

Mathematics Subject Classifications: 05E30, 05C75, 05C50.

1 Introduction

In this paper, we study connections between commutative association schemes and (di-
rected) graphs, by considering the following question: when can a commutative association
scheme be generated by a (directed) graph? Formal definitions are given in Section 2.

Let M denote the Bose–Mesner algebra of a commutative d-class association scheme
X = (X,R) (note that M does not need to be symmetric). To give a motivation and an
introduction to our problem, in the next few lines, we first show that M is a monogenic
algebra, that is, we show that there always exists a matrix A ∈ MatX(C) which generates
M, i.e., M = (〈A〉,+, ·) (we say that a matrix A generates M if every element in
M can be written as a polynomial in A). Since M is a space of commutative normal
matrices, from a well-known result on commutative sets of normal matrices, there exists
a unitary matrix U ∈ MatX(C) which diagonalizesM: to each B ∈M there corresponds

a diagonal matrix Λ ∈ MatX(C) such that B = UΛU
>

, and the diagonal entries of Λ are

aFaculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska,
Muzejski trg 2, 6000 Koper, Slovenia (Giusy.Monzillo@famnit.upr.si).
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the eigenvalues of B. When B runs throughM, the matrix Λ runs through a subalgebra
F of MatX(C) which is isomorphic to M. An explicit isomorphism ψ : M → F is

given by ψ(B) = U
>
BU . Since M is an algebra of dimension d + 1, the algebra F is

also of dimension d + 1. Moreover, there exists a set of diagonal 01-matrices {Fi}06i6d

which is a basis of F . Then, for arbitrary non-zero pairwise distinct complex scalars αi
(0 6 i 6 d), the matrix F =

∑d
i=0 αiFi generates F , i.e., F = (〈F 〉,+, ·). Thus, the

matrix A = ψ−1(F ) generates M and has d + 1 distinct eigenvalues. A reader more
familiar with the field of association schemes will notice that our claim on the existence
of a generator A of M also follows from the proof of [17, Theorem 2.2]. For a different
approach in proving that the Bose–Mesner algebraM of an arbitrary commutative d-class
association scheme X (which is not necessarily symmetric) can be generated by A, see
Lemma 15 in Subsection 2.5. In this paper, we are interested in the following problem.

Problem 1. When can the Bose–Mesner algebraM of a commutative d-class association
scheme X (which is not necessarily symmetric) be generated by a 01-matrix A? In other
words, for a given X, under which combinatorial and algebraic restrictions can we find a
01-matrix A such thatM = (〈A〉,+, ·)? Moreover, since such a matrix A is the adjacency
matrix of some (directed) graph Γ, can we describe the combinatorial structure of Γ?
The vice-versa question is also of importance, i.e., what combinatorial structure does a
(directed) graph need to have so that its adjacency matrix will generate the Bose–Mesner
algebra of a commutative d-class association scheme X?

In the notation of Ito’s paper [30], we are interested in the combinatorial structure
of polynomial association scheme. The case when X is a symmetric association scheme,
our problem is connected with quotient-polynomial graphs (undirected graphs which gen-
erate symmetric association schemes, see [20, 22]). Recall that in [20] Fiol defined a
quotient-polynomial graph a little bit differently, that is, the author defined the quotient-
polynomial graph as a graph Γ with vertex set X for which the adjacency matrices of a
walk-regular partition of X ×X belong to the adjacency algebra of Γ. Then, the author
described some algebraic properties of such graphs and proved that Γ is the connected
generating graph of an association scheme X if and only if Γ is a quotient-polynomial
graph. Following these results, in [22] Fiol and Penjić revisited this topic from an-
other point of view, finding some additional algebraic properties as well as describing the
combinatorial structure of quotient-polynomial graphs. In both cited papers [20, 22], the
authors studied the case of undirected graphs and with it the case of a symmetric (adja-
cency) algebra. In this paper, we study commutative association schemes (not necessarily
symmetric) and, as a by-product, we also get some interesting results for symmetric asso-
ciation schemes. More precisely we answer the following question: Is it possible that every
symmetric association scheme is generated by some (quotient-polynomial) graph? (The
answer for a 3-class association scheme is given in Theorem 2.)

In the case when X is a symmetric 3-class association scheme, by the result of Van
Dam in [14, Theorem 5.1] together with our Lemma 15, we get partial answers to questions
posted in Problem 1. For the moment, let Γ denote a connected regular graph with 4
distinct eigenvalues and adjacency matrix A. In [14, Theorem 5.1] Van Dam proved
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that A is one of the adjacency matrices of a 3-class association scheme if and only if
two adjacent vertices have a constant number of common neighbors, and the number
of common neighbors of any two nonadjacent vertices takes precisely two values. In
the same paper [14], the author gave some answers about when and how to use the
combinatorial structure of strongly-regular graphs to obtain a 3-class association scheme
(see, for example, [14, Proposition 5.2]). In this paper, we fully describe when a 3-class
association scheme (not necessarily symmetric) can be generated by a graph.

We are interested in the natural problem of describing the combinatorial structure
and algebraic properties of (directed) graphs which will generate commutative association
schemes. This provides us with a different approach in finding new association schemes,
using the structure of (directed) graphs. For example, if we pick some well-known family
of undirected graphs, and give them an orientation on the edges that satisfy some of (if
not all) the properties described in this paper, will we get a candidate which generates a
commutative association scheme? This paper gives some answers to this question too.

We say that a (directed) graph Γ generates a commutative association scheme X if
and only if the adjacency matrix A of Γ generates the Bose–Mesner algebraM of X, and
in symbols we write M = (〈A〉,+, ·). Our main results are Theorems 2, 3 and 4.

In Theorem 2, we characterize 3-class amorphic symmetric schemes as the only com-
mutative 3-class association schemes which fails to satisfy the “single-01-matrix gener-
ator” property of Problem 1. In other words, except for amorphic symmetric associa-
tion schemes, every 3-class association scheme can be generated by a 01-matrix A (by a
(strongly) connected (directed) graph Γ = Γ(A) which has 4 distinct eigenvalues).

Theorem 2. Let X denote a 3-class commutative association scheme. If X is not an
amorphic symmetric scheme, then there exists a (strongly) connected (directed) graph
Γ = Γ(A) such that the following hold.

(i) The adjacency matrix A of Γ has exactly 4 distinct eigenvalues.

(ii) The adjacency matrix A generates the Bose–Mesner algebra M of X.

Moreover, the scheme X is generated by a graph if and only if it is not an amorphic
symmetric scheme.

In Theorem 3, we describe the combinatorial structure of a graph which ‘lives’ in a
commutative association scheme. We can say that Corollary 34 of Theorem 3 is in some
sense a more general version of the result of Van Dam given in [14, Theorem 5.1] as it
includes also non-symmetric commutative 3-class association schemes.

Theorem 3. LetM denote the Bose–Mesner algebra of a commutative d-class association
scheme X = (X,R) with adjacency matrices {Ai}di=0 and intersection numbers phij (0 6
h, i, j 6 d). Let A denote an arbitrary 01-matrix in M, and consider the (directed) graph
Γ = Γ(A) = (X, E). If Γ is a (strongly) connected (directed) graph, then the following
(i)–(iii) hold.

(i) For every vertex x ∈ X, the partition Πx =
{
Pi(x) = {z | (Ai)xz = 1}

}d
i=0

of X is
an x-distance-faithful equitable partition with d+ 1 cells.
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(ii) The structure of the x-distance-faithful intersection diagram of the equitable partition
Πx from (i) does not depend on x (i.e., the corresponding parameters of Πx do not
depend on the choice of x ∈ X).

(iii) Since A ∈ M, there exists some nonempty index set Φ such that A =
∑

m∈Φ Am.
Then for the equitable partition Πx = {P0(x),P1(x), . . . ,Pd(x)} from (i), the follow-
ing holds.

(a) For any z ∈ Pi(x), the number of vertices in the cell Pj(x) which are adjacent
from the vertex z is equal to

∑
m∈Φ p

i∗
mj∗, or in symbols |Γ→1 (z) ∩ Pj(x)| =∑

m∈Φ p
i∗
mj∗ , where Γ→1 (z) = {w | (z, w) ∈ E(Γ)}, Ai∗ = A>i and Aj∗ = A>i .

(b) For any z ∈ Pi(x), the number of vertices in the cell Pj(x) which are adjacent to
the vertex z is equal to

∑
m∈Φ p

i
mj, or in symbols |Γ←1 (z)∩Pj(x)| =

∑
m∈Φ p

i
mj,

where Γ←1 (z) = {w | (w, z) ∈ E(Γ)}.

Theorem 3 is in some sense an extension of the result of Fiol and Penjić given in
[22, Theorem 4.1] as it extends to the family of directed graphs; moreover, we described
connection between the number of neighbours of an arbitrary vertex and the intersec-
tion numbers of a commutative association scheme. With reference to Theorem 3, in
Corollary 33, we consider the case when Γ generates symmetric association scheme.

At first glance it seems like the result of Theorem 3 is already known from litera-
ture. We did not manage to find something similar explicitly (or implicitly) written in
literature. For the case when A is an adjacency matrix Am (of relation Rm) of an as-
sociation scheme X, without any understanding of the structure of a (directed) graph
Γ = Γ(Am) = (X,Rm), an equitable partition can be derived from definition of X (see, for
example, [26, Example 2.3]). In Theorem 4, we give one of its applications by character-
izing algebraic-combinatorial properties of Γ when Γ generates a commutative association
scheme, with one specific restriction. In the period of writing and finalizing this paper,
we have also managed to discover two other interesting applications of Theorem 3, see
[38, 39].

Theorem 4. Let Γ = Γ(A) denote a (strongly) connected (directed) graph with vertex set
X, adjacency matrix A, d+ 1 distinct eigenvalues, and adjacency algebra A = A(Γ). Let

∆ = {(i, j) | i = ∂(x, y), j = ∂(y, x), x, y ∈ X}

(or ∆ = {∂̃(x, y) | x, y ∈ X} where ∂̃(x, y) = (∂(x, y), ∂(y, x)) denotes the two way
distance in Γ). For any i ∈ ∆ define Ri = {(x, y) ∈ X ×X | (∂(x, y), ∂(y, x)) = i} (or,
in the notation of the two way distance, for any ĩ ∈ ∆ define Rĩ = {(x, y) ∈ X × X |
∂̃(x, y) = ĩ}). If |∆| = d+ 1, then the following are equivalent.

(i) A is the Bose–Mesner algebra of a commutative d-class association scheme.

(ii) (X, {Ri}i∈∆) is a commutative d-class association scheme (i.e., Γ is a weakly
distance-regular digraph in sense of Wang and Suzuki [48]).
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(iii) A is a normal matrix and the number of walks from x to y of every given length
` > 0 only depends on the distances ∂(x, y) and ∂(y, x) (and does not depend on
the choice of the pair (x, y)) (i.e., Γ is a weakly distance-regular digraph in sense of
Comellas et al. [11]).

In Theorem 4, we give connections among weakly distance-regular graphs in sense of
Comellas et al. [11], weakly distance-regular graphs in sense of Wang and Suzuki
[48], and commutative association schemes generated by a 01-matrix A. We explain these
two new notations (and their importance) in the next two paragraphs.

