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Abstract

Let T be a tree on n vertices with an irreducible characteristic polynomial φ(x)
over Q. Let ∆(T ) be the discriminant of φ(x). It is proved that if 2−b

n
2
c√∆(T )

(which is always an integer) is odd and square free, then every signed tree with
underlying graph T is determined by its generalized spectrum.

Mathematics Subject Classifications: 05C50

1 Introduction

It is well known that the spectra of graphs encode a lot of combinatorial information
about the given graphs. A major unsolved question in spectral graph theory is: “What
kinds of graphs are determined (up to isomorphism) by their spectrum (DS for short)?”.
The problem originates from chemistry and was raised in 1956 by Günthard and Pri-
mas [2], which relates Hückel’s theory in chemistry to graph spectra. The above problem
is also closely related to a famous problem of Kac [15]: “Can one hear the shape of a
drum?” Fisher [14] modelled the drum by a graph, and the frequency of the sound was
characterized by the eigenvalues of the graph. Hence, the two problems are essentially
the same.

It was commonly believed that every graph is DS until the first counterexample (a
pair of cospectral but non-isomorphic trees) was found by Collatz and Sinogowitz [3] in
1957. Another famous result on cospectral graphs was given by Schwenk [19], which
states that almost every tree is not DS. For more constructions of cospectral graphs, see,
e.g., [13, 16, 20]. However, it turns out that showing a given graph to be DS is generally
very hard and challenging. Up to now, only a few graphs with very special structures are
known to be DS. We refer the reader to [10, 11] for more background and known results.
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In recent years, Wang and Xu [22] and Wang [23, 24] considered a variant of the
above problem. For a simple graph G, they defined the generalized spectrum of G as
the spectrum of G together with that of its complement Ḡ. A graph G is said to be
determined by its generalized spectrum (DGS for short), if any graph having the same
generalized spectrum as G is necessarily isomorphic to G.

Let G be a graph on n vertices with adjacency matrix A = A(G). The walk-matrix of
G is defined as

W (G) = [e, Ae, . . . , An−1e],

where e is the all-one vector. Wang [23, 24] proved the following theorem.

Theorem 1 ([23, 24]). If 2−b
n
2
c det(W ) is odd and square-free, then G is DGS.

The problem of spectral determination of ordinary graphs naturally extends to signed
graphs. A signed graph Γ = (G, σ) is a graph obtained from a simple graph G = (V,E)
by assigning a sign +1 or −1 to every edge according to a mapping σ : E → {+1,−1}.
We call G the underlying graph of Γ and σ the sign function (signature) of Γ. Note that
an ordinary graph can be regard as a signed graph, in which every edge has been assigned
a positive sign +1. We call Γ a signed bipartite graph, if its underlying graph is bipartite.

The adjacency matrix of Γ is an n × n symmetric (0,±1)-matrix defined as A(Γ) =
(aij), where aij = σ({i, j}) if {i, j} is an edge in E, and aij = 0 otherwise. The
characteristic polynomial of Γ is defined as the characteristic polynomial of A(Γ), i.e.,
φ(Γ;x) = det(xI − A(Γ)), where I is the identity matrix. Let Γ and Γ′ be two signed
graphs with adjacency matrices A(Γ) and A(Γ′), respectively. Γ and Γ′ are called gener-
alized cospectral if

det(xI−A(Γ)) = det(xI−A(Γ′)) and det(xI−(J−I−A(Γ))) = det(xI−(J−I−A(Γ′))),

where J is the all-one matrix and J− I−A(Γ) formally denotes the ‘complement’ of Γ (it
is indeed the complement of Γ if Γ is a simple graph, we remark however, the complement
of a signed graph usually cannot be defined in a satisfactory way; see Problem 3.29
in [1]). A signed graph Γ is said to be determined by the generalized spectrum (DGS for
short), if any signed graph that is generalized cospectral with Γ is isomorphic to Γ.

This paper is a continuation along this line of research for signed graphs in the flavour
of Theorem 1. Let T be a tree and let ∆(T ) denote its discriminant, see Section 4 for the
definition. The main result of the paper is the following theorem.

Theorem 2. Let T be a tree on n vertices and suppose that its characteristic polynomial
is irreducible over Q. If 2−b

n
2
c
√

∆(T ) (which is always an integer) is odd and square-free,
then every signed tree with underlying graph T is DGS.

