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Abstract

The Ramsey multiplicity constant of a graph H is the limit as n tends to infinity
of the minimum density of monochromatic labeled copies of H in a 2-edge colour-
ing of Kn. Fox and Wigderson recently identified a large family of graphs whose
Ramsey multiplicity constants are attained by sequences of “Turán colourings”; i.e.
colourings in which one of the colour classes forms the edge set of a balanced com-
plete multipartite graph. Each graph in their family comes from taking a connected
non-3-colourable graph with a critical edge and adding many pendant edges. We
extend their result to an off-diagonal variant of the Ramsey multiplicity constant
which involves minimizing a weighted sum of red copies of one graph and blue copies
of another.

Mathematics Subject Classifications: 05C35, 05C55

1 Introduction

The central question in the area of “Ramsey multiplicity” is: how should one colour
the edges of the clique Kn, for large n, with red and blue to minimize the number of
monochromatic labeled copies of a fixed graph H? As an “off-diagonal” generalization,
one could instead minimize a “suitable linear combination” of the number of red copies
of one graph H1 and blue copies of another graph H2; the coefficients of this linear
combination will be specified in Section 2 but, for now, it suffices to think of them as
arbitrary positive reals that may depend on n. Ramsey multiplicity problems have been
extensively studied; see, for example, [6, 9, 10,14,17,24,29,32,33,36].

One of the first strategies that comes to mind is to consider a uniformly random
colouring. In the diagonal setting, i.e. when H1 = H2 = H for some graph H, a
random colouring has approximately (1/2)e(H)−1nv(H) monochromatic copies of H with
high probability, where v(H) := |V (H)| and e(H) := |E(H)|. A graph H is said to be
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common if every colouring has at least this many copies, up to a (1 + o(1)) factor where
the o(1) term tends to 0 as n→∞. The notion of common graphs has its origins in the
work of Goodman [20] and Erdős [11] in the 1950s and 60s and has been a popular area
of research ever since [2, 3, 21, 23,24,27–29,35].

After considering random colourings, perhaps the next most natural strategy is to
“pack in” as many red edges as possible without creating a red copy of H1. A well-known
theorem of Simonovits [34] tells us that, if H1 contains a critical edge, i.e. an edge e such
that χ(H1− e) < χ(H1), then the maximum number of red edges in a red/blue colouring
of E(Kn) without a red copy of H1 is attained by dividing V (Kn) into χ(H1)−1 classes of
cardinality bn/(χ(H1)− 1)c or dn/(χ(H1)− 1)e and colouring an edge red if it connects
vertices in different classes or blue otherwise. Such a colouring, which is referred to as a
Turán colouring,1 has no red copy of H1 and has at most

(1− o(1))

(
1

χ(H1)− 1

)v(H2)−k(H2)

nv(H2)

blue copies of H2, where k(H2) denotes the number of connected components of H2. We
remark that Turán colourings feature prominently in the well-studied area of “Ramsey
goodness” [4, 5, 7, 8, 13, 16, 19, 22, 30, 31]. In the diagonal setting, Fox and Wigderson [17]
recently proved that this strategy is optimal for a fairly large family of graphs (see Theo-
rem 1 below). Prior to their work, there were no examples of uncommon graphs for which
the Ramsey multiplicity problem had been solved.

Our main result (Theorem 2 below) extends this theorem of Fox and Wigderson [17]
to an off-diagonal setting. Stating our results precisely requires some technical definitions
which we will formally provide in Section 2. For the time being, we informally say that
(H1, H2) is a bonbon pair if, for large enough n, the only colourings minimizing the
“suitable linear combination” of the number of red copies of H1 and blue copies of H2

alluded to in the first paragraph are the Turán colourings. Following [17], if H is a graph
such that (H,H) is a bonbon pair, then H is said to be a bonbon.

For a graph F and t > 0, a t-hairy F is a graph with v(F ) + t vertices that is created
by adding t copies of K2 to F , one at a time, such that each added K2 has exactly one
endpoint in V (F ). If H is a t-hairy F for some t, then we simply say that H is a hairy
F . We state the main result of [17] and our off-diagonal generalization of it.

Theorem 1 (Fox and Wigderson [17, Theorem 1.2]). For any connected non-3-colourable
graph F that contains a critical edge, there exists t0 = t0(F ) such that, for any t > t0,
every t-hairy F is a bonbon.

Theorem 2. Let q ∈ (0, 1] and let F1 and F2 be non-bipartite graphs, each of which
contains a critical edge, such that χ(F1) + χ(F2) > 7. Then there exists t0 = t0(F1, F2, q)
such that if H1 is a t1-hairy F1 and H2 is a t2-hairy F2 with t1, t2 > t0 and

min{v(H1), v(H2)} > q ·max{v(H1), v(H2)},
1We also use the term Turán colouring to refer to a colouring in which there are χ(H2) − 1 classes of
almost equal size, edges between the classes are blue and edges within the classes are red.
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then (H1, H2) is a bonbon pair.

One may wonder whether the presence of critical edges and the dependence of t0 on
the parameter q are essential in Theorem 2. The next proposition implies that both
conditions are necessary. Let crit(F ) denote the number of critical edges in a graph F .
An explicit form of the function g in the following proposition will be provided in Section 5
(see Theorem 37).

Proposition 3. There exists a function g : R4 → R with the property that, if H1 and H2

are non-empty graphs such that

e(H1) > crit(H2) · g(χ(H1), χ(H2), v(H2), k(H2)),

then (H1, H2) is not a bonbon pair.

The other conditions in Theorem 2—namely, that F1 and F2 are non-bipartite and
χ(F1) +χ(F2) > 7—are also necessary. First, if F2 is bipartite and H2 is a t2-hairy F2 for
some t2 > 1, then H2 does not contain a critical edge and so Proposition 3 implies that
there cannot exist a graph H1 with non-empty edge set such that (H1, H2) is a bonbon
pair. Also, Fox and Wigderson [17, p. 4] observed that the conclusion of Theorem 1 is
false for every 3-chromatic graph F . Therefore, the conclusion of Theorem 2 is false for
F1 = F2 = F whenever F is a 3-chromatic graph.

In Section 2, we provide a formal definition of bonbon pairs and an off-diagonal variant
of the Ramsey multiplicity constant. The proof of Theorem 2, which is inspired by the
proof of Theorem 1 in [17], is provided in Sections 3 and 4. First, in Section 3, we
show that an optimal colouring has the “approximate” structure of a Turán colouring;
i.e. the vertices can be partitioned into a small number of classes such that edges within
the classes are nearly monochromatic. Then, in Section 4, we refine the structure of the
colouring until it precisely matches that of a Turán colouring. In Section 5, we discuss
various constructions of colourings which we use to prove a strong form of Proposition 3
(Theorem 37). We conclude the paper in Section 6 by proposing several open problems.

2 Formal Definitions

Given graphs H and G, a homomorphism from H to G is a function f : V (H) → V (G)
such that adjacent pairs of vertices in H are mapped to adjacent pairs of vertices in G
and the homomorphism density t(H,G) is the probability that a random function from
V (H) to V (G) is a homomorphism. That is, t(H,G) is the number of homomorphisms
from H to G divided by v(G)v(H). For graphs H and G with v(H) 6 v(G), the injective
homomorphism density of H in G, denoted tinj(H,G), is the probability that a random
injective function from V (H) to V (G) is a homomorphism. If H is a fixed graph and v(G)
is large, then there are only O(v(G)v(H)−1) non-injective functions from V (H) to V (G),
and so

t(H,G) = tinj(H,G) + o(1) (1)

the electronic journal of combinatorics 32(2) (2025), #P2.14 3



where the o(1) term approaches zero as v(G)→∞. The following is essentially a rephras-
ing of [17, Definition 1.1], except that we generalize it slightly to include disconnected
graphs.

Definition 4 (Fox and Wigderson [17]). A non-empty graph H is said to be a bonbon if
there exists n0 = n0(H) such that, if n > n0 and G is an n-vertex graph such that

tinj(H,G) + tinj(H,G)

is minimized over all n-vertex graphs, then either G or G is a Turán graph with χ(H)− 1
parts.

Let us now extend this definition to an off-diagonal setting.

Definition 5. A pair (H1, H2) of non-empty graphs is a bonbon pair if there exists n0 =
n0(H1, H2) such that, if n > n0 and G is an n-vertex graph such that

(χ(H2)− 1)v(H1)−k(H1) · tinj(H1, G) + (χ(H1)− 1)v(H2)−k(H2) · tinj(H2, G)

is minimized over all n-vertex graphs, then either G is a Turán graph with χ(H1) − 1
parts or G is a Turán graph with χ(H2)− 1 parts.

Note that a graph H is a bonbon if and only if (H,H) is a bonbon pair. The coefficients
on tinj(H1, G) and tinj(H2, G) in the above definition are chosen so that the two different
Turán colourings achieve the same value, asymptotically. That is, if G is a Turán graph
with χ(H1)− 1 parts or G is a Turán graph with χ(H2)− 1 parts, we have

(χ(H2)− 1)v(H1)−k(H1) · tinj(H1, G) + (χ(H1)− 1)v(H2)−k(H2) · tinj(H2, G) = 1− o(1).

Definition 5 was inspired by several recent papers focusing on off-diagonal generalizations
of basic questions in Ramsey multiplicity. E.g., Parczyk, Pokutta, Spiegel and Szabó [33]
proved asymptotic bounds on linear combinations of tinj(Ks, G) and tinj(Kt, G) for small
s and t and Behague, Morrison and Noel [2,3] extended the notion of common graphs to
an off-diagonal setting. Moss and Noel [32] recently introduced an off-diagonal notion of
Ramsey multiplicity for general pairs of graphs. In our proof of Theorem 2, we will need
the following notion and lemma from [32].

Definition 6 (Moss and Noel [32]). For non-empty graphs H1 and H2 and λ ∈ [0, 2],
define

cλ(H1, H2) := lim
n→∞

[
min

G:v(G)=n

(
λ · t(H1, G) + (2− λ) · t(H2, G)

)]
.

