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Abstract

A k-uniform hypergraph (or k-graph) H = (V,E) is k-partite if V can be par-
titioned into k sets V1, . . . , Vk such that each edge in E contains precisely one ver-
tex from each Vi. In this note, we consider list colorings for such hypergraphs.
We show that for any ε > 0 if each vertex v ∈ V (H) is assigned a list of size

|L(v)| > ((k − 1 + ε)∆/ log ∆)1/(k−1), then H admits a proper L-coloring, provided
∆ is sufficiently large. Up to a constant factor, this matches the bound on the
chromatic number of simple k-graphs shown by Frieze and Mubayi, and that on the
list chromatic number of triangle free k-graphs shown by Li and Postle. Our results
hold in the more general setting of “color-degree” as has been considered for graphs.
Furthermore, we establish a number of asymmetric statements matching results of
Alon, Cambie, and Kang for bipartite graphs.

Mathematics Subject Classifications: 05C15, 05C35, 05C65, 05D40

1 Introduction

All hypergraphs considered are finite and undirected. A k-uniform hypergraph (or k-
graph) is an ordered pair H = (V,E) where E is a collection of k-element subsets of V .
We say H is k-partite if there exists a partition V = V1 ∪ · · · ∪ Vk such that each edge
e ∈ E contains precisely one vertex from each set Vi. A proper q-coloring of H is an
assignment of the integers 1, . . . , q to the vertices of H such that at least two distinct
integers appear on the vertices of each edge. The minimum number of colors required for
a proper coloring is the chromatic number of H (denoted χ(H)). A list assignment
for H is a function L : V (H) → 2N. Given a list assignment L for H, a proper L-
coloring of H is a proper coloring where each vertex receives a color from its list. The
list chromatic number (denoted χ`(H)) is the minimum q such that H admits a list
coloring whenever |L(v)| > q for each v. For q ∈ N, we let [q] := {1, . . . , q}. For a set S
and an element x ∈ S, we let S−x denote the set S\{x}. Let H = (V,E) be an undirected
k-graph. For each v ∈ V , we let EH(v) denote the edges containing v, NH(v) denote the
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set of vertices contained in the edges in EH(v) apart from v itself, degH(v) := |EH(v)|,
and ∆(H) := maxu∈V degH(u). Furthermore, for S ⊆ V , we let EH(S) denote the edges e
for which S ⊆ e, and let degH(S) := |EH(S)|. Finally, a hypermatching is a hypergraph
H satisfying ∆(H) 6 1, and an independent set is a subset of vertices containing no
edges.

The problem of determining χ(G) for graphs (k = 2) has a long and rich history.
Brooks provided the first bound in terms of the maximum degree [10]. He showed that
χ(G) 6 ∆(G) unless G is complete or an odd cycle (in this case χ(G) = ∆(G) + 1). Reed
improved upon this showing that χ(G) 6 ∆(G)− 1 for sufficiently large ∆(G), provided
G does not contain a clique of size ∆(G) [25]. For k > 2, a simple Lovász Local Lemma
argument shows that χ(H) = O

(
∆(H)1/(k−1)

)
for all k-graphs H. A natural question to

consider is the following: under what structural constraints can we get better bounds for
χ(H)? Forbidding a specific subgraph F has led to improved bounds in the case where
k = 2. For F = K3, one can show χ(G) = O (∆(G)/ log ∆(G)) [19, 24]. The constant
factor has been reduced to 1 + ε [23, 7], which is optimal up to a factor of 2 [9]. There are
a number of results for other graphs F , which may be of interest to the reader [3, 13, 5, 6].

Analogous problems have been investigated for k > 2. Frieze and Mubayi studied the
chromatic number of simple hypergraphs. A hypergraph H is simple if degH(S) 6 1
for any S ⊆ V (H) satisfying |S| > 2. They proved the following bound:

Theorem 1 ([16]). For k > 3, the following holds for sufficiently large ∆ ∈ N. Let H be
a simple k-graph of maximum degree at most ∆. Then for some constant c := c(k) > 0,
we have

χ(H) 6 c

(
∆

log ∆

)1/(k−1)

.