A directed graph Γ (of diameter D) is weakly distance-regular in sense of Comellas
et al. [11] if the number of walks of length ` (0 6 ` 6 D) in Γ between two vertices
x, y ∈ X only depends on h = ∂(x, y) (on the distance from x to y). In [11, Theorem 2.2],
Comellas et al. provided an algebraic-combinatorial characterization of such graphs.
Moreover, in the same paper, the authors proved an equivalence between (i) A is a normal
matrix and the set of distance-i matrices {A0, A1, . . . , AD} is a basis of the adjacency
algebra A of Γ; and (ii) there exist numbers bij (0 6 i, j 6 D) such that |Γ→1 (y)∩Γ→j (x)| =
bij, for all x ∈ X, y ∈ Γ→i (x) (0 6 i, j 6 D) (see [11, Proposition 2.6]). Note the similarity
and difference between our Theorem 4(iii) and the notion of weakly distance-regularity in
sense of Comellas et al. [11]. Among else, Comellas et al. [11] studied the spectra
of a weakly distance-regular digraph and constructed several examples of such a graph.
Our property (iii) of Theorem 4 is restricted property of an open (up to our knowledge)
research problem from [11, Subsection 4.3]. Some papers that are related with weakly
distance-regular digraphs (in terms of number of walks of certain type) are [12, 16, 25, 34].
We recommend papers [21, 40] for the study of spectrum of a (weakly distance-regular)
directed graph.

For the moment, let Γ denote a directed graph with vertex set X, and consider the
set ∆ and relations Ri (i ∈ ∆) from Theorem 4. A directed graph Γ is said to be weakly
distance-regular in sense of Wang and Suzuki [48] if and only if (X, {Ri}i∈∆) is a |∆|-
class association scheme (for further insights regarding this definition, see paper of Suzuki
[43]). In such a case, X(Γ) is called the attached scheme of Γ. In [33, 43, 45, 51, 52], some
special families of weakly distance-regular digraphs in sense of Wang and Suzuki of small
valency have been classified. Algebraic restrictions on weakly distance-regular digraphs
called thin, quasi-thin, and thick were studied in [43, 53, 54]. Other papers that are
directly or indirectly involved in the study of weakly distance-regular digraphs in sense of
Wang and Suzuki are, for example, [18, 19, 56, 35, 46, 47, 55].

Our paper is organized as follows. In Section 2, we recall basic concepts from algebraic
graph theory; in particular Subsection 2.5 is a survey of all well-known properties that we
use later in the paper: in this section we explain when a 01-matrix generates the Bose–
Mesner algebra of a scheme, and we explicitly (re)prove some results about the adjacency
algebra of a (directed) graph, hidden in literature. Our paper then starts from Section 3.
In Section 3, we prove Theorem 2. In Section 4, we prove Theorem 3, and we include
several interesting corollaries of the claim. In Section 5, we prove Theorem 4, among else
by using the combinatorial structure of a (directed) graph, obtained in Theorem 3.
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Figure 1: Directed graph Γ (from [24, Example 5.4]) of diameter 3 and the intersection
diagram of an equitable distance-faithful partition Πa = {P0 = {a},P1 = {b, c},P2 =
{d, e},P3 = {f}} of Γ (around vertex a). The adjacency matrix of this graph generates a
commutative 3-class association scheme. Note that Γ1(a) = P1, Γ2(a) = P2 and Γ3(a) =
P3.

2 Preliminaries

A directed graph with vertex set X and arc set E is a pair Γ = (X, E) which consists of
a finite set X = X(Γ) of vertices and a set E = E(Γ) of arcs (directed edges) between
vertices of Γ. As the initial and final vertices of an arc are not necessarily different, the
directed graphs may have loops (arcs from a vertex to itself), and multiple arcs, that is,
there can be more than one arc from each vertex to any other. If e = (x, y) ∈ E is an arc
from x to y, then the vertex x (and the arc e) is adjacent to the vertex y, and the vertex
y (and the arc e) is adjacent from x. The converse directed graph Γ is obtained from Γ by
reversing the direction of each arc. For a vertex x, let Γ←1 (x) (and Γ→1 (x)) denote the set
of vertices adjacent to (and from) the vertex x, respectively. In another words

Γ←1 (x) = {z | (z, x) ∈ E(Γ)} and Γ→1 (x) = {z | (x, z) ∈ E(Γ)}.

Two small comments about notations: (i) drawing directed edge from x to z, we have
x → z, which yields idea beyond using notation Γ→1 (x); (ii) drawing directed edge from
z to x, we have x ← z (or z → x), which yields idea beyond using notation Γ←1 (x). We
abbreviate Γ1(x) = Γ→1 (x). Also, instead of a set of vertices, we can consider a set of arcs:
for a vertex y, let D←1 (y) (and D→1 (y)) denote the set of arcs adjacent to (and from) the
vertex y, respectively. The number |D→1 (y)| we call the out-degree of y and is equal to the
number of edges leaving y. The number |D←1 (y)| we call the in-degree of y and is equal to
the number of edges going to y. A directed graph Γ is k-regular if |D→1 (y)| = |D←1 (y)| = k
for all y ∈ X.

Let Γ = (X, E) denote a directed graph. For any two vertices x, y ∈ X, a directed walk
of length h from x to y is a sequence [x0, x1, x2, . . . , xh] (xi ∈ X, 0 6 i 6 h) such that
x0 = x, xh = y, and xi is adjacent to xi+1 (i.e. xi+1 ∈ Γ→1 (xi)) for 0 6 i 6 h− 1. We say
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that Γ is strongly connected if for any x, y ∈ X there is a directed walk from x to y. A
closed directed walk is a directed walk from a vertex to itself. A directed path is a directed
walk such that all vertices, except the initial and terminal ones, of the directed walk are
distinct. A directed cycle is a closed directed path.

For any x, y ∈ X, the distance between x and y, denoted by ∂(x, y), is the length of
a shortest directed path from x to y. The diameter D = D(Γ) of a strongly connected
directed graph Γ is defined to be

D = max{∂(y, z) | y, z ∈ X}.

For a vertex x ∈ X and any non-negative integer i not exceeding D, let Γ→i (x) (or Γi(x))
denote the subset of vertices in X that are at distance i from x, i.e.,

Γ→i (x) = {z ∈ X | ∂(x, z) = i}.

We also define the set Γ←i (x) as Γ←i (x) = {z ∈ X | ∂(z, x) = i}. Let Γ−1(x) = ΓD+1(x) :=
∅. The elements of Γ1(x)(= Γ→1 (x)) are called neighbors of x. The eccentricity of x,
denoted by ε = ε(x), is the maximum distance between x and any other vertex of Γ. Note
that the diameter of Γ equals max{ε(x) | x ∈ X}.

All undirected graphs in this paper can be understood as directed graphs in which an
undirected edge between two vertices x and y represents two arcs, an arc from x to y, and
an arc from y to x. In diagrams instead of drawing two arcs we draw one undirected edge
between vertices x and y. For a basic introduction to the theory of undirected graphs we
refer to [22, Section 2]. With the word graph we refer to a finite simple undirected graph.

We say that a graph Γ is N-partite if its set of vertices can be decomposed into N
disjoint sets such that no two vertices within the same set are adjacent. If N = 2 such
graphs are called bipartite. An N-partite complete graph Γ is N -partite graph for which
there is an edge between every pair of vertices from different (disjoint) sets.

2.1 Equitable and distance-faithful partition

A partition of a (directed) graph Γ is a collection {P0,P1, . . . ,Ps} of nonempty subsets

of the vertex set X, such that X =
s⋃
i=0

Pi and Pi ∩Pj = ∅ for all i, j (0 6 i, j 6 s, i 6= j).

An equitable partition of a directed graph Γ is a partition {P0,P1, . . . ,Ps} of its vertex
set, such that for all integers i, j (0 6 i, j 6 s) the following two conditions hold.

(i) The number d→ij of neighbors which a vertex in the cell Pi has in the cell Pj is
independent of the choice of the vertex in Pi (i.e., for every y ∈ Pi we have |Γ→1 (y)∩
Pj| = d→ij ).

(ii) The number d←ij of vertices from the cell Pj which are adjacent to a vertex in Pi
is independent of the choice of the vertex in Pi (i.e., for every y ∈ Pi we have
|
∑

z∈Pj
|Γ→1 (z) ∩ {y}| = |Γ←1 (y) ∩ Pj| = d←ij ).
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Figure 2: Undirected graph Γ = Cay(Z7; {1, 2}) of diameter 2 and the intersection diagram
of an equitable distance-faithful partition of Γ (around vertex 0). The adjacency matrix
of this graph generates a symmetric 3-class association scheme.

We call the numbers d→ij and d←ij (0 6 i, j 6 s) the corresponding parameters.
A distance partition around x of a (directed) graph Γ with vertex set X is a partition

{Γ0(x) = {x},Γ(x), . . . ,Γε(x)(x)} of X where ε(x) is eccentricity of x. A x-distance-
faithful partition {P0 = {x},P1, . . . ,Ps} with s > ε(x) is a refinement of the distance
partition around x (here refinement means that some of Γi(x) can be equal to a union of
some Ph’s).

The intersection diagram of an equitable partition Π of a graph Γ is a collection of
circles indexed by the sets of Π with lines (or directed edges) between some of them. If
there is no line (directed edge) between Pi and Pj, then it means that there is no (directed)
edge yz for any y ∈ Pi and z ∈ Pj. If there is a line (directed edge) between Pi and Pj,
then a number on the line (from Pi to Pj) near the circle Pi denotes the corresponding
parameter d→ij . A number above or below a circle Pi denotes the corresponding parameter
d→ii (= d←ii ). A similar explanation holds for the corresponding parameter d←ij (see Figures 1
and 2 for an example).

We say that the combinatorial structure of the intersection diagram is the same around
every vertex if for every vertex x there exists an x-distance-faithful equitable partition
with the same number of cells of same cardinality and (same) corresponding parameters
do not depend on the choice of x.

2.2 Elementary algebraic graph theory

In this section, we recall some definitions and basic concepts from algebraic graph theory.
The adjacency matrix A ∈ MatX(C) of a directed graph Γ (with vertex set X) is

indexed by the vertices from X, and is defined in the following way

(A)yz = the number of arcs from y to z (y, z ∈ X)

(note that (A)yz > 0). Moreover, if we allow loops, the diagonal entries of A can be
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different from zero. Note that the yz-entry of the power A` (` ∈ N) corresponds to the
number of `-walks from the vertex y to the vertex z in Γ.

Lemma 5 (see, for example, [39, Lemma 2.8]). Let Γ denote a simple strongly connected
digraph with vertex set X, diameter D and adjacency matrix A. The number of walks of
length ` ∈ N in Γ from x to y is equal to (x, y)-entry of the matrix A`.

The distance-i matrix Ai of a digraph Γ with diameter D and vertex set X is defined
by

(Ai)zy =

{
1 if ∂(z, y) = i,
0 otherwise.

(z, y ∈ X, 0 6 i 6 D).

In particular, A0 = I and A1 = A. A matrix A ∈ MatX(C) is said to be a reducible when

there exists a permutation matrix P such that P>AP =

(
X Y
O Z

)
, where X and Z are

both square, and O is a zero matrix. Otherwise, A is said to be irreducible. Recall that
a directed graph Γ with adjacency matrix A is strongly connected if and only if A is an
irreducible matrix (see, for example, [37, Section 8.3]).

A matrix A ∈ MatX(C) is called normal if it commutes with its adjoint, i.e. if

AA
>

= A
>
A. Two matrices A,B ∈ MatX(C) are said to be simultaneously diagonalizable

if there is a nonsingular S ∈ MatX(C) such that S−1AS and S−1BS are both diagonal.

