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Abstract

Given a graph G and probability p, we form the random subgraph Gp by re-
taining each edge of G independently with probability p. Given d ∈ N, constants
0 < c < 1, ε > 0, and p = 1+ε

d , we show that if every subset S ⊆ V (G) of size exactly
c|V (G)|

d satisfies |N(S)|  d|S|, then the probability that Gp does not contain a cycle
of length Ω(ε2c2|V (G)|) is exponentially small in |V (G)|. As an intermediate step,
we also show that given k, d ∈ N, a constant ε > 0, and p = 1+ε

d , if every subset
S ⊆ V (G) of size exactly k satisfies |N(S)|  kd, then the probability that Gp does
not contain a path of length Ω(ε2kd) is exponentially small. We further discuss
applications of these results to Ks,t-free graphs of maximal density.

Mathematics Subject Classifications: 05C80, 05C38, 60C05

1 Introduction

The binomial random graph G(n, p) can be seen as a model of a random subgraph of the
complete graph Kn, obtained by retaining each edge of Kn independently with probability
p. A particularly interesting feature of this model, first observed by Erdős and Rényi [8],
is the phase transition that it undergoes with respect to its component structure when p is
around 1

n
. In [8] they showed that when p  1−ε

n
, where ε > 0 is some arbitrary constant,

then with high probability (whp) every component of the graph is small, of logarithmic
order, whereas when p  1+ε

n
, whp there is a unique giant component of linear order.

Later, Ajtai, Komlós, and Szemerédi [1] showed that when p  1+ε
n
, whp G(n, p) contains

a cycle of length Θ(n), settling a long-standing conjecture of Erdős. For more background
on the theory of random graphs, see [5, 9, 11].

More recently, the emergence of similar structures in generalisations of this model
has been studied. Given a host graph G, consider the random subgraph Gp obtained by

a Institute of Discrete Mathematics, Graz University of Technology, Steyrergasse 30, 8010 Graz,
Austria (mauricio@collares.org, erde@math.tugraz.at).

bSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
(sahardiskin@mail.tau.ac.il, krivelev@tauex.tau.ac.il).

the electronic journal of combinatorics 32(1) (2025), #P1.8 https://doi.org/10.37236/13219

https://doi.org/10.37236/13219


retaining each edge of G independently with probability p. What (minimal) structural
assumptions on the host graph G are sufficient to guarantee the likely emergence of
particular structures past certain “natural” thresholds?

Traditionally, these assumptions have been “local”, in terms of the degree sequence of
the graph, and in particular its minimum degree. Indeed, a standard coupling argument
with a Galton–Watson branching process implies that for any graph G with minimum
degree δ(G)  d and ε > 0, whp Gp will contain a component of order Ω(d) when
p  1+ε

d
. The existence of long paths in this model and regime is less obvious. Through

an analysis of the Depth-First Search algorithm, Krivelevich and Sudakov [16] showed
that if δ(G)  d and ε > 0, whp Gp will contain a path of length Ω(d) when p  1+ε

d
.

However, in these general models, where the girth of G could be much larger than the
minimum degree, it is much less clear how to show the typical existence of a long cycle.
Using more delicate methods, this was eventually proven by Krivelevich and Samotij [14]
(see also [17]), who further conjectured that similar statements should hold when the
bound on the minimum degree is replaced with a bound on the average degree.

Recent work of Diskin, Erde, Krivelevich, and Kang [6] on the connection between
the phase transition in Gp and the isoperimetric properties of the host graph G suggests
another way of thinking about the quantitative aspects of the phase transition.

Theorem 1 ([6, Theorem 4]). Let k = ω(1), d  k and let G be a graph on more than
k vertices, such that every S ⊆ V (G) with |S|  k satisfies e(S, V (G) \ S)  d|S|. Let
ε > 0 be a small constant and let p = 1+ε

d
. Then, with probability tending to 1 as k tends

to infinity, Gp contains a component of order at least k
2
.

In fact, with slightly more assumptions on the graph, and a slightly weaker bound on
the probability, a quantitatively similar statement to Theorem 1 holds when the “global”
assumption of expansion at all small scales is replaced by the assumption that sets of size
exactly k expand well, see [6, Theorem 3.1].

One can think of Theorem 1 as giving an alternative heuristic for the nature of the
phase transition. Indeed, here the point of criticality is controlled by the expansion ratio
of subsets (that is, d), whereas the quantitative aspects of the component structure above
the critical point are controlled by the scale at which this level of expansion holds (that
is, k).