For k = 3, Cooper and Mubayi extended this result to triangle-free hypergraphs [12].
A triangle in a hypergraph is a set of three pairwise intersecting edges with no common
vertex. A non-uniform hypergraph H = (V,E) has rank k if every edge e ∈ E satisfies
|e| 6 k. In such a hypergraph, the `-degree of a vertex v is the number of edges of size
` containing v. We let ∆`(H) denote the maximum `-degree of a vertex in H. Li and
Postle recently extended Cooper and Mubayi’s result to all rank k hypergraphs for k > 3.

Theorem 2 ([21]). For k > 3, the following holds for ∆` ∈ N sufficiently large for each
2 6 ` 6 k. Let H be a triangle-free rank-k hypergraph of maximum `-degree at most ∆`

for each 2 6 ` 6 k. Then for some constant c := c(k) > 0, we have

χ`(H) 6 c max
26`6k

(
∆`

log ∆`

)1/(`−1)

.

In this paper we will be interested in k-partite k-graphs. In fact, we establish a result
similar to those of Theorems 1 and 2 in the setting of list coloring. Our main result is the
following, which matches the bounds in Theorems 1 and 2 asymptotically.
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Theorem 3. For all ε > 0 and k > 2, the following holds for ∆ sufficiently large. Let H
be a k-partite k-graph of maximum degree at most ∆. Then,

χ`(H) 6

(
(k − 1 + ε)

∆

log ∆

)1/(k−1)

.

In order to prove the above result, we establish a more general statement regarding
list colorings. Before we state the result formally, we make a few definitions regarding list
assignments. Let H = (V,E) be a k-graph and let L : V → 2N be a list assignment for
H. We define:

EH(v, c) := {e ∈ EH(v) : ∀u ∈ e, c ∈ L(u)},
degH(v, c) := |EH(v, c)|.

We refer to degH(v, c) as the color-degree of c with respect to v. A number of results
mentioned earlier can be expressed in terms of the maximum color degree as opposed to
the maximum degree. The following result provides sufficient conditions on the maximum
degree, maximum color degree, and list sizes with respect to a list assignment L in order
to construct an L-coloring for a k-partite k-graph.

Theorem 4. For all k > 2, the following holds for Di, qi,∆i ∈ N sufficiently large for
each i ∈ [k]. Let H be a k-partite k-graph with partition V (H) = V1 ∪ · · · ∪ Vk, and
let L : V (H) → 2N be a list assignment for H such that the following hold for each
v ∈ Vi, c ∈ L(v):

(1) degH(v) 6 ∆i,

(2) degH(v, c) 6 Di, and

(3) |L(v)| > qi.

Suppose additionally, at least one of the following inequalities is satisfied for some j ∈ [k]:

(C1)
∏

i∈[k]−j qi > Dj

(
e qj

∑
i∈[k]−j

qiDi

Dj

)1/qj
.

(C2) e
(

∆j

(∑
i∈[k]−j ∆i − 1

)
+ 1
)(

1−
(

1−
∏

i∈[k]−j q
−1
i

)∆j mini∈[k] qi/qj
)qj

6 1.

(C3) e
(
qjDj

(∑
i∈[k]−j qiDi − 1

)
+ 1
)(

1−
(

1−
∏

i∈[k]−j q
−1
i

)Dj

)qj
6 1.

Then, H admits a proper L-coloring.

