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Abstract

We present a new family of sharp examples for the Szemerédi-Trotter theorem.
These are the first examples not based on a rectangular lattice. We also include an
application to the discrete inverse Loomis-Whitney problem.

Mathematics Subject Classifications: 52C35, 52C10

1 Introduction

One formulation of the celebrated Szemerédi–Trotter theorem [25] provides a tight upper
bound for the number of r-rich lines:

Theorem 1. (Szemerédi and Trotter) Let P be a set of n points and let Lr be a set
of lines we call r-rich that contain at least r points in P, both in R2. Then

|Lr| = O

󰀕
n2

r3
+

n

r

󰀖
.

This statement is equivalent to the statement in terms of point-line incidences [25],
which goes as follows.

Theorem 2. (Szemerédi and Trotter) Let P be a set of n points and let L be a set
of m lines, both in R2. Then

I(P ,L) = O(m2/3n2/3 +m+ n).

The many variants of this theorem constitute an entire discipline called incidence
theory. The theorem has also proved useful in other domains: its numerous applications
range from problems in additive number theory to harmonic analysis [7, 8, 10, 18, 23].
Despite the community’s interest [2, 14, 15, 24], the inverse problem : characterizing
constructions that meet the Szemerédi-Trotter (mixed term) upper bound, remains widely
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open. Although there has been recent progress for lines in general position on Cartesian
product point sets, [11, 20] not much else is known.

Up to recently, only two constructions were known to match the non-linear term in
Theorem 1 and Theorem 2. The first example, given by Erdős in 1946, is based on a square
lattice. The second example, given by Elekes [15] in 2001, is based on a rectangular lattice.
Adam Sheffer and the second author recently introduced the first infinite family of sharp
Szemerédi-Trotter examples, which has the Erdős and Elekes constructions as limits [22].
In all of these examples, the point set is a lattice: a Cartesian product of two arithmetic
progressions.

Every previous sharp example for the Szemerédi-Trotter theorem was found by starting
with a Cartesian product of two arithmetic progressions and then applying a projective
transformation and/or point-line duality. In this paper, we give a new sharp example
which does not have this structure.

1.1 Our family of constructions.

We present the first sharp Szemerédi-Trotter family of non-lattice point-line constructions
in R2: the x and y coordinates of the point set are a generalized arithmetic progression
and for any richness r there is a maximal family of r-rich lines on the point set.

Theorem 3. For any non-square integer k, any large enough N and r 󰃑 N , let the point

set P = A2
N where AN =

󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

. Then there exists a set of

r-rich lines |Lr| such that

|Lr| = Θ

󰀕
|P|2
r3

+
|P|
r

󰀖
.

Furthermore there are Θ(N
2

r2
) many slopes and each slope corresponds to a family of

Θ(N
2

r
) many parallel lines.

See Section 3 for the proof and the explicit construction of the line set.

1.2 Limitations and Motivation for the Construction

Our point set P = A2
N is not a product of arithmetic progressions. It is a product of

generalized arithmetic progressions (GAPs).
This construction is a generalization of the Erdős construction. We are interested in

this case because it is a square grid: the x and y coordinate sets are the same. This is
the most interesting case for our applications to inverse discrete Loomis-Whitney.

The choice of {1,
√
k} as generators of GAP simplifies our analysis. If we were not

working in a number field of degree 2 but instead tried to generalize this result to other
number fields, it might still be possible to construct sharp examples but this would be
more complicated.

This result cannot be generalized to a point set AN × BN because the number of
incidences would be much lower than the desired sharp bound. Then the lines would
instead be O(

󰁳
N/M) rich. (See Remark in proof of Lemma 11).
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Recent work by Currier [12] presents a set of sharp Szemerédi-Trotter examples where
the point set is a Cartesian product of GAPs generated by the basis of general number
fields over Q. More incidences are made possible, and the analysis is simplified despite
the more general choice of number fields, because Currier works on an ‘unbalanced’ grid
of points that generalizes the simpler Elekes construction.

1.3 Application to Inverse Discrete Loomis-Whitney.

The Loomis-Whitney inequality [19] upperbounds the volume of an n dimensional set by
the product of the areas of its “shadows”: the n− 1 dimensional coordinate projections.

