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Abstract

We extend Carter’s notion of admissible diagrams and attach a Dynkin-like
diagram to each reduced reflection factorization of an element in a finite Weyl group.
We give a complete classification for the diagrams attached to reduced reflection
factorizations. We show that such a diagram is cyclically orientable if and only if it
is isomorphic to the underlying graph of a quiver which is mutation-equivalent to a
Dynkin quiver. Furthermore, these diagrams encode a natural presentation of the
Weyl group as reflection group, as shown by Cameron–Seidel–Tsaranov (1994) as
well as Barot–Marsh (2015).

Mathematics Subject Classifications: 06B15, 05E10, 20F55, 05E18

1 Introduction

Any Weyl group is generated by reflections. In particular, each element of a Weyl group
can be written as a product of reflections. We call this a reflection factorization. In
1972, Carter [10] used a particular class of reflection factorizations of an element in a
Weyl group to define so-called admissible diagrams. Using these diagrams, he was able
to give a complete classification of the conjugacy classes in the Weyl groups. We extend
this method and define a diagram attached to each reduced reflection factorization of
every element in a Weyl group. The vertices of the diagram correspond to the reflections
appearing in the reflection factorization. Two reflections s and t are connected by wst
edges, where wst is the order of st minus two. We call the resulting diagram a Carter
diagram (the precise definition will be given in Definition 5).

In Section 2 we give a complete classification of Carter diagrams. A Carter diagram
is said to be of type Xn if the reflection group generated by the reflections in the cor-
responding reduced reflection factorization is of type Xn. For the infinite families An,
Bn and Dn we explicitly give a method to construct all these diagrams. Here we will
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benefit from work of Kluitmann [17], who implicitly constructed the Carter diagrams of
type An. For the exceptional types we obtain these diagrams by computational methods.
We should mention that in the simply-laced types, that is types An, Dn, E6, E7, E8, these
diagrams were already described by Cameron–Seidel–Tsaranov [9], while the diagrams for
the remaining types appear in the work of Felikson [11].

In Section 3 we link these diagrams to those graphs arising as underlying unoriented
graphs in the mutation classes of Dynkin quivers.

Theorem 1. Let Q be a quiver which is mutation-equivalent to an orientation of a Dynkin
diagram. Then the underlying undirected graph Q is a Carter diagram of the same Dynkin
type.

Moreover, let Γ be a Carter diagram of Dynkin type. Then there exists a quiver Q
which is mutation-equivalent to an orientation of the corresponding Dynkin diagram such
that Γ is isomorphic to Q if and only if Γ is cyclically orientable.

We shortly recall the concept of quiver mutation and the definition of a cyclically
orientable graph in Section 3.

Given a crystallographic root system Φ and a Carter diagram Γ of the same Dynkin
type as Φ, by work of Cameron–Seidel–Tsaranov [9] as well as Barot–Marsh [1] the dia-
gram Γ encodes a natural presentation of the corresponding Weyl group W = WΦ. More
precisely, for vertices i and j of Γ we define mij := wij + 2, where wij is the weight of
i and j, that is, the number of edges connecting i and j in Γ. (Note that we possibly
have wij = 0, that is, there is no edge between i and j.) Let W (Γ) be the group with
generators ti, i a vertex of Γ, subject to the following relations:

(R1) t2i = 1 for all vertices i of Γ;

(R2) (titj)
mij = 1 for all vertices i 6= j of Γ;

(R3) for any chordless cycle i0
wi0i1 i1

wi1i2 . . .
wid−2id−1 id−1

wid−1i0 i0, where either all
weights are 1 or wid−1i0 = 2, we have (ti0ti1 · · · tid−2

tid−1
tid−2
· · · ti1)2 = 1.

Theorem 2 (Cameron–Seidel–Tsaranov, Barot–Marsh). Let Φ be a crystallographic root
system and let Γ be a Carter diagram of the same Dynkin type as Φ. Then W (Γ) is
isomorphic to the Weyl group WΦ.

In Section 4 we also discuss to what extent this result can be generalized to the non-
crystallographic cases.

Notation. For n ∈ N = {1, 2, . . .} we set [n] := {1, . . . , n} and [±n] := {±k | k ∈ [n]}.
If G is a group and g, h ∈ G, we put gh := hgh−1 for conjugation. As usual a graph
Γ is a pair (Γ0,Γ1), where Γ0 is a finite set (the set of vertices) and Γ1 ⊆ Γ0 × Γ0 (set
of edges). A subgraph Ψ is called full subgraph (or induced subgraph) if Ψ0 ⊆ Γ0 and
Ψ1 = Γ1 ∩ (Ψ0 ×Ψ0).
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2 Reflection Groups and Carter Diagrams

2.1 Reflection Groups and Root systems

We collect some facts about reflection groups and root systems as can be found in [14].

Let V be a (real) euclidean vector space with positive definite symmetric bilinear form
(− | −). A reflection is a linear map V → V which sends some α ∈ V \{0} to its negative
and fixes the hyperplane α⊥ orthogonal to α. We denote such a reflection by sα. It is
given by

sα : V → V, v 7→ v − 2(α | v)

(α | α)
α.

A finite reflection group is a finite subgroup of the orthogonal group O(V ) which is
generated by reflections. Such a group acts (by reflections) on the ambient vector space
V .

Let W 6 O(V ) be a finite reflection group. Each reflection sα ∈ W determines a
reflecting hyperplane α⊥ and a line Rα orthogonal to α⊥. In the collection of these lines
Rα induced by all reflections sα ∈ W , it is possible to select a collection of vectors which
is stable under the action of W . This leads to the following definition:

Definition 3. A finite set Φ of nonzero vectors in V is called a root system if

(RS1) spanR(Φ) = V ;

(RS2) Φ ∩ Rα = {±α} for all α ∈ Φ;

(RS3) sα(Φ) = Φ for all α ∈ Φ.

The elements of Φ are called roots and we define the rank of Φ as the dimension of V .

Each finite reflection group can be realized as the group 〈sα | α ∈ Φ〉 for some root
system Φ. We therefore write WΦ for this group. Inside a root system Φ we always find
a positive system Φ+ which contains a unique simple system ∆ ⊆ Φ+; see [14, Ch.1.3].
Let Φ 6= ∅ be a root system. Then Φ is reducible if Φ = Φ1 ∪ Φ2, where Φ1 and Φ2 are
nonempty root systems such that (α | β) = 0 whenever α ∈ Φ1 and β ∈ Φ2. Otherwise Φ
is called irreducible.

Given a simple system ∆ ⊆ Φ, the group W := WΦ is generated by the set S := {sα |
α ∈ ∆} subject to the relations

(sαsβ)m(α,β) = 1 (α, β ∈ ∆), (1)

where m(α, β) is the order of sαsβ in W ; see [14, Ch.1.9]. In general, a group having such
a presentation is called Coxeter group. The pair (W,S) is called Coxeter system and S is
called the set of simple reflections. Moreover, note that all reflections in WΦ are of the
form sα for some α ∈ Φ. We therefore call the set T := {sα | α ∈ Φ} the set of reflections ;
see [14, Ch. 1.14].
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An (n > 1) ...

Bn (n > 2) ...

Dn (n > 4) ...

E6

E7

E8

F4

G2

Figure 1: Dynkin diagrams.

The presentation of W = WΦ given by (1) can be encoded in an undirected graph Γ
with vertex set corresponding to ∆. Two vertices corresponding to α, β ∈ ∆ with α 6= β
are joined by m(α, β)− 2 edges if m(α, β) > 3.

The graph Γ is called Coxeter graph. If this graph is connected, the corresponding
Coxeter system (W,S) is called irreducible. By abuse of notation, we sometimes just say
that W is irreducible. The irreducible Coxeter systems (W,S) with W a finite reflection
group, are classified by their Coxeter diagrams; see [14, Section 2.4].

A reflection group WΦ is called Weyl group and the root system Φ is called crystallo-
graphic if

(RS4) 2(α|β)
(β|β)

∈ Z for all α, β ∈ Φ.

The irreducible Weyl groups are classified in terms of Dynkin diagrams, see Figure 1.
When Φ is an irreducible crystallographic root system, there are at most two root lengths.
Therefore roots are called short or long, depending on their respective lengths.

the electronic journal of combinatorics 32(2) (2025), #P2.10 4



2.2 Reflection Length and Reflection Factorizations

Let W = WΦ be a finite reflection group with root system Φ and set of reflections T .
Each w ∈ W is a product of reflections in T . We define

`T (w) := min{k ∈ Z>0 | w = sβ1 · · · sβk , βi ∈ Φ}

and call `T (w) the reflection length of w. If w = sβ1 · · · sβk with βi ∈ Φ, we call
(sβ1 , . . . , sβk) a reflection factorization for w. If in addition k = `T (w), we call the
factorization (sβ1 , . . . , sβk) to be reduced. We denote by RedT (w) the set of all reduced
reflection factorizations for w. We have the following geometric criterion for Weyl groups
to decide whether a reflection factorization is reduced.

Theorem 4 (Carter’s Lemma, [10, Lemma 3]). Let WΦ be a Weyl group and β1, . . . , βk ∈
Φ. Then `T (sβ1 · · · sβk) = k if and only if β1, . . . , βk ∈ Φ are linearly independent.

Since the set T of reflections is closed under conjugation, there is a natural way
to obtain new reflection factorizations from a given (not necessarily reduced) reflection
factorization. The braid group on n strands, denoted Bn, is the group with generators
σ1, . . . , σn−1 subject to the relations

σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2.

It acts on the set T n of n-tuples of reflections as

σi(t1, . . . , tn) = (t1, . . . , ti−1, titi+1ti, ti , ti+2, . . . , tn),

σ−1
i (t1, . . . , tn) = (t1, . . . , ti−1, ti+1 , ti+1titi+1, ti+2, . . . , tn).