Returning to the conjecture of Krivelevich and Samotij [14], let us note that the
assumption that sets of size exactly k expand by a factor of d is, in a sense, a strengthening
of the assumption of having an average degree d (indeed it implies the average degree is
at least d). Nevertheless, for large k this assumption is still somewhat weaker than
a constraint on the minimum degree (in particular, it implies that there are at most k
vertices of degree less than d). It is thus perhaps tempting to conjecture that the threshold
for the appearance of long paths and cycles might also be controlled by the expansion
ratio of the host graph, with a lower bound on their size being determined by the scale
on which this expansion holds. Perhaps somewhat surprisingly, as noted in [6, Remark
3.3], such a result cannot hold, even before percolation. Indeed, if we take our host graph
to be a very unbalanced bipartite graph, for example, G = Kd,d10 , then whilst the graph

the electronic journal of combinatorics 32(1) (2025), #P1.8 2



has an expansion factor of at least d for every set of size up to d9, there is no path in
G of length longer than 2d, since each path must have half of its vertices in the smaller
partition class.

This suggests that one should perhaps consider the vertex-expansion of the host graph,
instead of the edge-expansion. Indeed, our first result shows the typical emergence of long
paths after percolation under the assumption of vertex-expansion at a fixed scale.

Theorem 2. Let ε > 0 be a sufficiently small constant, let k, d ∈ N, let p = 1+ε
d
, and

let G be a graph on at least k vertices such that every S ⊆ V (G) with |S| = k satisfies
|N(S)|  kd. Then G contains a path of length at least ε2kd

10
with probability at least

1− exp (−Ωε (kd)).

Note that for k = 1 and G = Kd+1, the above recovers the result of Ajtai, Komlós,
and Szemerédi [1]. In fact, when G is a clique of size k(d + 1), the above can be seen to
be tight up to a multiplicative factor in the bound of the length of the path.

However, as is the case with arbitrary host graphs of large minimum degree, it is not
immediately obvious how this result can be strengthened to find a long cycle. In the
deterministic setting, that is, when considering a graph G on at least k vertices such that
every S ⊆ V (G) with |S| = k satisfies |N(S)|  kd, it is known that G contains a cycle
of length Ω(kd) [13]. In the specific case where kd is linear in n, our main result shows
that this holds after percolation as well.

Theorem 3. Let 0 < c < 1, d ∈ N, and let G be a graph on n vertices such that every
S ⊆ V (G) with |S| = cn

d
satisfies |N(S)|  d|S|. Let ε := ε(c) > 0 be a sufficiently small

constant and let p = 1+ε
d
. Then Gp contains a cycle of order Ω (ε2c2n) with probability at

least 1− exp (−Ωε,c (n)).

As an application, we consider “optimal” Ks,t-free graphs, that is, graphs not con-
taining a copy of Ks,t (for 2  s  t) and having maximal density. Tightly related to
the Zarankiewicz problem, it is known that the maximal number of edges in an n-vertex
Ks,t-free graph is O(n2− 1

s ), and for t sufficiently larger than s (as well as for some fixed
small values of s and t), this has been established as the correct order of magnitude (see,
for example, [3] and references therein). When a graph G is an optimal Ks,t-free graph, it
has sufficiently good vertex expansion properties [15], which allows one to derive that it
has a cycle of length linear in |V (G)| (utilising the connections between local expansion
and long cycles as in [13]).

Let us show that in fact one can apply Theorem 3 to optimal Ks,t-free graphs. Indeed,

let α be a positive constant, and let G = (V,E) be a Ks,t-free graph with |E|  αn2− 1
s . By

a standard argument, there is a subgraph G0 ⊆ G with minimum degree δ(G0)  αn1− 1
s ,

and we note that |V (G0)| = Θ(n) (indeed, otherwise G0 will be too dense, contradicting

it being Ks,t-free). Recalling that any Ks,t-free graph H has O

|V (H)|2− 1

s


edges, for

every X ⊆ V (G0) with |X| = n1/s, we have e(X, V \X)  α
2
n = αn1−1/s

2
|X| (for n large

enough). Hence, by [15, Lemma 7.2], for every X ⊆ V (G0) with |X| = n1/s we have

|N(X)|  αn1−1/s

2t
|X| = α

2t
· n. We may thus apply Theorem 3, and obtain the following

corollary:
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Corollary 4. Let α be a positive constant, and let s, t ∈ N with 2  s  t. Let G be a
Ks,t-free graph on n vertices satisfying |E(G)|  αn2− 1

s . Then, there exists a sufficiently
large constant K := K(α, t) such that for any p  K

n1−1/s , with high probability Gp contains
a cycle of length Ω(n).

The paper is structured as follows. In Section 2 we collect several definitions and
results which will be useful throughout the paper. In Section 3 we prove Theorem 2, and
in Section 4 we prove Theorem 3. Finally, in Section 5 we discuss our results and present
avenues for future research.