As corollaries, we get a few asymmetric list coloring results that we will state here
and prove in §3. First, we consider the case that the geometric mean of the maximum
color degrees of the first k− 1 partitions is much larger than that of the k-th. This result
matches that of Alon, Cambie, and Kang for k = 2 [1, Corollary 8].
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Corollary 5. For all ε > 0 and k > 2, the following holds for Di ∈ N sufficiently large
for each i ∈ [k]. Let H be a k-partite k-graph with partition V (H) = V1 ∪ · · · ∪ Vk, and
let L : V (H) → 2N be a list assignment for H such that the following hold for each
v ∈ Vi, c ∈ L(v):

(1) degH(v, c) 6 Di,

(2) |L(v)| > D
ε/(k−1)
i , and

(3)
∏

j∈[k−1]Dj > D
2(k−1)/ε
k .

Then, H admits a proper L-coloring.

Next, we consider the situation where most of the lists are “small”. The result matches
that of [1, Corollary 10] for k = 2.

Corollary 6. For all ε > 0 and k > 2, the following holds for ∆ ∈ N sufficiently large.
Let H be a k-partite k-graph with partition V (H) = V1 ∪ · · · ∪ Vk and maximum degree
at most ∆. Let L : V (H) → 2N be a list assignment for H such that at least one of the

following holds for b :=
(

2k−1

2k−1−1

)k
:

(1) For each v ∈ V (H) \ Vk, |L(v)| > 2, and for each v ∈ Vk, |L(v)| >
(

2+ε
k

)
∆/ logb ∆.

(2) For each v ∈ V (H) \ Vk, |L(v)| > log ∆, and for each
v ∈ Vk, |L(v)| > (1 + ε) ∆/(log ∆)k−1.

Then, H admits a proper L-coloring.

Finally, we consider an asymmetric form of the main result of this paper, which
matches that of Cambie and Kang for k = 2 [11, Theorem 2.1] (their proof holds in
the more general setting of correspondence coloring defined below).

Corollary 7. For all ε > 0 and k > 2, the following holds for Di sufficiently large for
each i ∈ [k]. Let H be a k-partite k-graph with partition V (H) = V1 ∪ · · · ∪ Vk, and
let L : V (H) → 2N be a list assignment for H such that the following hold for each
v ∈ Vi, c ∈ L(v):

(1) degH(v, c) 6 Di, and

(2) |L(v)| >
(

(k − 1 + ε) Di

logDi

)1/(k−1)

.

Then, H admits a proper L-coloring.

By setting Di = D for each i ∈ [k], we obtain the following immediate corollary, which
is a “color-degree” version of Theorem 3 (setting Di = ∆(H) yields Theorem 3).
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Corollary 8. For all ε > 0 and k > 2, the following holds for D sufficiently large. Let
H be a k-partite k-graph, and let L : V (H) → 2N be a list assignment for H such that
the following hold for each v ∈ V (H), c ∈ L(v):

degH(v, c) 6 D, |L(v)| >
(

(k − 1 + ε)
D

logD

)1/(k−1)

.

Then, H admits a proper L-coloring.

We conclude this section with a few remarks and potential directions for future re-
search. First, we note the following conjecture of Alon and Krivelevich:

Conjecture 9 ([2, Conjecture 5.1]). For any bipartite graph G of maximum degree at
most ∆, we have χ`(G) = O(log ∆).

In the same paper, Alon and Krivelevich show that the conjecture holds with high
probability for Erdős–Rényi random bipartite graphs. In [22], the authors prove a similar
result for Erdős–Rényi random k-partite k-graphs H(k, n, p). (Here, each partition has
size n and each valid edge is included independently with probability p, where an edge is
valid if it contains exactly one endpoint in each partition.)

Theorem 10 ([22, Theorem 1.3]). Let H ∼ H(k, n, p) such that nk−1p > ∆0 for ∆0 large
enough. Then, χ`(H) = Θk

(
log(nk−1p)

)
almost surely.