We call this action of Bn on T n the Hurwitz action and an orbit of this action a Hurwitz
orbit. It is easy to see that this action restricts to the reduced reflection factorizations of
a given element w ∈ W , that is, it restricts to the set RedT (w) for each w ∈ W .

2.3 Admissible diagrams and Carter diagrams

Let WΦ be a Weyl group. It is a nontrivial result of Carter [10, Theorem C] that each
w ∈ WΦ can be written as w = w1w2 with w1, w2 ∈ WΦ involutions. Furthermore we can
write

w1 = sβ1 · · · sβk , w2 = sβk+1
· · · sβk+h

such that {β1 . . . , βk} and {βk+1 . . . , βk+h} are sets of mutually orthogonal roots and
`T (w) = k + h; see [10, Lemma 5]. Corresponding to such a factorization, Carter defines
a graph Γ:

(A) The vertices of Γ correspond to the roots β1 . . . , βk+h.

(B) Two distinct roots βi, βj are joined by
2(βi | βj)
(βi | βi)

· 2(βj | βi)
(βj | βj)

edges.
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Furthermore, the graph Γ is called an admissible diagram (for w) if each subgraph of Γ
which is a cycle contains an even number of vertices. Admissible diagrams were classified
by Carter; see [10, Section 5]. We extend Carter’s definition as follows to all sets of
linearly independent roots, that is, to all reduced reflection factorizations.

Definition 5. Let WΦ be a Weyl group with crystallographic root system Φ. To each
set of linearly independent roots {β1, . . . , βm} ⊆ Φ we associate a diagram Γ given by the
conditions (A) and (B) above. We call Γ a Carter diagram. The type of Γ is defined to be
the (Dynkin-)type of the smallest root subsystem Φ′ ⊆ Φ which contains {β1, . . . , βm}.

Remark 6. (a) For a set of roots R ⊆ Φ the smallest root subsystem Φ′ ⊆ Φ containing
R is given by WR(R), where WR := 〈sα | α ∈ R〉. If Φ′ is irreducible, then the
Carter diagram associated to R is connected.

(b) A Carter diagram does not change if we replace a root by its corresponding negative
root.

Example 7. Each Dynkin diagram is a Carter diagram. In fact, a Carter diagram without
cycles is a Dynkin diagram. This is proved in [10, Lemma 8] for admissible diagrams, but
the proof given there also works for arbitrary Carter diagrams.

Example 8. We consider a root system Φ of type D4. This can be realized as

Φ = {±ei ± ej | 1 6 i < j 6 4},

where {e1, e2, e3, e4} is the canonical base of R4. The Carter diagram Γ1 attached to the
set of roots R1 := {e1 − e2, e1 + e2, e2 − e3, e4 − e1} ⊆ Φ is given by the left diagram in
Figure 2.

Figure 2: Carter diagrams in a root system of type D4.

The smallest root subsystem of Φ containing R1 is the root system Φ itself. Therefore Γ1

is a Carter diagram of type D4. On the other hand, the Carter diagram Γ2 attached to
the set of roots R2 := {e1−e3, e2−e3, e3−e4} ⊆ Φ is given by the right diagram in Figure
2. The smallest root subsystem of Φ containing R2 is {ei − ej | i 6= j, 1 6 i, j 6 4} ⊆ Φ.
This system is of type A3 and so is Γ2.

Remark 9. In the definition of a Carter diagram we demand the set of roots R :=
{β1, . . . , βm} to be linearly independent. By Carter’s Lemma 4 this is equivalent to
sβ1 · · · sβm being reduced. In particular, to each w ∈ WΦ and each reduced reflection
factorization (sβ1 , . . . , sβm) of w, we have an associated Carter diagram Γ induced by the
set {β1, . . . , βm}.
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Therefore we can describe Carter diagrams entirely by reduced reflection factoriza-
tions. If (sβ1 , . . . , sβm) ∈ RedT (w), then the vertices of the diagram Γ correspond to the
reflections sβi (1 6 i 6 m). By Carter’s Lemma 4 there is an edge between sβi and sβj
(i 6= j) if and only if sβi and sβj do not commute. The number of edges between sβi and
sβj is given by mij−2, where mij is the order of sβisβj . In this case we also call Γ a Carter
diagram associated to w, or more precisely a Carter diagram associated to (sβ1 , . . . , sβm).
The linear independence of R also implies that the root subsystem Φ′ := WR(R) is of
rank m and by [4, Theorem 1.1] we have WΦ′ = 〈sβ1 , . . . , sβm〉.

A direct calculation shows that Carter diagrams are invariant under conjugation in
the following sense.

Lemma 10. Let WΦ be a Weyl group with crystallographic root system Φ, w ∈ WΦ and
(sβ1 , . . . , sβm) ∈ RedT (w). Then (sβ1 , . . . , sβm) (resp. {β1, . . . , βm}) and (sxβ1 , . . . , s

x
βm

) ∈
RedT (wx) (resp. {x(β1), . . . , x(βm)}) yield the same Carter diagram for all x ∈ WΦ.

Definition 11. Let W = WΦ be a finite reflection group with root system Φ of rank n.
An element w ∈ W is called quasi-Coxeter element if there exists a reduced reflection
factorization (sβ1 , . . . , sβn) ∈ RedT (w) such that 〈sβ1 , . . . , sβn〉 = W .

A very important example of a quasi-Coxeter element is the following: An element
c ∈ W is called Coxeter element if there exists a simple system {α1, . . . , αn} ⊆ Φ such
that c = sα1 · · · sαn .

Remark 12. (a) Given a crystallographic root system Φ, the Carter diagrams of the
same type as Φ are precisely the Carter diagrams attached to reduced reflection
factorizations of quasi-Coxeter elements in WΦ (see also Remark 9).

(b) Baumeister and the author give in [4] another characterization of quasi-Coxeter
elements in terms of bases of the (co-)root lattice.

Example 13. Let Φ be a root system of type An and {α1, . . . , αn} ⊆ Φ a simple system.
Then c = sα1 · · · sαn is a Coxeter element. The Carter diagram associated to {α1, . . . , αn}
resp. to (sα1 , . . . , sαn) ∈ RedT (c) is the Dynkin diagram of type An. Applying the Hurwitz
action yields

(σ1 · · · σn−1)(σ2 · · ·σn−1) · · · σn−1(sα1 , . . . , sαn) = (s
sα1 ···sαn−1
αn , . . . , s

sα1
α2 , sα1)

= (sα1+···+αn , . . . , sα1+α2 , sα1) ∈ RedT (c).

The Carter diagram associated to the set {α1 + · · · + αn, . . . , α1 + α2, α1} resp. to the
reduced reflection factorization (s

sα1 ···sαn−1
αn , . . . , s

sα1
α2 , sα1) ∈ RedT (c) is the complete graph

on n vertices.

The following lemma allows us to investigate Carter diagrams via quasi-Coxeter ele-
ments in irreducible Weyl groups.

Lemma 14. Each Carter diagram is the disjoint union of connected Carter diagrams as-
sociated to reduced reflection factorizations of quasi-Coxeter elements in irreducible Weyl
groups.
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Proof. Let W = WΦ be a Weyl group with crystallographic root system Φ. Consider
a set of linearly independent roots R := {β1, . . . , βm} ⊆ Φ and put Φ′ := WR(R). By
[4, Theorem 1.1] sβ1 · · · sβm is a quasi-Coxeter element in WΦ′ . We can decompose Φ′ as
Φ′ = Φ1∪· · ·∪Φk such that WΦi is irreducible and such that the Φi are pairwise orthogonal.
Again by [4, Theorem 1.1], we have Φi = WRi(Ri) with Ri := Φi ∩ R. Therefore each
connected component of the Carter diagram attached to {β1, . . . , βm} is given by a Carter
diagram associated to the reduced reflection factorization of a quasi-Coxeter element in
WΦi for some i ∈ [k].

2.4 Construction of Carter diagrams

The aim of this section is to give a procedure of constructing all possible Carter diagrams
of types An, Bn and Dn. For the exceptional types we will provide a complete list based
on computations.

2.4.1 Carter diagrams of type A

Let n > 1 be an integer. For the type An we will use a result of Kluitmann [17]. It
is well known that the Weyl group W of type An can be identified with the symmetric
group Sym([n+ 1]). In this setting the set of reflections can be identified with the set of
transpositions. As in [17] we define for m > n and w ∈ W the following (possibly empty)
sets

Ξn,m := {(t1, . . . , tm) | ti ∈ Sym([n+ 1]) a transposition, 〈t1, . . . , tm〉 = Sym([n+ 1])}
Ξn,m
w := {(t1, . . . , tm) ∈ Ξn,m | w = t1 · · · tm}.

Remark 15. In type An each quasi-Coxeter element is a Coxeter element and Coxeter
elements correspond to (n+1)-cycles in Sym([n+1]) [3, Remark 6.6]. If c is a (n+1)-cycle
in Sym([n+1]), then Ξn,n

c = RedT (c), where T is the set of transpositions in Sym([n+1]).
Moreover, we have

Ξn,n =
⋃

(n+1)−cycle c

RedT (c).

For each element (t1, . . . , tm) ∈ Ξn,m, Kluitmann defines a graph as follows:

• The vertices correspond to the set {t1, . . . , tm}.

• Two vertices corresponding to ti and tj are connected by an edge if titj 6= tjti.

We call such a diagram a Kluitmann diagram. Denote by An,m (resp. by An,mw for
w ∈ Sym([n + 1])) the set of Kluimann diagrams given by the elements of Ξn,m (resp.
the elements of Ξn,m

w ). As a direct consequence of our definitions of Carter diagrams and
Kluitmann diagrams, we obtain:

Proposition 16. The set of Carter diagrams of type An is given by the set An,n.
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Kluitmann provides a procedure to construct all diagrams in An,m.