Lemma 7 (Moss and Noel [32, Lemma 2.11]). For any non-empty graphs H1 and H2 and
λ ∈ (0, 2) we have cλ(H1, H2) > 0.
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Remark 8. The key definition in [32] is the balanced Ramsey multiplicity constant of
(H1, H2), defined by c(H1, H2) := supλ∈[0,2] cλ(H1, H2). For and λ ∈ [0, 2] and any graphs
H1 and H2, we have

cλ(H1, H2) 6
2

(χ(H2)− 1)v(H1)−k(H1) + (χ(H1)− 1)v(H2)−k(H2)
.

Indeed, this can be shown by taking one of the two Turán colourings from Definition 5,

where the specific choice depends on whether λ 6 2(χ(H2)−1)v(H1)−k(H1)

(χ(H2)−1)v(H1)−k(H1)+(χ(H1)−1)v(H2)−k(H2)
or

not. Combining this with the definition of a bonbon pair, we get that, if (H1, H2) is a
bonbon pair, then

c(H1, H2) =
2

(χ(H2)− 1)v(H1)−k(H1) + (χ(H1)− 1)v(H2)−k(H2)
.

3 Proof of Theorem 2: Rough Structure

The focus of this section is on obtaining an approximate version of Theorem 2 (Lemma 11
below) which will be refined in the next section to complete the proof of the theorem.

Remark 9. Fox and Wigderson [17] cleverly avoided using the Graph Removal Lemma in
their proof of Theorem 1. Doing so added a few steps to their argument, but resulted in
much better bounds on t0. To keep our paper to a reasonable length, and to differentiate
it from [17], we have chosen to present a shorter argument which uses the Removal Lemma
at the expense of having poorer control over t0. We remark that better bounds on our t0
could be obtained by following the proof of [17, Theorem 1.2] more closely.

Throughout the next two sections, we let q ∈ (0, 1] and let F1 and F2 be non-bipartite
graphs, each of which contains a critical edge, such that χ(F1) + χ(F2) > 7. Define
f := max{v(F1), v(F2)} and χ := max{χ(F1), χ(F2)}. We let t0 be an integer chosen large
with respect to F1, F2 and q, which will be specified later. Actually, t0 is defined in terms
of a throng of other parameters θ, ε, δ, β, ξ, γ and τ , where each parameter depends on
F1, F2 and q and the parameters that come before it in the list. The relationships between
F1, F2, q, θ, ε, δ, β, ξ, γ, τ and t0 will be revealed “as needed” throughout this section and
the next, and will be summarized in the final proof of Theorem 2 at the end of Section 4.

Let t1, t2 > t0 and let H1 be a t1-hairy F1 and H2 be a t2-hairy F2 satisfying

min{v(H1), v(H2)} > q ·max{v(H1), v(H2)}. (2)

Note that χ(Hi) = χ(Fi) and k(Hi) = k(Fi) for i ∈ {1, 2}. For the sake of brevity, let

ρ1 := (χ(H2)− 1)v(H1)−k(H1)

ρ2 := (χ(H1)− 1)v(H2)−k(H2).

Note that, by definition,

ρ1 ·
(

1

χ(F2)− 1

)v(H1)−k(F1)

= ρ2

(
1

χ(F1)− 1

)v(H2)−k(F2)

= 1. (3)
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We may assume that H1 and H2 have no singleton components, since any such components
do not affect injective homomorphism densities into large enough graphs, nor do they
affect ρ1 or ρ2 (since adding a singleton component to a graph H increases both of v(H)
and k(H) by one and does not affect χ(H)).

Let n0 be a large integer which may depend on H1, H2 and all of the parameters
discussed so far, and assume that n > n0. For any graph G, define

m(H1, H2;G) := ρ1 · tinj(H1, G) + ρ2 · tinj(H2, G).

Here, the letter m stands for “monochromatic.” Let G1 be a graph on n vertices chosen
so that minG:v(G)=nm(H1, H2;G) = m(H1, H2;G1) and let G2 := G1. Our goal in the
proof of Theorem 2 is to show that either G1 is a Turán graph with χ(F1) − 1 parts or
G2 is a Turán graph with χ(F2) − 1 parts. Since m(H1, H2;G1) is at most the value of
m(H1, H2;G) when G is an n-vertex Turán graph with χ(F1)− 1 parts, we have that

m(H1, H2;G1) 6 (1− o(1))ρ2

(
1

χ(F1)− 1

)v(H2)−k(F2)

= 1− o(1) (4)

where the last equality follows from (3). Note that m(H2, H1;G2) = m(H1, H2;G1) and
so it is also at most 1− o(1).

It is useful to classify vertices based on their degrees in G1 and G2. Let V := V (G1) =
V (G2). For a graph G with vertex set V and a vertex v ∈ V , the degree of v in G is the
number of edges of G that are connected to v, denoted by dG(v). For i ∈ {1, 2}, we let
di(v) := dGi

(v). When interpreting the next definition, recall that ξ is one of the many
parameters that appears throughout this section and the next and will be specified in the
final proof of Theorem 2.

Definition 10. For i ∈ {1, 2}, define

Vi :=

{
v ∈ V : di(v) >

(
1− 1 + 2ξ

χ(Fi)− 1

)
(n− 1)

}
.

Also, let V0 := V \ (V1 ∪ V2) and V3 = V1 ∩ V2.

We may assume the following, without loss of generality.

Assumption 1. |V1| 6 |V2|.

The focus of the rest of this section is on proving the following lemma which determines
the “rough structure” of G1 and G2. For any two subsets S, T ⊆ V and a graph G with
vertex set V , define eG(S, T ) to be the number of ordered pairs (u, v) ∈ S × T such
that uv ∈ E(G) and let eG(S) := 1

2
eG(S, S). For any S, T ⊆ V and i ∈ {1, 2}, we let

ei(S, T ) := eGi
(S, T ) and ei(S) := eGi

(S).

Lemma 11. There exists a partition A1, A2, . . . , Aχ(F2)−1 of V such that

χ(F2)−1∑
i=1

e2(Ai) 6 εn2.
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It is worth noting that the proof of Lemma 11 does not require F1 and F2 to have
critical edges, nor does it require the inequality (2); these conditions come into play when
seeking the exact structure of an optimal colouring in the next section.

A high-level overview of the proof of Lemma 11 is as follows. We first show that
V3 = ∅ and that V0 and V1 are both quite small; specifically |V0| 6 ξn and |V1| 6 25ξn.
Therefore, most of the vertices reside in V2, and thus have a large degree in G2. If the
density of F2 in G2 is sufficiently far from zero, then there must be several copies of F2

whose vertices are contained in V2, and each of these copies can be “extended” to a copy
of H2 in G2 in many ways due to the high G2-degree of vertices in V2. This would lead to
a large density of H2 in G2, which would violate (4). The Graph Removal Lemma then
implies that G2 can be made F2-free by deleting a small proportion of its edges. After

deleting these edges, we obtain a graph with close to
(

1− 1
χ(F2)−1

) (
n
2

)
edges which is

F2-free. The classical Erdős–Simonovits Stability Theorem then states that such a graph
must be “close” to a complete (χ(F2)− 1)-partite graph, which gives us Lemma 11. The
rest of the section is devoted to fleshing out the details of these arguments.

3.1 Analyzing Degrees

We show that V1 and V2 have empty intersection. The following assumption is useful for
proving this, and will be used again later as well:

0 < ξ <
1

39
. (5)

Lemma 12. V3 = V1 ∩ V2 = ∅.

Proof. Suppose not and let v ∈ V1∩V2. Then, since χ(F1), χ(F2) > 3 and χ(F1)+χ(F2) >
7, we have

n− 1 = d1(v) + d2(v)

>

(
1− 1 + 2ξ

χ(F1)− 1

)
(n− 1) +

(
1− 1 + 2ξ

χ(F2)− 1

)
(n− 1)

>

(
1− 1 + 2ξ

2

)
(n− 1) +

(
1− 1 + 2ξ

3

)
(n− 1) =

(
7

6
− 5ξ

3

)
(n− 1).

This implies that ξ > 1/10; however, this contradicts (5).

We obtain a bound on the degrees of vertices in Vi for i ∈ {1, 2} via a similar argument.

Observation 13. Let {i, j} = {1, 2}. If v ∈ Vi, then di(v) >
(

5
4
· 1+ξ
χ(Fj)−1

)
n.

Proof. If not, then, since v ∈ Vi and n is large,(
1− 1 + 3ξ

χ(Fi)− 1

)
n 6

(
1− 1 + 2ξ

χ(Fi)− 1

)
(n− 1) 6 di(v) 6

(
5

4
· 1 + ξ

χ(Fj)− 1

)
n.
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Recall that χ(F1), χ(F2) > 3 and χ(F1) + χ(F2) > 7. In the case that χ(Fi) = 3, then we
must have χ(Fj) > 4 and so the above inequality implies that

1− 1 + 3ξ

2
6

5

4
· 1 + ξ

3
.

However, this can only hold if ξ > 1/23 which contradicts (5). On the other hand, if
χ(F1) > 4, then we instead get

1− 1 + 3ξ

3
6

5

4
· 1 + ξ

2
.

This can only hold if ξ > 1/39 which again contradicts (5).

Next, we prove that both V0 and V1 are small. Given a graph G on vertex set V and
a set S ⊆ V , let G[S] be the subgraph of G induced by S; i.e. the graph with vertex set
S and edge set {uv ∈ E(G) : u, v ∈ S}. The next lemma says that, for i ∈ {1, 2}, there
cannot be a fairly sizeable set S such that t(Fi, Gi[S]) is bounded away from zero and
di(v) is relatively large for every v ∈ S. To prove this, we assume that t0 is chosen large
enough so that the following holds:

(1 + ξ)t0 > 3/τ. (6)

Lemma 14. Let {i, j} = {1, 2}. If S is a non-empty subset of V such that

di(v) >

(
1 + ξ

χ(Fj)− 1

)
n

for all v ∈ S, then t(Fi, Gi[S]) 6 τ · (n/|S|)v(Fi).

Proof. Suppose to the contrary that the hypotheses hold but

t(Fi, Gi[S]) > τ · (n/|S|)v(Fi) .

