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Abstract

We introduce a generalization of the concept of a chronological list of forces,
called a relaxed chronology. This concept is used to introduce a new way of for-
mulating the zero forcing process, which we refer to as parallel increasing path
covers. The combinatorial properties of parallel increasing path covers are utilized
to identify bounds comparing standard zero forcing propagation time to positive
semidefinite (PSD) propagation time. A set of paths within a set of PSD forcing
trees, called a path bundle, is used to identify the PSD forcing analog of the reverse
of a standard zero forcing set, as well as to draw a connection between PSD forcing
and rigid linkage forcing.

Mathematics Subject Classifications: 05C57, 05C69, 05C70, 68R10

1 Introduction

Zero forcing is a dynamic coloring process on (finite, simple, and undirected) graphs. It has
several applications and has been introduced independently in multiple fields. Examples
of these applications include bounding the maximum nullity and minimum rank of graphs
in combinatorial linear algebra [2], efficient placement of monitors in an electrical grid
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through power domination in [11] (with the role of zero forcing evident in [6]), and the
study of control of quantum systems in [7].

In zero forcing and its variants, one starts with a graph whose vertices have all been
colored either blue or white, and then an iterative process occurs during which white
vertices become blue according to some color change rule. For most variants, one goal is
to identify forcing sets, which are initial colorings for which the entire graph will eventually
become blue after sufficiently many applications of the associated color change rule. The
variants considered in this paper include standard zero forcing, positive semidefinite (PSD)
zero forcing as introduced in [5], power domination as introduced in [11], and rigid linkage
forcing as introduced in [10]. For these variants, the minimum size of a forcing set is called
the standard zero forcing number, PSD forcing number, power domination number, and
RL-forcing number of a graph, respectively. Our work will also involve the minimum
number of time-steps needed to color the entire graph blue (while forcing all possible
vertices at each time-step), which is known as the propagation time. This was introduced
formally as a graph parameter for standard zero forcing in [8] and [13], for PSD forcing
in [16], and for power domination in [1].

Our work introduces several new structures and applies them to the study of zero
forcing. We first introduce a special family of path covers for a graph called parallel
increasing path covers (see Definitions 12 and 14 for formal definitions). Given a path
cover Q = {Qi}mi=1 of a graph G, express each path as Qi = vi,0vi,1 . . . vi,ni−1 (so |V (Qi)| =
ni). We say Q is a parallel increasing path cover if there exists some integer K and
assignment of some set Ai,j ⊆ {0, 1, 2, . . . , K} to each vertex vi,j with all of the following
properties.

• For each i = 1, . . . ,m, the sets Ai,0, . . . , Ai,ni−1 partition the set {0, 1, 2, . . . , K}.

• For each i = 1, . . . ,m and 0 󰃑 j1 < j2 󰃑 ni−1, each element in Ai,j1 is less than
each element in Ai,j2 .

• If vi1,j1 and vi2,j2 are adjacent in G with i1 ∕= i2, then Ai1,j1 ∩ Ai2,j2 ∕= ∅.

In this case, we call the multiset {(Ai,j)
ni−1
j=0 }mi=1 a witness of Q. An example is shown in

Figure 1.
The relationship between zero forcing and parallel increasing path covers on a graph

is not immediately clear. One connection is through the path covers of G that arise from
zero forcing, which are called chain sets. We will show that parallel increasing path covers
arise naturally as these chain sets. However, a much deeper connection exists between
parallel increasing path covers and zero forcing. We introduce a generalization of the
zero forcing process called a relaxed chronology (Definition 9), where any number of the
permitted forces can be performed at each time-step. This generalizes both chronological
lists of forces, where exactly one vertex is forced at each time-step, and propagating
forces, where every possible vertex is forced at each time-step (see Section 2.3 for precise
definitions of these forcing processes). Our first main result shows that parallel increasing
path covers of G are precisely the path covers resulting from relaxed chronologies of zero
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Figure 1: A graph with a parallel increasing path cover Q shown in bold. Vertices have
been labeled using a witness of Q.

forces. Its complete version, including the underlying connections via block partitions
and active sets, appears as Theorem 15.

Theorem 1. Let G be a graph. Then Q is a parallel increasing path cover of G if and
only if Q is a chain set for some relaxed chronology F of a standard zero forcing set B
of G.

We also introduce a parameter called the parallel increasing path cover number of
G, denoted PIP(G) (Definition 14). This is the smallest number m such that G has a
parallel increasing path cover consisting of m paths. The preceding theorem then implies
the following (which is Corollary 16):

Corollary 2. For any graph G, PIP(G) = Z(G).

Though parallel increasing path covers directly correspond to relaxed chronologies in
standard zero forcing, we also apply them to the study of PSD forcing and structural
graph properties. Using properties of a witness and the correspondence in Theorem 1,
we show that the set of active vertices at any time-step is a PSD forcing set, as well
as a vertex cut when the resulting set of vertices does not consist only of endpoints of
the path cover. See Figure 1 for examples, as well as Lemma 25 and Lemma 28 for
precise statements of these results. Letting Z+(G) denote the PSD forcing number of
G, we establish upper bounds for PSD propagation time pt+(G,m) in terms of standard
propagation time pt(G,m) on forcing sets of size m (see Sections 2.2 and 2.3 for formal
definitions, as well as Theorem 31 and Corollary 34 for the results and their proofs). Note
that the m in pt+(G,m) and pt(G,m) is suppressed when m = Z+(G) or m = Z(G),
respectively.

Theorem 3. Let G be a graph and m ∈ N such that m 󰃍 Z(G). Then

pt+(G,m) 󰃑
󰀛
pt(G,m)

2

󰀜
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Corollary 4. For any graph G such that Z+(G) = Z(G),

pt+(G) 󰃑
󰀛
pt(G)

2

󰀜
.

Relaxed chronologies also allow for a natural way to restrict zero forcing on a graph
to its subgraphs. We introduce a special case called path bundles (Definition 41), where
the restriction of PSD forcing aligns with standard zero forcing. We use path bundles to
construct a lower bound on PSD propagation time using standard zero forcing propagation
time and establish a PSD analog of the reversal of standard chain sets. We apply the
latter result to show that given a set of PSD forcing trees in G and any fixed vertex v,
one can find a PSD forcing set of the same cardinality that contains v and preserves the
PSD forcing trees (stated as Corollary 52).

Theorem 5. Let G be a graph with T being the PSD forcing trees for some PSD forcing
set of size k. For any v ∈ V (G), there exists a PSD forcing set B of size k containing v
and a relaxed chronology of forces F for B with T as its induced forcing trees.

Though our results stated thus far involve only standard and PSD forcing, we also
apply our techniques to other variants of zero forcing, including power domination (The-
orem 36) and rigid linkage zero forcing (Theorem 59). Furthermore, our new structures
and techniques may have applications to additional parameters, such as skew forcing; we
leave further exploration of these applications as directions for future work.