Theorem 4. Let m be the measure of an open subset O of the Euclidean n-space, and let
m1, . . . ,mn be the (n− 1)-dimensional measures of the projections of O on the coordinate
hyperplanes. Then

mn−1 󰃑 Πn
i=1mi.

The many variations of this theorem constitute a rich field of study [3, 6, 4, 13]. These
results also find applications in other domains from group theory [17] to the Kakeya
problem in harmonic analysis [5]. Recently there has been much interest in the inverse
problem: characterizing sets that provide sharp examples of the Loomis-Whitney inequal-
ity [9, 1]. We focus on the discrete variant of the inverse problem in R2: characterizing
point configurations in the plane whose 1 dimensional projections are minimal. Classical
Loomis-Whitney tells us that in the case of a point set in R2 of size n2 (using affine
transformations to map 2 arbitrary projection directions to the coordinate projections)
the product of the size of these two projections is greater or equal to n2. Equivalently, it
is not possible for both projections to have size less than n.

Thus the natural inverse discrete Loomis-Whitney problem in the plane asks under
which structural conditions of the point set of size n2, and for which set of projection
directions, all the one-dimensional projections have size Θ(n). Elementary arguments
yield the following necessary and sufficient condition for square lattices:

Lemma 5. Let the point set P be a section of the integer lattice of size n × n. A one-
dimensional projection of P has size Θ(n) if and only if the slope of the projection direction
is an irreducible rational p/q such that p, q = O(1).

Note for any square lattice in the plane there exists an affine map which takes it to a
square section of the integer square lattice. So up to affine transformation of the plane
Lemma 5 holds for any square lattice.

Obtaining sharp constructions for the discrete inverse Loomis-Whitney problem in
the plane for an n × n grid of points overlaps with finding sharp examples for Theorem
1 because finding a family of Θ(n) parallel Θ(n)-rich lines yields a projection direction
along which a constant fraction of the points have minimal projection size. We obtain
the following application of Theorem 3:
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Corollary 6. For any non-square integer k, and large enough N , let the point set P = A2
N

where AN =
󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

. Then for any constant p = O(1) there

is a set of projections
󰀋
πi}Θ(p)

i=1 such that |πi(P)| = Θ
󰀃√

pn
󰀄
.

1.4 Sharp example for Energy Bound.

Our constructions provide a new tight example for the following lemma which provide
upperbounds for the additive energy of finite subsets of R [21]:

Lemma 7. Let A, B and X be finite subsets of R such that |X| 󰃑 |A||B|. Then

󰁛

x∈X

E+(A, xB) = O
󰀃
|A|3/2|B|3/2|X|1/2

󰀄
.

There exists a similar lemma for multiplicative energy [21]. The proofs of this lemma
rely on an application of Theorem 1 so all of our sharp examples from Theorem 3 are also
sharp for this lemma.

Lemma 8. For any non-square integer k, and M 󰃑 N let

AN =
󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

and let X = S ⊂ AN

AN
be the slope set from

Theorem 3. Then |X| 󰃑 |AN |2 and

󰁛

x∈X

E+(AN , xAN) = Θ
󰀃
|AN |3|X|1/2

󰀄
.

Note we can similarly construct a sharp example for the multiplicative energy version
of the lemma.

2 Notation

Asymptotic notation is used throughout. We say f(n) = O(g(n)) if there exist con-
stants c, n0 > 0 such that |f(n)| 󰃑 c ·g(n) for all n 󰃍 n0. Likewise f(n) = Ω(g(n)) if there
exist constants c, n0 > 0 such that |f(n)| 󰃍 c ·g(n) for all n 󰃍 n0. We say f(n) = Θ(g(n))
if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

We also use the stronger notation f(n) = o(g(n)) if for all 󰂃 > 0 there exists n󰂃 such
that |f(n)| 󰃑 󰂃 · g(n) for all n 󰃍 n󰂃. Likewise we say f(n) = ω(g(n)) if for all 󰂃 > 0 there
exists n󰂃 such that |f(n)| 󰃍 󰂃 · g(n) for all n 󰃍 n󰂃.

3 New Constructions

In this section we prove Theorem 3 and provide an explicit description of the line set. We
first recall the statement of the theorem.