In a similar flavor, Haxell and Verstraete showed that the complete k-partite k-graph
with n vertices in each partition (denoted Kk∗n) satisfies χ`(Kk∗n) 6 (1+on(1)) logk n [18].
Note that ∆(H) ≈ nk−1p for H ∼ H(k, n, p) with high probability, and ∆(Kk∗n) = nk−1.
In particular, the above results can be expressed in terms of the maximum degree of
the respective graphs. In light of this, we make the following conjecture, which matches
Conjecture 9 for k = 2. (Note that Corollary 6(2) provides partial progress toward it.)

Conjecture 11. For all k > 2, there is a constant c := c(k) > 0 such that the following
holds for ∆ large enough. Let H be a k-partite k-graph of maximum degree at most ∆.
Then, we have χ`(H) 6 c log ∆.

In [11], Cambie and Kang proved a result identical to Corollary 8 for k = 2 in the
more general setting of correspondence coloring also known as DP-coloring. (In fact,
their main result is a bipartite version of Theorem 4 for correspondence coloring.) The
concept was first introduced by Dvořák and Postle for graphs in [15], while the extension
to hypergraphs appeared in [8].

Definition 12 (Correspondence Cover). A correspondence cover (also known as a
DP-cover) of a k-graph H is a pair (L,H), where H is a k-graph and L : V (H)→ 2V (H)

such that:

• The sets L(v) : v ∈ V (H) partition V (H),
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• For each v ∈ V (H) and S ⊆ L(v) such that |S| > 2, degH(S) = 0, and

• For each k-element set e ⊆ V (H), the induced subgraph H
[⋃

v∈e L(v)
]

is a hyper-
matching, which is empty if e /∈ E(H).

We call the vertices of H colors . For e ∈ E(H), we say that the colors in e corre-
spond to each other. An (L,H)-coloring is a mapping φ : V (H) → V (H) such that
φ(v) ∈ L(v) for all v ∈ V (H). An (L,H)-coloring φ is proper if the image of φ is an inde-
pendent set in H. A correspondence cover (L,H) is q-fold if |L(v)| > q for all v ∈ V (H).
The correspondence chromatic number of H, denoted by χc(H), is the smallest q
such that H admits a proper (L,H)-coloring with respect to every q-fold correspondence
cover (L,H). A curious feature of correspondence covers for k-graphs satisfying k > 3
is that a color c ∈ V (H) can correspond to different colors in the same list L(v). This
causes our arguments for Theorem 4 to fail in this setting. Nevertheless, we conjecture
the bound in Corollary 8 holds for correspondence coloring as well.

Conjecture 13. For all ε > 0 and k > 2, the following holds for D sufficiently large. Let
H be a k-partite k-graph, and let (L,H) be a correspondence cover of H such that the
following hold for each v ∈ V (H):

∆(H) 6 D, |L(v)| >
(

(k − 1 + ε)
D

logD

)1/(k−1)

.

Then, H admits a proper (L,H)-coloring.

Cambie and Kang conjectured that a similar result as theirs should hold for triangle-
free graphs as most triangle-free graphs are close to bipartite. However, we note that
this property does not extend to k-partite k-graphs for k > 3. In fact, such graphs
need not be triangle-free, which makes it all the more surprising that our result matches
that of Theorem 2. Furthermore, as noted in earlier work of the author [14], the approach
toward proving results on k-partite k-graphs is similar to those employed in other problems
related to bipartite graphs. It would be worth investigating when combinatorial results
on bipartite graphs extend to the k-partite setting.

The rest of the paper is structured as follows. In §2, we will describe the probabilistic
tools we will employ in our proofs. In §3, we will show how the corollaries stated in this
section follow from Theorem 4, which we will prove in §4.

2 Preliminaries

In this section we describe probabilistic tools that will be used to prove Theorem 4. We
start with the symmetric version of the Lovász Local Lemma.