We start in Section 2 with preliminaries. In Section 3, we define relaxed chronologies
and parallel increasing path covers, and we establish a correspondence between parallel
increasing path covers and relaxed chronologies for standard zero forcing. In Section 4, we
apply our results on parallel increasing path covers to establish results for several variants
of zero forcing. Finally, in Section 5, we consider restrictions of relaxed chronologies to
subgraphs and establish results on path bundles. Our results on power domination and
rigid linkages are included in appendices.

2 Preliminaries

In this section we provide precise definitions for graphs, zero forcing and variants, and
propagation. Additional background can be found in [14, Part 4].

2.1 Graph terminology

A graph G is a pair (V (G), E(G)), where V (G) is the set of vertices and E(G) is a set
of 2-element sets of vertices called edges. To help differentiate between subsets of V (G)
of cardinality two and edges, given two distinct vertices u, v ∈ V (G), the subset of V (G)
composed of these two vertices will be denoted {u, v} while the edge between u and v will
be denoted uv (or vu). All graphs are assumed to be finite and simple, that is, to have
neither loops (edges between between a vertex and itself) nor multiple edges between any
two distinct vertices.
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If G and H are graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is a
subgraph of G. If H is a subgraph of G and for any two vertices u, v ∈ V (H) we have
uv ∈ E(H) if and only if uv ∈ E(G), then H is an induced subgraph of G. Given a subset
of vertices S ⊆ V (G), the induced subgraph H of G with vertex set V (H) = S will be
denoted G[S]. In addition, for a given set of vertices B ⊆ V (G), the notation G−B will
be used to denote G[V (G) \B].

Given a vertex v ∈ V (G), the open neighborhood of v in G, denoted by NG(v), is
the set of vertices u such that vu ∈ E(G). The closed neighborhood of a vertex v is
NG[v] = NG(v) ∪ {v}. Likewise, given a set of vertices S ⊆ V (G), the open (respectively,
closed) neighborhood of S is defined to be the union of the open (respectively, closed)
neighborhoods of the vertices of S.

A path is a sequence of distinct vertices v1, v2, . . . , vm such that for each i with 1 󰃑
i 󰃑 m − 1 we have vivi+1 ∈ E(G). Given a pair of vertices u, v ∈ V (G), a uv-path is a
path v1, v2, . . . , vm such that u = v1, v = vm. A graph G is said to be connected if for each
pair of vertices u, v ∈ V (G) there exists a uv-path. A graph is disconnected if it is not
connected. The maximal connected subgraphs of G are its components. The set of these
components is denoted comp(G), and given a vertex v, the component of G that contains
the vertex v is denoted comp(G, v). If S ⊊ V (G) such that G− S has more components
than G does, then S is a vertex cut of G. We also view a path as a graph: the path Pn

is the graph with V (Pn) = {v1, . . . , vn} and E(Pn) = {vivi+1 : i = 1, . . . , n − 1}. A path
cover of G is a set of induced paths in G with the property that every vertex of G is in
exactly one path.

2.2 Zero forcing

In standard zero forcing and each of the variants discussed here, one starts with a graph
and colors every vertex of the graph either blue or white. Given a set of blue vertices
(with the other vertices colored white), a process is started during which vertices cause
white vertices to become blue. Each variant is defined by its color change rule, which
governs under what circumstances a vertex can cause a white vertex to become blue
during this process; the color change rule is customarily denoted by CCR-X, where X is
the associated parameter. When a vertex u causes a white vertex v to become blue, this
is referred to as forcing and denoted u → v. There is often a choice as to which vertex
is chosen to force v among those that can, but only one vertex can force v. It is worth
noting that once a vertex is blue, it will remain blue. In the variants discussed, the goal
is for every vertex in the graph to become blue, so the color change rule will be applied
until no further forces are possible. Two color change rules that we study are as follows.

• Standard zero forcing color change rule (CCR-Z): If a blue vertex u has a unique
white neighbor v, then u can force v to become blue.

• Positive semidefinite (PSD) zero forcing color change rule (CCR-Z+): If B is the set
of currently blue vertices, C is a component of G − B, and u is a blue vertex such
that NG(u) ∩ V (C) = {v}, then u can force v to become blue.
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Power domination on graphs was introduced in [11] before zero forcing was defined as
a separate parameter. Following the introduction of zero forcing in [2] and [7] and the
work of Brueni and Heath simplifying power domination in [6], power domination can be
viewed as the process of starting with a set of initially blue vertices B, coloring NG[B] blue
during time-step 1, and for time-steps k 󰃍 2, applying CCR-Z. We will also be discussing
rigid linkage forcing in Appendix B, but we defer the definition of its color change rule to
that section.

A standard zero forcing set of a graph G is a set of vertices B such that if B is the set of
initially blue vertices and CCR-Z is applied a sufficient number of times, then all vertices
of G become blue. The standard zero forcing number of a graph G, denoted Z(G), is the
minimum cardinality of a standard zero forcing set. A minimum standard zero forcing set
B of a graph G is a standard zero forcing set of G such that |B| = Z(G). A (minimum)
PSD forcing set and the PSD forcing number Z+(G) of a graph are defined analogously
using CCR-Z+ as the color change rule. The terms (minimum) power dominating set and
power domination number are defined analogously by applying CCR-Z to NG[B] where B
is the set of initially blue vertices.

2.3 Forcing and propagation

The process of coloring vertices blue has been viewed from various perspectives, including
performing only one force at a time or as many forces as are independently possible in
each step. In a forcing process applied to a forcing set B where exactly one white vertex
is forced blue in each time-step, a list of these forces in the order in which they occur
is known as a chronological list of forces. Note that a chronological list of forces of B
contains K = |V (G)|− |B| forces. Let F (k) be the set containing the one force u → v that
occurs during time-step k. Then this chronological list of forces can also be viewed as an
ordered set and denoted by F = {F (k)}Kk=1. Given a set of initially blue vertices, a great
deal of choice may occur in creating a chronological list of forces that colors all vertices
blue, because at each time-step there may be multiple vertices capable of being forced
and multiple vertices capable of forcing each such vertex. However, it is well-known that
for standard zero forcing and PSD forcing, the choice and order of forces does not affect
what vertices can be colored blue by a given set of initially blue vertices [2].