Theorem 17 (Kluitmann, [17, Theorem 1]). The following construction yields all ele-
ments in An,m:

(a) Choose m′ ∈ N with n 6 m′ 6 m. Take any connected graph Γ on m′ vertices with
Γ the union of subgraphs Γ1, . . . ,Γk such that:

(i) Γ1, . . . ,Γk are complete graphs.

(ii) Γi and Γj (i 6= j) intersect in at most one vertex.

(iii) Every vertex of Γ belongs to at most two of the subgraphs Γi.

(iv)
∑k

i=1(|Γi| − 1) = (m′ − 1) + (m′ − n).

(b) Attach additional vertices v1, v2, . . . , vm−m′ to Γ by the following procedure:

Suppose that Ψ := Γ ∪ {v1, . . . , v`}, with v1, . . . , v` already attached to Γ. Choose a
vertex v of Ψ, and define vk+1 to be its “duplication”, that is v and vk+1 are connected
with exactly the same vertices; there is no edge between v and vk+1.

Corollary 18 (Carter diagrams of type An). The Carter diagrams of type An are given
by the set An.n. More precisely, a Carter diagram of type An is a connected graph Γ on n
vertices which is the union of subgraphs Γ1, . . . ,Γk such that:

(i) Γ1, . . . ,Γk are complete graphs.

(ii) Γi and Γj (i 6= j) intersect in at most one vertex.

(iii) Every vertex of Γ belongs to at most two of the subgraphs Γi.

(iv)
∑k

i=1(|Γi| − 1) = n− 1.

Remark 19. Note that a complete graph cannot be written as the union of proper sub-
graphs such that the properties (i)-(iv) of Corollary 18 hold. As a consequence, we obtain
that the decomposition Γ = Γ1∪. . .∪Γk given by Corollary 18 is unique up to permutation
of the factors.

Example 20. By Corollary 18, the graph

v w

is a Carter diagram of type A8. To see this, let Γ1 and Γ2 be the complete graphs
on three vertices intersecting the complete graph Γ3 on four vertices in the center of the
picture in the vertices v and w, respectively.
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2.4.2 Carter diagrams of type B

Let WΦ be a Weyl group with Φ of type Bn. It is well known (see for instance [5, Chapter
8.1]) that WΦ can be realized by signed permutations, that is, as the group

SBn := {π ∈ Sym([±n]) | π(−i) = −π(i)},

where the group operation is given by composition. The set of reflections can be identified
with the set

TBn := {(i, j)(−i,−j) | 1 6 i < |j| 6 n} ∪ {(i,−i) | i ∈ [n]}. (2)

The group homomorphism

θ : Sym([n])→ Aut(Zn2 ), π 7→ [Zn2 → Zn2 , (d1, . . . , dn) 7→ (dπ(1), . . . , dπ(n))]

yields an isomorphism SBn
∼= Zn2 oθ Sym([n]). For our purposes and for later use we state

this isomorphism explicitly on the generating set TBn of SBn given in (2). Let i, j ∈ N with
i < j:

ϕB : SBn → Zn2 oθ Sym([n]), (i, j)(−i,−j) 7→ (0, (i, j)) (3)

(i,−j)(−i, j) 7→ (ei + ej, (i, j))

(i,−i) 7→ (ei, id)

We will now describe how to obtain all Carter diagrams of type Bn by describing all
Carter diagrams of reduced reflection factorizations of quasi-Coxeter elements in SBn (see
also Remark 9). Note that in type Bn each quasi-Coxeter element is a Coxeter element [3,
Lemma 6.4]. Therefore let (t1, . . . , tn) be a reduced reflection factorization of a Coxeter
element. By Lemma 10 and by the proof of [3, Lemma 6.4] we can assume that

{t1, . . . , tn} = {(1,−1), (2, i2)(−2,−i2), . . . , (n, in)(−n,−in)} =: R,

where ij ∈ {1, . . . , j − 1} for each j ∈ {2, . . . , n}. Put

R′ := {(2, i2)(−2,−i2), . . . , (n, in)(−n,−in)} ⊆ R.

Proposition 21. The Carter diagram on vertex set R′ is (isomorphic to) a Carter dia-
gram of type An−1.

Proof. Two elements (j, ij)(−j,−ij), (k, ik)(−k,−ik) ∈ R′ commute in SBn if and only if
(j, ij) and (k, ik) commute in Sym([n]). The set {(2, i2), . . . , (n, in)} generates Sym([n])
and therefore yields a Carter diagram of type An−1.

Denote by Γ′ the Carter diagram induced by R′ and let {k1, . . . , k`} be the subset of
{2, . . . , n} such that ikj = 1 for all j ∈ [`]. By property (i) in Corollary 18, the graph Γ′

decomposes as the union of complete graphs.
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Proposition 22. The full subgraph Γ′′ of Γ′ on vertex set

R′′ := {(k1, 1)(−k1,−1), . . . , (k`, 1)(−k`,−1)} ⊆ R′

is one of the complete graphs in the decomposition of Γ′.

Proof. It is easy to see that Γ′′ is a complete graph. Therefore the assertion is true if
R′ = R′′. Thus assume that R′′ ( R′. To show that Γ′′ respects the properties (i)-(iv) of
Corollary 18 it is enough to show that Γ′′ is connected by exactly one edge with the rest
of the graph Γ′. Since Γ′ is connected there exists at least one of those edges. Now assume
that there exists (i, ij)(−i,−ij) ∈ R′ \ R′′ and p, q ∈ [`], p 6= q such that (i, ij)(−i,−ij)
is connected to both (kp, 1)(−kp,−1) ∈ R′′ and (kq, 1)(−kq,−1) ∈ R′′ by an edge. This
implies that {i, ij} = {kp, kq} and therefore (kp, 1)(−kp,−1)(kq ,1)(−kq ,−1) = (i, ij)(−i,−ij),
contradicting the fact that 〈R〉 = SBn .

Let Γ be the Carter diagram on vertex set R. By Proposition 21 the induced subgraph
Γ′ on vertex set R′ is a Carter diagram of type An−1. This graph is described by the
construction in Section 2.4.1. By Proposition 22 the induced subgraph Γ′′ of Γ′ on vertex
set R′′ is a complete graph in the decomposition of Γ′. The element (1,−1) ∈ R commutes
with all elements in R′ \ R′′ and does not commute with any element in R′′. The full
subgraph of Γ on vertex set R′′ ∪ {(1,−1)} is a complete graph on `+ 1 vertices. Denote
by Γ(1) the graph obtained from Γ by suppressing the weights of the edges (that is, all
weights are equal to 1). Our previous arguments show that Γ(1) is a Carter diagram of
type An. The element (1,−1) ∈ R corresponds to a reflection sα in WΦ with α ∈ Φ a
short root. All elements in R \ {(1,−1)} correspond to reflections sβ with β ∈ Φ a long
root. Therefore all edges in Γ adjacent with the vertex corresponding to (1,−1) have the
weight 2.

We summarize our construction:

Theorem 23 (Carter diagrams of type Bn). All Carter diagrams of type Bn are obtained
by the following construction:

• Take any possible Carter diagram Γ of type An.

• Take any vertex v of Γ such that Γ \ {v} is still connected.

• All edges adjacent with v have weight 2.

We call v the distinguished vertex of Γ.

Example 24. Consider the type An Carter diagram from Example 20.

v
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If we remove the vertex v, then the diagram is still connected. We choose v to be the
distinguished vertex. The resulting type Bn Carter diagram is the following one.

v

2.4.3 Carter diagrams of type D

Let WΦ be a Weyl group of type Dn. It is well known (see for instance [5, Chapter 8.2])
that WΦ can be realized as the group of even signed permutations. We denote this group
by SDn . For our purposes it will be convenient to see SDn as the subgroup of SBn generated
by the set

TDn := {(i, j)(−i,−j) | 1 6 i < |j| 6 n}. (4)

The set TDn can also be identified with the set of reflections for SDn . We denote by ϕD
the restriction of the map ϕB given in (3) to the subgroup SDn 6 SBn . Further we put
ϕ := pr2 ◦ϕD, where

pr2 : Zn2 oθ Sym([n])→ Sym([n]), (d, π) 7→ π,

and
ΞDn := {(t1, . . . , tn) | ti ∈ TDn , 〈t1, . . . , tn〉 = SDn }.

Note that for i, j ∈ N with i < j we have ϕ((i, j)(−i,−j)) = ϕ((i,−j)(−i, j)) = (i, j).
Therefore and since ϕ is surjective, ϕ induces a map

ϕ : ΞDn → Ξn−1,n, (t1, . . . , tn) 7→ (ϕ(t1), . . . , ϕ(tn)).

This map is well defined. Since the tuple (t1, . . . , tn) generates the group SDn and since
ϕ is surjective, the tuple (ϕ(t1), . . . , ϕ(tn)) generates the group Sym([n]). Therefore
ϕ(t1) · · ·ϕ(tn) is quasi-Coxeter, hence an n-cycle (see [3, Lemma 6.3]).

The aim of this section is to show the following.

Theorem 25 (Carter diagrams of type Dn). All Carter diagrams of type Dn are given
by the set An−1,n. In particular, Theorem 17 provides a procedure to construct all Carter
diagrams of type Dn.

The strategy of the proof is the following: Each Carter diagram of type Dn is the
Carter diagram of a reduced reflection factorization in ΞDn . We first show that Carter
diagrams are preserved under the map ϕ. We then complete the proof of Theorem 25 by
showing that ϕ is surjective. We state these observations separately.
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Proposition 26. Carter diagrams are preserved under the map ϕ, that is, if (t1, . . . , tn) ∈
ΞDn then the Carter diagram associated to (t1, . . . , tn) is the same as the Kluitmann
diagram associated to (ϕ(t1), . . . , ϕ(tn)) ∈ Ξn−1,n.

Proposition 27. The map ϕ is surjective.