Theorem 6 (see, for example, [29, Subsection 1.3]). Let M denote a space of com-
mutative normal matrices. Then, there exists a unitary matrix U ∈ MatX(C) which
diagonalizes M.

Let Γ denote a regular graph with vertex set X and ◦ denote the elementwise–
Hadamard product of matrices. Let us call two 01-matrices B, C disjoint if B◦C = 0. For
the moment, let B denote some algebra of |X|× |X| matrices. A basis {B0, B1, . . . , Bd} of
B is called a standard basis of B if and only if the Bi’s are mutually disjoint 01-matrices
which satisfy the following properties: (i) the sum of some of these matrices gives I;
(ii) the sum of all of these matrices gives the all-1 matrix J ; (iii) for each i ∈ {0, . . . , d},
the conjugate transpose of Bi belongs to {B0, B1, . . . , Bd}; and (iv) the vector space
spanned by {B0, B1, . . . , Bd} is closed under both ordinary and elementwise–Hadamard
multiplication.

2.3 Commutative association scheme

Let X denote a finite set and MatX(C) the set of complex matrices with rows and columns
indexed by X. Let R = {R0, R1, . . . , Rd} denote a set of cardinality d + 1 of nonempty
subsets of X ×X. The elements of the set R are called relations (or classes) on X. For
each integer i (0 6 i 6 d), let Ai ∈ MatX(C) denote the adjacency matrix of the graph
(X,Ri) (directed, in general). The pair X = (X,R) is a commutative d-class association
scheme (or a d-class scheme for short) if

(AS1) A0 = I, the identity matrix.
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(AS2)
d∑
i=0

Ai = J , the all-ones matrix.

(AS3) Ai
> ∈ {A0, A1, . . . , Ad} for 0 6 i 6 d.

(AS4) AiAj is a linear combination of A0, A1, . . . , Ad for 0 6 i, j 6 d (i.e., for every
i, j (0 6 i, j 6 d) there exist intersection numbers phij, 0 6 h 6 d, such that

AiAj =
∑d

h=0 p
h
ijAh).

(AS5) AiAj = AjAi for every i, j (0 6 i, j 6 d) (i.e., for the intersection numbers phij,
0 6 i, j, h 6 d, from (AS4) we have that phij = phji).

By (AS1)–(AS5) the vector space M = span{A0, A1, . . . , Ad} is a commutative alge-
bra; we call it the Bose–Mesner algebra of X. The set of (0, 1)-matrices {A0, A1, . . . , Ad} is
linearly independent by (AS2) and thus forms a basis ofM. We say that X is symmetric
if the Ai’s are symmetric matrices.

For the moment, pick h (0 6 h 6 d) and let x, y ∈ X denote two vertices such that
(Ah)xy = 1. By (AS2) and (AS4), (AiAj)xy = phij (0 6 i, j 6 d). On the other hand

(AiAj)xy =
∑
z∈X

(Ai)xz(Aj)zy

= |{z ∈ X | (Ai)xz = 1 and (Aj)zy = 1}|
= |{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj}|,

which yields phij = |{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj}|. This suggests an equivalent
combinatorial definition of a commutative association scheme (the following axioms are
the combinatorial analogs of those given in (AS1)–(AS5)):

(AS1’) R0 = {(x, x) | x ∈ X} (that is, R0 is the diagonal relation).

(AS2’) {Ri}di=0 is a partition of the Cartesian product X ×X.

(AS3’) Relation R>j = {(y, x) | (x, y) ∈ Rj} is in {Ri}06i6d, for each j ∈ {0, . . . , d}
(that is, {Ri}di=0 is closed under taking the transpose relation >).

(AS4’) For each triple i, j, h (0 6 i, j, h 6 d), and (x, y) ∈ Rh, a scalar

|{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj}| (1)

does not depend on the choice of the pair (x, y) ∈ Rh. The scalars obtained
from line (1) we denote by phij and call the intersection numbers of X.

(AS5’) For each triple i, j, h (0 6 i, j, h 6 d), phij = phji.
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Note that association scheme is symmetric if Ri = R>i , for each i (0 6 i 6 d). Imme-
diately from the combinatorial definition, for example, we can get some properties on
the intersection numbers that we will use later: in particular, pick j (0 6 j 6 d), let
(x, y) ∈ Rj, and note that

d∑
`=0

pjk` =
d∑
`=0

|{z ∈ X | (x, z) ∈ Rk and (z, y) ∈ R`}|

= |{z ∈ X | (x, z) ∈ Rk}|
= |{z ∈ X | (x, z) ∈ Rk and (z, x) ∈ Rk∗}| (where R>k = Rk∗)

= p0
kk∗ .

We abbreviate nk := p0
kk∗ (0 6 k 6 d). The number nk is the so-called valency of the

relation Rk. For any w ∈ X, the comments from above imply

(Akj)w = |{z ∈ X | (w, z) ∈ Rk}| = p0
kk∗ = nk =

d∑
`=0

pjk` (0 6 k 6 d). (2)

Equation (2) also yields that all-1 vector j is an eigenvector of Ak (0 6 k 6 d) that
corresponds to the eigenvalue nk.

Lemma 7. With respect to the above notations, the Bose–Mesner algebra M of a com-
mutative d-class association scheme X is a space of commutative normal matrices.

Proof. From the definition of X, AiAi
>

= Ai
>
Ai (0 6 i 6 d), and the result follows.

Note that the Bose–Mesner algebra M is semisimple, because it does not contain
nilpotent elements. So let {E0, E1, . . . , Ed} denote the set of primitive idempotents ofM.

For {E0, E1, . . . , Ed} the following hold: (ei) EiEj = δijEi (0 6 i, j 6 d); (eii)
d∑
i=0

Ei = I,

the identity matrix; (eiii) there exists a complex scalar ph(i) (0 6 i, h 6 d) such that
AhEi = ph(i)Ei (moreover, ph(i) is the eigenvalue of Ah on the eigenspace Vi); (eiv) Ah ∈
span{E0, E1, . . . , Ed} (0 6 h 6 d); (ev) Ei

>
= Ei (0 6 i 6 d); (evi) the idempotents Ei

are the orthogonal projectors of V onto the spaces Vi := EiC|X|.
The change-of-basis matrices P and Q are defined by

Ai =
d∑

h=0

(P )hiEh, Ei =
1

|X|

d∑
h=0

(Q)hiAh.

We shall refer to P and Q as the first and second eigenmatrices of the association scheme,
respectively. Moreover, we set

P =


p0(0) p1(0) p2(0) · · · pd(0)
p0(1) p1(1) p2(1) · · · pd(1)
p0(2) p1(2) p2(2) · · · pd(2)

...
...

...
. . .

...
p0(d) p1(d) p2(d) · · · pd(d)

 =


−−−− (P )0∗ −−−−
−−−− (P )1∗ −−−−
−−−− (P )2∗ −−−−

...
−−−− (P )d∗ −−−−

 . (3)
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Lemma 8 ([3]). With respect to the above notation, let X = (X,R) denote a d-class
association scheme, Vi = EiC|X| (0 6 i 6 d) and and let j denote the all-1 vector. The
first and the second eigenmatrix have the following form

P =

R0 R1 R2 · · · Rd


V0 1 n1 n2 · · · nd
V1 1 p1(1) p2(1) · · · pd(1)
V2 1 p1(2) p2(2) · · · pd(2)
...

...
...

...
...

Vd 1 p1(d) p2(d) · · · pd(d)

, Q =

V0 V1 V2 · · · Vd


R0 1 m1 m2 · · · md

R1 1 q1(1) q2(1) · · · qd(1)
R2 1 q1(2) q2(2) · · · qd(2)
...

...
...

...
...

Rd 1 q1(d) q2(d) · · · qd(d)

where ni are positive integers and mi = dim(Vi). Moreover, Aij = nij (0 6 i 6 d) and
for any i (0 6 i 6 d), the scalars ni, pi(1), . . . , pi(d) are the eigenvalues (not necessarily
pairwise distinct) of Ai on V0, V1, . . . , Vd, respectively.

The matrix P is also called the character table of an association scheme, and in fact
can be viewed as a natural generalization of the character table of a finite group (see, for
example, [2, 10, 32, 36, 50]). Lemma 9 follows immediately from the definitions of P and
Q.

Lemma 9. Let P and Q denote the first and second eigenmatrices of an association
scheme X = (X,R), respectively. Then, PQ = QP = |X|I.

Corollary 10. Let P denote the first eigenmatrix of an association scheme X = (X,R).

Then, Pj =
(
|X| 0 · · · 0

)>
, i.e., for every i (i 6= 0, 1 6 i 6 d) the sum of the entries

of the Vi row in P is equal to 0.

Proof. Immediate from Lemmas 8 and 9.

An association scheme (X,S) on the same vertex set X is called a fusion of (X,R) if
each Si ∈ S is the union of some of the Ri. Note that R0 ∈ S. As an extreme case, we
call (X,R) amorphous (or amorphic) if every “merging” operation on {R0, R1, . . . , Rd}
yields a fusion (see [15] for survey on this topic). For fusion schemes, readers are refereed
to [1, Section 2.3.2] and [15].

2.4 On 2-class association schemes: strongly-regular graphs

In order to better understand some arguments and results in Section 3, it is convenient
to recall what is widely known about strongly-regular graphs. In particular, we define
a strongly-regular graph by using the language of association schemes, and deduce its
particular combinatorial properties from this definition. Furthermore, we recall a well-
known result about strongly-regular graphs, namely, that the adjacency matrix A of
a connected strongly-regular graph generates its corresponding association scheme (see
Proposition 14). We refer the reader to [4, 6, 9, 42] for further details on the general
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theory of strongly-regular graphs, and we also point out the more recent [5, 7, 23]. Our
main source for what follows is [8].

Let Γ = (X,R) denote a graph with vertex set X and edge set R. Define R = {(x, y) ∈
X×X | (x, y) /∈ R} and R0 = {(x, x) : x ∈ X}. The graph Γ is said to be strongly-regular
if exactly one of the following two properties holds:

(i) (X, {R0, R}) is the trivial association scheme (i.e., Γ is a complete graph),

(ii) (X, {R0, R,R}) is a (symmetric) 2-class association scheme.

A clique C of an undirected graph Γ is an induced subgraph of Γ such that every two
distinct vertices of C are adjacent (i.e., a clique of Γ is a complete subgraph of Γ). The
number of vertices of C is called the size of the clique C.

Theorem 11 ([8, Theorem 3.11]). A disconnected strongly-regular graph is a disjoint
union of cliques of the same size. Conversely, if a graph is a disjoint union of t > 1
(t ∈ N) cliques of the same size, then it is a disconnected strongly-regular graph.

Proposition 12 ([7, page 2]). Let Γ denote a strongly-regular graph. If Γ is a disjoint
union of cliques, then −1 is an eigenvalue for Γ, and vice-versa.