There are also times when considering a set of forces without reference to a specific
order may be useful; this is called a set of forces and denoted by F . For example, if
F = {F (k)}Kk=1 is a chronological list of forces, then F =

󰁖K
k=1 F

(k) is a set of forces.
A propagation process records the sequence of sets of vertices in which the forces take

place, assuming the set of blue vertices is fixed until the next round and all possible forces
occur simultaneously. More formally, for any fixed color change rule, for any graph G,
and for any initial set B of blue vertices, let B[0] = B(0) = B. For k 󰃍 1, define B(k)

to be the set of vertices that can be forced blue during time-step k of propagation, i.e.,
B(k) = {v : v can be forced by some u, given the set of blue vertices is B[k−1]}. Define B[k]

to be the set of vertices that are blue after time-step k, i.e., B[k] = B[k−1] ∪B(k). Suppose
B is a forcing set. Define the round function by rd(v) = k where k is the unique index
such that v ∈ B(k). Consider the propagation process for B, i.e., the sequence of blue sets
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B(k). Let t be the least k such that B[k] = V (G). For k = 1, . . . , t and for each vertex v
in B(k), choose a vertex uv such that uv can force v (in accordance with the color change
rule being used). Let F (k) = {uv → v : rd(v) = k}. The ordered set F of sets F (k) is a
propagating family of forces and F =

󰁖t
k=1 F

(k) is a propagating set of forces. For a given
propagating set of forces, a vertex v is active at time-step k if v is blue after time-step
k but v has not yet performed a force. Note that in a propagation process, the sets B(k)

and B[k] are uniquely determined by B. Furthermore, each of the sets B(k) and F (k) is
nonempty for k = 1, . . . , t.

Consider the standard zero forcing color change rule. For a set of forces F of a forcing
set B of G, each vertex v ∈ B defines a forcing chain Cv = (v = v0, v1, . . . , vk) where
vi−1 → vi ∈ F for i = 1, . . . k and vk does not perform a force. Every vertex of G appears
in exactly one forcing chain defined from F (note k = 0 is allowed with the forcing chain
(v0)). The chain set defined by F is the set of forcing chains C = {Cv}v∈B. The subgraph
of G induced by the vertices of a forcing chain is a path. For a set of PSD forces F of
B, similar sets of vertices are constructed by F , but in this case each vertex might force
multiple vertices, so rather than forming induced paths the process constructs induced
trees. For this reason, a set of PSD forces constructs forcing trees: For a vertex b in a
PSD forcing set B and a set of PSD forces F of B, define Vb to be the set of all vertices
w such that there is a sequence of forces b = v0 → v1 → · · · → vk = w in F (the empty
sequence of forces is permitted, i.e., b ∈ Vb). The forcing tree Tb is the induced subgraph
Tb = G[Vb]. The forcing tree cover (for a set of forces F ) is T = {Tb : b ∈ B} and every
vertex of G is a vertex of some tree in the forcing tree cover. Note that each vertex in a
PSD forcing set is the first vertex of a forcing tree, so the number of forcing trees is the
cardinality of the PSD forcing set [9].

Let B be a standard zero forcing set of a graph G. The standard propagation time of B
is pt(G,B) = t where t is the least k such that B[k] = V (G). The standard k-propagation
time of G is

pt(G, k) = min{pt(G,B) : B is a standard zero forcing set of G and |B| = k}.

Finally, the standard propagation time of a graph G is

pt(G) = min{pt(G,B) : B is a standard zero forcing set of G and |B| = Z(G)}.

A set of vertices B ⊆ V (G) is said to be an efficient standard zero forcing set if B is
a standard zero forcing set such that |B| = Z(G) and pt(G,B) = pt(G). Similarly B
is said to be a k-efficient standard zero forcing set if B is a standard zero forcing set
such that |B| = k and pt(G,B) = pt(G, k). For a PSD forcing set B of a graph G,
the PSD propagation time of B, denoted by pt+(G,B), the PSD k-propagation time of
G, denoted by pt+(G, k), and the PSD propagation time of G, denoted by pt+(G), are
defined analogously. The concepts of efficient PSD forcing sets and k-efficient PSD forcing
sets are also defined analogously. The terms power propagation time of B, denoted by
ppt(G,B), power k-propagation time ppt(G, k), and power propagation time ppt(G) are
defined analogously by setting B[0] = B, B[1] = NG[B], and for time-steps k 󰃍 2 applying
CCR-Z.
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3 Relaxed chronologies and parallel increasing path covers

In this section we formally define two related new structures, relaxed chronologies, which
generalize both chronological lists of forces and propagating families of forces, and parallel
increasing path covers, which model chain sets and carry additional information.

3.1 Relaxed chronologies

We start by presenting a flexible framework for discussing zero forcing, called a relaxed
chronology. To help introduce and motivate this framework, we offer the next example.

v1
v2 v3

v4

w1
w2 w3

w4

G

v1
v2 v3

v4

w1
w2 w3

w4

e

H

Figure 2: A zero forcing example.

Example 6. Consider the graphs G and H in Figure 2, which are identical except that
e = v2w3 ∈ E(H). B = {v1, w1} is a standard zero forcing set for both G and H, and the
ordered set (v1 → v2, w1 → w2, w2 → w3, v2 → v3, v3 → v4, w3 → w4) is a chronological
list of forces for both graphs. Note that F = (F (1) = {v1 → v2, w1 → w2}, F (2) = {w2 →
w3}, F (3) = {v2 → v3}, F (4) = {v3 → v4, w3 → w4}) is a propagating family of forces on
H. We can also view F as an ordered set of sets of forces in G with the forces in F (k) all
occurring in the k-th time-step. We particularly note that performing those forces at the
specified time-steps is consistent with the standard zero forcing color change rule. Indeed,
this would hold if F were any other propagating family of forces on H not involving a
force along e.

It is clear that neither a chronological list of forces nor a propagating family of forces
describes the process of F forcing in G in the preceding example, since F is neither one
with respect to G. In order to discuss the observations of Example 6 formally, we therefore
introduce a more general forcing process.

We define the process in terms of a fairly-generic color change rule CCR-X, with
correspondingly-named X-forces. The X-forcing color change rule CCR-X can be any
color change rule satisfying two specific properties outlined in the next definition.

Definition 7 (Consistent color change rule). A color change rule CCR-X is consistent if
it satisfies the following conditions for every graph G and set of all currently blue vertices
B:

1. The validity of the force u → v under CCR-X depends only on B and G.
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2. If u → v is a valid X-force and B ⊆ B′ with v ∕∈ B′, then u → v is a valid X-force
when exactly the vertices in B′ are blue.

Examples of consistent color change rules include those for standard zero forcing, PSD
forcing, skew zero forcing [15], or k-forcing [3], although we focus primarily on standard
and PSD forcing in this article. Neither the rigid linkage color change rule nor the minor
monotone floor of zero forcing color change rule [4] are consistent color change rules,
however.

Definition 8 (Set of possible forces). Let G be a graph, let CCR-X be a consistent color
change rule, and let B be any set of blue vertices. The set of possible X-forces for B in
G is

SX(G,B) = {u → v : u → v is a valid X-force in G with exactly the vertices in B blue}.