The probability that a uniformly random function ϕ from V (Hi) to V is a homomorphism
from Hi to Gi is at least the probability that the restriction of ϕ to V (Fi) is a homomor-
phism from Fi to Gi[S] multiplied by the probability that, for every w ∈ V (Hi) \ V (Fi),
if v is the unique neighbour of w in Hi, then ϕ(w) is adjacent to ϕ(v) in Gi. Thus,

t(Hi, Gi) > (|S|/n)v(Fi) t(Fi, Gi[S])

(
1 + ξ

χ(Fj)− 1

)v(Hi)−v(Fi)

> τ

(
1 + ξ

χ(Fj)− 1

)v(Hi)−v(Fi)

= τ(1 + ξ)ti
(

1

χ(Fj)− 1

)v(Hi)−v(Fi)

> 3

(
1

χ(Fj)− 1

)v(Hi)−k(Fi)
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where the last inequality follows from (6) and the facts that t1, t2 > t0 and v(Fi) > k(Fi).
So, by (1) and the fact that n is large, we have

tinj(Hi, Gi) = t(Hi, Gi)− o(1) > 2

(
1

χ(Fj)− 1

)v(Hi)−k(Fi)

.

Consequently, by (3),

m(H1, H2;G1) = ρ1 · tinj(H1, G1) + ρ2 · tinj(H2, G2) > 2

which contradicts (4) and thus completes the proof.

Next, we prove that V0 is quite small. For this, we assume the following bound on τ :

0 < τ <
c1(F1, F2) · ξf

4
. (7)

Note that c1(F1, F2) > 0 by Lemma 7 and so it is possible to choose τ to satisfy this
condition. The next lemma is analogous to [17, Claim 3.3].

Lemma 15. |V0| < ξn.

Proof. Suppose that |V0| > ξn. Our goal is to obtain a contradiction via an application
of Lemma 14 with S = V0. By definition of V0, for each i ∈ {1, 2}, every v ∈ V0 satisfies

di(v) 6

(
1− 1 + 2ξ

χ(Fi)− 1

)
(n− 1).

Since d1(v) + d2(v) = n− 1, this tells us that

d1(v) >

(
1 + 2ξ

χ(F2)− 1

)
(n− 1) >

(
1 + ξ

χ(F2)− 1

)
n

and

d2(v) >

(
1 + 2ξ

χ(F1)− 1

)
(n− 1) >

(
1 + ξ

χ(F1)− 1

)
n

for every vertex v ∈ V0 and large enough n. Therefore, by Lemma 14, for each i ∈ {1, 2},
we must have

t(Fi, Gi[V0]) 6 τ(n/|V0|)v(Fi) 6 τ/ξv(Fi).

According to (7), this last expression is less than c1(F1, F2)/4. Thus, for i ∈ {1, 2},

t(Fi, Gi[V0]) < c1(F1, F2)/4.

On the other hand, by definition of c1(F1, F2), we have

t(F1, G1[V0]) + t(F2, G2[V0]) > c1(F1, F2)− o(1)
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where the o(1) term tends to 0 as ξn→∞. Since c1(F1, F2) > 0 by Lemma 7 this implies
that, for large n,

t(F1, G1[V0]) + t(F2, G2[V0]) > c1(F1, F2)/2.

Therefore, we can let i ∈ {1, 2} such that

t(Fi, Gi[V0]) > c1(F1, F2)/4.

Combining the upper and lower bound on t(Fi, Gi[V0]) that we have proven leads to a
contradiction, thereby completing the proof.

Next, we show that V1 is small which, when combined with the fact that |V0| < ξn,
implies that the vast majority of the vertices are in V2. To do this, we use the following
form of the Erdős–Simonovits Supersaturation Theorem.

Theorem 16 (Erdős–Simonovits Supersaturation Theorem [12]). For every non-empty
graph F and ξ > 0 there exists γ = γ(F, ξ) > 0 such that if G is a graph with t(K2, G) >
1− 1−ξ

χ(F )−1 , then t(F,G) > γ.

Using Theorem 16, we define γ by

γ := min{γ(F1, ξ), γ(F2, ξ)}. (8)

We also assume that τ is chosen so that

0 < τ < γ · (25ξ)f . (9)

The next lemma is analogous to [17, Claim 3.4].

Lemma 17. |V1| < 25ξn.

Proof. Let us begin by establishing the following claim.

Claim 18. For each i ∈ {1, 2}, if |Vi| > 25ξn, then

ei(Vi) <

(
1− 1− ξ

χ(Fi)− 1

)
|Vi|2

2
.

Proof of Claim 18. Suppose not. Then there exists i ∈ {1, 2} such that

t(K2, Gi[Vi]) =
2ei(Vi)

|Vi|2
> 1− 1− ξ

χ(Fi)− 1
.

Consequently, Theorem 16 implies that t(Fi, Gi[Vi]) > γ. Using the hypothesis |Vi| >
25ξn,

γ > γ ·
(

25ξn

|Vi|

)v(Fi)

> γ · (25ξ)v(Fi)

(
n

|Vi|

)v(Fi)

which, by (9), is greater than τ · (n/|Vi|)v(Fi). By Observation 13, we have di(v) >(
1+ξ

χ(Fj)−1

)
n for all v ∈ Vi, where j ∈ {1, 2}\{i}. So, the set S = Vi contradicts Lemma 14.

Therefore, the claim holds.
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We now use Claim 18 to complete the proof of the lemma. If |V1| < 25ξn, then we are
done; so, we assume |V1| > 25ξn. By Assumption 1, |V2| > 25ξn as well. In particular,
both V1 and V2 are non-empty and satisfy the hypothesis, and therefore the conclusion,
of Claim 18. For i ∈ {1, 2}, define

ηi :=
ei(V1, V2)

|V1||V2|

and note that η1 + η2 = 1 because V1 and V2 are disjoint (by Lemma 12) and G2 is the
complement of G1. By definition of V1, we have∑

v∈V1

d1(v) > |V1|
(

1− 1 + 2ξ

χ(F1)− 1

)
(n− 1) > |V1|

(
1− 1 + 3ξ

χ(F1)− 1

)
n.

On the other hand, ∑
v∈V1

d1(v) = 2e1(V1) + e1(V1, V \ V1)

= 2e1(V1) + e1(V1, V2) + e1(V1, V0)

6 2e1(V1) + η1|V1||V2|+ |V1||V0|.

Claim 18 tells us that the above expression is less than(
1− 1− ξ

χ(F1)− 1

)
|V1|2 + η1|V1||V2|+ |V1||V0|.

Combining the lower and upper bounds on
∑

v∈V1 d1(v) obtained above and cancelling a
factor of |V1|, we get(

1− 1 + 3ξ

χ(F1)− 1

)
n 6

(
1− 1− ξ

χ(F1)− 1

)
|V1|+ η1|V2|+ |V0|.

By Lemma 12, we have |V0|+ |V1|+ |V2| = n and so this inequality becomes(
1− 1

χ(F1)− 1
− 3ξ

χ(F1)− 1

)
n 6 n−

(
1− ξ

χ(F1)− 1

)
|V1|+ (η1 − 1)|V2|

= n− |V1|
χ(F1)− 1

+
ξ|V1|

χ(F1)− 1
+ (η1 − 1)|V2|.

Adding and subtracting |V2|+|V0|
χ(F1)−1 in this final expression and using |V0| + |V1| + |V2| = n

again yields

n− |V1|
χ(F1)− 1

+
ξ|V1|

χ(F1)− 1
+ (η1 − 1)|V2|+

|V2|+ |V0|
χ(F1)− 1

− |V2|+ |V0|
χ(F1)− 1

= n− n

χ(F1)− 1
+

ξ|V1|
χ(F1)− 1

+ (η1 − 1)|V2|+
|V2|+ |V0|
χ(F1)− 1

.
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Since |V1| 6 n trivially and |V0| < ξn by Lemma 15, we get that this last expression is
strictly less than

n− n

χ(F1)− 1
+

(
η1 − 1 +

1

χ(F1)− 1

)
|V2|+

2ξn

χ(F1)− 1
.

To recap, the inequality that we have just derived is(
1− 1

χ(F1)− 1
− 3ξ

χ(F1)− 1

)
n < n− n

χ(F1)− 1
+

(
η1 − 1 +

1

χ(F1)− 1

)
|V2|+

2ξn

χ(F1)− 1
.

By rearranging, we get (
1− η1 −

1

χ(F1)− 1

)
|V2| <

5ξn

χ(F1)− 1
. (10)

Applying the same argument, but with the roles of (F1, V1, η1) and (F2, V2, η2) reversed,
we get that (

1− η2 −
1

χ(F2)− 1

)
|V1| <

5ξn

χ(F2)− 1
. (11)

We now divide the proof into cases depending on the values of η1 and η2.

Case 1. ηi 6 2
5

for some i ∈ {1, 2}.
Let j ∈ {1, 2} \ {i}. Since χ(Fi) > 3, we get the following by applying (10) or (11):

5ξn

2
>

5ξn

χ(Fi)− 1
>

(
1− ηi −

1

χ(Fi)− 1

)
|Vj| >

(
1− 2

5
− 1

2

)
|Vj| =

|Vj|
10

and so |Vj| < 25ξn. Since |V1| 6 |V2| by Assumption 1, this implies that |V1| < 25ξn.

Case 2. η1, η2 >
2
5
.

Since χ(F1)+χ(F2) > 7, we can let j ∈ {1, 2} so that χ(Fj) > 4 and let i ∈ {1, 2}\{j}.
Since ηi >

2
5

and ηi + ηj = 1, we have ηj <
3
5
. Now, by applying (10) or (11),

5ξn

3
>

5ξn

χ(Fj)− 1
>

(
1− ηj −

1

χ(Fj)− 1

)
|Vi| >

(
1− 3

5
− 1

3

)
|Vi| =

|Vi|
15

and so |Vi| < 25ξn. Since |V1| 6 |V2| by Assumption 1, this completes the proof.

