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Abstract

The question whether there exists a hypergraph whose degrees are equal to a
given sequence of integers is a well-known reconstruction problem in graph theory,
which is motivated by discrete tomography. In this paper we approach the problem
by randomized algorithms which generate the required hypergraph with positive
probability if the sequence satisfies certain constraints.
Mathematics Subject Classifications: 05C65, 05C80, 06R10

1 Introduction and Results

One of the central topics in discrete tomography is the reconstruction of a discrete object
based on partial knowledge, such as its horizontal and vertical projections, see e.g. [25, 26].
This task can be rephrased in the context of graph theory as the problem of reconstructing
a hypergraph starting from some information concerning its structure. For example, one
can wonder whether there exists a hypergraph with a given degree sequence. In contrast
to graphs, this problem is NP-hard for hypergraphs. In the current paper, we analyze
randomized algorithms that provide hypergraphs with given degree sequences in certain
situations.

Notation. We briefly introduce some notation that is needed to formulate the basic
questions, related results and our contributions. We shall slightly deviate from the stan-
dard graph theoretic notions, by first allowing for the possibility that edges contain mul-
tiple copies of the same vertex and that the edge set contains multiple copies of identical
edges. More precisely, a k-hypergraph is a pair H = (V,E) where V = [n] := {1, . . . , n}
denotes the set of vertices and E = {e1, . . . , em} the multi-set of edges. Here every edge
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ei is a multi-set of vertices of cardinality |ei| = k. We define |e|i to be the number of
occurrences of the vertex i in the edge e. The degree of a vertex, deg(i) =

∑m
j=1 |ej|i, is

the number of edges containing i (counted with its multiplicity).
An edge e is called a loop if there exists i ∈ [n] such that |e|i > 1. Two edges ei, ej ∈ E
with ei = ej and i 6= j are called parallel edges. The k-hypergraph H is called simple if it
does not contain loops or parallel edges.
We consider integer sequences π = (d1, . . . , dn) of length n such that d1 > d2 > · · · >
dn > 1, and we define σ =

∑n
i=1 di. Such a sequence π is called k-graphic if there exists

a simple k-hypergraph H with di = deg(i) for all i. In this case we say that H has π as
degree sequence.
Clearly, for a sequence π to be k-graphic we must have that d1 6 σ/k and that k divides
σ. Hence we shall always assume from now on that these properties hold for any integer
sequence we consider.
The following two tasks are well-known problems in graph theory that are motivated by
questions in discrete tomography. Given a number k ∈ N and a sequence π = (d1, . . . , dn),

• decide whether π is k-graphic (decision problem),

• find a simple k-hypergraph H that has π as degree sequence (reconstruction prob-
lem).

Throughout this paper, we consider k to be constant and n to be large.

History. Just as with Satisfiability and Colorability, the borderline between tractability
and non-tractability, intended as the possibility of finding a solution in polynomial time
(w.r.t. the size of the input), runs between k = 2 and k > 3. In the case of graphs, both the
decision and reconstruction problem can be solved in polynomial time. A non-recursive
characterization of graphic degree sequences was given by Erdős and Gallai in [16]. Later,
many equivalent conditions were provided (see [27]). Moreover, Hakimi [21] and Havel [22]
showed that an intuitive greedy algorithm solves the reconstruction problem in polynomial
time.
Moving to hypergraphs, in 1975 Dewdney [13] characterized k-graphic sequences, but
unfortunately his characterization cannot be checked in polynomial time and does not
yield a feasible reconstruction algorithm. The same is true for a characterization given
by Billington using the notion of tableaux [6].
Several papers contributed necessary [6, 12] or sufficient [5, 8] conditions for an integer
sequence to be k-graphic. In 2018, Deza et al. [14] proved that the decision problem is NP-
complete for k > 3. This hardness result motivated research into subclasses of sequences
for which a polynomial time solution can be given. Many of them were identified, and
reconstruction algorithms mainly based on greedy techniques were provided (see [3, 4, 17,
18]).