Definition 28. For a reflection t = (i, j)(−i,−j) ∈ TBn (resp. t = (i,−i) ∈ TBn ) we define
the support of t as

supp(t) := {|i|, |j|} (resp. supp(t) := {|i|}.).

Proof of Proposition 26. Let (t1, . . . , tn) ∈ ΞDn and i, j ∈ [n] with i < j. We have to
show that there is an edge between ti and tj in the Carter diagram associated to (t1, . . . , tn)
if and only if there is an edge between ϕ(ti) and ϕ(tj) in the Kluitmann diagram associated
to (ϕ(t1), . . . , ϕ(tn)).

Let us first assume that there is an edge between ti and tj. By Carter’s Lemma 4 this
is equivalent to titj 6= tjti. We conclude

titj 6= tjti and ti 6= tj ⇔ | supp(ti) ∩ supp(tj)| = 1

⇔ | supp(ϕ(ti)) ∩ supp(ϕ(tj))| = 1

⇔ ϕ(ti)ϕ(tj) 6= ϕ(tj)ϕ(ti) and ϕ(ti) 6= ϕ(tj),

that is, ϕ(ti) and ϕ(tj) are connected by an edge in the Kluitmann diagram.
Now consider the case that there is no edge between ti and tj. This is equivalent to

| supp(ti) ∩ supp(tj)| ∈ {0, 2}. By the definition of ϕ we have

supp(ti) ∩ supp(tj) = supp(ϕ(ti)) ∩ ϕ(supp(tj)).

Hence there is no edge between ti and tj if and only if there is no edge between ϕ(ti) and
ϕ(tj).

As a preparation for the proof of Proposition 27 we show:

Lemma 29. The map ϕ is equivariant with respect to the Hurwitz action.

Proof. Let t := (t1, . . . , ti, ti+1, . . . , tn) ∈ ΞDn and i ∈ [n− 1]. It is enough to show that

σi(ϕ(t)) = ϕ(σi(t)).

Let ti = (k1, `1)(−k1,−`1) and ti+1 = (k2, `2)(−k2,−`2) with 1 6 kj < |`j| 6 n for
j ∈ {1, 2}.

Let us first assume that titi+1 = ti+1ti. Then σi(t) = (. . . , ti+1, ti, . . .), thus ϕ(σi(t)) =
(. . . , (k2, |`2|), (k1, |`1|), . . .). On the other hand we have

σi(ϕ(t)) = σi(. . . , (k1, |`1|), (k2, |`2|), . . .) = (. . . , (k2, |`2|)(k1,|`1|), (k1, |`1|), . . .).
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But (k2, |`2|)(k1,|`1|) = (k2, |`2|), since | supp(ti)∩ supp(ti+1)| ∈ {0, 2} (see also the proof of
Proposition 26). Hence σi(ϕ(t)) = ϕ(σi(t)).

Now assume that ti and ti+1 do not commute. This implies | supp(ti)∩supp(ti+1)| = 1.
Let us assume that `1 = k2 (the other cases can be treated analogously). Then

ϕ(σi(t)) = ϕ(. . . , (k2, `2)(−k2,−`2)(k1,`1)(−k1,−`1), (k1, `1)(−k1,−`1), . . .)

= ϕ(. . . , (k2, `2)(−k2,−`2)(k1,k2)(−k1,−k2), (k1, k2)(−k1,−k2), . . .)

= ϕ(. . . , (k1, `2)(−k1,−`2), (k1, k2)(−k1,−k2), . . .)

= (. . . , (k1, |`2|), (k1, k2), . . .)

and

σi(ϕ(t)) = σi(. . . , (k1, |`1|), (k2, |`2|), . . .)
= σi(. . . , (k1, k2), (k2, |`2|), . . .)
= (. . . , (k2, |`2|)(k1,k2), (k1, k2), . . .)

= (. . . , (k1, |`2|), (k1, k2), . . .).

Proof of Proposition 27. Let (τ1, . . . , τn) ∈ Ξn−1,n be arbitrary. By Lemma 29 and by
[18, Corollary 1.4], we can apply the Hurwitz action and assume that

τn−1 = τn and 〈τ1, . . . , τn−1〉 = Sym([n]). (5)

Let τi = (ki, `i) with ki, `i ∈ [n] and ki < `i for all i ∈ [n− 1]. Put

τ i := (ki, `i)(−ki,−`i) for 1 6 i 6 n− 1,

τn := (kn−1,−`n−1)(−kn−1, `n−1).

Since ϕ(τ i) = τi for all i ∈ [n], it remains to show that (τ 1, . . . , τn−1, τn) ∈ ΞDn ,
that is W := 〈τ 1, . . . , τn−1, τn〉 = SDn . Equivalentely, we have to show that ϕD(W ) ∼=
Zn−1

2 oθ Sym([n]), where we identify Zn−1
2 with the subgroup {(d1, . . . dn) ∈ Zn2 | d1 + . . .+

dn is even} 6 Zn2 . We have

ϕD(τ i) = (0, τi) for 1 6 i 6 n− 1,

ϕD(τn) = (ekn−1 + e`n−1 , τn−1).

Choose π ∈ Sym([n]) with π(kn−1) = 1 and π(`n−1) = 2. By (5) there exist i1, . . . , im ∈
[n− 1] with π = τi1 · · · τim .

((0, τi1), . . . , (0, τim)) · (ekn−1 + e`n−1 , τn−1) = (0, π) · (ekn−1 + e`n−1 , τn−1)

= (eπ(kn−1) + eπ(`n−1), πτn−1)

= (e1 + e2, πτn−1) ∈ ϕD(W ).
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By (5) we have (0, (πτn−1)−1(1, 2)) ∈ ϕD(W ). Therefore we obtain

(e1 + e2, πτn−1) · (0, (πτn−1)−1(1, 2)) = ((e1 + e2) + θ(πτn−1)(0), (πτn−1)(πτn−1)−1(1, 2))

= (e1 + e2, (1, 2)) ∈ ϕD(W ).

By (5) we have (0, (i, i + 1)) ∈ ϕD(W ) for all i ∈ [n − 1]. These elements together with
the element (e1 + e2, (1, 2)) ∈ ϕD(W ) are a generating set of Zn−1

2 oθ Sym([n]).

2.4.4 Carter diagrams of exceptional types

We list all non-admissible Carter diagrams of the exceptional types E6 and F4 in Figure
3 and Figure 6, respectively. The admissible ones can be found in [10]. The only Carter
diagram of type G2 is the corresponding Dynkin diagram. For type E7 there are up to
isomorphism 233 Carter diagrams, some examples are shown in Figure 4. For type E8

there are up to isomorphism 1242 Carter diagrams, one example is shown in Figure 5.
The complete lists for the types E7 and E8 can be found on the author’s webpage:

https://www.iazd.uni-hannover.de/fileadmin/iazd/CarterDiagramsE7

https://www.iazd.uni-hannover.de/fileadmin/iazd/CarterDiagramsE8

Figure 3: Non-admissible Carter diagrams of type E6.
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Figure 4: Examples of Carter diagrams of type E7.

Figure 6: Non-admissible Carter diagrams of type F4.

Figure 5: A Carter diagram of type E8.

Remark 30. Let us explain how we carried out the computations to obtain all Carter
diagrams (up to isomorphism) of an exceptional type Xn ∈ {E6, E7, E8, F4}. By Re-
mark 9 we just have to consider Carter diagrams associated to reduced reflection factor-
izations of quasi Coxeter elements in a Coxeter group of type Xn. By Lemma 10, we
just have to consider one fixed quasi-Coxeter element for each conjugacy class. Given a
quasi-Coxeter element w, all reduced reflection factorizations of w are precisely given
by the Hurwitz orbit of one given reduced reflection factorization [3, Theorem 1.1].
The programs to carry out these computations in GAP [12] can be found at: https:

//www.math.uni-bielefeld.de/~baumeist/Dual-Coxeter/dual-Coxeter.html

Given a reduced reflection factorization (t1, . . . , tn), the computation of the Carter dia-
gram associated to this factorization is easily done by computing the order of titj for all
1 6 i < j 6 n. Finally we used Sage [20] to obtain the complete list of Carter diagrams
up to isomorphism. Sage provides the command G.is−isomorphic(H) to check whether two
graphs G and H are isomorphic.

Remark 31. The Carter diagrams of exceptional types can also be found in [8].

3 Quiver Mutation

The aim of this section is to establish a connection between Carter diagrams and the
mutation classes of Dynkin quivers. Namely we prove Theorem 1 in this section. Quiver
mutation appears as an important concept in the theory of cluster algebras. We will
shortly review the necessary definitions. A quiver Q = (Q0, Q1, s, t) is a directed graph
on vertex set Q0, edges given by the set Q1 and maps s, t : Q1 → Q0 such that s(α) = i
and t(α) = j whenever α ∈ Q1 is an arrow from i ∈ Q0 to j ∈ Q0. We will assume
throughout that quivers do not have loops or 2-cycles.
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Definition 32. Let Q = (Q0, Q1, s, t) be a quiver. The mutation at vertex k ∈ Q0 is the
quiver µk(Q) = (Q∗0, Q

∗
1, s
∗, t∗) obtained as follows:

• all arrows incident with k are reversed (that is, s∗(α) = t(α) and t∗(α) = s(α) for
all α ∈ Q1 incident with k);

• whenever i, j ∈ Q0 are such that there are m > 0 arrows from i to k (in Q) and
n > 0 arrows from k to j (in Q), first add mn arrows from i to j. Then remove a
maximal number of 2-cycles.

Definition 33. Let Γ be an undirected graph.

(a) A cycle in Γ is a subgraph which is isomorphic to the graph on vertex set [n] whose
edges are (1, 2), . . . , (n− 1, n), (n, 1).

(b) A full subgraph of Γ which is a cycle is called chordless cycle.

(c) The graph Γ is called cyclically orientable if it admits an orientation in which every
chordless cycle of Γ is cyclically oriented.