Definition 9 (Relaxed chronology). Let G be a graph, let CCR-X be a consistent color
change rule, and let B be an X-forcing set of G. Consider an ordered family F =
{F (k)}Kk=1, where each F (k) is a set of X-forces. Define

E
[0]
F = E

(0)
F = B, E

(k)
F = {v : u → v ∈ F (k) for some u}, and E

[k]
F =

k󰁞

j=0

E
(j)
F

for k = 1, 2, . . . , K. Then F is a relaxed chronology of X-forces for B on G if

1. F (k) ⊆ SX(G,E
[k−1]
F ) for k = 1, 2, . . . , K,

2. u1 → v, u2 → v ∈ F (k) implies u1 = u2, and

3. E
[K]
F = V (G).

In this case, we call {E [k]
F }Kk=0 the expansion sequence of B induced by F , each individual

E
[k]
F the k-th expansion of B induced by F , and K the completion time of F , which we

denote by ct(F). When the color change rule is clear from context, the X can be dropped.

Returning briefly to Example 6, observe that F is a relaxed chronology for B in both
G and H. More generally, any relaxed chronology for B in H that does not contain a
force along e is a relaxed chronology for B in G since G = H − e.

Notice that given an X-forcing set, we can inductively construct a relaxed chronology
by choosing a subset of the possibleX-forces at each time-step. Condition (2) of Definition
9 ensures that multiple vertices do not force the same vertex, while condition (3) ensures
that we do not terminate until some time after all vertices of G are blue. A particularly
unusual feature of this process is that we will allow for F (k) to be the empty set since we
allow any subset F (k) of the valid X-forces at each step to be performed. Hence, ct(F) is
not necessarily the first time-step when all of V (G) is blue.

Observe that relaxed chronologies generalize both propagating families of forces and
chronological lists of forces. If F (k) is maximal for all k, then the expansion sequence {E [k]

F }
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reduces to {B[k]}, the set of vertices that are blue after round k using the customary X-
propagation process. Additionally, if |F (k)| = 1 for all k, then F reduces to a chronological
list of forces. For standard or PSD forcing, any set of forces of a relaxed chronology is also
the set of forces of some chronological list of forces, but is not necessarily a propagating
set of forces.

In the special case of the standard zero forcing color change rule, we define analogs of
two definitions from zero forcing.

Definition 10 (Active times and chain set). Let F = {F (k)}Kk=1 be a relaxed chronology
of forces for the standard zero forcing color change rule on a graph G.

1. For v ∈ V (G), the F-active times actF(v) ⊆ {0, 1, 2, . . . , K} are the time-steps
when v is active with respect to F , that is, k ∈ {0, 1, 2, . . . , K} is in actF(v) if and
only if v is blue after time-step k and has not performed a force (the F can be
omitted when it is clear from context).

2. The chain set defined by F is the chain set of the underlying set of forces
󰁖K

k=1 F
(k).

Note that we use the term ‘active’ for a vertex that is blue but has not yet performed
a force, but for a consistent color change rule, one does not need to know whether a vertex
is active to determine whether it can perform a force. This is in contrast to the use of
‘active’ in forcing for minor monotone floors and rigid linkage forcing, where in some cases
one must know whether or not a vertex is active to determine whether it can perform a
force [4, 10].

3.2 Parallel increasing path covers

Using the framework of relaxed chronologies, we can now develop a model of chain sets
from a global perspective. The key objects in this new perspective are structures called
parallel increasing path covers. To help motivate and introduce this model and these
structures, we consider another example.

v1,0
v1,1 v1,2

v1,3

v2,0
v2,1 v2,2

v2,3

v3,0
v3,1 v3,2

v3,3

G

v1,0
v1,1 v1,2

v1,3

v2,0
v2,1 v2,2

v2,3

v3,0
v3,1 v3,2

v3,3

H

Figure 3: Another zero forcing example.

Example 11. Consider the graphs in Figure 3. B = {v1,0, v2,0, v3,0} is a standard zero
forcing set for each, and F = {F (k)}8k=1 = ({v1,0 → v1,1}, ∅, {v2,0 → v2,1}, {v1,1 → v1,2,
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v3,0 → v3,1}, {v2,1 → v2,2}, {v1,2 → v1,3, v3,1 → v3,2}, {v3,2 → v3,3}, {v2,2 → v2,3}) is a
relaxed chronology for both graphs. For each vertex vi,j, let Ai,j = actF(vi,j). Then we
obtain the following:

A1,0 = {0} A1,1 = {1, 2, 3} A1,2 = {4, 5} A1,3 = {6, 7, 8}
A2,0 = {0, 1, 2} A2,1 = {3, 4} A2,2 = {5, 6, 7} A2,3 = {8}
A3,0 = {0, 1, 2, 3} A3,1 = {4, 5} A3,2 = {6} A3,3 = {7, 8}.

From these sets, we observe some interesting properties, which hold for both G and H:

1. Only one vertex per forcing chain is active after a given time-step, so for each
i ∈ {1, 2, 3}, the multiset of sets {Ai,j}3j=0 partitions the set {0, 1, 2, . . . , 8}.

2. If two vertices vi1,j1 and vi2,j2 are adjacent but are not contained in the same forcing
chain, then

Ai1,j1 ∩ Ai2,j2 ∕= ∅.
To further explore these two properties we provide the following definitions. Note that

if S1 and S2 are sets of integers such that x1 < x2 for all x1 ∈ S1 and x2 ∈ S2, then we
write S1 < S2.

Definition 12 (Block partition). Let K ∈ N, and let A = {Aj}nA−1
j=0 be a partition

of the set {0, 1, 2, . . . , K} into nA parts. If j1 < j2 implies that Aj1 < Aj2 for each
pair j1, j2 ∈ {0, 1, 2, . . . , nA − 1}, then we say that A = (Aj)

nA−1
j=0 is a block partition of

{0, 1, 2, . . . , K}.

Example 13. Consider the sets A1 = {0}, A2 = {1, 2, 3}, and A3 = {4, 5}. Then
A = {A1, A2, A3} is a block partition of {0, 1, . . . , 5}. Also the set Ai = {Ai,j}3j=0 in
Example 11 is a block partition of {0, 1, . . . , 8} for each i ∈ {1, 2, 3}. However, the sets
B1 = {0, 2}, B2 = {1, 3}, and B3 = {4, 5} do not form a block partition of {0, 1, . . . , 5}.

Definition 14 (Parallel increasing path cover). Let G be a graph, and let Q = {Qi}mi=1

be a path cover of G with ni = |V (Qi)| for each i ∈ {1, 2, . . . ,m}. Label V (G) so that
the vertices of the path Qi are {vi,j}ni−1

j=0 in path order (i.e., vi,j1vi,j2 ∈ E(G) if and only

if |j1 − j2| = 1). Choose K ∈ N and for each i ∈ {1, 2, . . . ,m}, let Ai = (Ai,j)
ni−1
j=0 be

a block partition of {0, 1, 2, . . . , K}, where we say Ai,j corresponds to vertex vi,j. If for
distinct i1, i2 ∈ {1, 2, . . . ,m},

vi1,j1vi2,j2 ∈ E(G) implies Ai1,j1 ∩ Ai2,j2 ∕= ∅, (1)

then Q is a parallel increasing path cover of G, with the multiset of block partitions
{Ai}mi=1 as a witness or witnessing that fact. Define the parallel increasing path cover
number to be

PIP(G) = min
󰀋
|Q| : Q is a parallel increasing path cover of G

󰀌
.