Randomized approach. In this paper we investigate the use of randomized algorithms
to generate hypergraphs with a given degree sequence. In combinatorics, the use of
randomness to prove the existence of certain structures with prescribed properties is
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usually called the probabilistic method and was pioneered by Erdős. Its underlying idea
can roughly be described as follows: perform a suitable random experiment, show that
with positive probability the outcome yields the desired structure, hence such an object
must exist (see e.g. [1]).
The so-called configuration model, initially used for regular graphs, generates random
graphs with a given degree sequence, see e.g. [7] as well as [23] and the references therein.
In this model each vertex is equipped with so-called half-edges, where the number of
these half-edges is equal to its desired degree. Then two half-edges are chosen uniformly
at random and combined to create an edge until all half-edges are gone. In general, this
procedure may yield loops or parallel edges, which are precisely the outcomes that we
would like to avoid. Thus, one is interested in the probability that the obtained graph is
simple. In [24], for example, a necessary and sufficient condition on the degree sequences
is given that ensures that this probability does not converge to zero as the numbers of
vertices and edges tend to infinity. For a non-asymptotic approximation of the probability
we refer to [2].
One can generalize the configuration model to k-hypergraphs directly as done, for example,
in [9, 10, 11]. Even though the half-edges are not truly half-edges anymore, but rather
1/k-edges for k 6= 2, we continue referring to them as half-edges. It seems intuitive that for
larger k it becomes more unlikely to draw the exact same edge twice, so the probability to
get parallel edges should be small. On the other hand, it becomes more likely to produce
loops. The probability that two given half-edges v1, v2 of a vertex v are contained in the
same edge is given by (k − 1)/(σ − 1). Indeed, for the edge e containing the half-edge
v1 there are

(
σ−1
k−1

)
possibilities to choose the remaining k − 1 slots of e,

(
σ−2
k−2

)
of which

containing v2. By summing over all choices for pairs of half-edges adjacent to a single
vertex and accounting for the fact that a single edge can contain at most

(
k
2

)
pairs of

equal vertices, we obtain the lower bound(
k

2

)−1 n∑
i=1

k − 1

σ − 1

(
di
2

)
=

1

k

n∑
i=1

di(di − 1)

σ − 1
(1)

for the expected number of loops. This expression can tend to infinity with growing n,
for example when mini∈[n] di → ∞ as n → ∞. The aim of the paper is to develop an
approach that produces simple hypergraphs with positive probability in cases such as the
previous example.

Our approach. We model the half-edges of the vertices {1, . . . , n} as balls that are
distributed and then drawn from a suitable number of boxes. Here is the rough idea:

1. Consider k + 1 boxes with labels 1, . . . , k + 1, and for all i ∈ [n] take di balls with
label i, referring to the vertex i.

2. Distribute the balls among the boxes such that all the balls with the same label
belong to the same box, and any box contains at most σ/k balls.
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3. Consider the k boxes that contain the highest number of balls and, if there is a
tie, take the boxes with the largest labels. Draw one ball from each of these boxes
uniformly at random to construct an edge consisting of the labels (i.e. vertices) of
the balls. Repeat until all boxes are empty.

Our goal is to show under some assumptions on the input data that the algorithm leads to
the construction of a simple k-hypergraph with positive probability. We start with some
remarks on the strategy.
The key idea of our algorithm is to prevent the emergence of loops and thus only having
to deal with parallel edges, providing good results also when k is large. Indeed, in the
second step we put the balls with the same label all into the same box, thus preventing
the occurrence of loops. However, it is not obvious under which assumptions there exists
an allocation of the balls to the boxes matching our requirement with at most σ/k balls
in each box.
Note that it would of course be more intuitive to take only k boxes instead of k+1, but this
would mean that every box needs to be filled with exactly σ/k balls, while still satisfying
the constraints on putting all balls with the same label into the same box. This problem
is called the multi-way number partitioning problem and is known to be NP-hard [19]. By
taking k+1 boxes instead, we have some margin on the fill heights that allows us to find
such an allocation, under mild assumptions.
Furthermore we remark that it is also not obvious that one can repeat the third step until
all boxes are empty: it could be that we reach a stage where two boxes are empty, but
there are still other non-empty boxes. It turns out that our assumptions on the degree
sequence are sufficient to ensure that this will not happen.