As an immediately consequence of Theorem 2, we have

Corollary 3. Let T and T ′ be two non-isomorphic trees which share the same irreducible
characteristic polynomial. Suppose that 2−b

n
2
c
√

∆(T ) is odd and square free. Then no
two signed trees with underlying graphs T and T ′ respectively are generalized cospectral.
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Theorem 2 shows that the signing of the tree is DGS while the underlying graph
itself is prescribed, i.e., whenever the underlying tree T with n vertices satisfies a simple
arithmetic condition, then all the 2n−1 signed trees (including T itself) whose underlying
tree is T are DGS. Thus, the DGS property of all these signed trees only depends on the
underlying graph T . This is somewhat unexpected, since given a pair of trees T and T ′, it
seems time consuming even to check whether there exist two signed trees with underlying
graphs T and T ′ respectively that are generalized cospectral; see Example 1.

Example 4. Let T and T ′ be two cospectral non-isomorphic trees on 14 vertices in
Figure 1. Then they have the same irreducible characteristic polynomial

φ(T ) = φ(T ′) = −1 + 16x2 − 79x4 + 157x6 − 143x8 + 63x10 − 13x12 + x14.

It can be easily computed that 2−7
√

∆(T ) = 2−7
√

∆(T ′) = 5 × 11 × 4754599, which is
odd and square-free. Thus, according to Theorem 2, every signed tree with underlying
graph T (resp. T ′) is DGS. In particular, no two signed trees with underlying graphs T
and T ′, respectively, are generalized cospectral.

Figure 1: A pair of cospectral non-isomorphic trees on 14 vertices.

We mention that Theorem 2 is the best possible in the sense that it is no longer true
if 2−b

n
2
c
√

∆(T ) has a multiple odd prime factor. Moreover, the irreducibility assumption
of the characteristic polynomial of the tree is essential which cannot be removed; see
Remarks 18 and 19 in Section 4.

The rest of the paper is organized as follows. In Section 2, we give some preliminary
results that will be needed in the proof of Theorem 2. In Section 3, we give a structure
theorem, which plays a key role in the paper. In Section 4, we present the proof of Theorem
2. Conclusions and future work are given in Section 5.
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2 Preliminaries

For the convenience of the reader, we give some preliminary results that will be needed
later in the paper. For more results in spectral graphs theory, we refer to [5, 9].

Let Γ = (G, σ) be a signed graph with the underlying G = (V,E). Let U be a subset
of V such that (U, V \ U) is a partition of V . A switching w.r.t. U (or V \ U) is an
operation that changes all the signs of edges between U and V \U , while keeps the others
unchanged. Two signed graphs Γ and Γ′ are switching-equivalent if Γ′ can be obtained
from Γ by a switching operation, or equivalently, there exists a diagonal matrix D with
all diagonal entry ±1 such that DA(Γ)D = A(Γ′). A signed graph is balanced if every
cycle contains an even number of edges with sign -1. It is well-known that a signed graph
is balanced if and only it is switching equivalent to an unsigned graph; see [6, 7].

A polynomial f(x) ∈ Q[x] is irreducible if it cannot be factored into two polynomials
with rational coefficients of lower degree. Let f(x) ∈ Q[x] be an irreducible polynomial
with degree n and α be one of its root. Then Q(α) = {c0 + c1α + · · · + cn−1α

n−1 : ci ∈
Q, 0 6 i 6 n − 1} is a number field which is isomorphic to Q[x]/(f(x)) and is obtained
by adding α to Q; see e.g. [12].

An orthogonal matrix Q is a square matrix such that QTQ = In. It is called rational if
every entry of Q is a rational number, and regular if each row sum of Q is 1, i.e., Qe = e,
where e is the all-one column vector. Denote by ROn(Q) the set of all n by n regular
orthogonal matrices with rational entries.

In 2006, Wang and Xu [22] initiated the study of the generalized spectral character-
ization of graphs. For two generalized cospectral graphs G and H, they obtained the
following result (see also [8]), which plays a fundamental role in their method.

Theorem 5 ([8],[22]). Let G be a graph. Then there exists a graph H such that G and
H are generalized cospectral if and only if there exists a regular orthogonal matrix Q such
that

QTA(G)Q = A(H). (1)

Moreover, if detW (G) 6= 0, then Q ∈ ROn(Q) is unique and Q = W (G)W−1(H).

A graph G with detW (G) 6= 0 is called controllable (see [17]). Denote by Gn the set
of all controllable graphs on n vertices. For a graph G ∈ Gn, define

Q(G) := {Q ∈ ROn(Q) : QTA(G)Q = A(H) for some graph H}.

Then according to Theorem 5, it is easy to obtain the following

Theorem 6 ([22]). Let G be a controllable graph. Then G is DGS if and only if the set
Q(G) contains only permutation matrices.

The above theorems extend naturally to signed graphs. By Theorem 6, finding out
the possible structure of all Q ∈ Q(G) is a key to determine whether a (signed) graph G
is DGS.
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Notations: We use en (or e if there is no confusion arises) to denote an n-dimensional
column all-one vector, and J the all-one matrix. For a vector α = (a1, a2, . . . , an)T ∈ Rn,
we use ||α||2 = (a21 + a22 + · · ·+ a2n)1/2 to denote the Euclidean norm of α.