Theorem 14 (Lovász Local Lemma; [4, Corollary 5.1.2]). Let A1, A2, . . . , An be events
in a probability space. Suppose there exists p ∈ [0, 1) such that for all 1 6 i 6 n we have
P[Ai] 6 p. Further suppose that each Ai is mutually independent from all but at most
dLLL other events Aj, j 6= i for some dLLL ∈ N. If ep(dLLL + 1) 6 1, then with positive
probability none of the events A1, . . . , An occur.
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We will also need the following special case of the FKG inequality, dating back to
Harris [17] and Kleitman [20]. The original theorem is stated with regards two decreasing
families, however, as the intersection of decreasing families is decreasing, it can be shown
that the inequality holds in the following more general form.

Theorem 15 (Harris’s inequality/Kleitman’s Lemma [4, Theorem 6.3.2]). Let X be a
finite set and let S ⊆ X be a random subset of X obtained by selecting each x ∈ X
independently with probability px ∈ [0, 1]. If A1, . . . ,An are decreasing families of subsets
of X, then

P

S ∈ ⋂
i∈[n]

Ai

 >
∏
i∈[n]

P[S ∈ Ai].

3 Proof of Corollaries

We may assume |L(v)| = qi for each v ∈ Vi by arbitrarily removing colors from L(v) if
needed. Let us show how each of the corollaries stated in §1 follow from Theorem 4.

Proof of Corollary 5. We will show that (C1) is satisfied. To this end, we note the fol-
lowing:

∏
i∈[k−1]

qi =

 ∏
i∈[k−1]

Dε
i

1/(k−1)

> D
1/2
k

 ∏
i∈[k−1]

D
ε/4
i

1/(k−1)

Dk

It is easy to see the following for Dk large enough:

D
1/2
k > 1 > (eqk/Dk)

1/qk .

Furthermore, assuming Dk > (8(k − 1)/ε)(k−1)/ε, we have ∏
i∈[k−1]

D
ε/4
i

qk/(k−1)

>
∏

i∈[k−1]

D2
i �

∑
i∈[k−1]

D
1+ε/(k−1)
i ,

completing the proof.

Proof of Corollary 6. We will show that (C2) is satisfied. Let us first consider (1). We
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have 1−
∏

i∈[k−1]

q−1
i

∆j mini∈[k] qi/qk

=

(
1− 1

2k−1

)∆ q1/qk

=

(
2k−1

2k−1 − 1

)−2∆
k logb ∆

(2+ε)∆

= ∆−
1

1+ε/2

> ∆−(1−ε/4).

Similarly, for (2) we have1−
∏

i∈[k−1]

q−1
i

∆j mini∈[k] qi/qk

=

(
1− 1

(log ∆)k−1

)∆ q1/qk

> exp

(
− 1

(1− ε/2)(log ∆)k−1
∆ q1/qk

)
= exp

(
− log ∆

(1 + ε)(1− ε/2)

)
> ∆−(1−ε/4).

In either case, it follows that1−

1−
∏

i∈[k−1]

q−1
i

∆k mini∈[k−1] qi/qk

qk

6 exp
(
−qk ∆−(1−ε/4)

)
6 exp

(
−∆ε/10

)
.

Since ∆k

 ∑
i∈[k−1]

∆i − 1

+ 1

 6 2k∆2 � exp
(
∆ε/10

)
,

condition (C2) is satisfied.

Proof of Corollary 7. Without loss of generality, let k = arg minj∈[k] Dj. We will consider

two cases. First, suppose
∏

i∈[k−1]Di > D
2(k−1)/ε
k . Then, the claim follows by Corollary 5

as qi > D
ε/(k−1)
i for Di large enough.
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Now, suppose
∏

i∈[k−1]Di 6 D
2(k−1)/ε
k . Note the following:1−

∏
i∈[k−1]

q−1
i

Dk

=

1− 1

(k − 1 + ε)

 ∏
i∈[k−1]

logDi

Di

1/(k−1)

Dk

> exp

−( 1− ε/(10k)

(k − 1 + ε)(1− ε/(4k))

)
Dk

 ∏
i∈[k−1]

logDi

Di

1/(k−1)


> exp

(
−
(

1− ε/(10k)

k − 1

)
logDk

)
,

where the last step follows since Di > Dk for each i ∈ [k − 1]. From here, we can further
simplify:1−

1−
∏

i∈[k−1]

q−1
i

Dk
qk

6 exp

(
−qk exp

(
−
(

1− ε/(10k)

k − 1

)
logDk

))

6 exp

−((k − 1 + ε)
D
ε/(10k)
k

logDk

)1/(k−1)


6 exp
(
−Dε/(20k2)

k

)
.