Results. The following theorems state which assumptions guarantee that our general
algorithmic approach of distributing balls into boxes will work. The pseudo-code of algo-
rithms with the desired properties will be given in Section 2.

Theorem 1. For n ∈ N and k > 3, let π = (d1, . . . , dn) be a sequence such that
k(k + 1)dk+2 6 σ. Then there is a polynomial time randomized algorithm that always
returns a k-hypergraph H with degree sequence π and satisfies

P(H is simple) > 1− k + 1

2

(
3k

2

)k−2
dk1
σk−2

.

In the setting of the previous theorem one obviously has

P(H is simple)→ 1 (2)

as n→∞ if

dk1 = o(σk−2). (3)

This is the case when the degrees in the sequence π are either sufficiently small or suffi-
ciently close to each other, as expressed in the following two corollaries.
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Corollary 2. Let k > 3. If d1 6 Cnα for C > 0 and α < 1− 2
k
, then (2) holds.

Corollary 3. Let k > 3 and define ρ := d1/dn. If

d21

(
ρ

n

)k−2
→ 0,

then (2) holds.

Looking at the reduction for NP-hardness in [14], Corollary 2.1, it is clear that the decision
problem remains NP-hard for all k > 3. On the other hand, using our Corollary 3 it is
now clear that for example for k = 15 any sequence satisfying n5/2 6 dn 6 d1 6 n3 is
k-graphic if n is sufficiently large.
Obviously, the applicability of Theorem 1 depends heavily on the role of d1 in π. Consider
for example the sequence

π :=

(
n

log(n)3
, . . . ,

n

log(n)3︸ ︷︷ ︸
log(n)

,

√
n

log(n)
, . . . ,

√
n

log(n)︸ ︷︷ ︸
n−log(n)

)
, (4)

after appropriate roundings to obtain integers. Here we have σ ≈ n3/2

log(n)
and hence Con-

dition (3) is not satisfied for k = 4. Therefore, we give another result which will allow us
to ignore the first elements of the sequence π.

Theorem 4. For k > 4, n ∈ N and π = (d1, . . . , dn), let m ∈ [n] be maximal with

4σ

k + 1
6

n∑
i=m

di.

If k(k + 1)dk−2 6 σ and 5k(k + 1)dm 6 4σ, then there is a polynomial time randomized
algorithm that always returns a k-hypergraph H with degree sequence π and satisfies

P(H is simple) > 1− 3k(k + 1)

4

d3m
σ
.

Returning to our example sequence π in (4), we now have dm ≈
√
n

log(n)
and, again, σ ≈ n3/2

log(n)
,

hence d3m = o(σ), thus proving that π is indeed 4-graphic for n large enough.

Related work. We briefly compare the above results to other activities in the area.
Recently, Dyer et al. [15] tried to generate simple hypergraphs with given degree sequence
uniformly at random using a bijection between bipartite graphs and k-hypergraphs, which
requires less assumptions than the configuration model for hypergraphs. Their methods
allow for scenarios where d1 = o(min{σ1/2, σ1−2/k}) (see Theorem 1.6 in [15]), while they
require d1 = O(log n) for the configuration model (see Lemma 2.3 in [15]). Our approach
does not ask for uniform generation but works for scenarios up to d1 = o(σ1−2/k) (compare
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Condition (3)), thus improving the previous result for any k > 5 (the same result is
obtained for k = 3, 4). Moreover, our Theorem 4 allows us to ignore some vertices of
higher degree.
Based on the characterization by Dewdney [13], in 2013 Behrens et al. gave sufficient
conditions for a sequence to be k-graphic [5]. Among others they showed that a sequence
is k-graphic if d1 = o(σ1−1/k) (or even if d1/σ1−1/k is less than some constant, Corollary 2.2
in [5]). While this is a weaker constraint than our Condition (3), their result is non-
constructive whereas our methods allow to generate a k-hypergraph with the given degree
sequence in polynomial time.
It is also worth mentioning that so-called random constrained graph processes can be used
to generate graphs and hypergraphs satisfying certain degree conditions. Here one starts
with the empty hypergraph and adds edges chosen uniformly at random provided they
do not violate some specified constraints. If, for instance, the constraint is such that no
vertex is allowed to be contained in more than d edges, then it can be shown that, under
some assumptions, the process generates a d-regular hypergraph with high probability
(see [20]).