3.2 Obtaining the Partition

Now that we know that most vertices are in V2 and, thus, have high degree in G2, the next
step is to show that G2 can be made F2-free by deleting a small proportion of its edges.
For this, we apply the well-known Graph Removal Lemma of Alon, Duke, Lefmann, Rödl
and Yuster [1] and Füredi [18]. As discussed in Remark 9, this is one place in which our
argument deviates from that of [17].
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Theorem 19 (Graph Removal Lemma [1, 18]). For every graph F and any given δ > 0,
there is a β = β(F, δ) > 0 such that if G is a graph with t(F,G) 6 β, then there is a
spanning subgraph G′ of G with t(F,G′) = 0 and t(K2, G

′) > t(K2, G)− δ.

Using Theorem 19, define

β := min {β(F1, δ/2), β(F2, δ/2)} . (12)

We also assume that ξ and τ satisfy the following:

0 < ξ <
β

52 · f
, (13)

0 < τ < β/2. (14)

The following lemma allows us to apply Theorem 19.

Lemma 20. t(F2, G2) < β.

Proof. Suppose, to the contrary, that t(F2, G2) > β. The number of homomorphisms
from F2 to G2 which map a vertex to V0 ∪ V1 is at most v(F2) · nv(F2)−1 · |V0 ∪ V1| which,
by Lemmas 15 and 17, is no more than 26v(F2)ξn

v(F2). Therefore,

t(F2, G2[V2]) >
t(F2, G2)n

v(F2) − 26v(F2)ξn
v(F2)

|V2|v(F2)
> (n/|V2|)v(F2)(β − 26v(F2)ξ).

By (13) and (14), this is greater than τ · (n/|V2|)v(F2). Recall that, by Observation 13, we

have d2(v) >
(

1+ξ
χ(F1)−1

)
n for all v ∈ V2. So, the set S = V2 contradicts Lemma 14, and

the proof is complete.

The last step in verifying Lemma 11 involves utilizing the Erdős–Simonovits Stability
Theorem [34] in the following form.

Theorem 21 (Erdős–Simonovits Stability Theorem [34]). For every non-empty graph F
and ε > 0, there exists δ = δ(F, ε) > 0 such that if G is a graph with t(F,G) = 0 and
t(K2, G) > 1− 1

χ(F )−1 − δ, then there exists a partition A1, . . . , Aχ(F )−1 of V (G) such that∑χ(F )−1
i=1 e(Ai) 6 εn2.

Using Theorem 21, we define

δ := min {δ(F1, ε/2), δ(F2, ε/2), 2ε} . (15)

We also assume that ξ satisfies

0 < ξ <
δ

52
. (16)

The following lemma establishes a lower bound on t(K2, G2) which will facilitate our
application of Theorem 21.
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Lemma 22. t(K2, G2) > 1− 1
χ(F2)−1 −

δ
2
.

Proof. By Lemmas 15 and 17, we have |V2| = n− |V0 ∪ V1| > (1− 26ξ)n. Therefore,

t(K2, G2) =
2e(G2)

n2

=
1

n2

∑
v∈V

d2(v)

>
1

n2

∑
v∈V2

d2(v)

>
|V2|
n2

(
1− 1 + 2ξ

χ(F2)− 1

)
(n− 1)

>
|V2|
n2

(
1− 1 + 3ξ

χ(F2)− 1

)
n

> (1− 26ξ)

(
1− 1 + 3ξ

χ(F2)− 1

)
> 1− 1

χ(F2)− 1
− 26ξ.

By (16), this is at least 1− 1
χ(F2)−1 −

δ
2

and so the proof is complete.

Finally, we present the proof of Lemma 11, thereby accomplishing our primary objec-
tive of this section.

Proof of Lemma 11. By Lemma 20, Theorem 19 and (12), there exists a spanning sub-
graph G′2 of G2 such that t(F2, G

′
2) = 0 and t(K2, G

′
2) > t(K2, G2)− δ/2. So, Lemma 22

implies that t(K2, G
′
2) > 1 − 1

χ(F2)−1 − δ. By Theorem 21 and (15), there is a parti-

tion A1, A2, . . . , Aχ(F2)−1 of V such that
∑χ(F2)−1

i=1 eG′2(Ai) 6 (ε/2)n2. Since t(K2, G) =
2e(G)/v(G)2 for any graph G, the inequality t(K2, G

′
2) > t(K2, G2)− δ/2 is equivalent to

e(G′2) > e(G2)− (δ/4)n2. Therefore,

χ(F2)−1∑
i=1

e2(Ai) 6
χ(F2)−1∑
i=1

eG′2(Ai) + (δ/4)n2 6 (ε/2 + δ/4)n2 6 εn2

where the last inequality follows from (15).

4 Proof of Theorem 2: Exact Structure

The aim of this section is to complete the proof of Theorem 2. The way that this breaks
down is as follows. We start by obtaining control over the number of copies of H1 in
G1 and H2 in G2 that contain any given vertex v ∈ V . In particular, we show that any
two vertices in V “contribute” roughly the same amount to m(H1, H2;G1). Thus, if one
vertex contributes “too much,” then all vertices do, which leads to a violation of (4).
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After this, we refine the rough structure afforded to us by Lemma 11 until we get that
G2 is simply a Turán graph with χ(F2)− 1 parts. The first step in this process is to show
that the parts have nearly the same size and almost all edges between pairs of parts are in
G2. We then show that the G2-neighbourhood of every vertex v /∈ V1 roughly “respects”
the partition. Next, we prove that the G2-degree of any vertex is within a small window

around
(

1− 1
χ(F2)−1

)
n, which implies that V1 = ∅. After that, we can use the critical

edge in F2 to show that all edges within Ai must be in G1 for all 1 6 i 6 χ(F2)− 1. From
this point, the theorem is easily deduced via a convexity argument.

4.1 Every Vertex Contributes the Same

For a graph H, a graph G on vertex set V and v ∈ V , define tinj(H,G)(v) to be the
probability that a random function from V (H) to V is an injective homomorphism from
H to G whose image contains v. The main idea of the next lemma is that, if u and w
are vertices such that an appropriate weighted sum of tinj(H1, G1)(u) and tinj(H2, G2)(u)
is significantly smaller than the analogous sum for w, then one can get a better colouring
by “deleting” w and “cloning” u. This is a standard idea in extremal combinatorics going
back at least as far as Zykov’s proof of Turán’s Theorem [38]. This lemma is analogous
to [17, Lemma 2.1].

Lemma 23. There exists a constant C = C(H1, H2) > 0 such that, for any u,w ∈ V ,

ρ1 · tinj(H1, G1)(u) + ρ2 · tinj(H2, G2)(u) > ρ1 · tinj(H1, G1)(w) + ρ2 · tinj(H2, G2)(w)− C

n2
.

Proof. Suppose, to the contrary, that the inequality does not hold for some u,w ∈ V . If
we remove all edges incident to the vertex w from G1, then we lose all of the injective
homomorphisms from H1 to G1 which map at least one vertex to w. Likewise, if we delete
all edges incident to w from G2, then we lose all of the injective homomorphisms from
H2 to G2 which map at least one vertex to w. (Note that, here, we are subtly using the
assumption that the graphs H1 and H2 have no singleton components.)

After deleting all such edges from G1 and G2, suppose that we add to G1 all edges of
the form wv such that uv ∈ E(G1) and v 6= w to form a new graph G′1. Similarly, add to
G2 all edges of the form wv such that v is a vertex with uv /∈ E(G1) and v 6= w to get
a graph G′2. Note that G′2 is the complement of G′1. In adding these edges, we gain one
injective homomorphism from H1 to G′1 per injective homomorphism from H1 to G1 that
includes u and not w. Similarly, we gain one injective homomorphsim from H2 to G′2 per
injective homomorphism from H2 to G2 that includes u and not w. Additionally, for each
i ∈ {1, 2}, we may also gain O(nv(Hi)−2) injective homomorphisms which map to both u
and w. Thus, for each i ∈ {1, 2},

tinj(Hi, G
′
i) 6 tinj(Hi, Gi)− tinj(Hi, Gi)(w) + tinj(Hi, Gi)(u) +O(1/n2)

where the constant factor on the O(1/n2) term is bounded by a function of Hi. Thus,
assuming that the inequality in the lemma is not true, we have that m(H1, H2;G

′
1) is at
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most m(H1, H2;G1) plus a O(1/n2) term, where the constant factor depends on H1 and
H2, minus C/n2. So, if C is chosen large enough with respect to H1 and H2, we get that
G′1 contradicts our choice of G1. Thus, the lemma holds.

Analogous to the definition of tinj(H,G)(v), let t(H,G)(v) be the probability that a
uniformly random function from V (H) to V is a homomorphism from H to G whose
image contains v. The following lemma restricts t(Hi, Gi)(v) for every vertex v.

Lemma 24. Suppose that {i, j} = {1, 2}. For every v ∈ V ,

t(Hi, Gi)(v) 6
3 max{v(H1), v(H2)}

n

(
1

χ(Fj)− 1

)v(Hi)−k(Fi)

.

Proof. Suppose, to the contrary, that there exists v ∈ V such that

t(Hi, Gi)(v) >
3 max{v(H1), v(H2)}

n

(
1

χ(Fj)− 1

)v(Hi)−k(Fi)

. (17)

By Lemma 23, (3), (17) and the fact that tinj(Hi, Gi)(v) = t(Hi, Gi)(v) +O(1/n2), we get
that, for large n, every u ∈ V satisfies

ρ1 · tinj(H1, G1)(u) + ρ2 · tinj(H2, G2)(u) >
2 max{v(H1), v(H2)}

n
.

Summing this inequality over all u ∈ V yields

2 max{v(H1), v(H2)} <
∑
u∈V

(ρ1 · tinj(H1, G1)(u) + ρ2 · tinj(H2, G2)(u))

= ρ1 · v(H1) · tinj(H1, G1) + ρ2 · v(H2) · tinj(H2, G2)

6 max{v(H1), v(H2)} (ρ1 · tinj(H1, G1) + ρ2 · tinj(H2, G2)) .

This contradicts (4), and thus the proof is complete.

4.2 Refining the Partition

We assume, throughout the remainder of this section, that A1, . . . , Aχ(F2)−1 is a partition
of V as in Lemma 11. Let us show that the sets A1, . . . , Aχ(F2)−1 have approximately the
same size and that G1 contains almost no edges between different parts. In order to prove
this, we make the following assumption on ε. Recall that χ = max{χ(F1), χ(F2)}.

