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Abstract

Maker-Breaker subgraph games are among the most famous combinatorial games.
For given n, q ∈ N and a subgraph C of the complete graph Kn, the two players,
called Maker and Breaker, alternately claim edges of Kn. In each round of the game
Maker claims one edge and Breaker is allowed to claim up to q edges. If Maker is
able to claim all edges of a copy of C, he wins the game. Otherwise Breaker wins. In
this work we introduce the first constructive strategy for Maker for the C4-Maker-
Breaker game and show that he can win the game if q < 0.16n2/3. According to
the theorem of Bednarska and Łuczak (2000) n2/3 is asymptotically optimal for this
game, but the constant given there for a random Maker strategy is magnitudes apart
from our constant 0.16.
Mathematics Subject Classifications: 05C57, 05C38, 91A24

1 Introduction

1.1 The Maker-Breaker C-game

Let C be a fixed graph. The Maker-Breaker C-game is played on the edges of Kn, the
complete graph on n vertices. The players, called Maker and Breaker alternately claim
edges of Kn until each edge is claimed by one of the players. In each round of the game
Maker claims one edge and Breaker claims up to q edges. We call q the bias of the game. If
the graph consisting of Maker’s edges contains a copy of C at the end of the game, Maker
wins. Otherwise Breaker wins. This is a game of perfect information without draws, so
either Maker or Breaker has a winning strategy if n and q are fixed. We call c ∈ N0 the
threshold bias of the game if Maker has a winning strategy if q < c and Breaker has a
winning strategy if q ⩾ c. For any fixed n obviously there is a unique threshold bias. A
natural question is how the threshold bias behaves as a function of n.
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1.2 Previous work

Bednarska and Łuczak [1] proved that, if C contains three nonisolated vertices, there exists
constants c1, c2 > 0 such that for sufficiently large n Maker can win, if q ⩽ c1n

1/m(C) and
Breaker can win, if q ⩾ c2n

1/m(C), where

m(C) := max
{ |E(H)| − 1

|V (H)| − 1
: H is a subgraph of C, |V (H)| ⩾ 3

}
.

They conjectured that c1 and c2 could be choosen arbitrarily near to each other but this
statement is not yet proven for any C containing a circle. In the case of C = C3, Chvátal
and Erdős [2] showed that Maker can win the game if q <

√
2
√
n and Glazik and Srivastav

[3] gave a winning strategy for Breaker for q >
√

8/3
√
n.

The techniques invented there can be generalized to prove that Breaker has a winning
strategy in the C4-game if q > 1.89n2/3. Till now there was no constructive and deter-
ministic strategy known for Maker and the constant c1 for the random strategy for Maker
in [1] can only be estimated by 0.81892 · 10−6 (see [4]).

1.3 Our contribution

We will introduce a generalization of the minimum degree game which we call the partial
minimum degree game and state a Maker strategy that wins the game within a certain
time restriction. The partial minimum degree game is strongly connected to the C4-
Maker-Breaker game and we will show that Maker can win the C4-game by playing our
strategy for the partial degree game until a certain point of time.

2 Maker’s Strategy and it’s Analysis

2.1 The Partial Minimum Degree Game

In this chapter we introduce a generalization of the Maker-Breaker minimum degree game.
In the minimum degree game Maker’s goal is it to claim a subset M of edges of Kn = (V,E)
such that degM(v) ⩾ d(n) for every vertex of v ∈ V , where d is a fixed function. Our
generalization, which we call the partial minimum degree game, is the following: Given
β ∈ (0, 1] Maker’s goal is it to claim a subgraph M such that there is a subset X ⊆ V
with |X| ⩾ nβ and degM(x) ⩾ d(n) for every vertex x ∈ X. Let us define the game
formally.

Definition 1. Let β ∈ (0, 1], d : N → R, and

Fβ,d(n) :=

{
M ⊆ E(Kn)

∣∣∃X ⊆ V (Kn) : |X| ⩾ βn ∧ ∀x ∈ X degM(x) ⩾ d(n)

}
.