If Q is a parallel increasing path cover of G such that |Q| = PIP(G), then we say that Q
is a minimum parallel increasing path cover of G.

Note that in the previous definition, one can always choose sufficiently large K ∈ N
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and define a multiset of block partitions {Ai}mi=1 of {0, 1, 2, . . . , K} where each Ai,j cor-
responds to a vertex vi,j, but the key property of parallel increasing path covers is that a
multiset of block partitions can be chosen that satisfies the property in (1).

For the graphs in Figure 3, the bold edges form a path coverQ, and the block partitions
Ai = (Ai,j)

3
j=0 in Example 11 witness that Q is a parallel increasing path cover of those

graphs. As another example, for the tree in Figure 4(a), a path cover Q is indicated by
bold edges. The following multiset of block partitions {Ai}3i=1 is a witness that Q is a
parallel increasing path cover of that tree:

A1 : A1,0 = {0} A1,1 = {1} A1,2 = {2, 3, 4}
A2 : A2,0 = {0, 1} A2,1 = {2} A2,2 = {3, 4}
A3 : A3,0 = {0} A3,1 = {1, 2} A3,2 = {3} A3,3 = {4}.

v1,0

v1,1

v1,2

v2,0

v2,1

v2,2

v3,0

v3,1

v3,2

v3,3

(a)

v1,0
v1,1 v1,2

v2,0
v2,1 v2,2

v3,0
v3,1 v3,2 v3,3

(b)

Figure 4: A parallel increasing path cover shown (a) with the tree drawn naturally, and
(b) redrawn with the paths horizontal.

The name parallel increasing path cover has been chosen because given a parallel
increasing path cover Q, for each Qi, Qj ∈ Q distinct, G [V (Qi) ∪ V (Qj)] has the familiar
structure of a graph on two parallel paths. However, even though the structure of two
parallel paths might be very familiar and thus be a desirable property for a definition,
a set of paths that taken pairwise are parallel paths does not necessarily form a parallel
increasing path cover, as seen in Figure 5.

Figure 5: A set of paths that is not a parallel increasing path cover, but where the vertices
of any two paths induce a graph on two parallel paths.
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Rather, an additional property is needed, which is the requirement that if two elements
of distinct block partitions correspond to two adjacent vertices, then these elements must
have a nonempty intersection, as stated in (1). This property ensures that in some sense
the paths progress in the same direction and in a manner consistent with zero forcing.

3.3 The relationship between relaxed chronologies, zero forcing, and parallel
increasing path covers

The next theorem explicitly establishes the connection between parallel increasing path
covers and relaxed chronologies in standard zero forcing.

Theorem 15. Let G be a graph. Then Q is a parallel increasing path cover of G if and
only if Q is a chain set for some relaxed chronology F of a standard zero forcing set B
of G. Under this correspondence, a multiset of block partitions {(Ai,j)

ni−1
j=0 }mi=1 that is a

witness of Q as a parallel increasing path cover corresponds to a relaxed chronology F
where {(Ai,j)

ni−1
j=0 }mi=1 records the active time-steps for vertices {vi,j}ni−1

j=0
m
i=1 with {vi,0}mi=1

as the zero forcing set.

Proof. Let Q be a parallel increasing path cover of G, with the vertices being labeled
{vi,j}ni−1

j=0
m
i=1 as in Definition 14 and the multiset of block partitions {(Ai,j)

ni−1
j=0 }mi=1 of

{0, 1, 2, . . . , K} as a witness. For k = 0, 1, . . . , K, define E [k] =
󰀋
vi,j : minAi,j 󰃑 k

󰀌
. We

show that when E [k] is blue, then the remaining white vertices in E [k+1] can be forced
blue with forces along the paths using the standard zero forcing color change rule. This
implies that {E [k]}Kk=0 is an expansion sequence of B = E [0] = {vi,0}mi=1 for some relaxed
chronology of forces F where all forces occur along the paths in Q.

Suppose the vertices in E [k] =
󰀋
vi,j : minAi,j 󰃑 k

󰀌
are blue, and consider va,b ∈

E [k+1] \E [k]. So Qa is the unique element of Q containing va,b and there is a unique vertex
va,b−1 preceding va,b in Qa. Observe that maxAa,b−1 = k. Then after time-step k, va,b−1

is blue, and va,b is the only white neighbor of va,b−1 in Qa. Also, since {(Ai,j)
ni−1
j=0 }mi=1 is

a multiset of block partitions of {0, 1, 2, . . . , K} witnessing that Q is a parallel increasing
path cover, if va,b−1 is adjacent to a vertex va′,b′ /∈ Qa, then Aa,b−1 ∩ Aa′,b′ ∕= ∅. Then
va′,b′ ∈ E [k] because maxAa,b−1 = k. Thus va,b is the unique neighbor of va,b−1 in G that
is not blue, and va,b−1 → va,b ∈ S(G,E [k]). Hence, the remaining white vertices in E [k+1]

can be colored blue by E [k] performing forces along the paths in Q. Thus we can select
F (k) ⊆ S(G,E [k]) so that F = {F (k)}Kk=0 is a relaxed chronology of standard forces. By
construction, {(Ai,j)

ni−1
j=0 }mi=1 records precisely the active time-steps of the corresponding

vertices {vi,j}ni−1
j=0

m
i=1.

We now prove the reverse direction. Let C = {Ci}mi=1 be the chain set given by
the relaxed chronology of forces F = {F (k)}Kk=1 acting on the standard zero forcing set
B = {vi,0}mi=1 of G. For each forcing chain Ci, label the vertices {vi,j}ni−1

j=0 so that vi,j →
vi,j+1 ∈

󰁖K
k=1 F

(k), and define {Ai,j}ni−1
j=0 by Ai,j = actF(vi,j). By construction, (Ai,j)

ni−1
j=0

is a block partition of {0, 1, 2, . . . , K} for all i. Now suppose there exists vi1,j1vi2,j2 ∈ E(G)
such that i1 ∕= i2 and Ai1,j1 ∩ Ai2,j2 = ∅. Each Ai,j is a set of consecutive integers, so
without loss of generality we assume that Ai1,j1 < Ai2,j2 . However, this implies K ∕∈ Ai1,j1 ,
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so there exists k ∈ {1, 2, . . . , K} and a vertex vi1,j1+1 such that vi1,j1 → vi1,j1+1 during
time-step k of F . Then k− 1 ∈ Ai1,j1 , so k− 1 < y for all y ∈ Ai2,j2 . In particular, vi2,j2 is
white when vi1,j1 forces vi1,j1+1. Since vi2,j2 ∕∈ Ci1 , we know vi2,j2 ∕= vi1,j1+1. We conclude
that when vi1,j1 forces vi1,j1+1, it has two white neighbors, which is a contradiction. Thus,
if vi1,j1vi2,j2 ∈ E(G) with i1 ∕= i2, then Ai1,j1 ∩ Ai2,j2 ∕= ∅, and C is a parallel increasing
path cover.