Theorem 3.
For any non-square integer k, any large enough N and r 󰃑 N , let the point set P := A2

N
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where AN =
󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

. Then there exists a set of r-rich lines

|Lr| such that

|Lr| = Ω

󰀕
|P|2
r3

+
|P|
r

󰀖
.

Furthermore there are Θ(N
2

r2
) many slopes and each slope corresponds to a family of Θ(N

2

r
)

many parallel lines.

Proof. We double count the number of incidences to obtain a lower bound on the size of
the line set. This involves proving each of the lines are r-rich. Let M = N

r
.

We first define the point set, slope set and line set. Note |AN | =
󰀓
2
√
N
󰀔2

= Θ(N).

Let the point set P = A2
N . Then we have |P| = Θ(N2).

Next we define the slope set:

S =

󰀫
p1 + p2

√
k

q1 + q2
√
k
; |pi|, |qi| ∈

󰁫
c
√
M,

√
M

󰁬
, gcd(p21 − kp22, q

2
1 − kq22) = 1, gcd(p1, p2) = 1

󰀬
.

for some absolute constant 3/4 < c < 1. Then we define the line set

L =
󰀋
y = s(x− a) + b; (a, b) ∈ A2

N/4, s ∈ S
󰀌
.

Each point (a, b) ∈ A2
N/4 ⊂ P has at least |S| lines of L so I(P ,L) 󰃍 |A2

N/4||S| ≳ N2|S|.

Lemma 9. |S| = Θ(M2)

Proof. First note |S| 󰃑
√
M

4
= M2.

To find a lower bound on |S|, we must first remove the quadruples (p1, p2, q1, q2) that
do not satisfy the divisibility requirements. Let T := (1−c)4M2. This is the total number
of integer quadruples in the allowed range. Our goal is to show that there are a positive
fraction of T many quadruples that satisfy the divisibility requirements.

First keep only quadruples where p1, p2 are of opposite parity and q1 is odd. We are left
with T/4 quadruples. Next remove quadruples where d| gcd(p1, p2) for some prime d 󰃍 3.
We are left with 󰃍 T/4(1 −

󰁓
d󰃍3prime

1
d2
) many quadruples (since d and 2 are coprime

so pairs (p1, p2) of opposite parity which are both divisible by d occur with frequency
1/d2 i.e. Chinese Remainder Theorem). Now, all our remaining quadruples satisfy the
requirement gcd(p1, p2) = 1.

We now handle the other divisibility criterion. If k is odd, recalling that p1, p2 have
opposite parity we get that p21 − kp22 is odd. If k is even, recalling that q1 is odd we get
that q21 − kq22 is odd. Thus 2 ∤ gcd(p21 − kp22, q

2
1 − kq22).

We now remove quadruples such that d | p21 − kp22 and d | q21 − kq22 for some prime
d 󰃍 3. First assume kp22 is a quadratic residue mod d. (If kp22 is not a quadratic residue,
we do not need to remove this quadruple which only makes our bound stronger.) Fd is a
field so the degree 2 equation in Fd : p

2
1 = kp22 mod d has at most two solutions for p1, at
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most one of which is even, and at most one of which is odd. (Usually one of each unless
the solution is 0 in which case it is a double root.) This is because if the first solution is
x then the second solution is d−x and d is odd. Note p1, p2 have opposite parity so there
is only one solution for p1 in terms of p2. Similarly q1 is odd so the analogous equation
for qi yields exactly one solution for the residue class of q1 in terms of q2.

Let d be some prime and p be a prime greater than 2. So far in the proof of this
Lemma we have two divisibility conditions on p1 and p2 that would cause us to remove a
quadruple containing that pair (p1, p2).

1. d| gcd(p1, p2) which can equivalently be written as p1 ≡ p2 mod d. (Note if d = 2
this encodes the requirement that the remaining pairs p1 and p2 which we did not
throw out have opposite parity.)

2. d|p21 − kp22 which can equivalently be written as p1 ≡ ±
󰁳

kp22 mod p provided kp22
is a quadratic residue mod p.