Example 34. None of the graphs in Figure 4 is cyclically orientable. For instance, this
can be easily seen by using a criterion provided by Gurvich [13].

We divide the proof of Theorem 1 into three parts. Since the types An and Bn are
closely related, we prove them together. Then we will prove Theorem 1 for the type Dn.
Lastly we treat the exceptional types.

Definition 35. Let Γ be a graph (possibly with directed or with weighted edges). Let
v be a vertex of Γ. We define the valency of v, denoted by val(v), to be the number of
vertices of Γ which are connected by a (directed or weighted) edge with v.

For example, in both graphs shown in Example 24 we have val(v) = 3.

Proposition 36. Theorem 1 is true for type An (resp. type Bn).
More precisley, let Q be a quiver which is mutation-equivalent to an orientation of

the Dynkin diagram of type An (resp. Bn). Then the underlying undirected graph Q is a
Carter diagram of type An (resp. Bn).

Moreover, let Γ be a Carter diagram of type An (resp. Bn). Then there exists a quiver
Q which is mutation-equivalent to an orientation of the Dynkin diagram of type An (resp.
Bn) such that Γ is isomorphic to Q if and only if Γ is cyclically orientable.

Proof. We begin with the An-case. By [7] the muation class of quivers of type An is given
by the connected quivers on n vertices such that the following properties hold:

(I) All non-trivial cycles are oriented and of length 3.

(II) A vertex has valency at most 4.

(III) If a vertex has valency 4, then two of its adjacent arrows belong to one 3-cycle, the
other two belong to another 3-cycle.
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(IV) If a vertex has valency 3, then two of its adjacent arrows belong to a 3-cycle, the
third arrow does not belong to another cycle.

Let Q be a quiver on n vertices fulfilling the properties (I)-(IV) above. By Corollary 18 we
have to show that Q belongs to An,n, that is Q fulfills the properties (i)-(iv) of Corollary
18. The claim is obvious for n = 1. So let n > 1. By (I) we conclude that we can write Γ
as the union

Γ = Γ1 ∪ · · · ∪ Γk (k ∈ N),

where each Γi is a complete graph on two or three vertices, Γi 6⊆ Γj for i 6= j and k is
minimal (that is, for instance, we exclude the possibility that the union of three complete
graphs on two vertices is a complete graph on three vertices).

Let i 6= j be such that Γi ∩ Γj 6= ∅ and let v be a vertex in Γi ∩ Γj. By the previous
arguments and by (II) we have 2 6 val(v) 6 4. By distinguishing all possible cases for
the value of val(v), we can show that v is the only vertex in Γi ∩ Γj, hence (ii) holds. We
exhibit the case val(v) = 4. In this case, condition (III) implies that Γi and Γj are both
3-cycles intersecting just in the vertex v.

Next we want to show (iii). Let v be a vertex of Γ. If val(v) 6 2, then (iii) holds
obviously for v. If val(v) = 3 (resp. val(v) = 4) then condition (IV) (resp. (III)) implies
that v belongs to exactly two of the subgraphs Γi. Thus (iii) holds.

Finally we have to show (iv). Since (iii) holds, we know that ∩i∈IΓi = ∅ for I ⊆ [k]
with |I| > 3. By the inclusion-exclusion principle we conclude that

n = |Γ| =
k∑
i=1

|Γi| −
∑
{i,j}⊆[k]
i 6=j

|Γi ∩ Γj|. (6)

If k = 1, we are done. Therefore let k > 1. Since Γ is connected, the graph Γ1 has non-
trivial intersection with one of the graphs Γi with i > 1. After possible renumbering we
can assume that |Γ1 ∩ Γ2| = 1 by (ii). Again, if k = 2, we are done. Therefore let k > 2.
Since Γ is connected, one of the graphs Γi with i > 2 has non-trivial intersection with Γ1

or Γ2. Again, after possible renumbering, we can assume that i = 3 and |Γ2 ∩ Γ3| = 1
by (ii). Using the conditions (I)-(IV) and the minimality of k, it is straightforward to see
that Γ1∩Γ3 = ∅. Proceeding in this manner we obtain that |Γi∩Γi+1| = 1 for i ∈ [k−1],
while Γi ∩ Γj = ∅ for j 6= i, i+ 1. We leave the details to the reader. Hence∑

{i,j}⊆[k]
i 6=j

|Γi ∩ Γj| = k − 1

and we conclude by (6) that (iv) holds.
Now let Q be a quiver which is mutation-equivalent to an orientation of the Dynkin

diagram of type Bn. By [19, Proposition 3.2] and what we have shown above for the An-
case, Q is given by one of the graphs in Figure 7, where Γ1 and Γ2 are cyclically orientable
Carter diagrams of type Ak1 and Ak2 for some k1, k2 > 1.
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Γ1 Γ1

Γ2

Figure 7: Quiver-mutation class Bn.

It follows immediately from our description of type Bn Carter diagrams that Q is a
Carter diagram of type Bn.

To show the other assertion first note, that if Q is a quiver which is mutation-equivalent
to an orientation of the Dynkin diagram of type An (resp. Bn), then in particular Q admits
a cyclic orientation. By what we have shown above, Q is a cyclically orientable Carter
diagram.

For the other direction let us begin with a Carter diagram Γ of type An, that is Γ lies
in An,n by Theorem 17, and assume that Γ is cyclically orientable. We choose a cyclic
orientation of Γ and show that the conditions (I)-(IV) hold.

The complete graph on four vertices is not cyclically orientable. In particular, the
complete graph on ` > 4 vertices is not cyclically orientable. Therefore condition (i) from
Theorem 17 yields that Γ is the union of complete graphs on two or three vertices. Hence
(I) holds. Conditions (ii) and (iii) imply (II), while conditions (ii)-(iv) imply (III) and
(IV). We leave the details again to the reader.

Now let Γ be a Carter diagram of type Bn which is cyclically orientable. By our
description of the type Bn Carter diagrams, there is a unique vertex v such that all edges
adjacent with v have weight 2 and such that Γ \ {v} is connected. Let us denote by Γ0

the diagram obtained from Γ by replacing edges of weight two with edges of weight one.
By our description of the type Bn Carter diagrams, the graph Γ0 is a cyclically orientable
Carter diagram of type An. In particular, Γ is cyclically orientable.

Before we show that Theorem 1 holds for type Dn, let us recall the description of the
quiver mutation-class of type Dn given by Vatne.

Lemma 37 ([21, Theorem 3.1]). For n > 4, a quiver Q is mutation equivalent to an
orientation of the Dynkin diagram of type Dn if and only if Q is one of the types (D1)-
(D4) shown in Figure 8
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(D1)
Γ1 v

(D2)
Γ1 v1 Γ2v2

(D4)
Γij

(D3)
Γ1 v1 Γ2v2

Figure 8: Quiver-mutation class Dn.

Let us make this description more precise (see [21, Chapter 2]). Therefore denote
by MAn the type An mutation-class described by the properties (I)-(IV) in the proof of
Proposition 36. Call a vertex v of a quiver Q a connecting vertex if v has valency at most
2 and, moreover, if v has valency 2, then v is a vertex in a 3-cycle in Q.

(D1): Γ1 is in MAn−2 and v is a connecting vertex for Γ1

(D2): Γ1 (resp. Γ2) is inMAn1
(resp. MAn2

) for some n1 ∈ N (resp. n2 ∈ N) and v1 (resp.
v2) is a connecting vertex for Γ1 (resp. Γ2).

(D3): See (D2).

(D4): The quiver Q described by this type has a full subquiver which is a directed k-cycle
(k > 3), called central cycle. For each arrow α : i → j in Q, there may (and may
not) be a vertex cij which is not in the central cycle, such that there is an oriented

3-cycle i
α→ j → vij → i. This 3-cycle is a full subquiver. It is called spike. There

are no more arrows starting or ending in vertices on the central cycle. To each spike
i
α→ j → vij → i there is a quiver Γij from MAnij

attached, for some nij ∈ N. The
vertex vij is a connecting vertex for Γij.

Note that in types (D2)-(D4), the subquivers Γi resp. Γij might be in MA1 .

Proposition 38. Theorem 1 is true for type Dn.

Proof. Let us first recall that by Theorem 25, all Carter diagrams of type Dn are given
by the set An−1,n. By Theorem 17 the shape of a diagram Γ in An−1,n depends on the
choice of an integer m′, which is either equal to n− 1 or to n. If m′ = n− 1, we call Γ to
be of type (D.I). In this type the diagram Γ is given by a Carter diagram of type An−1 to
which we attach a “duplicated” vertex. If m′ = n, we call Γ to be of type (D.II).

Let us start with a quiver Q which is mutation-equivalent to an orientation of the
Dynkin diagram of type Dn. We have to show that the underlying undirected graph Q
is a Carter diagram of type Dn. We do this by showing that all four possible types of
underlying undirected graphs in the mutation-class given by Lemma 37 can be realized
by a Carter diagram of type Dn.
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Let Q be of type (D1). Then Q is given by the following picture.

Γ1

v

w

By Proposition 36, the graph Γ1 is a Carter diagram of type An−2. In particular, the
full subgraph Γ1 ∪ {v} is a Carter diagram of type An−1. Duplication of the vertex v
yields the above graph, which is therefore of type (D.I).

Let Q be of type (D2) or (D3). Then Q is given by the following picture (for type
(D2) the vertices v1 and v2 are not connected, while for type (D3) they are).

Γ1 v1 Γ2v2

v

w

By Proposition 36, the full subgraph Γ1 ∪ Γ2 ∪ {v} is a Carter diagram of type An−1.
Duplication of the vertex v yields the above graph, which is therefore again of type (D.I).

Let Q be of type (D4). We want to show that Q is of type (D.II). By [17, Proposition
5 (iii) a)] any connected graph on n vertices that is the union of complete graphs which
are arranged in the form of a circle with some side branches, is a graph of type (D.II). In
particular, if we assume that all of these complete graphs are complete graphs on two or
three vertices, eventually we will end up with the graph Q.