3 A structure theorem for Q

The key observation of this paper is the following theorem which shows that for two
generalized cospectral signed bipartite graphs with a common irreducible characteristic
polynomial, the regular rational orthogonal matrix carried out the similarity of their
adjacency matrices has a special structure.

Theorem 7. Let Γ and Γ̃ be two generalized cospectral signed bipartite graphs with a
common irreducible characteristic polynomial φ(x) over Q. Suppose that the adjacency
matrices of Γ and Γ̃ are given as follows, respectively:

A = A(Γ) =

[
O M
MT O

]
, Ã = A(Γ̃) =

[
O M̃

M̃T O

]
.

Then there exists a regular orthogonal matrix Q such that QTAQ = Ã, where

Q =

[
Q1 O
O Q2

]
or Q =

[
O Q1

Q2 O

]
with Q1 and Q2 being regular rational orthogonal matrices, respectively.

Corollary 8. The matrix Q in Theorem 7 is the unique rational orthogonal matrix such
that QTAQ = Ã.

Proof. The irreducibility assumption of the characteristic polynomial of A implies that Γ
is controllable. Then the corollary follows immediately from Theorem 5.

To give the proof of Theorem 7, we need several lemmas below.

Lemma 9. Let Γ and Γ̃ be two generalized cospectral signed graphs with adjacency matri-
ces A and Ã, respectively. Suppose that λ is not an eigenvalue of A. Then eT(λI−A)−1e =
eT(λI − Ã)−1e.

Proof. It can be easily computed that

det(λI − (A+ tJ))

= det(λI − A) det(I − t(λI − A)−1eeT)

= det(λI − A)(1− teT(λI − A)−1e).

Similarly, det(λI − (Ã + tJ)) = det(λI − Ã)(1 − teT(λI − Ã)−1e). Thus, the lemma
follows.
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Lemma 10 ([18]). (λI − A)−1 =
∑n

i=1
ξiξ

T
i

λ−λi , where ξi’s are orthonormal eigenvectors of
A associated with λi, for 1 6 i 6 n.

Lemma 11 ([21]). Let A = (aij) be a symmetric integral matrix with an irreducible
characteristic polynomial φ(x). Let λ1, . . . , λn be the distinct eigenvalues of A. Then
there exist polynomials φi(x) ∈ Q[x] with deg φi < n such that the eigenvectors ξi of A
associated with λi can be expressed as

ξi = (φ1(λi), φ2(λi), . . . , φn(λi))
T

for 1 6 i 6 n.

Proof. Let λ1 be an eigenvalue of A with corresponding eigenvector ξ1. Consider the linear
system of equations (λ1I − A)ξ1 = 0. By Gaussian elimination, there exist xi ∈ Q(λ1)
such that ξ1 = (x1, x2, . . . , xn)T. Note Q(λ1) is a number field. There exist polynomials
φi(x) ∈ Q[x] with deg φi < n such that xi = φi(λ1).

By the k-th equation of (λ1I−A)ξ1 = 0, we have ψ(λ1) :=
∑n

j=1 ak,jφj(λ1)−λ1φj(λ1) =
0, for 1 6 k 6 n. Note ψ(x) ∈ Q[x] and ψ(λ1) = 0. By the irreducibility of φ(x), we have
φ(x) divides ψ(x). Thus, ψ(λi) = 0 for 1 6 i 6 n, and ξi = (φ1(λi), φ2(λi), . . . , φn(λi))

T

is an eigenvector associated with λi.

Next, we collect some simple facts about the relationships of eigenvalues/eigenvectors
between the adjacency matrix A of a signed bipartite graph Γ and its bipartite-adjacency
matrix M .

Lemma 12 ([5]). Let Γ be a signed bipartite graph with an irreducible characteristic

polynomial over Q. Let the adjacency matrix of Γ be A = A(Γ) =

[
O M
MT O

]
. Suppose

that

[
u
v

]
is an eigenvector of A associated with an eigenvalue λ. Then

1. λ2 is an eigenvalue of MMT and MTM with corresponding eigenvectors u and v,
respectively;

2. u and v have the same length, i.e., ||u||2 = ||v||2;

3.

[
u
−v

]
is an eigenvector of A associated with eigenvalue −λ;

4. The characteristic polynomials of MMT and MTM are irreducible over Q.

Proof. We present a proof for completeness. Note that the characteristic polynomial φ(x)
of A is irreducible, it follows that zero can never be an eigenvalue of A, and hence M
must be a square matrix of order m := n/2.
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Let λ 6= 0 be any eigenvalue of A with corresponding eigenvector

[
u
v

]
. Then

A

[
u
v

]
=

[
Mv
MTu

]
= λ

[
u
v

]
⇐⇒

{
Mv = λu,

MTu = λv.
(2)

Thus, we have u 6= 0 and v 6= 0, for otherwise we would have u = v = 0, since λ 6= 0. It
follows that

MMTu = λ2u, MTMv = λ2v.