2 Preliminaries

2.1 Notation

Given subsets A,B ⊆ V (G) with A ∩ B = ∅ and a subgraph H ⊆ G, we denote by
eH(A,B) the number of edges in H with one endpoint in A and the other endpoint in B.
When H = G, we may omit the subscript. Furthermore, we denote by N(A) the external
neighbourhood of A in G, that is, N(A) := {v ∈ V (G) \ A : ∃u ∈ A, {v, u} ∈ E(G)}. For
the sake of clarity we omit all rounding signs.

Given I ⊆ N, we say that a graph G is an (I, d)-expander if for every set X with
|X| ∈ I, it holds that |N(X)|  d|X|. If G is a ({k}, d)-expander we may also simply say
G is a (k, d)-expander. We refer the reader to the surveys [10, 12] for a comprehensive
study of expander graphs and their applications.

2.2 Depth-First Search (DFS)

The Depth-First Search (DFS) algorithm explores the components of a graph using a
“last-in-first-out” discipline. The algorithm receives as input a graph G = (V,E) and an
ordering σ of the vertex set V . During the algorithm, we maintain three sets of vertices:
W , the set of processed vertices; A, the set of active vertices, which we treat as a stack;
and U , the set of unvisited vertices.

We initialise W = A = ∅ and U = V . At each step, if the stack A is non-empty, then
we consider the most recently added a ∈ A, and query the edges from a to U , according to
the order σ, until a vertex u ∈ U is discovered with (a, u) ∈ E(G). If no vertex is found,
a is moved from the stack A to W . Otherwise, we add the newly discovered vertex u to
the top of the stack A. If the stack A is empty, we move the first vertex in U , according
to σ, into A.

We note some elementary facts about this process:

(P1) at each stage of the algorithm the stack A spans a path in G; and,

(P2) at each stage of the algorithm there are no edges in G between U and W .

To analyse the DFS algorithm on a percolated graph Gp we will utilise the principle

of deferred decisions. That is, we will sample a sequence (Xi)
|E(G)|
i=1 of i.i.d Bernoulli(p)
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random variables, which we can think of as representing a positive (with probability p) or
negative (with probability 1−p) answer to a query in the algorithm. When the algorithm
makes the i-th query (about an edge of E(G)), it receives a positive answer if and only
if Xi = 1. Let us denote by W (i), A(i), U(i) the sets of vertices in W,A,U , respectively,
after the i-th query. To complete the exploration of the graph, once U is empty we make
the algorithm query all the remaining edges in G not queried before. It is then clear that
the obtained graph has the same distribution as Gp.

2.3 Concentration inequalities

We will make use of a typical Chernoff-type tail bound on the binomial distribution (see,
for example, [4, Appendix A]).

Lemma 5. Let n ∈ N, let p ∈ [0, 1] and let X ∼ Bin(n, p). Then, for every 0  t  np
2
,

P [|X − np| > t] < 2 exp


− t2

3np


.

3 Long paths: Proof of Theorem 2

As discussed in the introduction, an assumption on edge-expansion alone does not suffice
to prove Theorem 2. Nevertheless, the proof here is heavily inspired by that of [16].

We explore Gp via the DFS algorithm described in Section 2.2 until it performs N1 =
εkd2

2(1+ε)
queries (indeed, |E(G)|  kd2/2 > N1). The expected number of positive queries

by this point is εkd
2
, and hence by Lemma 5 there have been at least


1− ε

5


εkd
2

positive
queries with probability at least 1−exp (−Ω (ε3kd)). We will assume in what follows that
this occurs deterministically.

Since either U(N1) = ∅ (and |V (G)|  kd) or each positive query corresponds to a
vertex which moves from U to A (which may later move to W ), it follows that |A(N1) ∪
W (N1)| 


1− ε

5


εkd
2
. Let N2 be the first time such that

|A(N2) ∪W (N2)| =

1− ε

5

 εkd

2
, (1)

noting that N2  N1. Suppose towards a contradiction that Gp does not contain a path

of length ε2kd
10

. By 2.2, |A(N2)|  ε2kd
10

, and therefore by (1), |W (N2)| 

1− 2ε

5


εkd
2
. Let

us fix disjoint sets W1,W2, . . . ,Wr ⊆ W (N2) of size k, where r 

1− 2ε

5


εd
2
. Since G is

a (k, d)-expander, |N(Wi)|  kd for each i ∈ [r], and so by (1)

e(Wi, U(N2))  |N(Wi)|− |A(N2)∪W (N2)|  kd− |A(N2)∪W (N2)| =

1− ε

2
+

ε2

10


kd.

Since the sets Wi are disjoint, it follows that

e(W (N2), U(N2))  r


1− ε

2
+

ε2

10


kd 


1− ε

2


1− 2ε

5


εkd2

2
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However, by 2.2 every edge between U(N2) and W (N2) has already been queried and
hence


1− ε

2


1− 2ε

5


εkd2

2
 e(W (N2), U(N2))  N2  N1 =

εkd2

2(1 + ε)
,

or equivalently (1 + ε)

1− ε

2

 
1− 2ε

5


 1, which is a contradiction for ε sufficiently

small.