Finally, let Γ be a Carter diagram of type Dn which is cyclically orientable. We have
to show that Γ is isomorphic to Q for some quiver Q which is mutation-equivalent to an
orientation of the Dynkin diagram of type Dn.

Let us first assume that Γ is of type (D.I), that is Γ = Γ′ ∪ {w}, where Γ′ is a Carter
diagram of type An−1 and w is the “duplication” of a vertex v ∈ Γ′. In particular, Γ′ is
cyclically orientable and therefore val(v) 6 4. If val(v) = 1, then it is easy to see that
Γ is isomorphic to Q for some quiver Q of type (D1). Similarly, if val(v) = 2, then Γ
is isomorphic to Q for some quiver Q of type (D2) or (D3). Let val(v) = 3. All three
vertices v1, v2, v3 adjacent to v have to be vertices of Γ′. Since Γ′ is cyclically orientable
of type An−1, property (IV) from the proof of Proposition 36 holds. Let us assume that
we have the following situation in Γ′:

v1

v3

v2

v

Duplication of v yields the following full subgraph of Γ:
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v1

v3

v2

v w

But this full subgraph is not cyclically orientable, hence Γ cannot be cyclically ori-
entable. Therefore the case that v has valency 3 does not occur. Similarly, we can show
that the case that v has valency 4 does not occur.

Let us assume that Γ is of type (D.II). By [17, Proposition 5 (iii) a)] the graph Γ is
the union of complete graphs which are arranged in the form of a circle with some side
branches. Each of these complete graphs has to be a complete graph on 2 or 3 vertices,
since complete graphs on ` > 4 vertices are not cyclically orientable and Γ is cyclically
orientable. Therefore Γ is isomorphic to Q for some quiver Q of type (D4).

Proposition 39. Theorem 1 is true for the exceptional types E6, E7, E8, F4 and G2.

Proof. This is done by inspection of our lists of Carter diagrams of exceptional type Xn

and the mutation classes of Dynkin quivers of type Xn. The latter ones can be computed
using Keller’s quiver mutation applet [16].

We have given a complete classification of Carter diagrams of Dynkin types. Thereafter
we have seen that the cyclically orientable Carter diagrams are precisely the underlying
undirected graphs of quivers which appear in the seeds of finite type cluster algebras.
This leads to the following question:

Question 40. Let Φ be a crystallographic root system. Given a set of linearly inde-
pendent roots {β1, . . . , βm} ⊆ Φ and let Γ be its associated Carter diagram. Is there
a criterion to determine whether Γ is cyclically orientable purely in terms of the root
system?

4 Presentations of Reflection Groups

In [1] it is shown that each quiver which is mutation-equivalent to an orientation of a
Dynkin diagram encodes a natural presentation of the corresponding finite Coxeter group
(like the Dynkin diagram does; see Section 2.1).

We have seen in the previous chapters that the cyclically orientable Carter diagrams ex-
actly provide the underlying graphs of quivers which are mutation-equivalent to a Dynkin
diagram. In fact, all Carter diagrams, even those which are not cyclically orientable or
simply-laced (that is, of type An, Dn, E6, E7 or E8), provide a natural presentation (as
given by Barot–Marsh [1]) of the corresponding finite Coxeter group.

Let us begin with the observation that Theorem 2 holds for admissible Carter diagrams.

Proposition 41. Let Φ be a crystallographic root system and let Γ be an admissible Carter
diagram of the same Dynkin type as Φ. Then W (Γ) is isomorphic to the Weyl group WΦ.
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Proof. For the cyclically orientable Carter diagrams, the assertion is a consequence of
Theorem 1 and [1, Theorem A]. Inspection of Carter’s list of admissible diagrams in [10]
yields that all of them are cyclically orientable except for E7(a4), E8(a7) and E8(a8). For
these three cases it has been checked using GAP [12] that the assertion holds.

Before we start to explain the idea and to carry out the proof of Theorem 2, let us
remark the following fact about the relations (R3) given in Section 1.

Proposition 42 ([1, Lemma 4.1, Proposition 4.6]). For any chordless cycle C in a Carter
diagram Γ, all relations of type (R3) attached to C are equivalent to one fixed relation of
type (R3) attached to C (in the presence of the relations (R1) and (R2)). In particular,
relation (R3) does neither depend on the choice of the vertex i0 in the cycle C nor on the
direction of the cycle.

The Hurwitz action will plays an important role for Theorem 2. We illustrate this by
two examples.

Example 43. Consider a Coxeter system (W,S) of type D6 and let (t1, . . . , t6) be a tuple
of reflections such that the corresponding Carter diagram is given by the left diagram in
Figure 9. Note that this is in fact a Carter diagram of type D6 by Theorem 25. We apply
the Hurwitz move

(t1, . . . , t6)
σ3∼ (t1, t2, t3t4t3, t3, t5, t6) =: (r1, . . . , r6).

The resulting diagram is given by the diagram on the right side in Figure 9.

t1

t2

t3

t4

t5

t6

σ3

r5

r6

r3

r4

r1

r2

Figure 9: Hurwitz move applied to a Carter diagram.

Note that the diagram on the left side is cyclically orientable, while the diagram on
the right side is not. Therefore the arguments of Barot–Marsh just yield a presentation
attached to the diagram on the left.

Let 〈t1, . . . , t6 | R〉 (resp. 〈r1, . . . , r6 | R′〉) be the presentation attached to the diagram
on the left side (resp. to the diagram on the right side) as described in Section 1 and
consider the map

ϕ : 〈t1, . . . , t6 | R〉 → 〈r1, . . . , r6 | R′〉

tj 7→


rj if j 6= 3, 4

r4 if j = 3

r4r3r4 if j = 4.

The relations R are preserved under the map ϕ. We exhibit some examples:
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• We have the relation (t2t4)2 = 1 in R, but also

(ϕ(t2)ϕ(t4))2 = (r1r4r3r4)2 = 1,

since we have the chordless cycle r1 r4 r3 r1.

• We have the relation (t4t3t5t6t5t3)2 = 1 in R, which is induced by the cycle of length
4. But also

(ϕ(t4)ϕ(t3)ϕ(t5)ϕ(t6)ϕ(t5)ϕ(t3))2 = (r4r3r4r4r5r6r5r4)2

= (r4r3r5r6r5r4)2

= r4(r3r5r6r5)2r4 = r2
4 = 1,

where we used in the last line the relation in R′ given by the cycle r3 r5 r6 r3.

By [15, Ch. 4, Proposition 3] we obtain that the map ϕ extends to a surjective group
homomorphism. Likewise we see that

ψ : 〈r1, . . . , r6 | R′〉 → 〈t1, . . . , t6 | R〉

rj 7→


tj if j 6= 3, 4

t3t4t3 if j = 3

t3 if j = 4

extends to a surjective group homomorphism. Since ψ(ϕ(tj)) = tj and ϕ(ψ(rj)) = rj for
all j ∈ {1, . . . , 6}, we obtain

〈t1, . . . , t6 | R〉 ∼= 〈r1, . . . , r6 | R′〉.

Example 44. We consider a root system Φ of type B3 and use the description of WΦ as
group of signed permutations SB3 given in Section 2.4.2. Consider

(t1, t2, t3) := ((1,−1), (1, 2)(−1,−2), (1, 3)(−1,−3)).

This is a reduced reflection factorization of a Coxeter element. We have

σ1((1,−1), (1, 2)(−1,−2), (1, 3)(−1,−3)) = ((1,−2)(−1, 2), (1,−1), (1, 3)(−1,−3))

=: (r1, r2, r3).

The effect of this Hurwitz move on the Carter diagram is as follows.

t1

t2

t3 σ1

r2

r1

r3
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That is, we obtain the same diagram. This comes from the fact that the distinguished
vertex t1 = (1,−1) = r2 has not changed under the Hurwitz move σ1.

On the other hand, we have

σ−1
1 ((1,−1), (1, 2)(−1,−2), (1, 3)(−1,−3)) = ((1, 2)(−1,−2), (2,−2), (1, 3)(−1,−3))

=: (r′1, r
′
2, r
′
3).

The effect of this Hurwitz move on the Carter diagram is different since we change the
distinguished vertex from (1,−1) to (2,−2).

t1

t2

t3 σ−1
1

r′2

r′1

r′3

Before we begin with the proof of Theorem 2, let us emphasize again that the simply-
laced case is already covered by the work of Cameron, Seidel and Tsaranov [9]. In fact,
they also use the Hurwitz action, but call it local switching. The case that the Carter
diagram is cyclically orientable is covered by the work of Barot and Marsh [1]. For our
proof we will only have to fill the missing gaps, that is, Carter diagrams which are not
simply-laced as well as not cyclically orientable. But since our arguments for type Bn are
based on the simply laced case, we will give a complete proof of Theorem 2.

Let WΦ be a Weyl group, w ∈ WΦ and (t1, . . . , tm) ∈ RedT (w) with Carter diagram Γ.
For every braid σ ∈ Bm, the Hurwitz action yields a new reduced reflection factorization
σ(t1, . . . , tm) ∈ RedT (w) with Carter diagram Γ′. We put σ(Γ) := Γ′

Direct calculation yields the following.

Remark 45. Let Φ be a simply-laced root system (that is, of type An, Dn, E6, E7 or E8).
Let w ∈ WΦ and (t1, . . . , tm) ∈ RedT (w) with associated Carter diagram Γ. We can
describe the impact of an elementary Hurwitz move on Γ, that is, how to obtain σi(Γ)
from Γ as follows:

Let σi(t1, . . . , tm) = (r1, . . . , rm). Hence we have tj = rj for j ∈ [m] \ {i, i + 1},
ri = titi+1ti and ri+1 = ti. If (titi+1)2 = 1, then Γ and σi(Γ) are identical. Therefore let
us assume that (titi+1)2 6= 1. The diagram σi(Γ) is obtained as follows:

• The vertices of σi(Γ) correspond to r1, . . . , rm.