The remainder of this paper is organized as follows: in Section 2 we provide the imple-
mentation and analysis of our algorithms. Finally, in Section 3 we formulate and prove a
general result (Theorem 8) from which we then deduce Theorems 1 and 4.
In principle our methods should also apply to situations involving non-uniform hyper-
graphs (i.e. hypergraphs whose edges may contain differently many vertices), but then
the statements and computations will be less appealing.

2 Algorithms

We start with Step 2 of our approach sketched in the introduction, i.e. we need to dis-
tribute the balls representing half-edges among the k + 1 boxes. To this end we use the
following algorithm, employing a greedy strategy.

Algorithm 1. greedy_allocation(π, `)
Input: π = (d1, . . . , dn) a non-increasing sequence of natural numbers, ` ∈ N

1 Set B1, . . . , B` = ∅;
2 for i = 1, . . . , n do
3 Let J ⊆ [`] be such that |Bj | is minimal for all j ∈ J ;
4 jmin = min(J);
5 Add di copies of the vertex i to Bjmin ;
Output: (B1, . . . , B`)

Without further assumptions on the integer sequence π, it is not clear that one can use
Algorithm 1 to fill the boxes B1, . . . , Bk+1 in such a way that the demands in the second
step of our approach are met: having all balls with the same label in a single box and no
box exceeding σ/k balls. The following definition provides a set-theoretic description of
these requirements.
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Definition 5. For n ∈ N and π = (d1, . . . , dn), we define Allocationk+1(π) as the set
of all (k + 1)-tuples (B1, . . . , Bk+1) of multi-sets B1, . . . , Bk+1 such that B1, . . . , Bk+1 are
pairwise disjoint, each i ∈ [n] is contained exactly di times in one of the multi-sets and
σ/k > |B1| > . . . > |Bk+1|.

To ensure that the output of Algorithm 1 for ` = k+ 1, after ordering by size, belongs to
Allocationk+1(π), we only need to control the cardinalities of the multi-sets B1, . . . , Bk+1,
as all other requirements are obviously satisfied. In Section 3, we will check this condition
via the following bound.

Lemma 6. For π = (d1, . . . , dn) and ` ∈ N, the algorithm greedy_allocation(π, `) yields
for all i = 1, . . . , `,

|Bi| 6 max

(
d1,

σ

`
+ d`+1

)
.

Proof. If we were able to distribute all vertices equally, we would obtain σ/` objects in
each box. Once some box Bi contains more than σ/` elements, there must be another
box with fewer than σ/` elements, so that we no longer put balls into Bi.
In the first ` steps, we fill the vertices 1, . . . , ` into the boxes B1, . . . , B`, respectively.
Should d1 exceed σ/`, we obtain d1 as an upper bound on |B1|, . . . , |B`| after the first `
steps. All boxes that are still below σ/` can now overshoot σ/` by at most d`+1, as this
is the largest degree that is left.

We continue with the algorithm for the third step of our approach, Algorithm 2, which
samples the edges of the hypergraph.