Throughout this section, we assume that Γ = (X,R) is a connected strongly-regular
graph for which the corresponding association scheme X = (X, {R0, R,R}) has 2 classes.
Directly from our definition, it is not hard to obtain the following combinatorial properties:
the graph Γ has valency p0

11, and the number of common neighbors of two vertices x, y of Γ
is p1

11 or p2
11, depending on whether x and y are adjacent or not (see Proposition 14 below

for more details). Moreover, Γ has diameter 2. By convention, the intersection numbers
p0

11, p1
11 and p2

11 of the scheme X are denoted by k, λ and µ, respectively. Furthermore,
we use k2 to refer to p0

22, i.e., the number of vertices that are not adjacent to a given one;
thus, the number of vertices |X| is equal to

w = 1 + k + k2. (4)

Counting in two different ways the edges between vertices which are adjacent and nonad-
jacent to a fixed x ∈ X, we get the well-known identity

k(k − λ− 1) = k2µ. (5)

The ith intersection matrix Li of a d-class association scheme is defined to be a (d + 1)-
matrix whose generic entry is (Li)j,k = pkij, for i, j, k ∈ {0, . . . , d}. Following the monu-
mental thesis of Delsarte [17], after diagonalizing both sides of the equation in (AS4),
we deduce that PLiP

−1 = diag(pi(0), pi(1), . . . , pi(d)) (see [17, page 13]). Consequently,
the matrices Ai and Li have the same eigenvalues (but with different multiplicities), and
it follows that the map Ai → Li defines an isomorphism between the Bose–Mesner algebra
of the scheme and the algebra generated by the Li’s. Thus, following [8, pages 76, 77], the
eigenvalues of Γ are the zeros of the minimal polynomial of the matrix L1 of the 2-class
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association scheme X. In particular, the valency k is an eigenvalue with multiplicity 1,
and the other eigenvalues are

r, s =
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

2
. (6)

Furthermore, the multiplicities f, g of eigenvalues r and s can be computed by solving the
following equations:

f + g = k + k2 and k + fr + gs = trace(A1) = 0 (7)

(see, for example, [8, page 77]).

Remark 13. We show that k = µ if and only if r = 0. First assume that k = µ.

Equation (6) yields r =
λ−µ+
√

(λ−k)2

2
= λ−µ+|λ−k|

2
, and with it r = 0. Now assume that

r = 0. From equation (6) we now have (λ−µ) +
√

(λ− µ)2 + 4(k − µ) = 0 which implies
k = µ. The claim follows.

Note that from the first eigenmatrix P it follows that Γ = (X,R) has eigenvalue r = 0
if and only if −1 is an eigenvalue for Γ = (X,R), i.e., Γ (which is also strongly-regular) is
a disjoint union of cliques (by Proposition 12). Since Γ is disjoint union of cliques, Γ is a
complete multipartite graph (by construction). Now, for the case k = µ, using (4), (5),
and (6), we find

w = 2k − λ, k2 = k − λ− 1, r = 0, s = λ− k (< −1). (8)

In above Remark 13, we considered the case k = µ. For the rest of the current section
assume k 6= µ. By combining (6) and (7), we get

f, g =
1

2

(
(k + k2)± (k + k2)(µ− λ)− 2k√

(λ− µ)2 + 4(k − µ)

)
(9)

These numbers must be positive integers. We distinguish two cases in (9), so yielding
two classes of strongly-regular graphs.

Case 1: (k + k2)(µ− λ)− 2k = 0. Here, we find k2 = k (since k + k2 > k and k + k2

divides 2k). It follows that λ = µ− 1 and k = f = g. Moreover, (5) yields k = 2µ. Also,
since w = 1 + 2k = 1 + 4µ, we get

r, s =
−1±

√
w

2
, (10)

with r > 0 and s < 0. Strongly-regular graphs with these parameters are known as
conference graphs. See [4, 31, 44] or [8, page 77] for more details.

Case 2: (k + k2)(µ − λ) − 2k 6= 0. Now, following explanations in [8, page 77],
we deduce that r and s are integers, with r > 0 and s < 0 still holding, and use the
eigenvalues k, r, s to write the parameters of Γ:
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λ = k + r + s+ rs, µ = k + rs, k2 = −k(r + 1)(s+ 1)

k + rs
,

from which

w =
(k − r)(k − s)

k + rs
. (11)

Therefore, with reference to (6), for a connected strongly-regular, if k 6= µ we can
always assume that

r > 0 and s < 0 (s 6= −1). (12)

We conclude the subsection by providing a well-known result, so to prepare the reader
for what is the spirit that runs through the upcoming sections.

Proposition 14. Let Γ denote a connected strongly-regular graph. Then, the following
hold.

(i) Γ is regular with valency k. Moreover, there exists a positive integer λ such that any
two adjacent vertices have λ common neighbors. In addition, if Γ is not a complete
graph, there exists a positive integer µ such that the number of common neighbors
of any two nonadjacent vertices is equal to µ.

(ii) If M is the Bose–Mesner algebra of the association scheme of Γ and A is the adja-
cency matrix of Γ, then M = (〈A〉,+, ·).

Proof. Routine.

2.5 Some algebraic properties of M

In this subsection we prove some results that can be found implicitly (or explicitly) in the
literature, and that we use latter in the paper. Without this subsection our paper is not
readable as we want it to be.

LetM denote the Bose–Mesner algebra of a commutative d-class association scheme.
In the next few claims we survey basic algebraic properties under which a matrix A ∈M
(not necessarily a 01-matrix) generates M. Main results of this subsection which we use
latter in the paper are Lemmas 15, 20 and Proposition 21. Note that if A is a 01-matrix
then A is an adjacency matrix of some (directed) graph Γ; we study the combinatorial
structure of such a graph in Sections 4 and 5.

Lemma 15. LetM denote the Bose–Mesner algebra of a commutative d-class association
scheme. If A ∈ M has d + 1 distinct eigenvalues, then {A0, A1, . . . , Ad} is a linearly
independent set. Moreover, M = (〈A〉,+, ·).

Proof. Let {E0, E1, . . . , Ed} denote a basis of primitive idempotents ofM. We show that
Ei ∈ span{A0, A1, . . . , Ad} (0 6 i 6 d). Since A ∈ M, there exist scalars λi (0 6 i 6 d)
such that A =

∑d
i=0 λiEi. Note that {λ0, λ1, . . . , λd} is the set of the distinct eigenvalues

of A. We can now get the following system

A` = λ`0E0 + λ`1E1 + · · ·+ λ`dEd (0 6 ` 6 d),
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which can be written as 
I
A
A2

...
Ad

 =


1 1 ... 1
λ0 λ1 ... λd
λ2

0 λ2
1 ... λ2

d
...

...
. . .

...
λd0 λd1 ... λdd


︸ ︷︷ ︸

=B>


E0

E1

E2
...
Ed

 .

The matrix B from above is a Vandermonde matrix which is invertible (see, for example,
[37, page 185]). The result follows.

Corollary 16. Let M denote the Bose–Mesner algebra of a commutative d-class associ-
ation scheme. For an arbitrary A ∈M the following hold.

(i) If A is a symmetric 01-matrix with d+1 distinct eigenvalues, then A is an adjacency
matrix of a connected undirected graph Γ.

(ii) If A is a non-symmetric 01-matrix with d + 1 distinct eigenvalues, then A is an
adjacency matrix of a strongly connected directed graph Γ.

Proof. From Lemma 15, {A0, A1, . . . , Ad} is a basis of M (recall
M = span{A0, A1, . . . , Ad}). Since

∑d
i=0 Ai = J , the all-1 matrix J belongs to M,

which yields J ∈ span{A0, A1, . . . , Ad}. In other words, for any choice of vertices y, z ∈ X
there exists ` (0 6 ` 6 d) such that (A`)yz 6= 0 (otherwise J 6∈ M, a contradiction).
Recall that the (y, z) entry of A` represents the number of walks of length ` between y
and z. The result follows.

Lemma 17. LetM denote the Bose–Mesner algebra of a commutative d-class association
scheme and let A denote an arbitrary matrix from M. Then the following hold.

(i) The sum of the row entries of A is the same for every vertex.

(ii) The sum of the column entries of A is the same for every vertex.

(iii) The sum of the row entries of A is equal to the sum of the column entries of A for
every vertex.

Proof. Immediately from (2).

Corollary 18. Let M denote the Bose–Mesner algebra of a commutative d-class associ-
ation scheme. For an arbitrary A ∈M the following hold.

(i) If A is a non-symmetric 01-matrix, then there exists a polynomial H(t) ∈ R[t] such
that J = H(A) if and only if Γ = Γ(A) is a regular and strongly connected directed
graph.
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(ii) If A is a symmetric 01-matrix, then there exists a polynomial H(t) ∈ R[t] such that
J = H(A) if and only if Γ = Γ(A) is a regular and connected undirected graph.

Proof. (i) By Lemma 17, for a given 01-matrix A ∈M we have Aj = A>j = kj for some
k. The result now follows from [28, Theorem 1]. (ii) The claim follows from Lemma 17
and [27, Theorem 1].

Recall that A generatesM if every element ofM can be written as a polynomial in A.

Corollary 19. Let M denote the Bose–Mesner algebra of a commutative d-class associ-
ation scheme and let A denote a 01-matrix in M. Then A generates M if and only if A
has d+ 1 distinct eigenvalues.

Proof. (⇐) If A has d+ 1 distinct eigenvalues the result follows from Lemma 15.
(⇒) Assume that A generates M. Then the matrix J is polynomial in A. By Corol-

lary 18 the graph Γ = Γ(A) is (strongly) connected (directed) graph. For the moment let
r + 1 denote the number of distinct eigenvalues of Γ. We know that {A0, A1, . . . , Ar} is
linearly independent set (see, for example, [41, Proposition 5.04]). Since every element of
the standard basis {A0, A1, . . . , Ad} ofM can be written as polynomial in A, we can con-
clude d 6 r. On the other hand, since A belong to M, Ah ∈ M = span{A0, A1, . . . , Ad}
(0 6 h 6 r) which yields r 6 d. The result follows.

Lemma 20. LetM denote the Bose–Mesner algebra of a commutative d-class association
scheme with adjacency matrices {Ai}di=0. For any complex scalars αi (0 6 i 6 d) the set
of eigenvalues of a matrix A =

∑d
i=0 αiAi is

{(P )0∗α, (P )1∗α, . . . , (P )d∗α} (13)

where (P )i∗ denotes the ith row of the first eigenmatrix P , and α = (α0, α1, . . . , αd)
>.

(Note that we do not know the cardinality of (13), i.e., we do not know whether the
products (P )i∗α (0 6 i 6 d) are pairwise distinct.)

Proof. Let Bi (0 6 i 6 d) denote a basis of the space Vi = EiC|X| (0 6 i 6 d). With the
notation of Lemma 8, for any u ∈ Bh (0 6 h 6 d) we have

Au =
d∑
i=0

αiAiu =
d∑
i=0

αipi(h)u =
(
(P )h∗α

)
u.

The result follows.

Note that the vector α from Lemma 20 is arbitrary. For our goal, the interesting case
is when this vector is a 01-vector (with α0 = 0) (see Proposition 21). Our result from
Proposition 21 is very similar to [30, Lemma 6.2]. Some results on symmetric association
schemes generated by a relation can be found in [49].
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Proposition 21. Let X denote a commutative d-class association scheme with adjacency
matrices {Ai}di=0, first eigenmatrix P , and let (P )∗i denote the ith column of P for all
1 6 i 6 d. The column vector

∑
i∈Φ(P )∗i has d + 1 distinct entries (for some set of

indices Φ ⊆ {1, 2, . . . , d}) if and only if the matrix A =
∑

i∈Φ Ai generates the Bose–
Mesner algebra M of X.

Proof. (⇒) Assume that the column vector
∑

i∈Φ(P )∗i has d+1 distinct entries (for some
set of indices Φ ⊆ {1, 2, . . . , d}). Then, by Lemma 20, A =

∑
i∈Φ Ai has d + 1 distinct

eigenvalues. The result now follows from Lemma 15.
(⇐) Assume now that A =

∑
i∈Φ Ai generatesM. Then, by Corollary 19, A has d+ 1

distinct eigenvalues. It follows from Lemma 20 that the column vector
∑

i∈Φ(P )∗i has
d+ 1 distinct entries.