It follows from Mv = λu that uTMv = λuTu. By MTu = λv we get vTMTu = λvTv.
Note uTMv = (uTMv)T = vTMTu. It follows that λuTu = λvTv, and hence uTu = vTv
since λ 6= 0.

Note that

A

[
u
−v

]
=

[
−Mv
MTu

]
= −λ

[
u
−v

]
.

Hence,

[
u
−v

]
is an eigenvector of A associated with eigenvalue −λ. Since the characteristic

polynomial of A is irreducible, the set of all the eigenvalues of A can be written as
{λ1, λ2, . . . , λm,−λ1,−λ2, . . . , λm}.

Hence, the set of all the eigenvalues of MMT (or MTM) can be written as
{λ21, λ22, . . . , λ2m}. Since φ(A;x) = (x2−λ21) · · · (x2−λ2m) is irreducible over Q, φ(MMT;x) =
φ(MTM ;x) = (x− λ21) · · · (x− λ2m) is also irreducible over Q.

Proof of Theorem 7. Set m := n/2. By Lemma 12, let λ1, λ2, . . . , λm,−λ1,−λ2, . . . ,−λm
be the eigenvalues of A and Ã with corresponding normalized eigenvectors

1√
2

[
u1
v1

]
, . . . ,

1√
2

[
um
vm

]
,

1√
2

[
u1
−v1

]
, . . . ,

1√
2

[
um
−vm

]
, (3)

1√
2

[
ũ1
ṽ1

]
, . . . ,

1√
2

[
ũm
ṽm

]
,

1√
2

[
ũ1
−ṽ1

]
, . . . ,

1√
2

[
ũm
−ṽm

]
, (4)

respectively, where ui, ũi, vi, ṽi ∈ Rn are m-dimensional unit vectors.
By Lemma 9, we have eT(xI − A)−1e = eT(xI − Ã)−1e. It follows from Lemma 10

that

m∑
i=1

( 1√
2
eT2m

[
ui
vi

]
)2

x− λi
+

m∑
i=1

( 1√
2
eT2m

[
ui
−vi

]
)2

x+ λi
=

m∑
i=1

( 1√
2
eT2m

[
ũi
ṽi

]
)2

x− λi
+

m∑
i=1

( 1√
2
eT2m

[
ũi
−ṽi

]
)2

x+ λi
. (5)

Hence, we have that for each 1 6 i 6 m,{
(eTmui + eTmvi)

2 = (eTmũi + eTmṽi)
2,

(eTmui − eTmvi)2 = (eTmũi − eTmṽi)2.
(6)

the electronic journal of combinatorics 32(2) (2025), #P2.18 7



For a fixed i, we distinguish the following two cases:

Case 1. eTmui+e
T
mvi and eTmũi+e

T
mṽi have the same sign (or opposite sign), and eTmui−eTmvi

and eTmũi − eTmṽi have the same sign (or opposite sign). It follows from (6) that{
eTmui + eTmvi = eTmũi + eTmṽi,

eTmui − eTmvi = eTmũi − eTmṽi,
or

{
eTmui + eTmvi = −(eTmũi + eTmṽi),

eTmui − eTmvi = −(eTmũi − eTmṽi),

which implies that either i) eTmui = eTmũi and eTmvi = eTmṽi; or ii) eTmui = −eTmũi and
eTmvi = −eTmṽi.
Case 2. eTmui+e

T
mvi and eTmũi+e

T
mṽi have the same sign (or opposite sign), and eTmui−eTmvi

and eTmũi − eTmṽi have the opposite sign (or same sign). Then{
eTmui + eTmvi = eTmũi + eTmṽi,

eTmui − eTmvi = −(eTmũi − eTmṽi),
or

{
eTmui + eTmvi = −(eTmũi + eTmṽi),

eTmui − eTmvi = eTmũi − eTmṽi,

which implies that either i) eTmui = eTmṽi and eTmvi = eTmũi; or ii) eTmui = −eTmṽi and
eTmvi = −eTmũi.