Algorithm 2. sample_edges(π,B1, . . . , Bk+1)
Input: π = (d1, . . . , dn) a non-increasing sequence of natural numbers and

(B1, . . . , Bk+1) ∈ Allocationk+1(π)
1 Set E = ∅;
2 for i = 1, . . . , σ/k do
3 Let J ⊆ [k + 1] be such that |Bj | is minimal for all j ∈ J ;
4 jmin = min(J); edge = ∅;
5 for ` = 1, . . . , k + 1, ` 6= jmin do
6 choose b` uniformly at random from B`;
7 edge = edge ∪ {b`};
8 B` = B`\{b`};
9 E = E ∪ {edge};
Output: E

In Theorem 8 we will gather some properties of sample_edges which are key ingredients
for our proofs of Theorem 1 and Theorem 4.
Finally, we present two algorithms that take a degree sequence and sample a k-hypergraph
by combining Algorithm 1 and Algorithm 2.
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Algorithm 3. sample_hypergraph(π, k)
Input: π = (d1, . . . , dn) a non-increasing sequence of natural numbers, k > 3

1 (B1, . . . , Bk+1) = greedy_allocation(π, k + 1);
2 Relabel B1, . . . , Bk+1 such that they are decreasing in size;
3 if (B1, . . . , Bk+1) /∈ Allocationk+1(π) then
4 return (Error)
5 E=sample_edges(B1, . . . , Bk+1);
Output: E

Algorithm 4. sample_hypergraph_2(π, k,m)
Input: π = (d1, . . . , dn) a non-increasing sequence of natural numbers, k > 4,m ∈ [n]

1 (B1, . . . , B4)=greedy_allocation((dm, . . . , dn), 4);
2 (B5, . . . , Bk+1)=greedy_allocation((d1, . . . , dm−1), k − 3);
3 Relabel B1, . . . , Bk+1 such that they are decreasing in size;
4 if (B1, . . . , Bk+1) /∈ Allocationk+1(π) then
5 return (Error)
6 E=sample_edges(B1, . . . , Bk+1);
Output: E

Algorithm 3, where we simply concatenate Algorithm 1 and Algorithm 2, is more obvious,
and is used to obtain Theorem 1. Algorithm 4 is designed for the situation of many vertices
with small degree. It seems plausible that having many small degrees simplifies the task
of avoiding parallel edges. An investigation of Algorithm 4 yields Theorem 4.

Proposition 7. Algorithm 3 and Algorithm 4 have computational costs of O(kn+σ+σ2

k
) =

O(σ2).

Proof. Algorithm 1 has computational costs of O(`n+σ) because, for each vertex i ∈ [n],
we need to choose the box with the smallest number of balls and then add the di balls with
label i to it. Thus, summing over i yields O(`n) for choosing the boxes and O(σ) for the
total number of balls. Regarding Algorithm 2, the steps in lines 6-8 have a complexity of
O(σ

k
) as we have to update B` after drawing a ball. Altogether, we obtain computational

costs of O(k σ2

k2
) = O(σ

2

k
). Combining these observations concludes the proof.

Observe that the above bound on the running time of lines 6-8 of Algorithm 2 can be
improved by a more efficient implementation. Moreover, it is important to note that the
computational costs depend on the choice of the (fixed) parameter k, but this does not
affect the polynomiality of our strategy. In this paper, we are not striving to optimize the
degrees of the polynomials in our runtime analysis.

3 Proofs

The following theorem investigates the output of the algorithm sample_edges (see Algo-
rithm 2). Later on, we apply it to prove Theorem 1 and Theorem 4. For a multi-set A we

the electronic journal of combinatorics 32(2) (2025), #P2.15 8



denote by Supp(A) = {a : a ∈ A} the underlying set, which no longer takes into account
the multiplicities in A.