3 On 3-class association schemes generated by a graph

In the current section, we answer the question of whether a commutative 3-class asso-
ciation scheme (X, {Ri}3

i=0) (not necessarily symmetric) is generated by a graph in the
scheme, i.e., by a graph GΦ = (X, {Ri}i∈Φ) with some nonempty index set Φ ⊆ {1, . . . , d}.

Let (X, {Ri}di=0) denote a commutative d-class association scheme, and consider the
graph in the scheme GΦ = (X, {Ri}i∈Φ), with a nonempty set of indices Φ ⊆ {1, . . . , d}.
With reference to Lemma 8 and Lemma 20, for every 0 6 ` 6 d, the number

∑
i∈Φ pi(`)

is the eigenvalue of such a graph associated with the `th (maximal common) eigenspace
of the scheme, where pi(`) (the (`, i)-entry of the first eigenmatrix P ) is the eigenvalue
of (X,Ri) for the `th eigenspace. To remain consistent with our notations, we index the
columns (resp. rows) of P with the ordered set (R0, . . . , Rd) (resp. (V0, . . . , Vd)) such that
the ith column (resp. row) represents the ith relation (resp. eigenspace). For sake of
simplicity, when Φ = {i}, for some i (1 6 i 6 d), we denote the graph G{i} = (X,Ri) by
Gi.

Going back to our goal of determining if a commutative 3-class scheme is generated
by a graph, we need to distinguish two cases:

• symmetric 3-class schemes,

• non-symmetric 3-class schemes.

The result in Proposition 21, for d = 3, will play a fundamental role in both cases.

3.1 Symmetric 3-class association schemes

Let’s start with the symmetric case.
In [14], Van Dam completely classified symmetric 3-class schemes.

Lemma 22 ([14, Section 7]). Let X = (X, {Ri}3
i=0) denote a symmetric 3-class scheme,

and let Gi = (X,Ri) (1 6 i 6 3). Then, X belongs to exactly one of the following
categories:
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(a) 3-class schemes which are amorphic, i.e., every graph Gi (1 6 i 6 3) is strongly-
regular;

(b) 3-class schemes with at least one graph Gi that is the disjoint union of N > 1
(N ∈ N) connected strongly-regular graphs (which are not complete graphs) with the
same parameters;

(c) 3-class schemes with at least one graph Gi having 4 distinct eigenvalues.

In Lemma 23 we describe the shape of the first eigenmatrix of the first class of graphs
from Lemma 22.

Lemma 23. Let X denote an amorphic symmetric 3-class scheme. Then, its first eigen-
matrix P has the following form:

P =

R0 R1 R2 R3


1 n1 n2 n3

1 p1(1) p2(1) p3(1)
1 p1(1) p2(2) p3(2)
1 p1(3) p2(2) p3(1)

,

where ni is the ith valency of the scheme.

Proof. Note that, as P is not singular, the rows of P are pairwise different. Furthermore,
since the entries of the first column of Q are all one (see Lemma 8), the identity PQ =
|X|I (Lemma 9) implies that each row of P , except for the V0-row, has sum zero (see
Corollary 9). The result follows (see [14, page 76] for further details).

Notice that the result also follows from [15, Proposition 2] after a reordering of the
columns.

In Lemma 24 and Proposition 25 we we are dealing with the second class of graphs
from Lemma 22.

Lemma 24. Let X = (X, {Ri}3
i=0) denote a symmetric 3-class scheme. Assume that

G1 = (X,R1) is the disjoint union of N > 1 (N ∈ N) connected, non-complete strongly-
regular graphs, each one with valency k, eigenvalues r and s (r 6= k, s 6= k), and w vertices.
Then, the following hold.

(i) The first eigenmatrix P of X has the form

P =

R0 R1 R2 R3


1 k −1− k + w (−1 +N)w
1 k −1− k + w −w
1 r −1− r 0
1 s −1− s 0
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(ii) None of the graphs Gi = (X,Ri) (1 6 i 6 3) generates the scheme X

(iii) The graph G{1,2} = (X, {R1, R2}) does not generate the scheme X.

Proof. (i) The shape of P is given in the first table of [14, page 88]. The proof is done by
construction in [14, Section 3.1]. In the next few lines, we provide a detailed description
of the first eigenmatrix P . The R1-column of P represents (the eigenvalues of) the graph
which is the disjoint union of N strongly-regular graphs with the same parameters and
(distinct) eigenvalues k, r, s; the R2-column represents the disjoint union of the comple-
ments of the N strongly-regular graphs (with eigenvalues −1 − k + w, −1 − r, −1 − s);
the R3-column represents the complete N -partite graph (on the N sets of w vertices).

(ii) Since we are dealing with connected (non-complete) strongly-regular graphs, we
may assume r > 0 and s < 0 such that s 6= −1 (by (12) and Remark 13). It is evident
that none of the graphs Gi = (X,Ri) (1 6 i 6 3) generates the scheme since each one has
at most 2 distinct eigenvalues (for example, from the first eigenmatrix P , the eigenvalues
of G2 = (X,R2) are −1−k+w, −1− r, −1− s; but the first and the third ones are equal
when r = 0, as s = k − w by (8)).

(iii) The graph G{1,2} = (X, {R1, R2}) has 2 distinct eigenvalues, namely w−1 and −1,
obtained by adding the R1-column and the R2-column of P . Thus, G{1,2} = (X, {R1, R2})
cannot generate the scheme, so proving the claim.

Note that, in light of our aim (to figure out if there is a generating graph in the
scheme), part (ii) allows us to set aside all graphs that we do not need to consider (see
next result).

Proposition 25. Let X = (X, {Ri}3
i=0) denote a symmetric 3-class scheme, and let Gi =

(X,Ri) (1 6 i 6 3). Assume that X has at least one graph Gi (we can set i = 1) which
is the disjoint union of N > 1 (N ∈ N) connected strongly-regular graphs (which are not
complete graphs) with the same parameters: valency k, eigenvalues r and s (r 6= k, s 6= k),
and w vertices. If r > 0 then X can be generated only by the following two graphs: G{1,3}
and G{2,3}.

Proof. By Lemma 24, the first eigenmatrix P has the following form:

P =

R0 R1 R2 R3


1 k −1− k + w (−1 +N)w
1 k −1− k + w −w
1 r −1− r 0
1 s −1− s 0

,

where k, r, s are the distinct eigenvalues of a connected, non-complete strongly-regular
graph of valency k on w vertices, with r > 0 and s < 0, 6= −1 (see (12) and Remark 13);
the parameter N(> 1) is the number of the (connected, non-complete) strongly-regular
graphs, with the same parameters, which appear in the definition of the scheme. In light
of Lemma 24(ii), (iii), two graphs remain to be checked: G{i,3} = (X, {Ri, R3}), i ∈ {1, 2}.
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Recall that r > 0. First, consider the graph G{1,3} = (X, {R1, R3}), whose eigenvalues
(arising from the sum of the R1-column and the R3-column in P ) are k+(−1+N)w, k−w,
r, s. We verify that they are distinct from each other in the next few lines. Note that
w > k (by (4)), k > r (this is a well-known fact, see [17, Section 2.3] for example), and
r > 0 > s (by (12)). Thus, the first eigenvalue k+(−1+N)w cannot be equal to any of the
other ones, since it is positive and greater than each of the others ( (−1 +N)w > 0). The
second k − w, being negative (w > k), could be equal to s. Then, to get a contradiction,
assume k−w = s. Following Subsection 2.4, for a connected strongly-regular graph, only
one of the two cases can occur:

(a) w = 2k + 1, r, s = −1±
√
w

2
(see Case 1 at page 14, and (10));

(b) w = (k−r)(k−s)
k+rs

, r, s ∈ Z (see Case 2 at page 14, and (11)).

Suppose (a) holds. Then, applying the appropriate substitutions in the equation

k − w = s, we get −k − 1 = −1−
√
w

2
, and since w = 2k + 1 this yields 2k + 1 =

√
2k + 1.

Thus we obtain k = 0, which is impossible by definition (k > 0 is the valency of the
graph). Now, assume (b) holds. If we replace w in the equation k − w = s with the
expression provided in (b), then we have k(k + rs) − (k − r)(k − s) = s(k + rs) which
yields (rs+ r)(k − s) = 0. Thus we get three solutions: k = s or r = 0 or s = −1. All of
them would obviously yield a contradiction (indeed, we have k > 0, r > 0, s < −1 by (12)).
Therefore, it follows that the graph G{1,3} = (X, {R1, R3}) has 4 distinct eigenvalues, thus
generating the scheme.

Now, consider the graph G{2,3} = (X, {R2, R3}) (by assumption recall that r > 0).
Eigenvalues of Γ{2,3} (arising from the sum of the R2-column and the R3-column in P )
are −1−k+Nw, −1−k, −1− r, −1−s. Applying the same arguments as before (or, for
example, putting equality between some of them to get a contradiction), it turns out that
they are all distinct unless k −Nw = s holds. Suppose k −Nw = s. Again, we need to
distinguish the two cases (a) and (b). If (a) holds, then from −1−

√
2k+1

2
= k −N(2k + 1)

we get 2N(2k + 1) = 2k + 1 +
√

2k + 1. Thus we have two solutions: N = 1+2k+
√

1+2k
2(1+2k)

or k = −1
2
. Both of them are impossible since N > 1 and k > 0. If (b) holds, then

s = k −N (k−r)((k−s))
k+rs

yields (s− k)(k + rs−N(k − r)) = 0. From it two solutions arise:

k = s or N = k+rs
k−r . As s < 0 < r (by (12)) and k + rs < k − r (note that r, s are

integers), both of them are not acceptable. Thus, also the graph G{2,3} = (X, {R2, R3})
has 4 distinct eigenvalues, thus generating the scheme. The result follows.

Theorem 26. Let X denote a symmetric 3-class scheme. Then, the scheme X is generated
by a (undirected) graph if and only if it is not amorphic.

Proof. We take advantage of the Van Dam classification given in Lemma 22.
Case 1. Assume that X = (X, {Ri}3

i=0) is a symmetric 3-class scheme which is
amorphic, i.e., every graph Gi = (X,Ri) (1 6 i 6 3) is a strongly-regular graph (not
necessarily connected). Such a scheme is never generated by a graph in the scheme: we
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prove that any time we take the union of 2 classes, we get a graph with at most 3 distinct
eigenvalues. In order to understand this, it is enough to look at the first eigenmatrix P
of the scheme X, whose form is provided by Lemma 23:

P =

R0 R1 R2 R3


1 n1 n2 n3

1 p1(1) p2(1) p3(1)
1 p1(1) p2(2) p3(2)
1 p1(3) p2(2) p3(1)

.

None of the graphs Gi = (X,Ri) (1 6 i 6 3) generates the scheme since each one
has at most 3 distinct eigenvalues. For example, the eigenvalues of G1 = (X,R1) are
n1, p1(1), p1(3); note that 2 of them can be equal to each other but not all 3. Now,
consider the graph G{1,2} = (X, {R1, R2}), whose eigenvalues are obtained by adding the
R1-column and the R2-column of P ; precisely, they are n1 +n2, p1(1)+p2(1), p1(1)+p2(2),
p1(3) + p2(2). Since the sum of the R0-row of P , 1 + n1 + n2 + n3, equals n (the number
of vertices of the scheme) and the sum of any other row of P is zero (see Corollary 10),
these eigenvalues are respectively equal to n−n3− 1, −1− p3(1), −1− p3(2), −1− p3(1).
This yields that the graph G{1,2} = (X, {R1, R2}) has at most 3 distinct eigenvalues,
namely, n − n3 − 1, −1 − p3(1), −1 − p3(2). Thus, the graph G{1,2} = (X, {R1, R2})
cannot generate the scheme. The same conclusions arise if we choose the remaining
graphs G{1,3} = (X, {R1, R3}) and G{2,3} = (X, {R2, R3}).