We call the Maker-Breaker game with the winning sets Fβ,d(n) the (β, d(n))-partial mini-
mum degree game.
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For β = 1 the (1, d(n))-partial minimum degree game is just the well-known minimum
degree game. Beck [5] showed that Maker has a winning strategy in the minimum degree
game if d(n) = 1−ϵ

q(n)+1
n, where

ϵ =

(
1 +O

(
q

√
log(n)

(q + 1)(n− 1)

))
2q

√
log(n)

(q + 1)(n− 1)
.

The following Theorem for the partial minimum degree game is similar to the result of
Beck, but in our setting β < 1 and this means that it is sufficient for Maker to achieve a
high minimal degree only on a subset of vertices. Due to this we are able not only to give
a much simpler proof but also to show that the number of rounds Maker needs to win is
at most dn

2
, where d is the target degree. In fact, this bound on then number of turns is

the key to tackle the C4-game.
For any d > 0 we state the d-degree strategy for Maker: In each of his turns Maker

claims an unclaimed edge {v, w} that fulfills degM(v) < d and degM(w) < d, where M is
the graph of Maker’s current edges. If he cannot do so, he stops. We will show that at
this point Maker has already won the the partial minimum degree game.

Theorem 2. Let δ > 0, α, β ∈]0, 1[, and d : N → R : n 7→ δn1−α.
We consider the partial minimum degree game with regard to Fβ,d(n) played on the edges
of Kn. Let d = d(n) = δn1−α. For sufficiently large n ∈ N and a bias q < (1−β)2

δ
nα Maker

wins in at most δ
2
n2−α turns by playing according to the d-degree strategy.

Proof. Let c < (1−β)2

δ
, q = cnα and let n ∈ N be large enough so that the inequality

cδ
2
n2 < (1−β)2

2
n2− 1

2

(
(1−β)n+δ(1−β)n2−α

)
holds.1 Maker plays according to the (δn1−α)-

degree strategy which means that he only claims edges {v, w} with degM(v) < δn1−α and
degM(v) < δn1−α as long as he is able to do so, where M is the graph of Maker’s edges.
Note that after Maker has claimed more than δ

2
n2−α edges we have

∑
v∈V degM(v) > δn2−α

and thus, by the pigeonhole principle, there has to be a vertex vertex v with degM(v) >
δn1−α. Therefore we know that after at most δ

2
n2−α turns there is no unclaimed edge

{v, w} left with degM(v) < δn1−α and degM(w) < δn1−α. Let be M and B the sets
of Maker- and Breaker-edges respectively at this moment, and define X := {v ∈ V :
degM(v) ⩾ δn1−α} and Y := V \X. We assume for a moment that the assertion of the
theorem is not true. Thus by Definition 2.1 of the winning sets, |X| < βn, therefore
|Y | ⩾ (1−β)n. For each y ∈ Y , we have V \{y} ⊆ X ∪NM(y)∪NB(y) because otherwise
for v ∈

(
V \ {y}

)
\
(
X ∪NM(y)∪NB(y)

)
the edge {v, y} would be still unclaimed, which

is a contradiction to the assumption that Maker cannot claim an edge containing two
vertices with degree smaller than δn1−α. Therefore, n − 1 ⩽ |X| + |NM(y)| + |NB(y)|
which implies (1−β)n− 1− δn1−α ⩽ |NB(y)|. This means, Breaker has occupied at least
(1− β)n− 1− δn1−α edges incident in every vertex of Y . So in total the number of edges
claimed by Breaker is at least

|Y |
2

(
(1− β)n− 1− δn1−α

)
1This is possible since cδ < (1− β)2 and the term 1

2

(
(1− β)n+ δ(1− β)n2−α

)
is negligible for large n.
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⩾
(1− β)n

2

(
(1− β)n− 1− δn1−α

)
=
(1− β)2

2
n2 − 1

2

(
(1− β)n+ δ(1− β)n2−α

)
>
cδ

2
n2 =

δ

2
n2−αq

which is a contradiction to the fact that at most δ
2
n2−α rounds were played.

2.2 A Winning Strategy for Maker for the C4-Game

In this section we will give a constructive, asymptotically optimal Maker strategy for the
Maker-Breaker C4-Game. We will use Theorem 2 for the partial minimum degree game
to establish a new lower bound for the threshold bias for the C4-Game.