0 < ε <
1

12χ4
. (18)

The next lemma is analogous to [17, Claim 3.8].

Lemma 25. For 1 6 i 6= j 6 χ(F2)− 1,
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(a)
∣∣∣|Ai| − n

χ(F2)−1

∣∣∣ 6 √3ε · n and

(b) e2(Ai, Aj) > (1− 2χ(F2)
2ε)|Ai||Aj|.

Proof. First observe that, since
∑χ(F2)−1

i=1 |Ai| = n,

χ(F2)−1∑
i=1

(
|Ai|
n
− 1

χ(F2)− 1

)2

=

χ(F2)−1∑
i=1

|Ai|2

n2
− 2

χ(F2)−1∑
i=1

|Ai|
n(χ(F2)− 1)

+

χ(F2)−1∑
i=1

(
1

χ(F2)− 1

)2

=

χ(F2)−1∑
i=1

|Ai|2

n2
− 1

χ(F2)− 1

and, also,

1 =

χ(F2)−1∑
i=1

|Ai|
n

2

=

χ(F2)−1∑
i=1

|Ai|2

n2
+ 2

 ∑
16i<j6χ(F2)−1

|Ai||Aj|
n2

 .

Solving for
∑χ(F2)−1

i=1
|Ai|2
n2 in one of these two equations and substituting into the other

yields

χ(F2)−1∑
i=1

(
|Ai|
n
− 1

χ(F2)− 1

)2

+
1

χ(F2)− 1
= 1− 2

 ∑
16i<j6χ(F2)−1

|Ai||Aj|
n2


which is equivalent to

1− 1

χ(F2)− 1
=

χ(F2)−1∑
i=1

(
|Ai|
n
− 1

χ(F2)− 1

)2

+ 2

 ∑
16i<j6χ(F2)−1

|Ai||Aj|
n2

 . (19)

Also, by (15) and Lemma 22, we have t(K2, G2) > 1− 1
χ(F2)−1 − ε. So,

1− 1

χ(F2)− 1
− ε 6 t(K2, G2)

=
2e(G2)

n2

=

χ(F2)−1∑
i=1

2e2(Ai)

n2
+

∑
16i<j6χ(F2)−1

2e2(Ai, Aj)

n2

6 2ε+ 2

 ∑
16i<j6χ(F2)−1

e2(Ai, Aj)

n2



the electronic journal of combinatorics 32(2) (2025), #P2.14 17



where the last inequality is by Lemma 11. Substituting the expression for 1− 1
χ(F2)−1 in

(19) into this inequality and rearranging yields

χ(F2)−1∑
i=1

(
|Ai|
n
− 1

χ(F2)− 1

)2

+ 2
∑

16i<j6χ(F2)−1

(
|Ai||Aj|
n2

− e2(Ai, Aj)

n2

)
6 3ε.

Since all summands on the left side are non-negative, we get(
|Ai|
n
− 1

χ(F2)− 1

)2

6 3ε

for all i, which proves (a). Similarly, for each i 6= j, the above inequality implies that

2

(
|Ai||Aj|
n2

− e2(Ai, Aj)

n2

)
6 3ε

and so

e2(Ai, Aj) > |Ai||Aj| − (3ε/2)n2 =

(
1− 3εn2

2|Ai||Aj|

)
|Ai||Aj|.

By (a), the right side is at least1− 3ε

2
(

1
χ(F2)−1 −

√
3ε
)2
 |Ai||Aj|

and by (18), this is at least (1 − 2χ(F2)
2ε)|Ai||Aj| (with room to spare). Therefore, (b)

holds.

Next, we show that the G2-neighbourhood of every vertex that is not in V1 roughly
“respects” the partitionA1, . . . , Aχ(F2)−1 (see Lemma 27 below). We assume that ε satisfies
the following condition:

0 < ε <
θ2

4 · χ2f 2
. (20)

Also, we assume that t0 is chosen large enough so that, for all t > t0, we have(
5

4

)t/2
>

6(t+ f)

q
(
θ
2χ

)f . (21)

Definition 26. Say that a vertex v ∈ V is bad if, for all 1 6 i 6 χ(F2)− 1, the number
of G2-neighbours of v in Ai ∩ V2 is at least θ|Ai|. Let B be the set of all bad vertices.

Lemma 27. B ⊆ V1.
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Proof. Suppose, to the contrary, that there exists a bad vertex v /∈ V1. For each vertex x
of F2, let p(x) be the number of pendant edges incident to x which were added during the
construction of H2 from F2. Let v0z be a critical edge of F2 where we assume, without
loss of generality, that p(v0) 6 p(z). Then, in particular, at most half of the pendant

edges added in the construction of H2 are incident to v0; i.e. p(v0) 6 v(H2)−v(F2)
2

. Let
F ′2 := F2 \ {v0} and note that, since v0z is a critical edge, χ(F ′2) < χ(F2). Fix a proper
colouring ψ : V (F ′2) → {1, . . . , χ(F2) − 1} of F ′2. Our aim is to prove a lower bound on
t(H2, G2)(v) which is large enough to contradict Lemma 24.

Let S be the G2-neighbourhood of v. The probability that a random function ϕ from
V (H2) to V is a homomorphism from H2 to G2 such that ϕ(v0) = v is at least the
probability that the restriction of ϕ to V (F ′2) is a homomorphism from F ′2 to G2[S ∩ V2],
times 1/n (the probability that ϕ(v0) = v), times the probability that every vertex of
V (H2) \ V (F2) is mapped to a G2-neighbour of the image of its unique neighbour in H2.
Taking into account that v /∈ V1, we have

d2(v) = n− 1− d1(v) >

(
1 + 2ξ

χ(F1)− 1

)
(n− 1) >

(
1

χ(F1)− 1

)
n.

Thus, since d2(w) >
(

5
4
· 1
χ(F1)−1

)
n for all w ∈ V2 by Observation 13, we get that

t(H2, G2)(v) is greater than(
|S ∩ V2|

n

)v(F ′2)
t(F ′2, G[S ∩ V2])

1

n

(
1

χ(F1)− 1

)p(v0)(5

4
· 1

χ(F1)− 1

)v(H2)−v(F2)−p(v0)
. (22)

Next, we bound (|S ∩ V2|/n)v(F
′
2) t(F ′2, G[S ∩ V2]) from below. First, since v is bad, we

have that |S∩Ai∩V2| > θ|Ai| for all 1 6 i 6 χ(F2)−1. So, if we map V (F ′2) randomly to
V , then the probability that every vertex w of F ′2 is mapped to S ∩Aψ(w) ∩ V2 is at least∏

w∈V (F ′2)
(θ|Aψ(w)|/n) which, by Lemma 25 (a), is at least θv(F

′
2)
(

1
χ(F2)−1 −

√
3ε
)v(F ′2)

. By

Lemma 25 (b), the number of non-edges in G2 from S ∩ Ai ∩ V2 to S ∩ Aj ∩ V2 for i 6= j
is at most 2χ(F2)

2ε|Ai||Aj| which, since v is bad, is at most

2χ(F2)
2ε|S ∩ Ai ∩ V2||S ∩ Aj ∩ V2|

θ2
.

Thus, for any fixed edge wy of F ′2, the conditional probability that ϕ(w) is not adjacent

to ϕ(y) given that ϕ(w) ∈ S ∩Aψ(w)∩V2 and ϕ(y) ∈ S ∩Aψ(y)∩V2 is at most 2χ(F2)2ε
θ2

. By
taking a union bound over all edges of F ′2, we get that the probability that every vertex
w of F ′2 is mapped to S ∩Aψ(w) ∩ V2 and no edge of F ′2 is mapped to a non-edge of G2 is
at least

θv(F
′
2)

(
1

χ(F2)− 1
−
√

3ε

)v(F ′2)(
1− 2e(F ′2)χ(F2)

2ε

θ2

)
.

By (18), the product of the first two factors is at least
(

θ
χ(F2)

)v(F2)

and, by (20), the third
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factor is at least 1/2. So, the expression in (22) is at least

1

2

(
θ

χ(F2)

)v(F2) 1

n

(
1

χ(F1)− 1

)p(v0)(5

4
· 1

χ(F1)− 1

)v(H2)−v(F2)−p(v0)

=
1

2

(
θ

χ(F2)

)v(F2) 1

n

(
4

5

)p(v0)(5

4
· 1

χ(F1)− 1

)v(H2)−v(F2)

.

Now, since p(v0) 6
v(H2)−v(F2)

2
, we get that this is at least

1

2

(
θ

χ(F2)

)v(F2) 1

n

(
4

5

) v(H2)−v(F2)
2

(
5

4
· 1

χ(F1)− 1

)v(H2)−v(F2)

=
1

2

(
θ

χ(F2)

)v(F2) 1

n

(
5

4

) v(H2)−v(F2)
2

(
1

χ(F1)− 1

)v(H2)−v(F2)

=
1

2

(
θ

χ(F2)

)v(F2) 1

n

(
5

4

)t2/2( 1

χ(F1)− 1

)v(H2)−v(F2)

.

By (21) and the fact that t2 > t0, this is at least

1

2

(
θ

χ(F2)

)v(F2) 1

n

 6v(H2)

q
(

θ
χ(F2)

)v(F2)

( 1

χ(F1)− 1

)v(H2)−v(F2)

>
3v(H2)

q · n

(
1

χ(F1)− 1

)v(H2)−k(F2)

>
3 max{v(H1), v(H2)}

n

(
1

χ(F1)− 1

)v(H2)−k(F2)

where the penultimate step uses v(F2) > k(F2) and the last step uses (2). This contradicts
Lemma 24 and completes the proof.

Using the above lemma, it follows relatively easily that d2(v) cannot be too large for
any vertex v ∈ V . To verify this, we use the following assumption:

0 < ξ <
θ

26χ
. (23)

Lemma 28. For every v ∈ V ,

d2(v) 6

(
1− 1− 3θ

χ(F2)− 1

)
(n− 1).
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Proof. If v ∈ V1, then, by Observation 13,

d2(v) = n− 1− d1(v)

6 n−
(

5

4
· 1 + ξ

χ(F2)− 1

)
n

<

(
1− 1

χ(F2)− 1

)
n

<

(
1− 1− 3θ

χ(F2)− 1

)
(n− 1).