Case 2. Suppose that X has a graph Gi = (X,Ri) which is the disjoint union
of connected strongly-regular graphs with the same parameters which are not complete
graphs. We may assume i = 1. For r > 0, by Proposition 25 each of G{1,3} and G{2,3}
generate the scheme. For r = 0, in the next few lines, we prove that only G{2,3} =
(X, {R2, R3}) has 4 distinct eigenvalues, thus generating the scheme.

Assume r = 0. Then, by (8), the first eigenmatrix P is as follows:

P =

R0 R1 R2 R3


1 k −1 + k − λ (−1 +N)(2k − λ)
1 k −1 + k − λ −(2k − λ)
1 0 −1 0
1 −k + λ −1 + k − λ 0

.

In this case, the graph G{1,3} = (X, {R1, R3}) has 3 (distinct by (8)) eigenvalues, i.e.,
k+(−1+N)(2k−λ), −k+λ, 0; so it cannot generate the scheme. Then, consider the graph
G{2,3} = (X, {R2, R3}), whose eigevalues are−1−k+N(2k−λ), −1−k, −1, −1+k−λ. The
last three are all different from each other as k > 0, w = 2k− λ > 0, and −s = k− λ > 0
(see (8)). Now, comparing the first eigenvalue with each of the others, we never get an
equality since N(2k − λ) = Nw > 0, k < Nw, and (−1 + N)w > 0, respectively (by
N > 1, N ∈ N, and (8)). This means that the graph G{2,3} = (X, {R2, R3}) has 4 distinct
eigenvalues, and so it generates the scheme.
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Case 3. Suppose that X has a graph Gi = (X,Ri) having 4 distinct eigenvalues.
Then, Gi generates X.

3.2 Non-symmetric 3-class association schemes

Now, we consider the non-symmetric case. In [24], Goldbach found the general structure
of the first eigenmatrix P of a non-symmetric 3-class scheme.

Lemma 27 ([24, Theorem 2.3]). Let X denote a non-symmetric 3-class scheme with n
points, intersection numbers pkij (0 6 k, i, j 6 3), valencies ni = p0

ii∗ (0 6 i 6 3), and
multiplicities mi (0 6 i 6 3). Then, the first eigenmatrix P of the scheme X has the
following form:

P =

R0 R1 R2 = R>1 R3


1 n1 n1 n3

1 p1(1) p1(1) p3(1)

1 p1(1) p1(1) p3(1)
1 p1(3) p1(3) p3(3)

, (14)

where p1(1) = 1
2
(p1

11 − p2
11 + i

√
nn1

m1
) ∈ C \ R and p1(3) = n1

n3
p1

33 − p1
23 ∈ Q.

Remark 28. With reference to Lemma 27, let us make some considerations on the first
eigenmatrix P . Since the sum of every row of P except the V0-row is zero (see Corol-
lary 10), it turns out that p3(1) = p2

11 − p1
11 − 1 ∈ Z and p3(3) = −1 − 2p1(3) ∈ Q. Fur-

thermore, as p1
11−p2

11+p1
13−p1

23 = −1 (see [24, Lemma 2.4]), we can write p3(1) = p1
13−p1

23.
In the end, note that n1 6= p1(1) and p1(3) 6= p1(1) since n1 ∈ N, p1(1) ∈ C \ R, and
p1(3) ∈ Q.

To make the next arguments clearer, let us recall the following definitions. An associ-
ation scheme (X, {Ri}di=0) is said to be primitive if every graph Gi = (X,Ri) (1 6 i 6 d)
is connected; otherwise, it is said to be imprimitive. An association scheme (X,R), in
which R = {R ∪R> | R ∈ R}, is said to be the symmetric closure of the scheme (X,R).

Theorem 29. Let X be a non-symmetric 3-class scheme. Then, there always exists a
directed graph which generates the scheme X.

Proof. Since X = (X, {Ri}3
i=0) is a non-symmetric 3-class scheme, its first eigenmatrix P

looks like the one in (14). Thus, we will use here the same notation as in Lemma 27 as well
as the contents of Remark 28. Two cases arise: the scheme X is primitive or imprimitive.

We first suppose X is primitive, i.e., each of its relations but the diagonal one is
connected. In our case, (X, {R1 ∪ R2, R3}) is the symmetric closure of X. By [24, The-
orem 2.2], a 3-class scheme is primitive if and only if its symmetric closure is primitive.
This implies that the (undirected) graph (X,R1 ∪R2) is connected with eigenvalues 2n1,
p1(1)+p1(1), and 2p1(3) (see (14)). It is known that the number of connected components
of a regular (undirected) graph is the multiplicity of its valency (see [7, page 1]). Since the
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valency of the graph (X,R1 ∪ R2) is 2n1, we have that 2n1 6= 2p1(3), i.e., n1 6= p1(3). It
follows that the entries in the R1-column of P are distinct, that is, the graph G1 = (X,R1)
has 4 distinct eigenvalues, and so it generates the scheme. The same arguments hold for
G2 = (X,R2). Observe that G3 = (X,R3) has at most 3 distinct eigenvalues, and so it
cannot generate the scheme.

We explore now the case in which X is imprimitive. According to [24, Theorem 4.1],
this means that p1

33(p1
13 + p1

23) = 0. Since the intersection numbers pkij are non-negative
integers by definition, then either p1

33 = 0 or p1
13 = p1

23 = 0, which never occur together,
otherwise n3 = p1

31 + p1
32 + p1

33 (see equation (2)) would be zero.
If p1

33 = 0, the first eigenmatrix P appears as follows:

P =

R0 R1 R2 = R>1 R3


1 n1 n1 n3

1 p1(1) p1(1) p3(1)

1 p1(1) p1(1) p3(1)
1 −p1

23 −p1
23 −1 + 2p1

23

,

where n1 6= −p1
23. Then, Gi = (X,Ri), i ∈ {1, 2}, having 4 distinct eigenvalues, generates

the scheme. Note that G3 = (X,R3) is disconnected.
If p1

13 = p1
23 = 0, then n3 = p1

33 and p3(1) = 0. The first eigenmatrix P is now the
following:

P =

R0 R1 R2 = R>1 R3


1 n1 n1 n3

1 p1(1) p1(1) 0

1 p1(1) p1(1) 0
1 n1 n1 −1− 2n1

.

None among the graphs Gi = (X,Ri) (1 6 i 6 3) can generate the scheme, as each
of them has exactly 3 distinct eigenvalues. Let us then consider the graph G{1,3} =
(X, {R1, R3}), whose eigenvalues are obtained by adding the R1-column and the R3-
column of P . Thus, this graph has 4 distinct eigenvalues, namely n1 + n3, p1(1), p1(1),
−1−n1, thus generating the scheme. The same holds if we considerG{2,3} = (X, {R2, R3}).
Note that G{1,2} = (X, {R1, R2}) has distinct eigenvalues 2n1 and −1; hence it cannot
generate the scheme.

3.3 Proof of Theorem 2

Let X be a commutative 3-class association scheme. If X is symmetric, then the result
follows from Theorem 26. Otherwise, X is non-symmetric and the result follows from
Theorem 29.
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4 The distance-faithful intersection diagram

Let M denote the Bose–Mesner algebra of a commutative d-class association scheme X
and A ∈ M denote a 01-matrix which generates M. In this section, we study combina-
torial properties of Γ = Γ(A). We prove that, whenever a 01-matrix A ∈ M represents
a (strongly) connected (directed) graph, then for every vertex x ∈ X there exists an
x-distance-faithful intersection diagram of an equitable partition Πx with d + 1 cells.
Moreover, the structure of the x-distance-faithful intersection diagram does not depend
on x (see Theorem 3). We use this fact to describe combinatorial properties of a graph
which generates a commutative 3-class association scheme (see Corollary 34).

Lemma 30. LetM denote the Bose–Mesner algebra of a commutative d-class association
scheme X = (X,R) with adjacency matrices {Ai}di=0. For a given x ∈ X we define the
partition Πx = {P0(x),P1(x), . . . ,Pd(x)} of X in the following way

Pi(x) = {z | (Ai)xz = 1} (0 6 i 6 d).

Let A denote an arbitrary 01-matrix in M, and consider the (directed) graph Γ = Γ(A).
If Γ is a (strongly) connected (directed) graph then in Γ all vertices in Pi(x) are at the
same distance from x.

Proof. We first show that for any z, w ∈ Pi(x) the number of walks of length ` from x
to z is the same as the number of walks of length ` from x to w (i.e., (A`)xz = (A`)xw
(0 6 ` 6 d)). Since {Ah}dh=0 is a basis of M, there exist scalars αij (0 6 i, j 6 d) such
that

A` =
d∑
j=0

α`jAj (0 6 ` 6 d).

For any z, w ∈ Pi(x), we have (Ai)xz = (Ai)xw = 1 and (Aj)xz = (Aj)xw = 0 if j 6= i. This
yields (A`)xz = α`i = (A`)xw.

We now prove our claim by a contradiction. Assume that z, w ∈ Pi(x) and that
∂(x, z) > ∂(x,w) = `. Then, we have (A`)xw 6= 0 but (A`)xz = 0, a contradiction.

Lemma 31. LetM denote the Bose–Mesner algebra of a commutative d-class association
scheme X = (X,R) with the adjacency matrices {Ai}di=0. Pick x, y ∈ X and define the
partitions Πx = {P0(x),P1(x), . . . ,Pd(x)} and Πy = {P0(y),P1(y), . . . ,Pd(y)} of X in
the following way:

Pi(x) = {z | (Ai)xz = 1}, Pi(y) = {z | (Ai)yz = 1} (0 6 i 6 d).

Let A denote an arbitrary 01-matrix in M, and consider the (directed) graph Γ = Γ(A).
If Γ is a (strongly) connected (directed) graph then for any i, j (0 6 i, j 6 d) there exist
scalars D→ij such that in Γ the following hold:

|Γ→1 (z) ∩ Pj(x)| = D→ij for every z ∈ Pi(x) (15)

and
|Γ→1 (w) ∩ Pj(y)| = D→ij for every w ∈ Pi(y). (16)
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Proof. We give a proof for a directed graph. The proof for an undirected graph is similar.
Pick some i, j (0 6 i, j 6 d) and let k and ` denote the unique indices such that

Ak = A>j = Aj∗ and A` = A>i = Ai∗ (such indices exists since A>i , A
>
j ∈ {A0, A1, . . . , Ad}).

Note that A>k = Aj = Ak∗ and A>` = Ai = A`∗ . Since AAk ∈ span{A0, A1, . . . , Ad}, there
exist scalars αhk (0 6 h 6 d) such that

AAk =
d∑

h=0

αhkAh. (17)

Pick x, y ∈ X and consider the partitions Πx and Πy. We show that for any z ∈ Pi(x)
and w ∈ Pi(y), we have |Γ→1 (z) ∩ Pj(x)| = αi

∗
j∗(= α`k) and |Γ→1 (w) ∩ Pj(y)| = αi

∗
j∗(= α`k).