Theorem 8. Consider n ∈ N and let π = (d1, . . . , dn). For

(B1, . . . , Bk+1) ∈ Allocationk+1(π)

we have that

1. the algorithm sample_edges(π,B1, . . . , Bk+1) terminates,

2. provides a k-hypergraph H without loops and with degree sequence π,

3. and

P(H has no parallel edges)

> 1−
k+1∑
`=1

min
j∈[k+1]\{`}

|Bj|(|Bj| − 1)

2

∏
i∈[k+1]\{`}

maxu∈Supp(Bi) du
|Bi|

. (5)

Proof. We start by showing the first claim, i.e. that the algorithm terminates. From
(B1, . . . , Bk+1) ∈ Allocationk+1(π) we deduce that Bk+1 is, in the beginning, among the
boxes that contain the fewest elements, and it stays that way by construction (in case of a
tie concerning the cardinalities |B1|, . . . , |Bk+1|, sample_edges chooses the highest label,
see Algorithm 2, line 4). We will show that, as soon as Bk+1 runs empty, all other boxes
contain precisely one ball each. Since σ/k > |B1| > · · · > |Bk+1|, there exist r1, . . . , rk > 0
such that

|Bi| = σ/k − ri for i ∈ [k] and |Bk+1| =
k∑
i=1

ri.

We compare |Bk+1| to the number of balls missing to fill the first k boxes to the height of
B1, the fullest one. This number is given by

D =
k∑
i=2

(|B1| − |Bi|) =
k∑
i=2

(ri − r1) 6
k∑
i=1

ri = |Bk+1|.

We update D when drawing balls and investigate its changes. Whenever we draw a vertex
from the last box, there are only two possible cases.

• We do not draw a vertex from the first box. In this case, the first box must be among
the boxes that contain the fewest vertices. But since the first box always contains
the most vertices (again, by the choice made in case of a tie), we must have already
reached D = 0.
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• We draw a vertex from the first box. In this case, the discrepancy between the first
box and the one we do not draw from gets reduced by one, whereas all the others
stay the same. Therefore, D gets reduced by one.

From the inequality D 6 |Bk+1| above, we conclude that we reach a point where D = 0,
i.e. the first k boxes have the same number of elements in them before Bk+1 runs out
of balls. When D = 0, one keeps drawing balls from the first k boxes until all k + 1
boxes contain the same number of elements. From here on out, the difference between
the number of balls in the fullest and least full box can be at most one. Since k divides σ,
there must be one ball in each of the first k boxes when the last box runs empty, which
shows the first claim.
The second claim follows from (B1, . . . , Bk+1) ∈ Allocationk+1(π), where the pairwise
disjointedness of B1, . . . , Bk+1 ensures the absence of loops.
It remains to show the inequality in the third claim. For ` ∈ [k + 1], let E` denote the
list of all edges that do not contain a vertex from B`. The order of the edges in the list
E` shall be the order of their creation in the algorithm. Since B1, . . . , Bk+1 are pairwise
disjoint, it follows that two lists Ei and Ej cannot share an edge for i 6= j. Defining A`
as the event that some edge occurs twice in E` for ` ∈ [k + 1], we deduce that

P(H has no parallel edges) > 1−
k+1∑
`=1

P(A`). (6)

We proceed by giving an upper bound on P(A`) for a fixed ` ∈ [k+1]. It may be assumed
that the boxes Bi with i ∈ [k + 1] \ {`} contain at least two elements each, otherwise
we would get |E`| 6 1 and thus P(A`) = 0. Denote the elements in E` by ei, with
i = 1, . . . , |E`|, so that

P(A`) 6
∑

16i<j6|E`|

P(ei = ej). (7)

To simplify notation, we write edges as vectors where we order the vertices according to
the indices of B1, . . . , Bk+1 they belong to. Additionally, we assume that the elements of
B1, . . . , Bk+1 are distinguishable even if they refer to the same vertex. Then, for distinct
i, j ∈ {1, . . . , |E`|}, the possible choices for (ei, ej) are of the form (f, g) given by

((f1, . . . , f`−1, f`+1, . . . , fk+1), (g1, . . . , g`−1, g`+1, . . . , gk+1))

∈
(
×

i∈[k+1]\{`}
Bi

)2

,

where× denotes the Cartesian product and fs 6= gs for all s ∈ [k + 1] \ {`}, because
we think of the elements as distinguishable. Since all random choices are with respect to
uniform distributions, each possible combination (f, g) must have the same probability,
so that

P(ei = f, ej = g) =
∏

s∈[k+1]\{`}

1

|Bs|(|Bs| − 1)
.
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Now let us go back to indistinguishable objects in the boxes whenever they refer to the
same vertex. Then we need to make up for the number of copies of a vertex, i.e. its degree,
and obtain for a fixed possible edge h ∈×i∈[k+1]\{`} Supp(Bi) that

P(ei = ej = h) =
∏

s∈[k+1]\{`}

dhs(dhs − 1)

|Bs|(|Bs| − 1)
.