If d and p are distinct, then by the Chinese Remainder Theorem there is exactly one
solution for p1 modulo d · p to the system of equations 1) and 2). In other words, for each
pair (p1, p2) the probability that we have to remove it because it satisfies Equation 1) is
independent of the probability that we have to remove it because it satisfies Equation 2).
If d and p are the same, then the solutions to Equation 1 are a subset of the solutions to
Equation 2. We assume as before that the probability of a given pair of solving Equation 1
is independent of the probability of solving Equation 2, which means we will overestimate
the number of pairs to be removed. If we were to account for this double counting, we
would only be making our bound stronger. Same for q1, q2.

For each p2 we must remove at most max(1, tp/d) choices of p1 where tp is the total
number of choices of p1 in the range which satisfy the previous divisibility criteria. For
each q2 we must remove at most max(1, tq/d) choices of q1 where tq is the total number
of choices of q1 in the range which satisfy the previous divisibility criteria. So to handle
all d 󰃑

√
M we remove a fraction of at most

󰁓
d󰃍3prime

1
d2

quadruples. To handle primes√
M 󰃑 d 󰃑 M we must remove at most 1 pair (p1, q1) for each pair (p2.q2) per prime

d. By the prime number theorem there are ≲ M
log(M)

primes in this range [26]. So we

will have to remove ≲ M
log(M)

√
M

2 ≲ o(M2) quadruples, which doesn’t affect the leading
exponent in our bound. So after accounting for the last divisibility criterion, we are left
with 󰃍 T/4(1−

󰁓
d󰃍3prime

1
d2
)2 quadruples.

Using a classical result [16] we find that
󰁓

d󰃍3prime
1
d2

< 1/4 so at least 32

43
T many

quadruples satisfy the divisibility properties. Note that 32

43
could be improved but we do

not pursue optimizing the constants.
Recalling the definition of T (total number of quadruples) : at least 32

43
(1 − c)4M2

quadruples satisfy the divisibility properties.

We now show each quadruple (p1, p2, q1, q2) in our range gives a unique fraction p1+p2
√
k

q1+q2
√
k
.
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p1 + p2
√
k

q1 + q2
√
k
=

r1 + r2
√
k

t1 + t2
√
k

We first solve for t1 and t2 by separating the integers and the factors of
√
k:

󰀫
t1 =

1
p21−kp22

[q1(p1r1 − kp2r2) + q2k(p1r2 − p2r1)]

t2 =
1

p21−kp22
[q2(p1r1 − kp2r2) + q1(p1r2 − p2r1)]

Recall gcd(p21 − kp22, q
2
1 − kq22) 󰃑 1 and all integers divide zero so p21 − kp22 ∕= 0.

t2q1 − t1q2 =
1

p21 − kp22
(q21 − kq22)(p1r2 − p2r1)

The left hand side is an integer and gcd(p21−kp22, q
2
1−kq22) = 1 so p21−kp22 | p1r2−p2r1.

However p1, p2, r1, r2 ∈ [c
√
M,

√
M ] so |p21 − kp22| 󰃍 (kc − 1)M and |p1r2 − p2r1| 󰃑

(1− c2)M .
Recall k 󰃍 2 and c ∈ (3/4, 1). So kc − 1 󰃍 2c − 1 󰃍 1/2 > 7/16 󰃍 1 − c2. Thus

|p1r2 − p2r1| < |p21 − kp22| but p21 − kp22 | p1r2 − p2r1 so p1r2 − p2r1 = 0.
Furthermore gcd(p1, p2) = 1 so r1 = fp1 and r2 = fp2 for some integer f . p1, p2, r1, r2 ∈

[c
√
M,

√
M ] so 2p1 is already outside the range. Thus (r1, r2) = (p1, p2) which also implies

(t1, t2) = (q1, q2). So the fraction corresponds to a unique quadruple in our range. So each
quadruple that satisfies the above divisibility requirements contributes a unique element
to S and we have found |S| 󰃍 32

43
(1− c)4M2 = Ω(M2).

Recall I(P ,L) 󰃍 N2|S| and by Lemma 9: I(P ,L) 󰃍 32

43
(1− c)4M2N2 = Ω(N2M2).

Lemma 10. I(P ,L) = Ω(N2M2).

Lemma 11. Each line in L has Θ
󰀃
N
M

󰀄
points in P.