Note that for any matrix B, (B)zx = (B>)xz. From the left-hand side of (17), we have

(AAk)zx =
∑
u∈X

(A)zu(Ak)ux =
∑
u∈X

(A)zu(Aj)xu

= |Γ→1 (z) ∩ Pj(x)|

and

(AAk)wy =
∑
u∈X

(A)wu(Ak)uy =
∑
u∈X

(A)wu(Aj)yu

= |Γ→1 (w) ∩ Pj(y)|.

For the same choices of z ∈ Pi(x) and w ∈ Pi(y) as above, from the right-hand side of
(17), we have

(AAk)zx = (AAk)
>
xz =

(
d∑

h=0

αhkAh

)>
xz

=
d∑

h=0

αhk(A>h )xz

= α`k(Ai)xz (where (A`)
> = Ai)

= α`k = αi
∗

j∗

and

(AAk)wy = (AAk)
>
yw =

(
d∑

h=0

αhkAh

)>
yw

=
d∑

h=0

αhk(A>h )yw

= α`k(Ai)yw (where (A`)
> = Ai)

= α`k = αi
∗

j∗ .

With it, if we define D→ij as α`k (the index i uniquely determines `, and the index j uniquely
determines k), we get that (15) and (16) hold.
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4.1 Proof of Theorem 3

In this subsection we prove Theorem 3. The proof is in the same spirit as [22, Theorem 4.1].
Assume that A is a non-symmetric matrix. Using the same notations as in Lemma 30,

for a given x ∈ X we define the partition Πx in the following way:

Πx = {P0(x),P1(x), . . . ,Pd(x)}, where Pi(x) = {z | (Ai)xz = 1} (0 6 i 6 d).

To prove the claim, we need to show that the following (a)–(d) hold.

(a) All vertices in Pi(x) are at the same distance from x.

(b) |Pi(x)| = |Pi(u)| (0 6 i 6 d) for every x, u ∈ X.

(c) There exist numbers D→ij , D←ij (0 6 i, j 6 d) such that, for every x ∈ X, Πx is
an equitable partition of Γ with corresponding parameters D→ij , D←ij (which do not
depend on x).

(d) With respect to (c), D→ij =
∑

m∈Φ p
i∗
mj∗ and D←ij =

∑
m∈Φ p

i
mj (0 6 i, j 6 d), where

Φ is some nonempty index set such that A =
∑

m∈Φ Am.

The claim (a) follows immediately from Lemma 30.

For the claim (b) first note that every matrix in M has constant row sums (see
Lemma 17). Thus |Pi(x)| =

∑
z∈X(Ai)xz =

∑
w∈X(Ai)uw = |Pi(u)| holds for every

x, u ∈ X. (Furthermore, note that the cardinality of Pi(x) for every x ∈ X is equal to
|Ri(x)| = |{z ∈ X | (x, z) ∈ Ri}| and that |Ri(x)| = ni where Ri is ith relation of the
association scheme X and ni is valency of Ri (see Subsection 2.3)).

Next we prove claim (c). In Lemma 31 we showed that for any i, j (0 6 i, j 6 d) and
x, y ∈ X there exists scalars D→ij such that in Γ, |Γ→1 (z) ∩ Pj(x)| = D→ij holds for every
z ∈ Pi(x); and that |Γ→1 (w) ∩ Pj(y)| = D→ij holds for every w ∈ Pi(y).

For D←ij we have something similar. Pick i, j (0 6 i, j 6 d) and x, y ∈ X. First, note
that

AjA =
d∑

h=0

βhjAh. (18)

for some scalars βhj (0 6 h 6 d). For any z ∈ Pi(x) and w ∈ Pi(y), from the left-hand
side of (18), we have

(AjA)xz =
∑
u∈X

(Aj)xu(A)uz =
∑

u∈Pj(x)

(A)uz

=
∑

u∈Pj(x)

|Γ→1 (u) ∩ {z}|

and

(AjA)yw =
∑
u∈X

(Aj)yu(A)uw =
∑

u∈Pj(y)

(A)uw
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=
∑

u∈Pj(y)

|Γ→1 (u) ∩ {w}|.

For the same choices of z ∈ Pi(x) and w ∈ Pi(y), from the right-hand side of (18), we
have

(AjA)xz =

(
d∑

h=0

βhjAh

)
xz

= βij(Ai)xz = βij

and

(AjA)yw =

(
d∑

h=0

βhjAh

)
yw

= βij(Ai)yw = βij.

With it, if we define D←ij as βij, we get that∑
u∈Pj(x)

|Γ→1 (u) ∩ {z}| = D←ij for every z ∈ Pi(x),

and ∑
u∈Pj(y)

|Γ→1 (u) ∩ {w}| = D←ij for every w ∈ Pi(y).

Thus, Πx and Πy are equitable partitions of Γ with the same corresponding parameters
D→ij , D

←
ij (0 6 i, j 6 d).

It is left to prove claim (d). Pick i, j (0 6 i, j 6 d) and let i∗ and j∗ denote indices
such that Aj∗ = Ak = A>j and Ai∗ = A` = A>i . Since A =

∑
m∈Φ Am (for some nonempty

index set Φ),

AAj∗ = AAk =
∑
m∈Φ

 d∑
h=0

phmk︸︷︷︸
=ph

mj∗

Ah

 =
d∑

h=0

(∑
m∈Φ

phmj∗

)
Ah. (19)

Pick z ∈ Pi(x) and note that zx-entry of the right-hand side of (19) is
∑

m∈Φ p
i∗
mj∗ . From

the proof of Lemma 31, for any z ∈ Pi(x), the left-hand side of (19) is (AAj∗)zx =
|Γ→1 (z)∩Pj(x)|. This implies that D→ij = |Γ→1 (z)∩Pj(x)| =

∑
m∈Φ p

i∗
mj∗ , and the first part

of the claim follows. The second part of the claim follows immediately from the equation
AjA =

∑d
h=0

(∑
m∈Φ p

h
jm

)
Ah and the observations from the proof of the claim (c).

4.2 Some corollaries of Theorem 3

Theorem 3 gives us a useful combinatorial property for a (strongly) connected (directed)
graph which ‘lives’ in a d-class association scheme. See Corollary 34 to understand what
is happening in a 3-class association scheme.

Recall that a graph is walk-regular if the number of closed walks of length ` rooted at
vertex x only depends on `, for each ` > 0 (i.e., the (A`)xx entry for every x ∈ X only
depends on `).
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Corollary 32. Let M denote the Bose–Mesner algebra of a commutative d-class asso-
ciation scheme X = (X,R). If a (strongly) connected (directed) graph Γ ‘lives’ in the
association scheme X (i.e., if the adjacency matrix A of Γ belongs to M), then Γ is a
walk-regular graph.

Proof. Immediate from Theorem 3.

In Corollary 33 we deal with a symmetric d-class association scheme.

Corollary 33. LetM denote the Bose–Mesner algebra of a symmetric d-class association
scheme X = (X,R), and A ∈ M denote a 01-matrix. If Γ = Γ(A) generates X then the
following hold.

(i) For every vertex x ∈ X, there exists an x-distance-faithful intersection diagram (of
an equitable partition Πx) with d+ 1 cells.

(ii) The structure of the x-distance-faithful intersection diagram (of the equitable parti-
tion Πx) from (i) does not depend on x.

(iii) Graph Γ does not have an x-distance-faithful intersection diagram whose number of
cells is less than d + 1 (i.e., d + 1 is the smallest number of cells for which there
exists an x-distance-faithful equitable partition).

Proof. By assumption A generatesM, so by Corollary 19 A has d+1 distinct eigenvalues
λ0 > λ1 > · · · > λd. Note that Corollary 32 yields that Γ is a walk-regular graph.
By Theorem 3, for every vertex x ∈ X, there exists an x-distance-faithful intersection
diagram (of an equitable partition Πx) with d+1 cells and the structure of the intersection
diagram does not depend on x (so claims (i) and (ii) hold). For the moment let B denote
the (d + 1)× (d + 1) quotient matrix of the x-distance-faithful intersection diagram. By
[13, Proposition 4.1] every λi (0 6 i 6 d) is an eigenvalue of B. Now our proof is by a
contradiction. Assume that there exists an x-distance-faithful intersection diagram with
less than d + 1 cells. Then quotient matrix C of such intersection diagram has less than
d+ 1 distinct eigenvalues, and by [13, Proposition 4.1] every of d+ 1 distinct eigenvalues
λi (0 6 i 6 d) of Γ are also eigenvalues of C, a contradiction. The claim (iii) follows.

Corollary 34. LetM denote the Bose–Mesner algebra of a commutative 3-class associa-
tion scheme X = (X,R), A ∈M denote a 01-matrix, and let Γ = Γ(A) denote a (directed)
graph of diameter D with adjacency matrix A. If Γ generates X then D ∈ {2, 3}, Γ has
the same x-distance-faithful intersection diagram around every vertex x ∈ X and such a
diagram has 4 cells. Moreover, the following hold.

(i) If D = 3, then the partition {Γi(x)}06i63 is equitable, and the corresponding param-
eters do not depend on the choice of x ∈ X.

(ii) If D = 2, then exactly one of the following (a), (b) holds.
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(a) Any two adjacent vertices have a constant number of common neighbors, and
the number of common neighbors of any two nonadjacent vertices takes pre-
cisely two values. Moreover, for any x ∈ X there exists an equitable partition
Πx = {{x},Γ1(x),P(x),P ′(x)}, for which Γ2(x) = P(x) ∪ P ′(x).

(b) Any two nonadjacent vertices have a constant number of common neighbors,
and the number of common neighbors of any two adjacent vertices takes pre-
cisely two values. Moreover, for any x ∈ X there exists an equitable partition
Πx = {{x},P(x),P ′(x),Γ2(x)}}, for which Γ1(x) = P(x) ∪ P ′(x).

Proof. Corollary 19 yields that Γ has 4 distinct eigenvalues, and by Corollary 16, Γ is a
(strongly) connected (directed) graph.

We first show that D 6 3. Since {A0, A1, . . . , AD} is a linearly independent set (this
is a well-known fact, see for example [41, Proposition 5.06]) and since {A0, A1, . . . , Ad} is
a basis of A, we have D 6 d, and consequently D 6 3. Next we show that D = 1 is not
possible. If D = 1 then every two different vertices are adjacent, which yields that Γ is
a complete graph. Then, we have that A = J − I is the adjacency matrix, which yields
that A has less than 4 distinct eigenvalues, a contradiction. Case D = 1 is not possible.

By Theorem 3, the number of cells of a distance-faithful equitable partition is equal
to 4.

Assume that D = 3. Pick x ∈ X. The only possibility to get a x-distance-faithful
equitable partition with 4 cells is to take distance partition {Γi(x)}06i63 of X. An example
of a directed graph with D = 3 which generates 3-class association scheme is given in
Figure 1.

Assume that D = 2. For the moment let {B0 = I, B1, B2, B3} denote the standard
basis of M, and let A denote the adjacency matrix of a graph Γ = Γ(A). Since A ∈ M,
the matrix A is equal to some linear combination of {B0, B1, B2, B3}. Moreover, since
A and the Bi’s are 01-matrices, in total six cases are possible A ∈ {B1, B2, B3} or A ∈
{B1 + B2, B1 + B3, B2 + B3}. (Case A = B1 + B2 + B3 is not possible since then we
would have a complete graph.) First three cases A ∈ {B1, B2, B3} give claim (a). Cases
A ∈ {B1 +B2, B1 +B3, B2 +B3} yield claim (b). Note that, if we do not have two different
values (in both cases), then Γ is a strongly-regular graph, a contradiction (by assumption,
Γ generates X).