• For j, k ∈ [m] \ {i, i + 1}, there is an edge between rj and rk if and only if there is
an edge between tj and tk.

• For j ∈ [m] \ {i, i + 1}, there is an edge between rj and ri+1 if and only if there is
an edge between tj and ti.
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• There is an edge between ri and ri+1.

• For j ∈ [m] \ {i, i + 1}, there is an edge between rj and ri if and only if either tj
and ti or tj and ti+1 (but not both) are connected by an edge in Γ.

Remark 46. Let Φ be a root system of type Bn. Let w ∈ WΦ and (t1, . . . , tm) ∈ RedT (w)
with associated Carter diagram Γ. As in Remark 45 we describe how to obtain σi(Γ) from
Γ:

Let σi(t1, . . . , tm) = (r1, . . . , rm). Hence we have tj = rj for j ∈ [m] \ {i, i + 1},
ri = titi+1ti and ri+1 = ti. If (titi+1)2 = 1, then Γ and σi(Γ) are identical. Therefore let
us assume that (titi+1)2 6= 1. The diagram σi(Γ) is obtained as follows:

1. If ti does not correspond to the distinguished vertex of Γ, then the diagram σi(Γ)
is obtained from Γ as decribed in Remark 45. We just have to take care of the
labeling. If ti+1 is the distinguished vertex in Γ, then ri is the distinguished vertex
in σi(Γ). If tj is the distinguished vertex in Γ for some j ∈ [n] \ {i, i+ 1}, then rj is
the distinguished vertex in σi(Γ).

2. If ti is the distinguished vertex, then we obtain σi(Γ) as follows:

• The vertices of σi(Γ) correspond to r1, . . . , rm.

• For j, k ∈ [m]\{i, i+ 1}, there is an edge between rj and rk if and only if there
is an edge between tj and tk.

• For j ∈ [m] \ {i, i+ 1}, there is an edge between rj and ri+1 if and only if there
is an edge between tj and ti.

• There is an edge between ri and ri+1.

• For j ∈ [m] \ {i, i + 1}, there is an edge between rj and ri if and only if there
is an edge between tj and ti+1: Since ti is the distinguished vertex, we have

supp(ti+1) = supp(titi+1ti) = supp(ri),

and since (t1, . . . , tm) is reduced, we have tj 6= ti+1 for all j 6= i+ 1.

• The distinguished vertex of σi(Γ) is ri+1.

In particular, we see that Γ and σi(Γ) are isomorphic.

As a direct consequence of this remark we obtain:

Proposition 47. If Φ is of type Bn and ti is the distinguished vertex of Γ, then W (Γ) ∼=
W (σi(Γ)).

Lemma 48. Let Γ be a Carter diagram of simply-laced type or type Bn with vertex set
corresponding to t1, . . . , tm and i ∈ [m − 1]. If (titi+1)2 6= 1 (and, in the Bn-case, if ti is
not the distinguished vertex of Γ), then the map

ϕ : W (Γ)→ W (σi(Γ)), tj 7→


rj if j 6= i, i+ 1

ri+1 if j = i

ri+1riri+1 if j = i+ 1
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extends to a (surjective) group homomorphism.

Proof. We argue with the “substitution test” [15, Ch. 4, Proposition 3]. We therefore
investigate all possible constellations in Γ and how these might change under the action
of σi. We show that the relations in W (Γ) are preserved under the map ϕ. We denote
by W (σi(Γ)) the group with generators r1, . . . rm subject to the relations induced by the
Carter diagram σi(Γ).

By assumption, the vertices corresponding to ti and ti+1 will be connected by an edge
in Γ. Depending on whether the weight is 2 or not, we have (titi+1)3 = 1 or (titi+1)4 = 1.
By Remark 45 and Remark 46 the relation (ϕ(ti)ϕ(ti+1))3 = 1 or (ϕ(ti)ϕ(ti+1))4 = 1
will always hold. Also by these remarks it is enough to just consider those relations
which actually involve ti and ti+1. Therefore one would have to consider all possible
constellations of ti and ti+1 in Γ. To give an idea for the proof of the simply-laced case,
we carry out two possible cases.

1) The vertex ti is part of a cycle, while ti+1 is not part of that cycle.

ti+1 ti

tjk

tj1

σi ri ri+1

rjk

rj1

• (ti+1tj1)
2 = 1 → (ϕ(ti+1)ϕ(tj1))

2 = (ri+1riri+1rj1)
2 = 1, since ri, ri+1 and rj1 are the

vertices of a 3-cycle. Analogously we can argue for (ti+1tjk)
2 = 1.

• (titj1)
3 = 1 → (ϕ(ti)ϕ(tj1))

3 = (ri+1rj1)
3 = 1. Analogously we can argue for

(titjk)
3 = 1.

• (titj1 · · · tjk−1
tjktjk−1

· · · tj1)2 = 1. Applying ϕ yields

(ri+1rj1 · · · rjk−1
rjkrjk−1

· · · rj1)2 = 1,

which is exactly the realtion of type (R3) for the “big” cycle in σi(Γ).

2) ti and ti+1 are both vertices of a full subgraph which is an `-cycle (` > 4).

ti

ti+1

tjk

tj1

tjk−1

tj2

σi

ri+1

ri

rjk

rj1

rjk−1

rj2
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• (titjk)
3 = 1 → (ϕ(ti)ϕ(tjk))

3 = (ri+1rjk)
3 = 1, since ri+1 and rjk are connected by

an edge.

• (titj1)
2 = 1 → (ϕ(ti)ϕ(tj1))

2 = (ri+1rj1)
2 = 1, since ri+1 and rj1 are not connected

by an edge.

• (ti+1tjk)
2 = 1 → (ϕ(ti+1)ϕ(tjk))

2 = (ri+1riri+1rjk)
2 = 1, since the vertices are part

of a 3-cycle.

• (ti+1tj1)
3 = 1 → (ϕ(ti+1)ϕ(tj1))

3 = (ri+1riri+1rj1)
3 = ri+1(rirj1)

3ri+1 = 1.

• (titi+1tj1 · · · tjk−1
tjktjk−1

· · · tj1ti+1)2 = 1. Applying ϕ yields

(ri+1ri+1riri+1rj1 · · · rjk−1
rjkrjk−1

· · · rj1ri+1riri+1)2

=(riri+1rj1 · · · rjk−1
rjkrjk−1

· · · rj1riri+1ri)
2

=riri+1(rj1 · · · rjk−1
rjkrjk−1

· · · rj1ri)2ri+1ri

=riri+1ri+1ri = 1.

Here we make use of the fact that (rj1 · · · rjk−1
rjkrjk−1

· · · rj1ri)2 = 1 is equivalent
to (rirj1 · · · rjk−1

rjkrjk−1
· · · rj1)2 = 1, which is precisely the relation induced by the

“big” cycle.

In the following we will consider all possible constellations in type Bn.
1) The vertices ti and ti+1 are part of a full subgraph which is a line. We excluded the

case that ti is the distinguished vertex. If ti+1 is the distinguished vertex, then it has to
be of valency one, because otherwise Γ \ {ti} would be disconnected.

ti+1 ti tj σi

ri+1

rj

ri

• (titj)
3 = 1 → (ϕ(ti)ϕ(tj))

3 = (ri+1rj)
3 = 1,

• (ti+1tj)
2 = 1 → (ϕ(ti+1)ϕ(tj))

2 = (ri+1riri+1rj)
2. But (ri+1riri+1rj)

2 = 1 is equiva-
lent to (rjri+1riri+1)2 = 1 and this relation holds because of the cycle in σi(Γ).

By the description of Carter diagrams of type Bn in Section 2.4.2, we know that if Γ
contains a chordless cycle, then it has to be a 3-cycle.

2) The vertices ti and ti+1 are part of a full subgraph which is a 3-cycle. The vertex
ti+1 is the distinguished vertex.

ti+1

ti

tk σi

ri

ri+1

rk
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• (titk)
3 = 1 → (ϕ(ti)ϕ(tk))

3 = (ri+1rk)
3 = 1.

• (ti+1tk)
4 = 1 → applying the map ϕ yields:

(ϕ(ti+1)ϕ(tk))
4 = (ri+1riri+1rk)

4

= (ri+1ri ri+1rk)(ri+1︸ ︷︷ ︸
=rkri+1rk

ri ri+1rk)(ri+1︸ ︷︷ ︸
=rkri+1rk

ri ri+1rk)(ri+1︸ ︷︷ ︸
=rkri+1rk

riri+1rk))

= ri+1rirkri+1 rkrirk︸ ︷︷ ︸
=ri

ri+1 rkrirk︸ ︷︷ ︸
=ri

ri+1rkriri+1rk

= ri+1rirkri+1riri+1riri+1rkriri+1rk

= ri+1rk riri+1riri+1riri+1ri︸ ︷︷ ︸
ri+1

rkri+1rk

= (ri+1rk)
3 = 1.

• (titkti+1tk)
2 = 1 → applying the map ϕ yields:

(ϕ(ti)ϕ(tk)ϕ(ti+1)ϕ(tk))
2 = (ri+1rkri+1riri+1rk)

2

= (ri+1rkri+1ri ri+1rk)(ri+1rkri+1︸ ︷︷ ︸
=rk

riri+1rk)

= ri+1rkri+1 rirkri︸ ︷︷ ︸
=rk

ri+1rk

= (ri+1rk)
3 = 1.