Proof. We first show each line is Ω
󰀃
N
M

󰀄
rich. Let l be an arbitrary line in L. There exist

s = p1+p2
√
k

q1+q2
√
k
∈ S and (a, b) ∈ A2

N/4 such that l is the line y − b = s(x − a). Then for all

x = a+(q1+
√
kq2)(a1+

√
ka2) we have s(x−a) = (p1+

√
kp2)(a1+

√
ka2) = (p1a1+kp2a2)+

(p1a2 + p2a1)
√
k where |pi| ≈

√
M . So for ai ∈

󰁫
0,

mini∈{1,2}
√
N−|bi|

(k+1)
√
M

󰁬
each of the linearly

independent terms have integer coefficients in the range maxi∈1,2

󰁫
−
√
N + |bi|,

√
N − |bi|

󰁬
.

So for all 󰃍
󰀓 √

N
(k+1)

√
M

󰀔2

= Ω
󰀃
N
M

󰀄
choices of a1, a2 in the above range, there exists

y ∈ BN such that y − b = s(x− a). Thus each line in L has 󰃍 N
(k+1)2M

= Ω
󰀃
N
M

󰀄
points in

P .

Remark Here we rely on the set of x−coordinates and y−coordinates to be the same.
Consider instead if the point set were instead P = AN × BN where elements of AN are
x1 +

√
hx2 and elements of BN are y1 +

√
ky2 and

√
h,

√
k are linearly independent on
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Q. Then for the equation y − b = s(x − a) to be satisfied we need the
√
h component

and the
√
k component to vanish. This requires x − a to be a multiple of p (and then

implies y − b is a multiple of q). So there are 󰃑 max(x− a)/|p| = O(
√
N/

√
M) possible

multiples. These correspond to at most O(
󰁴

N
M
) points on the line which is significantly

less than the sharp number of N/M points we get in the symmetric grid case.

Now we show each line in L has O
󰀃
N
M

󰀄
points in P . Let (x, y) ∈ A2

N = P such that

(x, y) ∈ l for some line l : y = p1+p2
√
k

q1+q2
√
k
(x − a) + b ∈ L. Let X1 +

√
kX2 = x − a and

Y1 +
√
kY2 = y − b. Note X1, X2, Y1, Y2 ∈ [−5

4

√
N, 5

4

√
N ]. We want to show there are

O(N
M
) solutions X1, X2, Y1, Y2 to (X1 +

√
kX2)(p1 +

√
kp2) = (Y1 +

√
kY2)(q1 +

√
kq2).

Seperating the integer and
√
k terms and solving for X1 and X2:

󰀫
X1 =

1
(p21−kp22)

[q1(p1Y1 − kp2Y2) + kq2(p1Y2 − p2Y1)]

X2 =
1

(p21−kp22)
[q1(p1Y2 − p2Y1) + q2(p1Y1 − kp2Y2)]

So −q2X1+q1X2 =
(q21−kq22)

(p21−kp22)
(p1Y2−p2Y1). Recall gcd(p

2
1−kp22, q

2
1−kq22) = 1 and the left

hand side is an integer so there exists and integer j such that p1Y2 − p2Y1 = j(p21 − kp22).
Thus p1Y2 ≡ jp21 mod (p2) and p2Y1 ≡ jkp22 mod (p1). Note Y1, Y2 ∈ [−5

4

√
N, 5

4

√
N ]

and p1, p2 ∈ [c
√
M,

√
M ] so j ∈ [− 5

2(kc−1)

√
N√
M
, 5
2(kc−1)

√
N√
M
] (recall k 󰃍 2 and c ∈ (3/4, 1)).

Furthermore p1 and p2 are coprime so each has a multiplicative inverse modulo the other.

Thus Y1 ≡ jkp2 mod (p1) so there are 󰃑 5
2

√
N

c
√
M

solutions for Y1 for a given j.

So there are 25
2c(kc−1)

N
M

integer solutions (j, Y1). Once we have fixed j and Y1 there is
at most one solution Y2 and then at most one solution for X1 at most one for X2.

So each line in L has 󰃍 N
(k+1)2M

and 󰃑 25
2c(kc−1)

N
M

points in P .

Each line in L has 󰃑 25
2c(kc−1)

N
M

points in P so I(P ,L) 󰃑 25
2c(kc−1)

N
M
|L|. Combining with

Lemma 10: I(P ,L) 󰃍 32

43
(1− c)4M2N2 we obtain |L| 󰃍 32c(kc−1)

25×52
(1− c)4NM3 = Ω(NM3)

where each line in L is Θ(N
M
) rich.