4 Long cycles: Proof of Theorem 3

The proof will proceed via a two-round exposure process, using p1 =
1+ ε

2

d
and p2 =

p−p1
1−p1


ε
2d
, noting that Gp has the same distribution as Gp1 ∪Gp2 , since 1− p = (1− p1)(1− p2).

Let α := c(ε/2)2

10
= cε2

40
. By Theorem 2, Gp1 contains a path P of length αn with proba-

bility at least 1− exp (−Ωε (n)). We continue assuming that this holds deterministically.
Let us fix r := αd

c
disjoint subpaths P1∪ . . .∪Pr of P , which we call blocks, each of length

cn
d
. We may assume without loss of generality that these blocks are ordered according to

the order they appear in the path P .
For each v ∈ V (G) \ V (P ), let Bv = {i ∈ [r] : N(v)∩ V (Pi) ∕= ∅} be the set of indices

of blocks to which v is adjacent (in G). We call v good if bv := |Bv|  αd
2
, and denote the

number of good vertices by g.
By our assumption on G, every block Pi has at least d·|Pi|−|P | = (c− α)n neighbours

outside P , and in total there are r = αd
c
blocks. Hence, by a double-counting argument

(c− α)n · αd
c




v∈V \P

bv  g · αd
c

+ n · αd
2
.

In particular, g 

c
2
− α


n  cn

3
, since ε is sufficiently small.

We say a good vertex is successful if there is at least one edge of Gp2 between v
and a vertex vf of the first bv

3
blocks of Bv and one edge between v and a vertex vℓ of

the last bv
3

blocks of Bv. Note that a successful vertex v lies in a cycle in Gp1 ∪ Gp2

of length at least αcn
6
. Indeed, by assumption there are i and j with vf ∈ Pi, vℓ ∈ Pj,

{{v, vf}, {v, vℓ}} ⊆ E(Gp2) and |i−j|−1  bv
3
 αd

6
. Since v ∕∈ V (P ), the vertex v together

with (part of) P forms a cycle in Gp1 ∪Gp2 of length at least αd
6
· cn

d
= αcn

6
= Ω(ε2c2n).

Each good vertex v satisfies bv  αd
2

by definition, and hence

ps := P[v is successful] 

1− (1− p2)

bv
3

2



1− exp


−εα

12

2

= Ω(c2ε6).

There are g  cn
3

good vertices, and each good vertex is successful independently of
the others. Therefore, the probability that no good vertex is successful is (1 − ps)

g =
exp (−Ωε,c (n)). We conclude that with probability at least

1− exp (−Ωε (n))− exp (−Ωε,c (n)) = 1− exp (−Ωε,c (n)) ,

there is a cycle of length at least Ω(ε2c2n) in Gp1 ∪Gp2 .
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5 Discussion

Whilst Theorem 3 requires that the graph expands at an almost optimal scale, that is
d-vertex-expansion for sets of size Ω(n/d), we conjecture that the conclusion should hold
for any (k, d)-expander.

Conjecture 6. Let ε > 0 be a sufficiently small constant, let k, d ∈ N, let p = 1+ε
d
, and

let G be a graph on at least k vertices such that every S ⊆ V (G) with |S| = k satisfies
|N(S)|  kd. Then with probability tending to one as k tends to infinity, Gp contains a
cycle of length Ωε(kd).

Note that Conjecture 6 would be a strengthening of Theorem 2, where we show that
typically Gp contains a path of length Ωε(kd).

As noted in the introduction, while assuming that the minimum degree is at least
d suffices to show that Gp contains a cycle of length linear in d [14], an assumption on
the edge-expansion alone does not suffice to prove Theorem 2. Such an assumption is
tightly related to an assumption on λ2, the second largest eigenvalue of the adjacency
matrix of the graph. In contrast, it is known that an appropriate assumption on λ =
min{|λ2|, |λ|V (G)||} does suffice. Indeed, for (n, d,λ)-graphs G with growing degree d,
when p = 1+ε

d
and λ  ε4d, Diskin and Krivelevich [7] showed that whp Gp contains a

cycle of length linear in n.
Considering constant d, Alon and Bachmat [2] showed that given a (d + 1)-regular

graph G on n vertices, for any fixed ε > 0, if p = 1+ε
d
, then with probability at least

1 − on(1) the random subgraph Gp contains a cycle. Theorems 2 and 3 can be seen
as a quantitative strengthening of this result, showing what additional requirements are
sufficient to show the typical existence of paths or cycles of some given length.
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