Since
∏

i∈[k−1]Di 6 D
2(k−1)/ε
k , we have

qjDj 6 D
k/(k−1)
j 6

∏
i∈[k−1]

D
k/k−1
i 6 D

2k/ε
k .

In particular,

qkDk

 ∑
i∈[k−1]

qiDi − 1

 6 kD
3k/ε
k � exp

(
D
ε/(20k2)
k

)
.

The claim now follows by (C3).

4 Proof of Theorem 4

To prove Theorem 4, we will construct a random partial coloring and show that it can
be extended to the entire hypergraph. Before we describe this procedure, we make the
following definitions regarding a partial L-coloring φ : V (H) 99K N:

∀S ⊆ V (H), φ(S) := {φ(v) : v ∈ S},
∀v ∈ V (H), Lφ(v) := {c ∈ L(v) : ∀e ∈ EH(v, c), φ(e− c) 6= {c}}.
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In particular, Lφ(v) contains colors which may be assigned to v to extend the coloring.
For each v ∈ V (H) \ Vj we will independently pick φ(v) ∈ L(v) uniformly at random.
We will show that with positive probability, Lφ(v) 6= ∅ for each v ∈ Vj, completing the
proof. We will split this section into three subsections, containing the proofs under the
conditions (C1), (C2), and (C3), respectively.

4.1 Proof assuming (C1)

In order to prove Theorem 4 under the assumption of (C1), it is useful to consider the
following correspondence cover of H:

• Let L be the list assignment of H and let H be the cover graph whose vertices
correspond to the colors in the lists defined by L.

• For each edge {v1, . . . , vk} ∈ E(H) and colors ci ∈ L(vi), include the edge
{c1, . . . , ck} ∈ E(H) if and only if c1 = · · · = ck.

It can be verified that this defines a correspondence cover (also known as a list cover)
and that a proper (L,H)-coloring of H is a proper L-coloring of H. Before we begin the
proof, we make a few definitions:

∀S ⊆ V (H), L(S) :=
⋃
v∈S

L(v),

∀c ∈ V (H), L−1(c) := v such that c ∈ L(v),

im(φ) := {φ(v) : v ∈ V (H)},

Let us define an auxiliary hypergraph H̃ as follows:

• V (H̃) := V (H) \ L(Vj).

• S ⊆ V (H̃) forms an edge in H̃ if the following hold:

– For all c1, c2 ∈ S, we have L−1(c1) 6= L−1(c2), and

– there is a perfect hypermatching in H[S ∪ L(v)] for some v ∈ Vj.

We make the following observations about H̃:

(Obs1) AsH[S∪L(v)] contains a perfect hypermatching for some v ∈ Vj and no two vertices
in S lie in the same list, S must contain precisely qj vertices from L(Vi) for each
i ∈ [k]− j.

(Obs2) For any i ∈ [k]− j and c ∈ L(Vi), degH̃(c) 6 DiD
qj−1
j . This follows as there are at

most Di choices for the matching edge e containing c. From e, we may determine
the vertex v ∈ Vj. For each remaining color c′ ∈ L(v), there are at most Dj choices
for the matching edge containing c′.
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For each edge S ∈ E(H̃), let us define the following event:

AS := 1{S ⊆ im(φ)}.