Corollary 16. For any graph G, PIP(G) = Z(G).

Proof. Let Q be a minimum parallel increasing path cover of G with the multiset of
block partitions {(Ai,j)

ni−1
j=0 }mi=1 as a witness. Let B = {vi,0}mi=1 be the set of vertices

corresponding to {Ai,0}mi=1. By Theorem 15, B is a zero forcing set of G, and thus
Z(G) 󰃑 |B| = |Q| = PIP(G).

Now let B be a minimum zero forcing set of G, F be a relaxed chronology of forces of
B on G, and C = {Ci}mi=1 be the chain set defined by F with the vertices of the path Ci

labeled {vi,j}ni−1
j=0 in path order. Let {(Ai,j)

ni−1
j=0 }mi=1 be such that each Ai,j = actF(vi,j).

By Theorem 15, C is a parallel increasing path cover of G with the multiset of block
partitions {(Ai,j)

ni−1
j=0 }mi=1 as a witness. Thus, PIP(G) 󰃑 |C| = |B| = Z(G).

It is known that given a graph G and a zero forcing set B of G, a chronological list
of forces acting on B will create a chain set of G, which is a partition of the vertices of
G. However, given a graph G, a parallel increasing path cover Q of G, and a multiset of
block partitions {Ai}mi=1 that is a witness for Q, Definition 14 shows that the elements of
the block partitions have a direct relationship with the edge set of G:

For i1, i2 distinct, vi1,j1vi2,j2 ∈ E(G) =⇒ Ai1,j1 ∩ Ai2,j2 ∕= ∅.

Due to this, not only can one find parallel increasing path covers of a graph G, but one
can also reverse this process. Given a number K ∈ N and a multiset of block partitions
{Ai}mi=1 of {0, 1, 2, . . . , K}, one can construct the family of graphs for which {Ai}mi=1

outlines a relaxed chronology of forces. The specifics of this fact are laid out in the next
definition and corollary.

Definition 17 (Family of graphs induced by {Ai}mi=1). Let K,m ∈ N and for each
i ∈ {1, 2, . . . ,m} let Ai = (Ai,j)

ni−1
j=0 be a block partition of {0, 1, 2, . . . , K}. Let V =

{vi,j}ni−1
j=0

m
i=1, E1 =

󰀋
vi,j1vi,j2 : |j1 − j2| = 1

󰀌
, and

E2 =
󰀋
vi1,j1vi2,j2 : i1 ∕= i2 and Ai1,j1 ∩ Ai2,j2 ∕= ∅

󰀌
.

For each E ⊆ E2, define G(E) to be the graph with vertex set V and edge set E1 ∪ E.
Furthermore, define G{Ai}mi=1

to be the set of all graphs of the form G(E) for some E ⊆ E2.
We refer to G{Ai}mi=1

as the family of graphs induced by {Ai}mi=1.

Example 18. Consider the multiset of block partitions {A1,A2,A3} given by

A1: A1,0 = {0} A1,1 = {1, 2, 3} A1,2 = {4}
A2: A2,0 = {0, 1, 2, 3, 4}
A3: A3,0 = {0} A3,1 = {1} A3,2 = {2} A3,3 = {3} A3,4 = {4}.
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Recall from Definition 17 that the vertices vi,j are associated with the sets Ai,0, . . . , Ai,ni−1,
so define the set of vertices V = {v1,0, v1,1, v1,2, v2,0, v3,0, v3,1, v3,2, v3,3, v3,4}. Define the sets
of edges E1 and E2 as follows:

E1 = {v1,0v1,1, v1,1v1,2, v3,0v3,1, v3,1v3,2, v3,2v3,3, v3,3v3,4},

E2 = {v1,0v2,0, v2,0v3,0, v1,0v3,0, v1,1v2,0, v2,0v3,1, v1,1v3,1,
v2,0v3,2, v1,1v3,2, v2,0v3,3, v1,1v3,3, v1,2v2,0, v2,0v3,4, v1,2v3,4}.

Then G(E2) is the graph with the largest edge set among graphs in G{Ai}3i=1
, and is shown

in Figure 6. The graph G(∅) has the smallest edge set among graphs in G{Ai}3i=1
. In

Figure 6, the bold edges are the edges of G(∅). If we choose any H that is a subgraph of
G(E2) and contains G(∅), then we obtain another graph in G{Ai}3i=1

such that {A1,A2,A3}
defines a multiset of block partitions for the parallel increasing path cover induced by the
edges in E1.

v1,0 v1,1 v1,2

v2,0

v3,0 v3,1 v3,2 v3,3 v3,4

Q1

Q2

Q3

Figure 6: The graph G(E2), with the edges in E1 shown in bold.

Theorem 19. Let G be a graph.

1. If G ∈ G{Ai}mi=1
for some multiset of block partitions {Ai}mi=1 of {0, 1, 2, . . . , K} with

Ai = (Ai,j)
ni−1
j=0 , then C = {Ci}mi=1 with Ci = G

󰀅
{vi,j}ni−1

j=0

󰀆
forms a chain set induced

by a relaxed chronology of forces F acting on the zero forcing set {vi,0}mi=1 of G.

2. Z(G) = min{m : G ∈ G{Ai}mi=1
for some multiset of block partitions {Ai}mi=1}.

Proof. For (1), since G ∈ G{Ai}mi=1
, we have that V (G) = {vi,j}ni−1

j=0
m
i=1 and E(G) = E1∪E,

where E1 =
󰀋
vi,j1vi,j2 : |j1 − j2| = 1

󰀌
, and E ⊆ E2 =

󰀋
vi1,j1vi2,j2 : i1 ∕= i2 and Ai1,j1 ∩

Ai2,j2 ∕= ∅
󰀌
. Since E1 ⊆ E(G), there exist m path subgraphs {Ci}mi=1 of G whose vertex

sets V (Ci) = {vi,j}ni−1
j=0 partition V (G). Letting each set Ai,j correspond to each vertex

vi,j, the fact that E(G) \ E1 = E ⊆ E2 ensures that C is a parallel increasing path cover
of G as witnessed by {(Ai,j)

ni−1
j=0 }mi=1. The result then follows by Theorem 15.

For (2), it follows from Corollary 16 and (1) that Z(G) = PIP(G) 󰃑 m′, wherem′ is the
minimum defined in the statement of the corollary. Now let B be a minimum zero forcing
set of G, let F be a chronological list of forces of B on G, and C = {Ci}|B|

i=1 be the chain
set defined by F , with each forcing chain Ci having vertex set {vi,j}ni−1

j=0 . Next, define the

multiset of block partitions {(Ai,j)
ni−1
j=0 }|B|

i=1 by setting Ai,j = actF(vi,j). By Theorem 15,

the electronic journal of combinatorics 32(2) (2025), #P2.19 15



C is a parallel increasing path cover of G as witnessed by {(Ai,j)
ni−1
j=0 }|B|

i=1. Then, if we let

E1 =
󰀋
vi,j1vi,j2 : |j1 − j2| = 1

󰀌
, and E2 =

󰀋
vi1,j1vi2,j2 : i1 ∕= i2 and Ai1,j1 ∩ Ai2,j2 ∕= ∅

󰀌
, it

follows that E(G) = E1∪E, where E ⊆ E2. Thus, G ∈ G{Ai}|B|
i=1

, and so m′ 󰃑 |B| = Z(G),

completing the proof.