Theorem 3. Let c < 0.16 and q = q(n) = cn2/3. Then for sufficiently large n there is a
winning strategy for Maker in the Maker-Breaker-C4-Game.

For the proof of the Theorem, we fix δ > 1 with cδ < 0.16 and
β ∈ (0.6, 1−

√
cδ) and assume that n is sufficiently large. The parameters c, δ, q, and β

are fixed for the remainder of this work.
Maker’s strategy for the C4-game: Maker plays according to the δn1/3-degree strategy.
Note that by Theorem 2 he wins the (β, δn2/3)-partial minimum degree. We now show
that Maker needs at most two additional turns to win the C4-game. First we need a few
definitions to analyze the game state at the point of time, when Maker would win the
partial minimum degree game. We assume that at this point of time Maker has not yet
won the C4-Game and show that he needs only two more turns to win it.

Definition 4. Let M,B ⊆ E(Kn) be Maker’s graph and Breaker’s graph respectively,
and let X := {v ∈ V : degM(v) ⩾ δn1/3}.

(i) For each a = {a1, a2} ∈ E we call the edges in

Ta :=
{
{b1, b2} ∈ E : b1 ∈ NM(a1) ∧ b2 ∈ NM(a2)

}
\ {a}

the threats for Breaker induced by the edge a.

(ii) D :=
{
e ∈ E : |Te| ⩾ δ2n2/3 − 1

}
is the set of dangerous edges (for Breaker).

(iii) Dd := D ∩B is the set of directly deactivated edges.

(iv) Di :=
{
e ∈ D : |Te \B| ⩽ q

}
is the set of indirectly deactivated edges.

(v) Da := D \ (Dd ∪Di) is the set of active dangerous edges.
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Te

e

Due to Maker’s strategy, we have degM(v) = δn2/3 for each vertex v ∈ X. Maker can
create a C4 if he claims an edge e and also an edge from Te. Because Breaker is allowed
to claim q edges in each turn, Maker has to claim an edge that induces more than q
threats in one of his turns in order to win the game. The edges of D could induce the
highest number of threats and are therefore called dangerous. Breaker can stop Maker
from claiming a dangerous edge by claiming the edge himself and thereby deactivating
the danger of the edge. The set of edges that are dangerous but deactivated by Breaker
in this direct way is Dd. The second way for Breaker to deactivate a dangerous edge e is
claiming enough edges of Te such that there are no more than q edges left in Te unclaimed
by Breaker. In this case Breaker would be able to claim all remaining threats if Maker
claims e. The set of the edges that are deactivated in this indirect way is Di. The set of
edges that are dangerous and neither deactivated directly nor indirectly is Da. These are
the active dangerous edges and if at any point of time Maker is able to claim one of these
he will present more threats than Breaker can deny and Maker will win in the next turn.

Remark 5. It is evident that for all e ∈ E the following two statements hold.

(i) e ∈ Ta ⇔ a ∈ Te for all a ∈ E.

(ii) Te = {a ∈ E : e ∈ Ta}.

Lemma 6. Let e = {v1, v2} ∈ E be an edge with d := degM(v1) = degM(v2). We assume
that M does not contain a copy of C4.
Then |Te| ∈ {d2 − 1, d2}.

Proof. If NM(v1) ∩ NM(v2) = ∅, we have |Te| = degM(v1) degM(v2) = d2. Otherwise
let x, y ∈ NM(v1) ∩ NM(v2). Since M does not contain a copy of C4, the closed walk
(v1, x, v2, y, v1) cannot be a C4, therefore x = y. Thus |NM(v1) ∩NM(v2)| = 1. It follows

|Te| = |NM(v1) \ {x}| |NM(v2)|+ |NM(v2) \ {x}|
= (d− 1)d+ (d− 1) = d2 − 1

Lemma 7. If n is sufficiently large and M doesn’t contain a copy of C4, the following
statements hold:

(i) |B| ⩽ cδ
2
n2
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(ii) |D| ⩾
(
βn
2

)
(iii) D \Dd ⊆ Di ∪Da

(iv) |D \Dd| ⩾
(
βn
2

)
− cδ

2
n2

(v) |B| ⩾ |Di|(1− c
δ2

− n−2/3)

(vi) |Da| > 0

Proof. (i) By Theorem 2, Maker can win the (β, δn2/3)-partial minimum degree game
in at most δ

2
n4/3 rounds, so Breaker has claimed at most q δ

2
n4/3 = cδ

2
n2 edges.