Thus, for a fixed i, we may assume that either eTmui = τie
T
mũi and eTmvi = τie

T
mṽi or

eTmui = σie
T
mṽi and eTmvi = σie

T
mũi, where τi, σi ∈ {1,−1}. Next, we show that uniformly,

either eTmui = τie
T
mũi and eTmvi = τie

T
mṽi for all 1 6 i 6 m or eTmui = σie

T
mṽi and

eTmvi = σie
T
mũi for all 1 6 i 6 m. This is the key technical part of the proof, which

highly depends on the irreducibility assumption of φ.
According to Lemma 11, the eigenvectors of MMT associated with eigenvalues λ2i can

be expressed as ξi = (φ1(λi), φ2(λi), . . . , φm(λi))
T, where φj(x) ∈ Q[x] with deg φj < n.

By Lemma 12, ui is an eigenvector ofMMT associated with λ2i . Note ui is a unit vector.
It follows that ui and ξi/||ξi||2 differ by at most a sign, i.e., there exists a εi ∈ {1,−1}
such that ui = εi

ξi
||ξi||2 , and

vi =
1

λi
MTui

=
εi
λi
MT(φ1(λi), φ2(λi), . . . , φm(λi))

T/||ξi||2

= εi(ϕ1(λi), ϕ2(λi), . . . , ϕm(λi))
T/||ξi||2,

for some ϕj(x) ∈ Q[x] with degree less than n, for 1 6 j 6 m. The last equality follows
since the entries of the vector 1

λi
MT(φ1(λi), φ2(λi), . . . , φm(λi))

T belong to Q(λi), which

is a number field. Further note that ||ui||2 = ||vi||2 = 1, we have ϕ1(λi)
2 +ϕ2(λi)

2 + · · ·+
ϕm(λi)

2 = ||ξi||2, for 1 6 i 6 m.
The above discussions apply similarly to the signed bipartite graph Γ̃ with adja-

cency matrix Ã. In this case, one obtains that ũi = ε̃i
ξ̃i
||ξ̃i||2

for ε̃i ∈ {1,−1}, where

ξ̃i = (φ̃1(λi), φ̃2(λi), . . . , φ̃m(λi))
T, φ̃j(x) ∈ Q[x] with deg φ̃j < n. Moreover, ṽi =

ε̃i(ϕ̃1(λi), ϕ̃2(λi), . . . , ϕ̃m(λi))
T/||ξ̃i||2 with ϕ̃j(x) ∈ Q[x] with degree less than n, and

ϕ̃1(λi)
2 + ϕ̃2(λi)

2 + · · ·+ ϕ̃m(λi)
2 = ||ξ̃i||2.
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Claim 13. If eTmu1 = τ1e
T
mũ1 and eTmv1 = τ1e

T
mṽ1 with τ1 ∈ {1,−1}, then eTmui = τie

T
mũi

and eTmvi = τie
T
mṽi for some τi ∈ {1,−1}, for all 2 6 i 6 m.

Proof. Actually, it follows from eTmu1 = τ1e
T
mũ1 that

ε1

∑m
j=1 φj(λ1)√∑m
j=1 φ

2
j(λ1)

= τ1ε̃1

∑m
j=1 φ̃j(λ1)√∑m
j=1 φ̃

2
j(λ1)

. (7)

Taking squares on both sides of (7), it follows that

Φ(λ1) := (
m∑
j=1

φj(λ1))
2

m∑
j=1

φ̃2
j(λ1)− (

m∑
j=1

φ̃j(λ1))
2

m∑
j=1

φ2
j(λ1) = 0.

Note that φ(x) is irreducible and Φ(x) ∈ Q[x]. It follows that φ(x) | Φ(x). Hence
Φ(λi) = 0 and eTmui = τie

T
mũi for some τi ∈ {1,−1}, for 2 6 i 6 m. Similarly, we have

eTmvi = τ̃ie
T
mṽi for some τ̃i ∈ {1,−1}, for 2 6 i 6 m. Next, we show that τi and τ̃i coincide,

i.e., τi = τ̃i = ±1, for all 2 6 i 6 m.
In fact, it follows from eTmv1 = τ1e

T
mṽ1 that

ε1

∑m
j=1 ϕj(λ1)√∑m
j=1 φ

2
j(λ1)

= τ1ε̃1

∑m
j=1 ϕ̃j(λ1)√∑m
j=1 φ̃

2
j(λ1)

. (8)

It is easy to see that all the numerators in Eqs. (7) and (8) are non-zero. For example,
if
∑m

j=1 φj(λ1) = 0, then
∑m

j=1 φj(λi) = 0 for 1 6 i 6 m by the irreducibility of φ. That

is, eTmξi = 0 for 1 6 i 6 m, which is ridiculous since ξi (1 6 i 6 m) are eigenvectors of
MMT constituting a basis of Rm.