The Szemerédi-Trotter bound for point set P states that the number of N
M

rich lines is

O
󰀃

(N2)2

(N/M)3
+ N2

N/M

󰀄
= O

󰀃
NM3

󰀄
. So we have achieved the Szemerédi-Trotter upper bound

for any richness.

Theorem 12. For any non-square integer k, any large enough N and r 󰃑 N , let the

point set P = A2
N where AN =

󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

. Then there exists a

set of r-rich lines |Lr| such that

|Lr| = Ω

󰀕
|P|2
r3

+
|P|
r

󰀖
.
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4 Applications

In this section we prove Lemma 5 and Corollary 6, two sharp examples of the inverse
discrete Loomis-Whitney problem in the plane. We use the family of constructions from
Theorem 3 to show two lemmas bounding additive and multiplicative energies [21] are
sharp.

Corollary 6.
For any non-square integer k, and large enough N , let the point set P = A2

N where

AN =
󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

. Then for any constant p = O(1) there is a

set of projections
󰀋
πi}Θ(p)

i=1 such that |πi(P)| = Θ
󰀃√

pn
󰀄
.

Proof. We see P as embedded in the larger point set P ′ = A2
4N . Letting p = M2, we

construct the set of n√
p
−rich lines on P ′ from the proof of Theorem 3. These belong to

|S| many families of parallel lines each of size Θ(
√
pn), such that every point in P is in

exactly one line from every family. The size of the slope set is |S| = Θ(M2) = Θ(p).
Letting S be the projection directions, the size of each projection is equal to the number
of lines in each family = Θ(

√
pn).

Lemma 5.
Let the point set P be a section of the integer lattice of size n × n. A one-dimensional
projection of P has size Θ(n) if and only if the slope of the projection direction is an
irreducible rational p/q such that p, q = O(1).

Proof. Any line whose slope is non-rational will go through at most a single point, so the
projection of the point set along this direction will have maximal size of n2. So projections
of size O(n) can only exist along rational projection directions.

Taking the case where k is a square so the point set is a square lattice, we know from
the proof of Corollary 6 that if p, q = O(1) then the projection along the slope p/q has
size Θ(n).

If p = ω(1), y = p
q
· x ∈ [0, n] =⇒ x/q = o(n). Similarly, if q = ω(1), y = p

q
· x ∈

[0, n] =⇒ y/q = o(n). In either case there are asymptotically less than n points of the
lattice on each line of slope p

q
. So the projection along p

q
has size ω(n).

Lemma 8.
For any non-square integer k, and M 󰃑 N let AN =

󰁱
x1 + x2

√
k; x1, x2 ∈

󰁫
−
√
N,

√
N
󰁬󰁲

and let X = S ⊂ AN

AN
be the slope set from Theorem 3. Then |X| 󰃑 |AN |2 and

󰁛

x∈X

E+(AN , xAN) = Θ
󰀃
|AN |3|X|1/2

󰀄
.
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Proof. We consider the dual situation of the proof of Lemma 2.3 [21]. We let the
point set be P = A2

N and the line set to be as in the construction from Theorem 3.
Then

󰁓
x∈X E+(AN , xAN) =

󰁓
x∈X

󰁓
y r

2
A+Bx(y) = Θ

󰀃󰁓
lines(

N
M
)2
󰀄
since each line in the

construction is N
M

rich. Furthermore there are Θ(N ·M3) lines in the construction so󰁓
x∈X E+(AN , xAN) = Θ(N3 · M). Finally |AN | = N and |X| = |S| = Θ(M2) 9 so we

have shown
󰁓

x∈X E+(AN , xAN) = Θ
󰀃
|AN |3|X|1/2

󰀄
.
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[13] Thao Do. Extending Erdő-Beck’s theorem to higher dimensions. Computational
Geometry, 90, 2020.

[14] György Elekes. On linear combinatorics I. Concurrency – an algebraic approach.
Combinatorica, 17(4):447–458, 1997.

[15] György Elekes. Sums versus products in number theory, algebra and Erdős geometry.
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