On the other hand, if v /∈ V1, then, by Lemma 27, we have that v /∈ B. So, there exists
i such that v has fewer than θ|Ai| neighbours in Ai ∩ V2. Since |V \ V2| 6 26ξn by
Lemmas 12, 15 and 17, we have

d2(v) 6
∑
j 6=i

|Aj|+ θ · |Ai|+ |Ai \ V2| 6 n− (1− θ)|Ai|+ 26ξn.

By Lemma 25 (a) this is at most

n− (1− θ)
(

1

χ(F2)− 1
−
√

3ε

)
n+ 26ξn 6

(
1− 1− θ

χ(F2)− 1
+
√

3ε+ 26ξ

)
n.

Note that (20) implies that ε < θ2

3(χ(F2)−1)2 . Using this bound, together with (23), tells us

that the above expression is at most
(

1− 1−3θ
χ(F2)−1

)
(n− 1) as desired.

Next, we show that d2(v) is reasonably large for every vertex v ∈ V . This will then
be used to show that V1 = ∅. To prove it, we assume the following:

0 < ε <
1

4f 2χ4
. (24)

Also, we assume that t0 is chosen large enough that, for all t > t0,

eθ·t >
6χ2f (t+ f)

q
. (25)

Lemma 29. For every v ∈ V ,

d2(v) >

(
1− 1 + 15θf

χ(F2)− 1

)
(n− 1).

Proof. Suppose that the lemma is false. Then there exists v ∈ V such that

d1(v) = n− 1− d2(v) > n− 1−
(

1− 1 + 15θf

χ(F2)− 1

)
(n− 1)

>

(
1 + 14θf

χ(F2)− 1

)
n.
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Our goal is to show that v is contained in a large number of copies of H1 in G1 which
will contradict Lemma 24. For each w ∈ V (F1), let p(w) be the number of pendant edges
incident to w added in the construction of H1 from F1 and let v0 ∈ V (F1) so that p(v0) is
maximum. Then, by the Pigeonhole Principle,

p(v0) >
v(H1)− v(F1)

v(F1)
. (26)

Let F ′1 := F1 \ {v0}.
By the lower bound on d1(v) proven above, there must exist some 1 6 i 6 χ(F2)− 1

such that v has at least

1

χ(F2)− 1
·
(

1 + 14θf

χ(F2)− 1

)
n >

n

(χ(F2)− 1)2

G1-neighbours in Ai. Let S be the set of G1-neighbours of v in Ai. Recall that, by
Lemma 11, the number of non-edges of G1 in S is at most

εn2 6 εn2

(
|S|

n/(χ(F2)− 1)2

)2

= ε(χ(F2)− 1)4|S|2.

Therefore, for large enough n,

t(K2, G1[S]) =
2e1(S)

|S|2
>

2
(|S|

2

)
− 2ε(χ(F2)− 1)4|S|2

|S|2
> 1− 2εχ(F2)

4.

Thus, if V (F ′1) is mapped to S randomly, then the probability that any individual edge
of F ′1 is mapped to a non-edge of G1 is at most 2εχ(F2)

4. So, by a union bound and (24),
we have that

t(F ′1, G1[S]) > 1− 2εe(F ′1)χ(F2)
4 > 1/2. (27)

Now, if ϕ is a random function from V (H1) to V , then the probability that ϕ is a homo-
morphism mapping v0 to v is at least the probability that the restriction of ϕ to V (F ′1) is
a homomorphism from F ′1 to G[S], times 1/n (the probability that v0 maps to v) times
the probability that every vertex of V (H1) \ V (F1) is mapped to a G1-neighbour of the
image of its unique neighbour in H1. So, by Lemma 28, t(H1, G1)(v) is at least

(|S|/n)v(F
′
1) t(F ′1, G1[S]) · 1

n

(
1 + 14θf

χ(F2)− 1

)p(v0)( 1− 3θ

χ(F2)− 1

)v(H1)−v(F1)−p(v0)

.

Using the fact that |S| > n/(χ(F2)− 1)2 > n/χ(F2)
2 and (27), we get that this is at least

1

2χ(F2)2v(F1)

1

n

(
1

χ(F2)− 1

)v(H1)−v(F1)

(1 + 14θf)p(v0)(1− 3θ)v(H1)−v(F1)−p(v0).

Using the inequalities 1 + r > er/2 and 1 − r > e−2r, which are valid for all r ∈ [0, 1/2],
we can bound the product of the last two factors as follows:

(1 + 14θf)p(v0)(1− 3θ)v(H1)−v(F1)−p(v0)
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> exp(7θfp(v0)− 6θ(v(H1)− v(F1)− p(v0))).
By (26), this is at least

exp(7θ(v(H1)− v(F1))− 6θ(v(H1)− v(F1)− p(v0))) > eθt1 .

So, by (25) and the fact that t1 > t0, we have that

t(H1, G1)(v) >
1

n

(
1

χ(F2)− 1

)v(H1)−v(F1)(3 (t1 + f)

q

)
>

3v(H1)

q · n

(
1

χ(F2)− 1

)v(H1)−k(F1)

>
3 max{v(H1), v(H2)}

n

(
1

χ(F2)− 1

)v(H1)−k(F1)

where the penultimate step used v(F1) > k(F1) and the last step applied (2). This
contradicts Lemma 24 and completes the proof.

As a consequence of the previous lemma, we will show next that V1 = ∅. This also
implies B = ∅ by virtue of Lemma 27. For this, we assume

0 < θ <
1

60f
. (28)

Lemma 30. We have V1 = ∅. Consequently, B = ∅.

Proof. Assuming v ∈ V1, Lemma 29 implies that

d1(v) = n− 1− d2(v) 6

(
1 + 15θf

χ(F2)− 1

)
(n− 1)

which, by (28), is less than (
5

4
· 1

χ(F2)− 1

)
n.

This contradicts Observation 13, and so V1 must be empty. Lemma 27 then implies that
B is also empty.

From here forward, we impose an additional assumption that
∑χ(F2)−1

i=1 e2(Ai) is mini-
mum among all partitions A1, . . . , Aχ(F2)−1 of V . This allows us to prove the next lemma,
which is analogous to [17, Claim 3.11]. We assume that ξ satisfies

0 < ξ < θ

(
1

f − 1
−
√

3ε

)
. (29)

Note that the expression on the right side of the rightmost inequality above is positive by
(24), and so it is possible to choose ξ in this way. We use the assumption on the choice
of partition to show that, for each i, every vertex in Ai has few G2-neighbours in Ai ∩ V2.
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Lemma 31. For 1 6 i 6 χ(F2) − 1, every v ∈ Ai is adjacent in G2 to fewer than θ|Ai|
vertices of Ai ∩ V2.

Proof. Let v ∈ Ai. Then v is not bad by Lemma 30, so there must exist an index i′ such
that the number of G2-neighbours of v in Ai′ ∩ V2 is at most θ|Ai′ |. If i′ = i, then we are
done; so, we assume that i′ 6= i. Since V = V0 t V2 by Lemmas 12 and 30, the number of
G2-neighbours of v in Ai′ overall is at most θ|Ai′ |+ |Ai′ ∩ V0| which, by Lemma 15, is at
most

θ|Ai′|+ ξn < 2θ|Ai′ |

where the last step applies Lemma 25 (a) and (29). Since i 6= i′, the vertex v must have at
most 2θ|Ai′| neighbours in Ai as well; otherwise, moving v from Ai to Ai′ would decrease∑χ(F2)−1

i=1 e2(Ai), contradicting our choice of partition. Thus,

d2(v) 6
∑

j /∈{i,i′}

|Aj|+ 4θ|Ai′|.

By Lemma 25 (a) and (28), this is at most

(χ(F2)− 3 + 4θ)

(
1

χ(F2)− 1
+
√

3ε

)
n 6

(
1− 2

χ(F2)− 1
+ 4θ + χ(F2)

√
3ε

)
n.

Using (20), we can bound this above by(
1− 2

χ(F2)− 1
+ 5θ

)
n <

(
1− 2

χ(F2)− 1
+

5θχ(F2)

χ(F2)− 1

)
(n− 1)

=

(
1− 1 + (1− 5θχ(F2))

χ(F2)− 1

)
(n− 1).

By (28), we have θ 6 1
15f+5χ(F2)

. Plugging this into the above expression yields an upper
bound of (

1− 1 + 15θf

χ(F2)− 1

)
(n− 1)

contradicting Lemma 29 and completing the proof of the claim.

Next, let us show that every vertex v ∈ Ai has many neighbours in Aj for j 6= i.

Lemma 32. For 1 6 i 6= j 6 χ(F2) − 1, every v ∈ Ai is adjacent in G2 to at least
(1− 33θf) |Aj| vertices of Aj.

Proof. Let v ∈ Ai. Suppose that v has fewer than (1 − 33θf)|Aj| G2-neighbours in Aj.
Let S be the G2-neighbourhood of v. Then

d2(v) =

χ(F2)−1∑
`=1

|A` ∩ S| 6 |S ∩ Ai ∩ V2|+ |S ∩ Aj|+ |V0|+
∑
`/∈{i,j}

|A` ∩ S|
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which, by Lemmas 15 and 31, is at most

θ|Ai|+ (1− 33θf)|Aj|+ ξn+ n− |Ai| − |Aj| =
(

1 + ξ − (1− θ)|Ai|+ 33θf |Aj|
n

)
n.

Using the lower bound on |Ai| and |Aj| in Lemma 25 (a) yields an upper bound of(
1 + ξ − (1− θ + 33θf)

(
1

χ(F2)− 1
−
√

3ε

))
n

6

(
1− 1

χ(F2)− 1
+ ξ +

√
3ε− 32θf

(
1

χ(F2)− 1
−
√

3ε

))
n.

By (18), (20) and (29), this is less than(
1− 1 + 15θf

χ(F2)− 1

)
(n− 1)

which contradicts Lemma 29 and completes the proof.