By dividing Eq. (8) by Eq. (7), it follows that∑m
j=1 φj(λ1)∑m
j=1 ϕj(λ1)

=

∑m
j=1 φ̃j(λ1)∑m
j=1 ϕ̃j(λ1)

, (9)

or equivalently, Ψ(λ1) :=
∑m

j=1 φj(λ1)
∑m

j=1 ϕ̃j(λ1) −
∑m

j=1 ϕj(λ1)
∑m

j=1 φ̃j(λ1) = 0. By
the irreducibility of φ(x), we obtain that φ(x) | Ψ(x), and hence Ψ(λi) = 0 for 2 6 i 6 m.
So Eq. (9) still holds if we replace λ1 with any λi, i.e.,∑m

j=1 φj(λi)∑m
j=1 ϕj(λi)

=

∑m
j=1 φ̃j(λi)∑m
j=1 ϕ̃j(λi)

, for 2 6 i 6 m. (10)

By the previous discussions, we get that

εi

∑m
j=1 φj(λi)√∑m
j=1 φ

2
j(λi)

= τiε̃i

∑m
j=1 φ̃j(λi)√∑m
j=1 φ̃

2
j(λi)

, for for 2 6 i 6 m. (11)
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εi

∑m
j=1 ϕj(λi)√∑m
j=1 φ

2
j(λi)

= τ̃iε̃i

∑m
j=1 ϕ̃j(λi)√∑m
j=1 φ̃

2
j(λi)

, for 2 6 i 6 m. (12)

By dividing Eq. (12) by Eq. (11), one obtains
∑m

j=1 φj(λi)∑m
j=1 ϕj(λi)

= τi
τ̃i

∑m
j=1 φ̃j(λi)∑m
j=1 ϕ̃j(λi)

, together with

Eq. (10), we get the conclusion that τi = τ̃i = ±1 for 2 6 i 6 m.

Claim 14. If eTmu1 = σ1e
T
mṽ1 and eTmv1 = σ1e

T
mũ1 with σ1 ∈ {1,−1}, then eTmui = σie

T
mṽi

and eTmvi = σie
T
mũi for some σi ∈ {1,−1}, for all 2 6 i 6 m.

Proof. This follows by using the same argument as Claim 14; we omit the details here.

Write
U = [u1, u2, . . . , um], V = [v1, v2, . . . , vm],

Ũ = [ũ1, ũ2, . . . , ũm], Ṽ = [ṽ1, ṽ2, . . . , ṽm].

If the condition of Claim 14 holds, we may replace ui and vi with −ui and −vi respec-
tively, whenever τi = −1 for 1 6 i 6 m. Then we have eTmui = eTmũi and eTmvi = eTmṽi for

1 6 i 6 m. Let R = 1√
2

[
U U
V −V

]
and R̃ = 1√

2

[
Ũ Ũ

Ṽ −Ṽ

]
. Define

Q := RR̃T =

[
UŨT O

O V Ṽ T

]
. (13)

Then Q is an orthogonal matrix and

RTAR = R̃TÃR̃ = diag(λ1, . . . , λm,−λ1, . . . ,−λm).

Thus, QTAQ = Ã. Next, it remains to show that Q is regular, i.e., Qe2m = e2m, which
is equivalent to ŨTem = UTem and Ṽ Tem = V Tem. That is, eTmui = eTmũi, e

T
mvi =

eTmṽi, for 1 6 i 6 m, which are precisely that we have obtained before, as desired.
If the condition of Claim 13 holds, similarly, we may replace ui and vi with −ui and

−vi respectively, whenever σi = −1. Then eTmui = eTmṽi and eTmvi = eTmũi, for 1 6 i 6 m.

Now let R = 1√
2

[
U U
V −V

]
and R̃ = 1√

2

[
Ũ −Ũ
Ṽ Ṽ

]
. Define

Q := RR̃T =

[
O UṼ T

V ŨT O

]
. (14)

Then Q is an orthogonal matrix and still QTAQ = Ã holds. Moreover, it is easy to verify
that Qe2m = e2m. So Q is regular.

The proof is complete.
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4 Proof of Theorem 2

In this section, we present the proof of Theorem 2.
Recall that for a monic polynomial f(x) ∈ Z[x] with degree n, the discriminant of

f(x) is defined as:

∆(f) =
∏

16i<j6n

(αi − αj)2,

where α1, α2, . . . , αn are all the roots of f(x).
Then it is clear that ∆(f) is always an integer for f(x) ∈ Z[x], and ∆(f) = 0 if and

only if f has a multiple root. Define the discriminant of a matrix A, denoted by ∆(A),
as the discriminant of its characteristic polynomial, i.e., ∆(A) := ∆(det(xI − A)). The
discriminant of a graph G, denoted by ∆(G), is defined to be the discriminant of its
adjacency matrix.

In [25], Wang and Yu give the following theorem, which is our main tool in proving
Theorem 2.