Using the symmetry and summing over all possible choices for h, we obtain from (7) that

P(A`) 6
|E`|(|E`| − 1)

2
P(e1 = e2)

=
|E`|(|E`| − 1)

2

∏
i∈[k+1]\{`}

∑
j∈Supp(Bi)

dj(dj − 1)

|Bi|(|Bi| − 1)
.

Next we observe that all edges in E` need to contain vertices from all Bi, with i ∈
[k + 1] \ {`}. We obtain

|E`| 6 min
j∈[k+1]\{`}

|Bj|.

Moreover, it holds for all i ∈ [k + 1] that∑
j∈Supp(Bi)

dj(dj − 1) 6 max
u∈Supp(Bi)

du
∑

j∈Supp(Bi)

(dj − 1)

6 max
u∈Supp(Bi)

du(|Bi| − 1).

Combining the three inequalities above with (6) yields (5).

Proof of Theorem 1. We consider Algorithm 3, which has a polynomial runtime by Propo-
sition 7. Once we have shown that (B1, . . . , Bk+1) ∈ Allocationk+1(π), Theorem 8 yields
that Algorithm 3 provides a k-hypergraph H with the desired degree sequence π as well
as a bound on the probability of H being simple, which we simplify to obtain the bound
from Theorem 1.
We start with proving (B1, . . . , Bk+1) ∈ Allocationk+1(π). The only property which is not
clear by construction is that B1 contains at most σ/k elements (after relabeling the boxes
in the second line of Algorithm 3). From Lemma 6 with ` = k + 1 it follows that

|B1| 6 max

(
d1,

σ

k + 1
+ dk+2

)
.

By our assumption on the input sequence, we know that d1 6 σ/k. On the other hand,
using the assumed bound on dk+2, we compute

σ

k + 1
+ dk+2 6

σ

k + 1
+

σ

k(k + 1)
=
σ

k
.
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This implies |B1| 6 σ/k and thus (B1, . . . , Bk+1) ∈ Allocationk+1(π).
It remains to show the lower bound on the probability of H being simple. By Theorem 8,
the resulting k-hypergraph has no loops and the probability of having no parallel edges
is bounded from below by

P(H has no parallel edges)

> 1−
k+1∑
`=1

min
j∈[k+1]\{`}

|Bj|(|Bj| − 1)

2

∏
i∈[k+1]\{`}

maxu∈Supp(Bi) du
|Bi|

.

From |B1| > . . . > |Bk+1| it follows for ` ∈ [k + 1],

min
j∈[k+1]\{`}

|Bj|(|Bj| − 1) 6

{
|Bk|2 for ` = k + 1,
|Bk+1|2 for ` 6= k + 1,

as well as ∏
i∈[k+1]\{`}

|Bi| >
{
|Bk−1|k−2|Bk|2 for ` = k + 1,
|Bk−1|k−2|Bk+1|2 for ` 6= k + 1.

Together with d1 > . . . > dn this yields

P(H has no parallel edges) > 1− k + 1

2

dk1
|Bk−1|k−2

.

We obtain a lower bound on |Bk−1| by observing that the first k− 2 boxes all contain at
most σ/k elements each, so that there are at least σ−(k−2)σ/k vertices left to distribute
between Bk−1, Bk and Bk+1. Since Bk−1 contains the most elements among these three,
it holds that

|Bk−1| >
1

3

(
σ − (k − 2)

σ

k

)
=

2σ

3k
. (8)

Inserting this into the formula above yields

P(H is simple) > 1− k + 1

2

(
3k

2

)k−2
dk1
σk−2

and finishes the proof.