Next, we prove that, in fact, there are no edges within G2[Ai] for any 1 6 i 6 χ(F2)−1.
The presence of critical edges in F1 and F2 is crucial in this step. After this, the proof
of Theorem 2 will follow relatively easily. The following lemma is analogous to [17,
Claim 3.12]. Assume that t0 is large enough that the following holds for all t > t0:(

10

9

)qt
> 4χ

(
4χ

3

)f
(t+ f)2. (30)

Also, choose θ small enough so that

0 < θ <
1

66f 3
(31)

and
(1− 20 · θf) > (5/6) · (1 + 15θf)1/q. (32)

Note that such a θ exists because the limit as θ → 0 of the left side is 1 and the limit of
the right size is 5/6.

Lemma 33. e2(Ai) = 0 for 1 6 i 6 χ(F2)− 1.

Proof. Suppose that the lemma is not true; without loss of generality, the set A1 contains
an edge of G2. Let u0 and v0 be the endpoints of such an edge. Let G′2 be the graph
obtained from G2 by deleting the edge u0v0 and let G′1 = G′2. We estimate the number
of copies of H1 in G1 that are “gained” and the number of copies of H2 in G2 that are
“lost” when replacing (G1, G2) by (G′1, G

′
2) with a goal of contradicting the choice of G1.

We begin by bounding from above the number of injective homomorphisms of H1

to G′1 which are not homomorphisms from H1 to G1. Any such homomorphism can be

the electronic journal of combinatorics 32(2) (2025), #P2.14 25



described as follows. First, we pick an edge e = wz of H1 and map its endpoints to
u0v0 (in one of two possible ways). Now, imagine that we list the vertices of H1 so that
w and z are listed first (in this order), followed by the other vertices of the component
of H1 containing w and z, and then the vertices of another (arbitrary) component, and
so on, so that each vertex in the list is either the first vertex of its component or has a
neighbour which comes before it in the list, which we refer to as its “parent.” Then, in a
homomorphism, each vertex in the list after w and z must be mapped to a G1-neighbour
of its parent (if it has one). Thus, since k(H1) = k(F1) and each vertex has at most(

1+15θf
χ(F2)−1

)
(n−1) neighbours in G1 by Lemma 29, the number of such mappings is at most

2e(H1)n
k(F1)−1

(
1 + 15θf

χ(F2)− 1

)v(H1)−2−(k(F1)−1)

nv(H1)−2−(k(F1)−1)

= 2e(H1)(χ(F2)− 1) (1 + 15θf)v(H1)−k(F1)−1
(

1

χ(F2)− 1

)v(H1)−k(F1)

nv(H1)−2.

Thus, by (3),

ρ1 (tinj(H1, G
′
1)− tinj(H1, G1))

6 2e(H1)(χ(F2)− 1) (1 + 15θf)v(H1)−k(F1)−1 n−2 +O(n−3)

6 2e(H1)(χ(F2)− 1) (1 + 15θf)v(H1) n−2 +O(n−3).

Next, let us bound from below the number of injective homomorphisms of H2 to G′2
which are not homomorphisms from H2 to G2. Let e0 = w0z0 be a critical edge of F2, let
F ′2 = F2 \ {e0} and let ψ : V (F ′2) → {1, . . . , χ(F2) − 1} be a proper colouring of F ′2 such
that ψ(w0) = ψ(z0) = 1. Now, suppose that ϕ is a function that maps w0 to u0 and z0
to v0 and then maps every other vertex of F ′2 to V randomly. The probability that every
other vertex u of F ′2 is mapped by ϕ to Aψ(u) is

∏
u∈V (F ′2)\{w0,z0}

(
|Aψ(u)|
n

)
>

(
1

χ(F2)− 1
−
√

3ε

)v(F ′2)−2
>

(
1

χ

)f
.

by Lemma 25 (a) and (18). Given this, by Lemma 32, the probability that every edge of
F ′2 maps to an edge of G2 is, by a union bound, at least

1− 33θe(F ′2)f > 1/2

where the inequality is by (31). Finally, given these two events, if each vertex of V (H2) \
V (F2) is mapped randomly to V , an application of Lemma 29 combined with the above
inequalities tells us that the probability that the final function is a homomorphism is at
least

1

2

(
1

χ

)f (
1− 1 + 16θf

χ(F2)− 1

)v(H2)−v(F2)

=
1

2

(
1

χ

)f (
χ(F2)− 2− 16θf

χ(F2)− 1

)v(H2)−v(F2)

.
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The last factor can be bounded as follows:(
χ(F2)− 2− 16θf

χ(F2)− 1

)v(H2)−v(F2)

=
(χ(F1)− 1)v(H2)−v(F2)

(χ(F1)− 1)v(H2)−v(F2)

(
χ(F2)− 2− 16θf

χ(F2)− 1

)v(H2)−v(F2)

=

(
1

χ(F1)− 1

)v(H2)−v(F2)((χ(F1)− 1)(χ(F2)− 2− 16θf)

χ(F2)− 1

)v(H2)−v(F2)

>

(
1

χ(F1)− 1

)v(H2)−k(F2)((χ(F1)− 1)(χ(F2)− 2− 16θf)

χ(F2)− 1

)v(H2)−v(F2)

where in the inequality we used that v(F2) > k(F2). Now, since χ(F1) > 3 and χ(F1) +
χ(F2) > 7, we have

(χ(F1)− 1)(χ(F2)− 2− 16θf)

χ(F2)− 1
>

4

3
(1− 20 · θf).

Putting this all together and applying (3), we get that

ρ2(tinj(H2, G2)− tinj(H2, G
′
2)) >

1

2

(
1

χ

)f (
4

3
(1− 20 · θf)

)v(H2)−v(F2)

n−2 −O(n−3)

>
1

2

(
3

4χ

)f (
4

3
(1− 20 · θf)

)v(H2)

n−2 −O(n−3)

which, by (2), is at least

1

2

(
3

4χ

)f (
4

3
(1− 20 · θf)

)qv(H1)

n−2 −O(n−3).

Now, by (32), this is at least

1

2

(
3

4χ

)f (
4

3
· 5

6
(1 + 15θf)1/q

)qv(H1)

n−2 −O(n−3)

=
1

2

(
3

4χ

)f (
10

9

)qv(H1)

(1 + 15θf)v(H1)n−2 −O(n−3).

Combining the upper bound that we have proven on ρ1 (tinj(H1, G
′
1)− tinj(H1, G1))

and the lower bound on ρ2(tinj(H2, G2)− tinj(H2, G
′
2)), we get that

n2(m(H1, H2;G1)−m(H1, H2;G
′
1))

>
1

2

(
3

4χ

)f (
10

9

)qv(H1)

(1 + 15θf)v(H1) − 2e(H1)(χ(F2)− 1) (1 + 15θf)v(H1) −O(n−1)

which is positive for large n by (30). This contradicts the definition of G1 and completes
the proof.
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Finally, we present the proof of Theorem 2.

Proof of Theorem 2. Given F1, F2 and q satisfying the hypotheses of the theorem, we
select our parameters in the following order, subject to the given conditions:

• choose θ to satisfy (28), (31) and (32),

• choose ε so that (18), (20) and (24) hold,

• choose δ as in (15),

• choose β as in (12),

• choose ξ so that (5), (13), (16), (23) and (29) all hold,

• choose γ as in (8),

• choose τ to satisfy (7), (9) and (14),

• choose t0 large enough so that (6), (21), (25) and (30) all hold.

Let t1, t2 > t0 and let H1 be a t1-hairy F1 and H2 be a t2-hairy F2. We may assume
that H1 and H2 have no singleton components. Let n0 be large with respect to H1 and
H2 and the parameters chosen in the previous paragraph and let G1 be a graph on n
vertices minimizing m(H1, H2;G1) and G2 = G1. Without loss of generality, |V1| 6 |V2|.
As a result of our parameter choices, all of the statements in Sections 3 and 4 hold. In
particular, Lemma 33 implies that there is a partition A1, . . . , Aχ(F2)−1 of V = V (G1) such
that G2 contains no edge with endpoints in Ai for 1 6 i 6 χ(F2)− 1, and Lemma 25 (a)
guarantees that all of the sets of the partition have approximately the same size, n

χ(F2)−1 .
We assert that G1 has no edges between Ai and Aj for i 6= j. To prove this, suppose

that such an edge exists in G1. If we move this edge from G1 to G2, it would destroy
at least one injective homomorphism from H1 to G1 (since |Ai| > v(H1) for large n and
H1 has at least t1 > 1 vertices of degree one). At the same time, this would not create
any injective homomorphism from H2 to G2, since G2 is still (χ(F2) − 1)-partite after
adding such an edge to it. This contradicts our choice of G1. Therefore, G2 is a complete
(χ(F2) − 1)-partite graph. In particular, t(H2, G2) = 0 and G1 is a disjoint union of
χ(F2)− 1 cliques.

Finally, we show that the cardinalities of any two sets Ai and Aj differ by at most one.
Each homomorphism fromH1 toG1 gives rise to a partition of V (H1) into at most χ(F2)−1
classes such that each partition class is a union of components of H1 and all vertices of
each class are mapped to the same component of G1. We think of these partitions as
being “unlabelled” in the sense that they contain information about which components
of H1 are mapped to the same component of G1 but not about which component of G1

they are mapped to. Given such a partition P = {P1, . . . , Pχ(F2)−1} (where we allow some
of the sets Pj to be empty), we show that the number of injective homomorphisms of H1

to G1 giving rise to the partition P is minimized when the cardinalities any two of the
sets Ai and Aj differ by at most one. For each 1 6 i 6 χ(F2)−1, let us count the number
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of choices for the mapping of vertices in Pi given the mapping of the vertices in
⋃i−1
j=1 Pj.

Let Ti be the set of indices t such that there does not exist 1 6 j 6 i − 1 such that the
vertices of Pj are mapped to At. Then the number of choices for the mapping of Pi given
that of Pj for all j < i is ∑

t∈Ti

|At|!
(|At| − |Pi|)!