The result follows.

5 Algebraic property of Γ when Γ generates a commutative as-
sociation scheme

In this section we prove Theorem 4. For that purpose we need Proposition 35. In order
to distinguish between the distance-i matrices of a graph Γ and the adjacency matrices
of a scheme X, in this section, we use Ai’s to the denote distance-i matrices of a graph,
and Bi’s to denote the adjacency matrices of an association scheme.
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Proposition 35. Let Γ = Γ(A) denote a directed graph with vertex set X and adjacency
matrix A. Assume that A generates the Bose–Mesner algebraM of a commutative d-class
association scheme, and let {B0, B1, . . . , Bd} denote the standard basis of M. Then, the
following hold.

(i) For any i (0 6 i 6 d) and y, z, u, v ∈ X, if (Bi)zy = (Bi)uv = 1 then ∂(z, y) =
∂(u, v).

(ii) Every distance-i matrix Ai of Γ = Γ(A) belongs to M, i.e., Ai ∈M (0 6 i 6 D).

Proof. Since A generate the Bose–Mesner algebraM, and J ∈M, there exists a polyno-
mial p(t) such that J = p(A). This implies that Γ is regular and strongly connected (see
Corollary 18).

(i) For every ` ∈ N, there exists complex scalars α
(`)
i (0 6 i 6 d) such that A` =∑d

i=0 α
(`)
i Bi. Recall that

∑d
i=0Bi = J and Bi ◦ Bj = δijBi (0 6 i, j 6 d). This yields

that for any y, z, u, v ∈ X and i (0 6 i 6 d), if (Bi)zy 6= 0 and (Bi)uv 6= 0 then

(A`)zy = (A`)uv = α
(`)
i , i.e., the number of walks of length ` from z to y is equal to the the

number of walks of length ` from u to v (see Lemma 5). Moreover, (A`)zy = (A`)uv holds
for any ` (` ∈ N). To prove the claim, we use the proof by a contradiction. Assume that
∂(z, y) > ∂(u, v) = m. Then, (Am)uv 6= 0 and (Am)zy = 0, a contradiction. The result
follows.

(ii) From the proof of (i) above it follows that, if y, z ∈ X are two arbitrary vertices
such that ∂(z, y) = i, then there exists Bj (for some 0 6 j 6 d) such that (Bj)zy = 1.
Recall also that (Ai)zy = 1. In fact, for such a choice of j and any nonzero (u, v)-entry of
Bj, we have ∂(u, v) = i. This yields

Ai =
∑

j:Ai◦Bj 6=O

Bj (0 6 i 6 D).

The result follows.

5.1 Proof of Theorem 4

We show that (i)⇒(ii), (ii)⇒(iii), and (iii)⇒(i). Recall that

∆ = {(i, j) | i = ∂(x, y), j = ∂(y, x), x, y ∈ X}, (20)

and by our assumption |∆| = d+ 1.

(i)⇒(ii). Assume that A is the Bose–Mesner algebra of a d-class association scheme
X = (X,R), and let {Bi}di=0 denote the adjacency matrices of X. Note that A =
span{A0, A1, . . . , Ad} = span{B0, B1, . . . , Bd}. Assume that Γ has diameter D, and
let Ai’s denote the distance-i matrices of Γ. For a given x ∈ X we define a partition
Πx = {P0(x),P1(x), . . . ,Pd(x)} of X as in Theorem 3, i.e.,

Pi(x) = {z | (Bi)xz = 1} (0 6 i 6 d).
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From the proof of Theorem 3, the partition Πx is equitable and the corresponding pa-
rameters do not depend of the choice of x. Note that the number of cells of the par-
tition Πx is equal to d + 1 (i.e., |Πx| = |∆|). Moreover, by Proposition 35, and since
B>i ∈ {B0, B1, . . . , Bd} (0 6 i 6 d), for any i (0 6 i 6 d) we can produce an ele-
ment (h, r) ∈ ∆. Namely, for a fixed i, if (Bi)xy = 1 and (B>i )yx = (Bi∗)yx = 1, since
|Πx| = |∆| = d+ 1, there exists (h, r) ∈ ∆ such that h = ∂(x, y) and r = ∂(y, x). On the
other hand, for any element (h, r) ∈ ∆ we can produce an element i (0 6 i 6 d). Namely,
for a given (h, r) ∈ ∆ we first need to find vertices x, y ∈ X such that h = ∂(x, y) and
r = ∂(y, x) (such vertices exist from the definition of ∆). Since

∑d
i=0Bi = J , there exists

a unique i such that (Bi)xy = 1. For such an i we also have (B>i )yx = 1, i.e., (Bi∗)yx = 1.
Note that i∗ is also unique and will depend only on the choice of i (we can also say that
it will only depend on r = ∂(y, x)). Note that the pair (Bi, Bi∗) uniquely corresponds to
(h, r). Therefore, it is enough to have an index i (0 6 i 6 d) to derive an element (h, r)
of the set ∆, and vice versa, and with that

{Ri}06i6d = {Ri}i∈∆,

where

Ri = {(x, y) ∈ X ×X | (Bi)xy = 1} (0 6 i 6 d),

Ri = {(x, y) ∈ X ×X | (∂(x, y), ∂(y, x)) = i} (i ∈ ∆),

i.e., for every i (0 6 i 6 d) there exists i ∈ ∆ such that Ri = Ri, and vice versa.
Let 0 = (0, 0). Then, (AS1’) R0 = {(x, x) | x ∈ X}; and (AS2’) {Ri}i∈∆ is a partition

of the Cartesian product X × X. Furthermore (AS3’) R>j = {(y, x) | (x, y) ∈ Rj} is in
{Ri}i∈∆; as well as (AS4’) for each triple i, j,h (i, j,h ∈ ∆), and (x, y) ∈ Rh, the scalar

|{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj}|

does not depend on the choice of the pair (x, y) ∈ Rh. Namely,

(BiBj)xy = |{z ∈ X | (x, z) ∈ Ri and (z, y) ∈ Rj}|.

Since A is generated by A and is also the Bose–Mesner algebra of (X, {Ri}i∈∆) by the
above lines, we have that (X, {Ri}i∈∆) is a commutative d-class association scheme. The
result follows.

(ii)⇒(iii). Assume that X = (X, {Ri}i∈∆) is a commutative d-class association scheme,
and let M denote the corresponding Bose–Mesner algebra. Since |∆| = d + 1 we can
relabel this set in some way and write, for example, ∆ = {0,1, . . . ,d} where 0 = (0, 0).
Note that {Ri}i∈∆ are relations on X indexed by the set ∆. Define the set of adjacency
matrices of X in the following way

(Bi)zy =

{
1 if (z, y) ∈ Ri,
0 if (z, y) /∈ Ri

(i ∈ ∆, z, y ∈ X).
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The set {Bi}i∈∆ is a basis of the Bose–Mesner algebraM of X indexed by the set ∆. For
the moment let Φ1 denote subset of ∆ with first coordinate equal to 1, i.e., let

Φ1 = {(1, ∂(y, x)) | ∂(x, y) = 1, x, y ∈ X} ⊆ ∆.

Note that A ∈ M because A =
∑

h∈Φ1
Bh. This yields that A is a normal matrix.

Similarly, if Φi = {(i, ∂(y, x)) | ∂(x, y) = i, x, y ∈ X}, it is not hard to see that every
distance-i matrix Ai (0 6 i 6 D) belongs to M, i.e., Ai =

∑
h∈Φi

Bh. For the rest of the
proof we only need the fact that A ∈M.

The fact that A ∈ M yields that there exist complex scalars wij (0 6 i, j 6 d) such
that

I = w00B0 + w01B1 + · · ·+ w0dBd,

A = w10B0 + w11B1 + · · ·+ w1dBd,

A2 = w20B0 + w21B1 + · · ·+ w2dBd, (21)
...

Ad = wd0B0 + wd1B1 + · · ·+ wddBd,

i.e. 
I
A
A2

...
Ad

 =


w00 w01 ... w0d

w10 w11 ... w1d

w20 w21 ... w2d
...

...
...

wd0 wd1 ... wdd


︸ ︷︷ ︸

=B


B0

B1

B2
...
Bd

 . (22)

By (22), A ⊆M. Since B from (22) is invertible (it is a change-of-basis matrix), we also
have M⊆ A.

In the end, since
∑

i∈∆ Bi = J , note that (21) yields that the number of walks from x
to y of every given length ` > 0 only depends on the index from the set ∆ = {0,1, . . . ,d}.
On the other hand, by definition of ∆, every index depends only on the distances ∂(x, y)
and ∂(y, x). The result follows.

(iii)⇒(i). Assume that A is a normal matrix, |∆| = d + 1 and the number of walks
from x to y of every given length ` > 0 only depends on the distances ∂(x, y) and ∂(y, x)
(and does not depend on the choice of the pair (x, y)). For any y, z ∈ X, define a column
vector w(y, z) ∈ Rd+1 in the following way

w(y, z) :=
(

(A0)yz, (A
1)yz, . . . , (A

d)yz

)>
.

By our assumption, for any h ∈ ∆ and x, y, u, v ∈ X such that (∂(x, y), ∂(y, x)) =
(∂(u, v), ∂(v, u)) = h, we have

w(u, v) = w(x, y).
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Define the matrices Bi (i ∈ ∆) in the following way

(Bi)zy =

{
1 if (∂(z, y), ∂(y, z)) = i,
0 otherwise

(i ∈ ∆, y, z ∈ X).

Thus, if (Bi)xy = (Bi)uv = 1 then w(x, y) = w(u, v). If (Bi)uv = 1, we can write
w(u, v) = (w0i, w1i, . . . , wdi)

>. Let 0 = (0, 0). By the above comments we have that the
system of linear equations (21) holds, i.e., we have

I
A
A2

...
Ad

 =


w00 w01 ... w0d

w10 w11 ... w1d

w20 w21 ... w2d
...

...
...

wd0 wd1 ... wdd


︸ ︷︷ ︸

=W


B0

B1

B2
...
Bd

 (23)

for some real scalars wij (0 6 i, j 6 d). Since A is a normal matrix with d + 1 dis-
tinct eigenvalues, {A0, A1, . . . , Ad} is a linearly independent set. On the other hand,
{B0, B1, . . . , Bd} is also a linearly independent set by definition. For the moment let
B = span{B0, B1, . . . , Bd} denote an algebra with respect to the elementwise–Hadamard
◦-product. Note that (23) yields that A ⊆ B. On the other hand, since the matrix W
from (23) is invertible (it is a change-of-basis matrix of the vector spaces A and B, both
of dimension d + 1), we also have B ⊆ A. This yields that B = A. Now, we have (AS1)
B0 = I, the identity matrix; as well as (AS2)

∑d
i=0 Bi = J . Since A = B, every Bi can be

written as a polynomial in A, i.e., there exists some polynomial pi(t) ∈ R[t] of degree less
or equal to d such that Bi = pi(A). This yields that (AS5) BiBj = BjBi (0 6 i, j 6 d).
The assumption that A is a normal matrix gives A> ∈ A (see, for example, [11, The-
orem 1.1]), so we have (AS3) B>i ∈ {B0, . . . , Bd} (recall, every Bi can be written as a
polynomial in A); and since A = B, (AS4) BiBj is a linear combination of B0, B1, . . . , Bd

for any i, j (0 6 i, j 6 d). The result follows.
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