3) The vertex ti+1 is part of a full subgraph which is a 3-cycle and which contains the
distinguished vertex tj, while ti is not a vertex of that 3-cycle.

tj

tk

ti+1 ti σi

rj

rk

ri ri+1

• (titj)
2 = 1 → (ϕ(ti)ϕ(tj))

2 = (ri+1rj)
2 = 1,

• (ti+1tj)
4 = 1 → (ϕ(ti+1)ϕ(tj))

4 = (rirj)
4 = 1.

• (ti+1tktjtk)
2 → (ϕ(ti+1)ϕ(tk)ϕ(tj)ϕ(tk))

2 = (ri+1riri+1rkrjrk)
2 = ri+1(rirkrjrk)

2ri+1

= 1, where (rirkrjrk)
2 = 1 holds because of the cycle in σi(Γ).

4) The vertex ti is part of a full subgraph which is a 3-cycle and which contains the
distinguished vertex tj, while ti+1 is not a vertex of that 3-cycle.
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ti+1 ti

tj

tk

σi ri ri+1

rj

rk

• (titj)
4 = 1 → (ϕ(ti)ϕ(tj))

4 = (ri+1rj)
4 = 1. Analogously we can argue for (titk)

4 =
1.

• (tjtk)
4 = 1 → (ϕ(tj)ϕ(tk))

4 = (rjrk)
4 = 1.

• (titktjtk)
2 → (ϕ(ti)ϕ(tk)ϕ(tj)ϕ(tk))

2 = (ri+1rkrjrk)
2 = 1, where (ri+1rkrjrk)

2 = 1
by one of the cycles in σi(Γ).

• (ti+1tj)
2 = 1 → (ϕ(ti+1)ϕ(tj))

2 = (ri+1riri+1rj)
2, but the equation (ri+1riri+1rj)

2 =
1 is equivalent to (riri+1rjri+1)2 = 1, which holds by one of the cycles in σi(Γ).
Analogously we can argue for (ti+1tk)

2 = 1.

5) The vertex ti is part of a full subgraph which is a 3-cycle, while ti+1 is not a vertex
of that 3-cycle but ti+1 is the distinguished vertex.

ti+1 ti

tj

tk

σi ri ri+1

rj

rk

• (titj)
3 = 1 → (ϕ(ti)ϕ(tj))

3 = (ri+1rj)
3 = 1. Analogously we can argue for (titk)

3 =
1.

• (tjtk)
3 = 1 → (ϕ(tj)ϕ(tk))

3 = (rjrk)
3 = 1.

• (titktjtk)
2 → (ϕ(ti)ϕ(tk)ϕ(tj)ϕ(tk))

2 = (ri+1rkrjrk)
2 = 1, where (ri+1rkrjrk)

2 = 1
by one of the cycles in σi(Γ).

• (ti+1tj)
2 = 1 → (ϕ(ti+1)ϕ(tj))

2 = (ri+1riri+1rj)
2, but the equation (ri+1riri+1rj)

2 =
1 is equivalent to (riri+1rjri+1)2 = 1, which holds by one of the cycles in σi(Γ).
Analogously we can argue for (ti+1tk)

2 = 1.

We have σ−1
i (t1, . . . , tm) = (r1, . . . , rm), where tj = rj for j ∈ [m] \ {i, i+ 1}, ri = ti+1 and

ri+1 = ti+1titi+1. Similar to Remarks 45 and 46 we can describe how to obtain the Carter
diagram σ−1

i (Γ) on vertex set {r1, . . . , rm} from Γ. The same arguments as in the proof
of Lemma 48 lead to the following result.
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Lemma 49. Let Γ be a Carter diagram of simply-laced type or type Bn with vertex set
corresponding to t1, . . . , tm and i ∈ [m − 1]. If (titi+1)2 6= 1 (and, in the Bn-case, if ti+1

is not the distinguished vertex of Γ), then the map

ψ : W (Γ)→ W (σ−1
i (Γ)), tj 7→


rj if j 6= i, i+ 1

riri+1ri if j = i

ri if j = i+ 1

extends to a (surjective) group homomorphism.

The maps ϕ from Lemma 48 and ψ from Lemma 49 are mutually inverse group ho-
momorphisms. Therefore we obtain the following.

Proposition 50. The groups W (Γ) and W (σi(Γ)) (resp. W (σ−1
i (Γ))) are isomorphic.

Proof of Theorem 2. Let us begin with the case that the root system Φ is simply-
laced or of type Bn. Let Γ′ be a Carter diagram of the same Dynkin type as Φ. By
Lemma 14, the Carter diagram Γ′ can be realized by a reduced reflection factorization
(r1, . . . , rm) ∈ RedT (w) for some quasi-Coxeter element w ∈ WΦ. By [3, Theorem 1.1 and
Remark 8.3] we find (t1, . . . , tm) and σ ∈ Bm such that σ(t1, . . . , tm) = (r1, . . . , rm) and
the Carter diagram Γ corresponding to (t1, . . . , tm) is admissible. In particular we have
σ(Γ) = Γ′. By Proposition 41 we have W (Γ) ∼= WΦ and repeated use of Proposition 50
yields W (Γ) ∼= W (Γ′).

If Φ is of type F4, the assertion can be checked directly for the non-admissible Carter
diagrams in Figure 6. In type G2 the Dynkin diagram is the only Carter diagram.

Remark 51. We used the Hurwitz action to prove Theorem 2, but we did not define a
Hurwitz action on Carter diagrams. In fact, it might happen that there are elements
x, y ∈ W and reduced reflection factorizations t ∈ RedT (x), r ∈ RedT (y) such that t and
r give rise to the same Carter diagram, but the set of Carter diagrams associated to the
Hurwitz orbit of t and the set of Carter diagrams associated to the Hurwitz orbit of r
are not equal (see the next example). The reason for this is that the Hurwitz orbit of a
reflection factorizaton t = (t1, . . . , tm) depends on the actual tuple, while the associated
Carter diagram only depends on the set {t1, . . . , tm}.

Example 52. Consider a Coxeter system (W, {s1, s2, s3, s4}) of type D4, where s2 does
not commute with any of the other simple reflections. Let T be its set of reflections
and c = s1s2s3s4 be a Coxeter element. Inside the Hurwitz orbit of the corresponding
factorization we find

(s1, s2, s3, s4) ∼ (s2, s2s1s2, s3, s4).

The Carter diagram associated to (s2, s2s1s2, s3, s4) is shown on the right side of the
following picture, while the Carter diagram of (s1, s2, s3, s4) is the corresponding Dynkin
diagram.
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The element w := (s2s3s2)s1(s1s2s1)(s1s2s4s2s1) ∈ W is a quasi-Coxeter element, but
not a Coxeter element. Inside the Hurwitz orbit we find

(s2s3s2, s1, s1s2s1, s1s2s4s2s1) ∼ (s2s3s2s1s2s3s2, s2s3s2, s1s2s1, s1s2s4s2s1).

The Carter diagram associated to the left factorization is the one on the right side of the
above picture, while the Carter diagram associated to the right factorization is the one
on the left side. These two are the only Carter diagrams which appear in the Hurwitz
orbit of (s2s3s2, s1, s1s2s1, s1s2s4s2s1). In particular, the sets RedT (c) and RedT (w) have
both diagrams shown above as associated Carter diagrams, while the Dynkin diagram of
type D4 just appears as a Carter diagram associated to a reduced reflection factorization
in RedT (c).

4.1 The non-crystallographic reflection groups

Let (W,S) be an arbitrary Coxeter system of rank n with set of reflections T . We gener-
alize the definiton of a Carter diagram as follows.

Definition 53. Let w ∈ W and (t1, . . . , tn) ∈ RedT (w). We define the Carter diagram
Γ corresponding to this reduced reflection factorization to be the graph on n vertices
corresponding to t1, . . . , tn. Two vertices corresponding to ti and tj (i 6= j) are joined by
wij := mij − 2 edges, where mij is the order of titj.

Note that this definition is consistent with Definition 5 if W = WΦ is a Weyl group
(by Remark 9).

We call Γ to be of type I2(m) (resp. H3 resp. H4) if 〈t1, . . . , tn〉 is a Coxeter group of
type I2(m) (resp. H3 resp. H4).

The only Carter diagram of type I2(m) is the corresponding Coxeter diagram. For the
types H3 and H4 we list all Carter diagrams in Figures 10 and 11.

Figure 10: Carter diagrams of type H3.
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Figure 11: Carter diagrams of type H4.

For these class of Carter diagrams, in general we do not obtain a presentation as for the
crystallographic types. First we have to restrict ourselves to those Carter diagrams which
are induced by reduced reflection factorizations of Coxeter elements. Those diagrams are
given by the three leftmost diagrams in Figure 10 and by the diagrams in the first two
lines in Figure 11. Then we have to replace the relation (R3) of Section 1 by the following
two relations

(R3’) for any chordless cycle

i0
wi0i1 i1

wi1i2 . . .
wid−2id−1 id−1

wid−1i0 i0,

where either all weights are 1 or wid−1i0 = 3, but not all of the other weights are 3,
we have

(ti0ti1 · · · tid−2
tid−1

tid−2
· · · ti1)2 = 1.

(R3”) for any chordless 3-cycle

i0 i1 i2 i0
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we have the relations

(ti0ti1ti2ti1)
3 = 1

(ti1ti0ti1ti2ti1ti2)
2 = 1.

Using GAP [12] we arrive at the following statement.

Proposition 54. Let (W,S) be a Coxeter system of type H3, H4 or I2(m), Γ a Carter
diagram of the same type with vertex set given by the reduced reflection factorization of a
Coxeter element in W . Then the group W (Γ) with generators ti, i a vertex of Γ, subject
to the relations (R1), (R2), (R3’) and (R3”) is isomorphic to W .

Remark 55. The statement of the preceding proposition is wrong if we replace the Coxeter
element by a quasi-Coxeter element. That is, the diagrams in Figures 10 and 11 which
are not induced by reduced reflection factorizations of a Coxeter element, do not yield a
presentation of W given by the relations (R1), (R2), (R3’) and (R3”).
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