. (33)

For an integer c > 2, define fc : R→ R by fc(z) = z(z−1) . . . (z−c+1). Then fc has c−1
distinct (integer) roots in the interval [0, c − 1]. The derivative f ′c(z) is a polynomial of
degree c−1 with c−1 real roots which interlace the roots of fc; in particular, its roots are
also contained in the interval [0, c−1]. By similar logic, the roots of the second derivative
f ′′c are in [0, c − 1] as well. From this, we see that f ′′c is positive on [c,∞), and so fc is
strictly convex on this set. Thus, by Jensen’s Inequality, for any i such that |Pi| > 2,
the sum in (33) is uniquely minimized when the cardinalities of the sets At for t ∈ Ti are
as similar as possible. Thus, the number of injective homomorphisms from H1 to G1 is
minimized by taking G2 to be a (χ(F2)− 1)-partite Turán graph.

5 Beating the Turán Colourings

In this section, we show that if (H1, H2) is a bonbon pair, then e(H1) cannot be “exces-
sively large;” see Theorem 37 below. This result will then be used to derive Proposition 3.
We will use the following result of [15] which was previously known as Tomescu’s Graph
Colouring Conjecture [37].

Theorem 34 (Fox, He and Manners [15]). For m 6= 3, every connected m-chromatic
graph on n vertices has at most m!(m− 1)n−m proper m-colourings.

The case m = 2 of the above theorem is trivial, as every connected bipartite graph has
precisely two proper 2-colourings. It is also necessary to exclude the case m = 3, as an odd
cycle of length k > 5 has more than 3!2k−3 proper 3-colourings. Knox and Mohar [25,26]
established the cases m = 4 and m = 5 before the full conjecture was proven by Fox, He
and Manners [15]. Note that every hairy Km on n vertices has exactly m!(m − 1)n−m

proper m-colourings and so Theorem 34 is tight. We will use the following corollary of
Theorem 34. Given a graph H, say that a vertex colouring f : V (H)→ [χ(H)− 1] of H
is nearly proper if there is a unique edge of H whose endpoints are monochromatic.

Corollary 35. If H is a graph such that χ(H) 6= 4, then the number of nearly proper
colourings of H is at most

crit(H) · (χ(H)− 2)! · (χ(H)− 2)v(H)−χ(H)−k(H)+1 · (χ(H)− 1)k(H).

Proof. Given an edge e of H, let H/e be the graph obtained by contracting e; i.e. by
identifying the two endpoints of e and removing any multi-edges that arise. Let ze be the
vertex formed by contracting the edge e. The number of nearly proper colourings of H is
equal to the number of ways to select
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• a critical edge e of H,

• a proper (χ(H)− 1)-colouring of the component of H/e containing ze and

• a proper (χ(H)− 1)-colouring of the components of H/e that do not contain ze.

The number of choices in the first step is clearly crit(H).
Assuming that a critical edge e has been chosen, let p denote the number of vertices in

the component of H/e containing ze. Note that the chromatic number of this component
is exactly χ(H)− 1 which, since χ(H) 6= 4, is not equal to three. So, by Theorem 34, the
number of choices in the second step is at most (χ(H)− 1)!(χ(H)− 2)p−(χ(H)−1).

In the last step, for each component that does not contain ze, there are at most
χ(H)− 1 choices for the colour of an arbitrary “root” vertex of this component and then
at most χ(H) − 2 choices for each subsequent vertex. Since H/e has v(H) − 1 vertices,
the number of vertices in the components of H/e that do not contain ze is v(H)− 1− p.
Thus, the number of choices in the last step is at most

(χ(H)− 1)k(H)−1(χ(H)− 2)v(H)−1−p−(k(H)−1).

Putting this all together, we get that the number of nearly proper colourings of H is at
most

crit(H) · (χ(H)− 1)! · (χ(H)− 2)v(H)−χ(H)−k(H)+1 · (χ(H)− 1)k(H)−1

as desired.

We also need the following simple bound on the number of nearly proper colourings in
the case that χ(H) = 4. The proof is analogous to that of the previous corollary, except
that, instead of Theorem 34, we use the (trivial) fact that every connected 3-chromatic
graph on n vertices has at most 3 · 2n−1 proper 3-colourings.

Lemma 36. If H is a 4-chromatic graph, then the number of nearly proper colourings of
H is at most

crit(H) · 3k(H) · 2v(H)−k(H)−1.

Next, we use Corollary 35 and Lemma 36 to prove the following result which restricts
the number of edges in a graph contained in a bonbon pair. In fact, it applies to a slightly
more general class of graphs. Say that (H1, H2) is multiplicity good if

(χ(H2)− 1)v(H1)−k(H1)t(H1, G) + (χ(H1)− 1)v(H2)−k(H2)t(H2, G) > 1− o(1)

for all graphs G. Clearly, every bonbon pair is multiplicity good. Say that a graph H is
multiplicity good if the pair (H,H) is.

Theorem 37. Let H1 and H2 be graphs such that, if χ(H2) 6= 4, then

e(H1) >
crit(H2) · (χ(H2)− 2)! · (χ(H2)− 2)v(H2)−χ(H2)−k(H2)+1 · (χ(H1)− 1)v(H2)−k(H2)

(χ(H2)− 1)v(H2)−k(H2)
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and, otherwise,

e(H1) >
crit(H2) · 2v(H2)−k(H2)−1(χ(H1)− 1)v(H2)−k(H2)

3v(H2)−k(H2)
.

Then (H1, H2) is not multiplicity good.

Proof. Suppose that H1 and H2 are graphs satisfying the hypotheses of the theorem. Let
ε > 0 be very small and, for each n > χ(H2) − 1, let Gn,ε be a graph on n vertices
obtained from the complement of the Turán graph with n vertices and χ(H2) − 1 parts
by jettisoning each edge of this graph with probability ε independently of all other such
edges. Define

f1(ε) := lim
n→∞

t(H1, Gn,ε), f2(ε) := lim
n→∞

t(H2, Gn,ε)

and note that both of these limits exist with probability 1. Moreover, with probability
one,

(χ(H2)− 1)v(H1)−k(H1) · f1(ε) = (1− ε)e(H1) = 1− e(H1)ε+O(ε2)

where the asymptotics here (and throughout the proof) are as ε→ 0.
Let K be the number of nearly proper colourings of H2. Then, with probability one,

(χ(H1)−1)v(H2)−k(H2) ·f2(ε) = (χ(H1)−1)v(H2)−k(H2) ·εK
(

1

χ(H2)− 1

)v(H2)

+O(ε2). (34)

At this point, we divide the proof into cases.

Case 1. χ(H2) 6= 4.

By Corollary 35, the linear term of (34) (with respect to ε) is at most

(χ(H1)− 1)v(H2)−k(H2) · ε · crit(H2) · (χ(H2)− 2)!

· (χ(H2)− 2)v(H2)−χ(H2)−k(H2)+1

(
1

χ(H2)− 1

)v(H2)−k(H2)

which is equal to

ε · crit(H2) · (χ(H2)− 2)! · (χ(H2)− 2)v(H2)−χ(H2)−k(H2)+1 · (χ(H1)− 1)v(H2)−k(H2)

(χ(H2)− 1)v(H2)−k(H2)
.

Therefore, the lower bound on e(H1) assumed at the beginning of the proof implies that
the linear term with respect to ε in (χ(H2)−1)v(H1)−k(H1)·f1(ε)+(χ(H1)−1)v(H2)−k(H2)·f2(ε)
has a negative coefficient. So, for ε sufficiently small, we have that

(χ(H2)− 1)v(H1)−k(H1)t(H1, Gn,ε) + (χ(H1)− 1)v(H2)−k(H2)t(H2, Gn,ε) = 1− Ω(ε)

as n→∞ which implies that (H1, H2) is not multiplicity good.

Case 2. χ(H2) = 4.
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In this case, by Lemma 36, the linear term of (34) with respect to ε is at most

(χ(H1)− 1)v(H2)−k(H2)ε · crit(H2) · 2v(H2)−k(H2)−1
(

1

3

)v(H2)−k(H2)

=
ε · crit(H2) · 2v(H2)−k(H2)−1(χ(H1)− 1)v(H2)−k(H2)

3v(H2)−k(H2)
.

Thus, analogous to the previous case, by taking ε sufficiently close to zero, we get a
certificate that (H1, H2) is not multiplicity good.

Proof of Proposition 3. The proposition follows immediately from Theorem 37.

6 Conclusion

We conclude by stating some open problems. A result of Goodman [20] implies that
c1(K3) = 1/4 and so K3 is multiplicity good. However, for odd n, hominj(K3, G) +
hominj(K3, G) is minimized among all n-vertex graphs by every n-vertex graph G which is
((n−1)/2)-regular; therefore, K3 is multiplicity good but not a bonbon. We are currently
unaware of any non-3-colourable graph which is multiplicity good but not a bonbon, which
leads us to the following question.

Question 38. Is it true that every non-3-colourable multiplicity good graph is a bonbon?

It would also be interesting to explore off-diagonal variants of the above question, such
as the following.

Question 39. Suppose that (H1, H2) is multiplicity good such that H1 and H2 are non-
bipartite and χ(H1) + χ(H2) > 7. Does it follow that (H1, H2) is a bonbon pair?

Currently, all of the known examples of bonbons contain vertices of degree one. It is
unclear whether a bonbon of minimum degree at least two can exist. The analogous ques-
tion for non-3-colourable multiplicity good graphs is also intriguing (the case of chromatic
number three is settled, since K3 is multiplicity good).

Question 40. Does there exist a bonbon H such that δ(H) > 2?

Question 41. Does there exist a non-3-colourable multiplicity good graph H such that
δ(H) > 2?

Let us conclude with an observation that was shared with us by an anonymous referee.
We claim that, if H is a bonbon, then H must contain a bridge. Indeed, consider the
colouring obtained from a Turán colouring where the red edges form a complete (χ(H)−1)-
partite graph and change one of the red edges to blue. If H does not have a bridge, then
this colouring has the same number of monochromatic copies of H as the Turán colouring
and so H is not a bonbon. In particular, this implies that the answer to Question 40
would be “no” if the condition δ(H) > 2 was replaced with the stronger condition that
H is 2-edge connected. However, this example does not seem to preclude the existence of
2-edge connected multiplicity good graphs.
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Question 42. Does there exist a non-3-colourable multiplicity good graph H that is
2-edge connected?
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[11] P. Erdős. On the number of complete subgraphs contained in certain graphs. Magyar
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