If AS = 0 for every S ∈ E(H̃), then Lφ(v) 6= ∅ for each v ∈ Vj. We note that this would
not be the case for an arbitrary correspondence cover and this is where our argument fails
in the DP-coloring setting. From (Obs1) and since no two vertices in S lie in the same
list, we have

P[AS = 1] =
∏
c∈S

1

|L(L−1(c))|
=

 ∏
i∈[k]−j

qi

−qj .
Let us now bound the number of events AS′ such that AS is not mutually indpendent of
AS′ . The following is a valid upper bound as a result of (Obs1) and (Obs2):∑

c∈S

∑
c′∈L(L−1(c))

degH̃(c′)− 1 =
∑
i∈[k]−j

∑
c∈S∩L(Vi)

∑
c′∈L(L−1(c))

degH̃(c′)− 1

6
∑
i∈[k]−j

∑
c∈S∩L(Vi)

qiDiD
qj−1
j − 1

= qjD
qj−1
j

∑
i∈[k]−j

qiDi − 1.

We will apply the Lovász Local Lemma with

p :=

 ∏
i∈[k]−j

qi

−qj , dLLL := qjD
qj−1
j

∑
i∈[k]−j

qiDi − 1

to get:

ep(dLLL + 1) = e

 ∏
i∈[k]−j

qi

−qj qjDqj−1
j

∑
i∈[k]−j

qiDi


6
eqjD

qj−1
j

∑
i∈[k]−j qiDi(∏

i∈[k]−j qi

)qj .

The above is at most 1 as a result of (C1), completing the proof.

4.2 Proof assuming (C2)

Recall that we define φ by randomly picking a color in L(v) for each vertex v ∈ V (H)\Vj.
The following lemma provides a bound on the probability Lφ(v) = ∅ for v ∈ Vj.
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Lemma 16. For each v ∈ Vj, we have

P[Lφ(v) = ∅] 6

1−

1−
∏

i∈[k]−j

q−1
i


∑

c∈L(v) degH(v,c)/qj

qj

.

Proof. For each v ∈ Vj and c ∈ L(v), define the following random variables:

Xv,c := 1{c /∈ Lφ(v)}, Xv :=
∏
c∈L(v)

Xv,c.

It follows that P[Lφ(v) = ∅] = Pr[Xv = 1]. We will compute an upper bound for this
probability through a series of claims. Let us first consider the event {Xv,c = 1}.

Claim 17. P[Xv,c = 1] 6 1−
(

1−
∏

i∈[k]−j q
−1
i

)degH(v,c)

.

Proof. We will lower bound P[Xv,c = 0] through Harris’s Inequality. In order to do so,
we define the following event for each e ∈ EH(v, c):

Xe := 1{φ(e− v) = {c}}.

Clearly, {Xv,c = 0} is equivalent to {∀e ∈ EH(v, c), Xe = 0}. Let us define the set Γ as
follows:

Γ := {{φ(u) = c} : u ∈ V (H), c ∈ L(u)},

and let S ⊆ Γ be the random events in Γ that occur during our coloring procedure. Note
that S is formed by including each event {φ(u) = c} independently with probability 1/qi,
where u ∈ Vi. Furthermore, Xe = 1 if and only if {φ(u) = c} ∈ S for each u ∈ e − v.
Consider the following families for e ∈ EH(v, c):

Ae := {S ′ ⊆ Γ : when S = S ′ we have Xe = 0}.

Let S1 ∈ Ae, and S2 ⊆ S1. Then, S2 ∈ Ae as well. In particular, Ae is a decreasing family
of subsets of Γ. Hence, by Harris’s Inequality, we have

P[Xv,c = 0] >
∏

e∈EH(v,c)

P[Xe = 0]

=

1−

 ∏
i∈[k]−j

qi

−1degH(v,c)

,

as desired.