Corollary 20. Let G be a graph, B be a standard zero forcing set of G, F be a propagating
family of forces of B on G, and let {Ai}|B|

i=1 = {(Ai,j)
ni−1
j=0 }|B|

i=1 be a multiset of block

partitions that record the F-active time-steps of the vertices {vi,j}ni−1
j=0

|B|
i=1 of the chain set

C = {Ci}|B|
i=1 defined by F . Then for each H ∈ G{Ai}|B|

i=1
,

Z(H) 󰃑 |B| and pt(H,B) 󰃑 pt(G,B).

If in addition, B is an efficient standard zero forcing set of G, then

Z(H) 󰃑 Z(G) and pt(H,B) 󰃑 pt(G).

Proof. Since H ∈ G{Ai}|B|
i=1

, it follows that B is a zero forcing set of H and F is a relaxed

chronology of forces of B on H. Thus Z(H) 󰃑 |B| and pt(H,B) 󰃑 ct(F) = pt(G,B)
because F is a propagating family of forces. If in addition B is an efficient zero forcing
set, then B is a minimum zero forcing set and Z(H) 󰃑 Z(G). Furthermore, pt(G,B) =
pt(G).

Since G(∅) consists of m disjoint paths by Definition 17, it follows that Z(G(∅)) = m.
We can use Theorem 19 to determine Z(G(E2)). It is well known that Z(G) 󰃍 δ(G) where
δ(G) denotes the minimum degree among vertices of G. A set A ⊆ V (G) is a clique if u
and v are adjacent for u ∕= v, u, v ∈ A.

Proposition 21. Let K,m ∈ N with m 󰃍 1. Then δ(G(E2)) = Z(G(E2)) = m unless
ni = 1 for all i = 1, . . . ,m, in which case G(E2) ∼= Km and Z(G(E2)) = m− 1.

Proof. If ni = 1 for all i = 1, . . . ,m, i.e., E1 = ∅, then G(E2) ∼= Km and Z(G(E2)) =
m − 1. So assume E1 has an edge, which implies |V | 󰃍 m + 1. Consider the chain
set Ci = G

󰀅
{vi,j}ni−1

j=0

󰀆
in Corollary 19. If ni = 1, then actF(vi,0) = {0, . . . , K}, so vi,0

is adjacent to every other vertex and therefore has at least m neighbors. Now assume
ni > 1. For k = 1, . . . , K, let Ak = {vi,j : k ∈ actF(vi,j)}, and note that Ak induces a
clique for k = 0, . . . , K. Since every vertex vi,j is in some Ak, it has m− 1 neighbors not
in its chain. And since its chain has at least two vertices, it has at least one neighbor in
its chain. Thus m 󰃑 δ(G(E2) 󰃑 Z(G(E2)). Since A0 is a standard zero forcing set of size
m, Z(G(E2)) = m.

Remark 22. For readers familiar with the minor monotone floor of zero forcing [4, 14],
we note that one can modify Definition 14 (and necessary prior definitions) to define a
structure analogous to parallel increasing path covers for which corresponding versions of
Theorem 15 and Corollary 16 hold. Chain sets for the minor monotone floor of zero forcing
in a graph G correspond to chain sets for standard zero forcing in some supergraph of G
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on the same vertex set. Thus, to create an analog of Definition 14 for the minor monotone
floor of zero forcing, we simply allow each Q to be a path cover of some supergraph of G
on the same vertex set. Observe that property (1) is unchanged, as this is not related to
Q being a path cover. The corresponding change for Definition 17 is to consider graphs
of the form G(E) = (V,E) with E ⊆ E1 ∪ E2.

4 Applications of parallel increasing path covers

We now apply the results of the previous section to standard and positive semidefinite
zero forcing. Notice that in a parallel increasing path cover, the relationship between
the multisets of block partitions of time-steps and the edge set is based on nonempty
intersections as described in (1). This property is preserved under certain operations,
which we can use to generalize known results and establish new ones.

Hogben et al. defined the terminus and reversal of a set of forces in [13]. They then
compared the propagation time for a reversal with the original set of forces. We adapt
these definitions to relaxed chronologies of forces.

Definition 23 (Terminus and reversal). Let F = {F (k)}Kk=1 be a relaxed chronology of
forces for a standard zero forcing set B of a graph G.

1. The terminus of F , denoted Term(F), is the set of vertices of G that do not perform
any forces in F .

2. The reversal of F , denoted Rev(F), is the result of reversing the forces and time-

steps in F , i.e., Rev(F) = {F (k)
Rev}Kk=1 with

F
(k)
Rev = {v → u : u → v ∈ F (K−k+1)}.

Observe that the terminus depends only on the set of forces in the relaxed chronology.
The next definition is equivalent to the definition of the standard propagation time of a
set of standard forces in [13] and extends the definition to other types of zero forcing.

Definition 24 (Propagation time of forces). Let CCR-X be a consistent color change
rule, G be a graph, and B be an X-forcing set of G. For a set of X-forces F of B, define
E(0) = B and for t 󰃍 0, define E(t+1) to be the set of vertices w such that v → w ∈
F ∩ SX(G,

󰁖t
i=0 E

(i)) for some v. The X-propagation time of F in G, denoted ptX(G,F ),
is the least t0 such that V (G) =

󰁖t0
t=0 E

(t). For a relaxed chronology F , the X-propagation
time of F in G, denoted ptX(G,F), is the propagation time of the underlying set of forces
in F .

It is clear that ptX(G,F) 󰃑 ct(F). The next lemma restates [5, Theorem 2.6], gener-
alizes [13, Observation 2.4] to relaxed chronologies in the obvious manner, and improves
[13, Corollary 2.10].

Lemma 25. Let G be a graph, B be a standard zero forcing set of G, and F be a relaxed
chronology of forces for B. Then
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1. [5] Term(F) is a standard zero forcing set of G,

2. Rev(F) is a relaxed chronology for Term(F), and

3. pt(G,Rev(F)) = pt(G,F).

Proof. For (2), let F = {F (k)}Kk=1. By Theorem 15, F induces a parallel increasing path
cover Q with corresponding multiset of block partitions {(Ai,j)

ni−1
j=0 }mi=1 recording active

time-steps. Define the multiset of block partitions {(Ri,j)
ni−1
j=0 }mi=1 by

N ∈ Ai,j ⇐⇒ K −N ∈ Ri,ni−j−1.