Theorem 15 ([25]). Let A be a symmetric integral matrix. Suppose there exists a rational
orthogonal matrix Q such that QTAQ is an integral matrix. If ∆(A) is odd and square-free,
then Q must be a signed permutation matrix.

However, Theorem 15 cannot be used directly, since the ∆(Γ) is always a perfect
square for a signed bipartite graph Γ with an equal size of bipartition, as shown by the
following lemma.

Lemma 16. Let Γ be a signed bipartite graph with bipartite-adjacency matrix M , where
M is a square matrix of order m := n/2. Then ∆(Γ) = 2n det2(M)∆2(MTM).

Proof. Let the eigenvalues of Γ be ±λ1,±λ2, . . . ,±λm. By Lemma 12, the eigenvalues of
MTM are λ21, λ

2
2, . . . , λ

2
m. Thus, we have

∆(Γ) =
∏

16i<j6m

(λi − λj)2
∏

16i,j6m

(λi + λj)
2
∏

16i<j6m

(−λi + λj)
2

= 2nλ21λ
2
2 · · ·λ2m

∏
16i<j6m

(λ2i − λ2j)4

= 2n det(MTM)∆2(MTM)

= 2n(det(M))2∆2(MTM).

This completes the proof.

Let a0 be the constant term of the characteristic polynomial of the underlying graph
G defined as above. Then

a0 = (−1)m det(MTM) = (−1)m det 2(M).

Note that for a tree with an irreducible characteristic polynomial φ(x), the constant term
of φ(x) is always ±1. Thus we have
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Corollary 17. Let T be a tree with an irreducible characteristic polynomial. Then ∆(T ) =
2n∆2(MTM).

Finally, we are ready to present the proof of Theorem 2.

Proof of Theorem 2. Let Γ̃ be any signed graph that is generalized cospectral with Γ =
(T, σ). We shall show that Γ̃ is isomorphic to Γ. Note that Γ̃ has the same number of
edges as Γ and moreover, the assumption that φ(Γ̃) = φ(Γ) is irreducible forces Γ̃ to
be connected. Thus, Γ̃ is signed graph whose underlying graph is a tree (say T̃ ), and
Γ̃ = (T̃ , σ̃).

Note that both T and T̃ are balanced as signed graphs, we have φ(T ) = φ(Γ) and
φ(T̃ ) = φ(Γ̃). Let A(Γ) = D1A(T )D1 and A(Γ̃) = D2A(T̃ )D2, where D1 and D2 are
diagonal matrices whose diagonal entries are ±1.

By Theorem 5, the fact that Γ and Γ̃ are generalized cospectral implies that there
exists a regular rational orthogonal matrix Q such that

QTA(Γ)Q = A(Γ̃), (15)

i.e., QT(D1A(T )D1)Q = D2A(T̃ )D2, which is equivalent to Q̂TA(T )Q̂ = A(T̃ ), where
Q̂ = D1QD2 is a rational orthogonal matrix.

Let

A(T ) =

[
O M
MT O

]
, A(T̃ ) =

[
O M̃

M̃T O

]
.

By Theorem 7, assume without loss of generality that Q =

[
Q1 O
O Q2

]
and Q̂ =

[
Q̂1 O

O Q̂2

]
.

Then we have Q̂T
1MQ̂2 = M̃ . It follows that

Q̂T
1MMTQ̂1 = M̃M̃T and Q̂T

2M
TMQ̂2 = M̃TM̃.

Note that ∆(MTM) = ∆(MMT) = 2−n/2
√

∆(T ), which is odd and square-free. Thus,

according to Theorem 15, both Q̂1 and Q̂2 are signed permutation matrices. It follows
that Q = D1Q̂D2 is a signed permutation matrix. Moreover, note that Q is regular.
Therefore, Q is a permutation matrix, and by Eq. (15), we conclude that Γ̃ is isomorphic
to Γ. The proof is complete.

Remark 18. The condition of Theorem 2 is tight in the sense that Theorem 2 is no longer
true if 2−

n
2

√
∆(T ) has a multiple odd prime factor. Let the signed bipartite-adjacency

matrices of two signed trees T and T̃ (see Figure 2) be given as follows, respectively:

M =


−1 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0
0 −1 0 0 −1 1 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 −1 1 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 −1 0 0 −1

 , M̃ =


0 0 0 0 0 0 0 1 −1
0 0 0 −1 −1 0 1 0 0
0 0 0 −1 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
−1 0 0 0 0 −1 0 0 1

 .

Then
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Figure 2: Two signed trees Γ and Γ̃, where the dashed lines represent the edges with
negative signs.