(ii) Since degM(v) ⩾ ⌈δn1/3⌉ for all v ∈ X, by Lemma 6 we have |Te| ⩾ δ2n2/3 − 1 for
each edge e ∈ E with e ⊆ X. Thus

(
X
2

)
⊆ D. By Theorem 2, we have |X| ⩾ βn

and therefore |D| ⩾
(|X|

2

)
⩾

(
βn
2

)
.

(iii) Since Da = D \ (Dd ∪Di), the statement is evident.

(iv) We know from (i) that cδ
2
n2 ⩾ |B| ⩾ |B ∩ D| = |Dd|. The statement follows from

(ii).

(v) Since Maker plays by the δn1/3-degree strategy, each vertex has Maker degree of at
most δn1/3, which implies |Te| ⩽ δ2n2/3 for each e ∈ E.
It follows

|Di|
(
(δ2−c)n2/3 − 1

)
=

∑
e∈Di

(
(δ2 − c)n2/3 − 1

)
=

∑
e∈Di

(δ2n2/3 − 1− q)

⩽
∑
e∈Di

(|Te| − q) (as Di ⊆ D)

⩽
∑
e∈Di

(|Te ∩B|+ |Te \B| − q)

⩽
∑
e∈Di

|Te ∩B| (by Definition 4(iv))

=
∑
e∈Di

|{b ∈ B : b ∈ Te}|

=
∑
e∈Di

|{b ∈ B : e ∈ Tb}| (by Remark 5)

=
∑
e∈Di

∑
b∈B

1Tb
(e) =

∑
b∈B

∑
e∈Di

1Tb
(e)
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=
∑
b∈B

|Tb ∩Di| ⩽
∑
b∈B

|Tb|

⩽
∑
b∈B

δ2n2/3 = |B|δ2n2/3 .

Hence |B| ⩾ |Di| (δ
2−c)n2/3−1

δ2n2/3 ⩾ |Di|(1− c
δ2

− n−2/3).

(vi) We assume Da = ∅. Because β > 0.6, the following inequality is true:

(β2 − (1− β)2)(1− (1− β)2) > (1− β)2 .

Therefore, for sufficiently large n,

(β2 − (1− β)2)(1− (1− β)2 − n−2/3) > (1− β)2 . (1)

We give upper and lower bounds for |B|:
cδ
2
n2 ⩾ |B| (by (i))

⩾ |Di|(1− c
δ2

− n−2/3) (by (v))

⩾ |D \Dd|(1− c
δ2

− n−2/3) (by (iii))

⩾
((

βn
2

)
− cδ

2
n2
)
(1− c

δ2
− n−2/3) (by (iv))

=
(
1
2
(β2 − cδ)(1− c

δ2
− n−2/3)

− β
2n
(1− c

δ2
− n−2/3)

)
n2

⩾
(
1
2
(β2 − cδ)(1− cδ − n−2/3)

− β
2n
(1− c

δ2
− n−2/3)

)
n2 (as δ > 1)

⩾
(
1
2
(β2 − (1− β)2)(1− (1− β)2 − n−2/3)

− β
2n
(1− c

δ2
− n−2/3)

)
n2 (as cδ < (1− β)2)

>
(
(1−β)2

2
− β

2n
(1− c

δ2
− n−2/3)

)
n2 . (with (1))

The above chain of inequalities gives

cδ ⩾ (1− β)2 − β
n
(1− c

δ2
− n−2/3)

= (1− β)2 − o(1) . (2)

Since cδ < (1 − β)2, (2) cannot hold for sufficiently large n. Thus the assumption
Dα = ∅ is false, and we have proved (vi).

Proof of Theorem 3. We have shown in Lemma 7(v) that Da ̸= ∅. To win the C4-game
Maker can now claim one of these active dangerous edges e ∈ Da. Since e /∈ Di, we have
|Te| \B > q and because Breaker could claim only q edges, in Maker’s next turn at least
one of the edges of Te will still be not claimed and Maker completes a copy of C4 by
claiming one of them.
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