We note that the above claim fails to hold in the DP-coloring setting and would be
the main hurdle in proving Conjecture 13. In the next claim, we will show that the events
{Xv,c = 1} for c ∈ L(v) are negatively correlated.
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Claim 18. For every I ⊆ L(v), we have

P [∀c ∈ I, Xv,c = 1] 6
∏
c∈I

P [Xv,c = 1] .

Proof. We will prove this by induction on |I|. The claim is trivial for |I| 6 1. Suppose it
holds for all I such that |I| = `. Consider such a set I and a color c′ ∈ L(v) \ I. We note
that

P [∀c ∈ I, Xv,c = 1] 6 P [∀c ∈ I, Xv,c = 1 | Xv,c′ = 0]

as the probability to forbid all colors in I is larger if no edge e ∈ EH(v) satisfies φ(e−v) =
{c′}. This is equivalent to:

P [∀c ∈ I, Xv,c = 1] > P [∀c ∈ I, Xv,c = 1 | Xv,c′ = 1]

⇐⇒ P [∀c ∈ I ∪ {c′}, Xv,c = 1] 6 P [∀c ∈ I, Xv,c = 1]P [Xv,c′ = 1] .

By the induction hypothesis, the last expression is at most
∏

c∈I∪{c′} P [Xv,c = 1].

By Claims 17 and 18, we have

P[Xv = 1] 6
∏
c∈L(v)

P[Xv,c = 1]

6
∏
c∈L(v)

1−

1−
∏

i∈[k]−j

q−1
i

degH(v,c)
 .

Note that the function log(1− cx) is concave and increasing for 0 < c < 1. Therefore, we
have the following by Jensen’s inequality

P[Xv = 1] 6

1−

1−
∏

i∈[k]−j

q−1
i


∑

c∈L(v) degH(v,c)/qj

qj

,

completing the proof.

Note that∑
c∈L(v)

degH(v, c) =
∑

e∈EH(v)

∣∣∣∣∣⋂
u∈e

L(u)

∣∣∣∣∣ 6 degH(v) min
i∈[k]

qi 6 ∆j min
i∈[k]

qi.

Plugging this into the result of Lemma 16, we get

P[Lφ(v) = ∅] 6

1−

1−
∏
i∈[k]

q−1
i

∆j mini∈[k] qi/qj

qj

.
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For each v ∈ Vj, let Av denote the event that Lφ(v) = ∅. The goal is to show that none
of these events occur with positive probability. Note that Av is mutually independent of

all but at most ∆j

(∑
i∈[k]−j ∆i − 1

)
events Au. We will apply the Lovász Local Lemma

with

p :=

1−

1−
∏

i∈[k]−j

q−1
i

∆j mini∈[k] qi/qj

qj

, dLLL := ∆j

 ∑
i∈[k]−j

∆i − 1


to get:

ep(dLLL + 1) = e

∆j

 ∑
i∈[k]−j

∆i − 1

+ 1


1−

1−
∏

i∈[k]−j

q−1
i

∆j mini∈[k] qi/qj

qj

The above is at most 1 as a result of (C2), completing the proof.

4.3 Proof assuming (C3)

By Lemma 16 and since degH(v, c) 6 Dj, we have

P[Lφ(v) = ∅] 6

1−

1−
∏
i∈[k]

q−1
i

Dj
qj

.

For each v ∈ Vj, let Av denote the event that Lφ(v) = ∅. The goal is to show that none of
these events occur with positive probability. Note that Av is mutually independent of all

but at most qjDj

(∑
i∈[k]−j qiDi − 1

)
events Au. We will apply the Lovász Local Lemma

with

p :=

1−

1−
∏

i∈[k]−j

q−1
i

Dj
qj

, dLLL := qjDj

 ∑
i∈[k]−j

qiDi − 1


to get:

ep(dLLL + 1) = e

qjDj

 ∑
i∈[k]−j

qiDi − 1

+ 1

1−

1−
∏

i∈[k]−j

q−1
i

Dj
qj

.

The above is at most 1 as a result of (C3), completing the proof.
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