φ(T ) = φ(T̃ ) = −1+22x2−162x4+538x6−897x8+809x10−410x12+116x14−17x16+x18,

which is irreducible over Q. However, 2−9
√

∆(T ) = 72×347×357175051, i.e., 2−9
√

∆(T )
has a multiple factor 7 and the condition of Theorem 2 is not satisfied. Actually, there
indeed exists a regular rational orthogonal matrix Q ∈ Q(G) such that Ã = QTAQ, where
Q = diag(Q1, Q2) and Q1 and Q2 are given as follows respectively.

Q1 =
1

7



−1 −1 −2 −2 4 3 3 2 1
−2 −2 3 3 1 −1 −1 4 2
2 2 4 −3 −1 1 1 3 −2
4 −3 1 1 −2 2 2 −1 3
−3 4 1 1 −2 2 2 −1 3
3 3 −1 −1 2 −2 −2 1 4
1 1 2 2 3 4 −3 −2 −1
2 2 −3 4 −1 1 1 3 −2
1 1 2 2 3 −3 4 −2 −1



Q2 =
1

7



2 2 4 −3 −1 1 1 3 −2
2 2 −3 4 −1 1 1 3 −2
−2 −2 3 3 1 −1 −1 4 2
4 −3 1 1 −2 2 2 −1 3
1 1 2 2 3 4 −3 −2 −1
−3 4 1 1 −2 2 2 −1 3
3 3 −1 −1 2 −2 −2 1 4
−1 −1 −2 −2 4 3 3 2 1
1 1 2 2 3 −3 4 −2 −1


.

Remark 19. Theorem 7 does not hold without the assumption that the characteristic
polynomial of Γ is irreducible over Q, even if Γ is controllable. Let Γ and Γ̃ be two
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signed trees (see Figure 3) with bipartite-adjacency matrices M and M̃ given as follows
respectively:

M =


1 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 −1 0 0
0 −1 −1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 1 0 0 1 −1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 −1 −1

 , M̃ =


1 0 0 0 0 0 0 0 0
−1 1 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0
0 −1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 1
0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 0 0 −1

 .

Q = 1
5



5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 −2 1 −1 0 0 0 0 0 1 −1 2 2
0 0 0 0 0 −1 −1 −2 2 0 0 0 0 0 3 2 1 1
0 0 0 0 0 −2 3 1 −1 0 0 0 0 0 1 −1 2 2
0 0 0 0 0 1 1 2 −2 0 0 0 0 0 2 3 −1 −1
0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 −1 −1 3 2 0 0 0 0 0 −2 2 1 1
0 0 0 0 0 2 2 −1 1 0 0 0 0 0 −1 1 3 −2
0 0 0 0 0 2 2 −1 1 0 0 0 0 0 −1 1 −2 3
0 0 0 0 0 1 1 2 3 0 0 0 0 0 2 −2 −1 −1
0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0


.

Figure 3: Two signed trees Γ and Γ̃, where the dashed lines represent the edges with
negative signs.

It is easy to verify that

φ(Γ;x) = (−1+x)(1+x)(−1−x+x2)(−1+x+x2)(1−21x2+95x4−119x6+60x8−13x10+x12),

which is reducible over Q and Γ is controllable. Nevertheless, the unique regular rational
orthogonal matrix Q (shown as above) such that QTA(Γ)Q = A(Γ̃) is not the form as in
Theorem 7.
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5 Conclusions and Future Work

In this paper, we have given a simple arithmetic condition on a tree T with an irreducible
characteristic polynomial, under which every signed tree with underlying tree T is DGS.
This is a little bit surprising in contrast with Schwenk’s remarkable result stating almost
every tree has a cospectral mate.

However, there are several questions that remain to be answered. We end the paper
by proposing the following questions:

Question 20. How can Theorem 2 be generalized to signed bipartite graphs?

Question 21. Is it true that every tree with an irreducible characteristic polynomial is
DGS?

Question 22. Is Theorem 7 true for controllable bipartite graphs?

For Question 20, the difficulty lies in the fact that for a signed bipartite graph Γ, a
signed graph Γ̃ generalized cospectral with Γ is not necessarily bipartite. For Question 21,
we know that it is not true for signed trees. For Question 22, we know that it is not
true for controllable signed bipartite graphs. But generally we do not know any single
counterexample to Questions 21 and 22. The above questions need further investigations
in the future.

Acknowledgments

The research of the second author is supported by National Key Research and Devel-
opment Program of China 2023YFA1010203 and National Natural Science Foundation
of China (Grant No. 12371357), and the third author is supported by Fundamental Re-
search Funds for the Central Universities (Grant No. 531118010622), National Natural
Science Foundation of China (Grant No. 1240011979) and Hunan Provincial Natural Sci-
ence Foundation of China (Grant No. 2024JJ6120).

The authors would like to thank Professor Huiqiu Lin from East China University of
Science and Technology for useful discussions.

References
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