Proof of Theorem 4. We show that Algorithm 4 has the required properties. By Proposi-
tion 7 it has a polynomial runtime. If we show (B1, . . . , Bk+1) ∈ Allocationk+1(π), Theo-
rem 8 yields that Algorithm 4 produces a k-hypergraph with the desired degree sequence
π and establishes a bound on the probability of H being simple, which we simplify to ob-
tain the probability bound of Theorem 4. Concerning (B1, . . . , Bk+1) ∈ Allocationk+1(π),
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the non-trivial condition to check is |B1| 6 σ/k (after relabeling in the third line of Al-
gorithm 4). Suppose that B1 is generated in the first line of the code. Then Lemma 6
implies that

|B1| 6 max

(
dm,

∑n
i=m di
4

+ dm+4

)
.

By assumption we have dm 6 d1 6 σ/k. Since m is maximal with the property

n∑
i=m

di >
4σ

k + 1
,

we deduce that
n∑

i=m+1

di <
4σ

k + 1
.

As dm+4 6 dm, the assumed bound on dm allows us to compute∑n
i=m di
4

+ dm+4 <
σ

k + 1
+

5dm
4

6
σ

k + 1
+

σ

k(k + 1)
=
σ

k
.

Now suppose that B1 is generated in the second line of the code of Algorithm 4. Then
Lemma 6 provides

|B1| 6 max

(
d1,

∑m−1
i=1 di
k − 3

+ dk−2

)
.

We have d1 6 σ/k whereas the definition of m, and the assumed bound on dk−2 gives us∑m−1
i=1 di
k − 3

+ dk−2 =
σ −

∑n
i=m di

k − 3
+ dk−2 6

σ − 4σ
k+1

k − 3
+

σ

k(k + 1)

=
σ

k + 1
+

σ

k(k + 1)
=
σ

k
.

In both cases we obtain |B1| 6 σ/k, which allows to apply Theorem 8. So, the algorithm
terminates, and provides a k-hypergraph with the desired degree sequence. Moreover, the
probability of the k-hypergraph being simple satisfies

P(H is simple)

> 1−
k+1∑
`=1

min
j∈[k+1]\{`}

|Bj|(|Bj| − 1)

2

∏
i∈[k+1]\{`}

maxu∈Supp(Bi) du
|Bi|

.

Let a, b, c, d ∈ [k + 1] be the indices of the boxes that were filled with the copies of the
vertices m, . . . , n. For each ` ∈ [k + 1], we can choose distinct x`, y`, z` ∈ {a, b, c, d} \ {`}.

the electronic journal of combinatorics 32(2) (2025), #P2.15 13



In particular, one has x`, y`, z` ∈ [k + 1] \ {`} and the respective boxes contain copies of
the vertices m, . . . , n. Thus, we can bound the numerators of the factors corresponding
to x`, y` and z` in the rightmost product above by dm. Bounding the k − 3 remaining
factors in the product by 1 yields

P(H is simple) > 1−
k+1∑
`=1

min
j∈[k+1]\{`}

|Bj|(|Bj| − 1)

2

d3m
|Bx` ||By` ||Bz` |

.

Since x`, y`, z` 6= `, we deduce that |Bx` |, |By` | and |Bz`| are all at least as large as
minj∈[k+1]\{`} |Bj|. As they are also pairwise distinct, their maximum is larger than or
equal to |Bk−1| as |B1| > . . . > |Bk+1|. We obtain

P(H is simple) > 1−
k+1∑
`=1

1

2

d3m
|Bk−1|

> 1− 3k(k + 1)

4

d3m
σ
,

where we inserted 3k|Bk−1| > 2σ from (8) above as lower bound for |Bk−1| in the last
inequality. Note that (8) does not depend on how the balls were allocated to the boxes
and is also applicable here. This finishes the proof.
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