Then {(Ri,j)
ni−1
j=0 }mi=1 is a multiset of block partitions of {0, 1, 2, . . . , K} that is also a

witness thatQ is a parallel increasing path cover ofG. The vertices of Term(F) correspond
precisely to {Ri,0}mi=1, so Theorem 15 implies Rev(F) is a relaxed chronology of forces for
Term(F) with ct(Rev(F)) = ct(F).

For (3), note that although [13, Corollary 2.10] is stated for sets of forces of minimum
zero forcing sets, it is a consequence of Lemma 2.9, which does not assume minimality.
Thus pt(G,Rev(F)) 󰃑 pt(G,F). Equality follows by noting that Rev(Rev(F)) = F .

Remark 26. Note that relaxed chronologies can give a simpler proof that pt(G,Rev(F)) 󰃑
pt(G,F) than that given in Lemma 2.9 and Corollary 2.10 in [5] (the reader is invited to
consult the proof of [5, Lemma 2.9], where a new parameter Qt(F) is introduced for a set
F of forces). Let F ′ be the relaxed chronology obtained by propagating the forces in F .
Since ct(Rev(F ′)) = ct(F ′) and F and F ′ have the same underlying set of forces (as do
Rev(F) and Rev(F ′)), we see that

pt(G,Rev(F)) = pt(G,Rev(F ′)) 󰃑 ct(Rev(F ′)) = ct(F ′) = pt(G,F ′) = pt(G,F).

We can take further advantage of the structure of parallel increasing path covers and
block partitions to obtain additional results by focusing on when vertices are active. Of
particular note, we utilize this additional information provided by parallel increasing path
covers to compare each of PSD propagation time and power propagation time to standard
propagation time. Specifically, we are able to show that if G is a graph and m ∈ N such
that m 󰃍 Z(G), then

pt+(G,m) 󰃑
󰀛
pt(G,m)

2

󰀜
and ppt(G,m) 󰃑

󰀛
pt(G,m)

2

󰀜

(see Theorems 31 and 36).

Definition 27 (Sets V N−
F , V N

F , V N+
F , V

[M,N ]
F ). Let F = {F (k)}Kk=1 be a relaxed chronology

of forces for a graph G and some standard zero forcing set. For any N ∈ {0, 1, . . . , K},
define the following partition of V (G):

V N−
F = {v ∈ V (G) | actF(v) ⊆ {0, 1, . . . , N − 1}},
V N
F = {v ∈ V (G) | N ∈ actF(v)}, and

V N+
F = {v ∈ V (G) | actF(v) ⊆ {N + 1, N + 2, . . . , K}}.
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Now for any 0 󰃑 M 󰃑 N 󰃑 K, define

V
[M,N ]
F = (V M

F ∪ V M+
F ) ∩ (V N−

F ∪ V N
F ).

Note that V N
F consists of the vertices active after time-step N , while V N−

F and V N+
F

partition the remaining vertices into ones that have performed a force during some time-
stepN ′ < N and those who do not become blue until some time-stepN ′ > N , respectively.
Likewise, V

[M,N ]
F consists of the vertices which are active at some time-step k with M 󰃑

k 󰃑 N .

Lemma 28. Let F = {F (k)}Kk=1 be a relaxed chronology of forces for a graph G and some
standard zero forcing set B, and let N ∈ {0, 1, . . . , K}.

1. B is a zero forcing set of H = G[V
[0,N ]
F ] with pt(H,B) 󰃑 N .

2. B′ = V N
F is a zero forcing set of H ′ = G[V

[N,K]
F ] with pt(H ′, B′) 󰃑 K −N .

Proof. By Theorem 15, F induces a parallel increasing path cover Q with witness
{(Ai,j)

ni−1
j=0 }mi=1, where Ai,j = actF(vi,j). Denote the vertices in V N

F as {vi,ji}mi=1, and note
that these vertices correspond to the members of the block partitions Ai,ji containing N .

For (1), form a path cover Q′ of H by restricting Q to the vertices {vi,j}jij=0
m
i=1.

The multiset of block partitions {(A′
i,j)

ji
j=0}mi=1 formed by starting with {(Ai,j)

ji
j=0}mi=1 and

removing all elements in {N + 1, N + 2, . . . , K} produces a multiset of block partitions
of {0, 1, . . . , N}. Notice that A′

i1,j1
∩ A′

i2,j2
∕= ∅ precisely when Ai1,j1 ∩ Ai2,j2 ∕= ∅. Hence,

{(A′
i,j)

ji
j=0}mi=1 is a witness that Q′ is a parallel increasing path cover of H. The conclusions

in (1) then follow from Theorem 15.
For (2), form Q′ by restricting Q to the vertices {vi,j}ni−1

j=ji
m
i=1 in H ′. Now, start with

{(Ai,j)
ni−1
j=ji

}mi=1,, remove all elements in {0, 1, . . . , N−1}, and subtractN from all remaining
elements in each partition to obtain a multiset of block partitions of {0, 1, . . . , K − N}.
By similar reasoning as given above, this is a witness that Q′ is a parallel increasing path
cover of H ′, and Theorem 15 implies (2).

Corollary 29. Let F = {F (k)}Kk=1 be a relaxed chronology of forces for a graph G for
some standard zero forcing set. For any 0 󰃑 M < N 󰃑 K, V M

F and V N
F are zero forcing

sets of G[V
[M,N ]
F ], and both sets have propagation time at most N −M .

Proof. The results for V M
F follow from first applying part (1) of Lemma 28 with N and

then applying part (2) with M . Lemma 25 then implies the corresponding results for V N
F ,

as this is Term(F ′) for the relaxed chronology F ′ = {F (k+M)}N−M
k=1 on the graph G[V

[M,N ]
F ]

with zero forcing set V M
F .

Using these techniques we also obtain results for positive semidefinite zero forcing and
propagation time.

Lemma 30. Let F = {F (k)}Kk=1 be a relaxed chronology of forces for a graph G and some
standard zero forcing set. Then no vertices in V N−

F are adjacent to vertices in V N+
F . In

particular, if both sets are nonempty, then V N
F is a vertex cut of G.
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Proof. Using Theorem 15, F induces a parallel increasing path coverQ with corresponding
multiset of block partitions {(Ai,j)

ni−1
j=0 }mi=1. Consider vi1,j1 ∈ V N−

F and vi2,j2 ∈ V N+
F with

corresponding sets of active time-steps Ai1,j1 and Ai2,j2 . By Definition 14, if vi1,j1vi2,j2 ∈
E(G) for i1 ∕= i2, then it must be that Ai1,j1 ∩ Ai2,j2 ∕= ∅, and if vi1,j1vi1,j2 ∈ E(G)
with i1 = i2 and j1 < j2, it must be that max(Ai1,j1) + 1 = min(Ai1,j2). Neither of these
situations can occur since Ai1,j1 ⊆ {0, 1, . . . , N−1} and Ai2,j2 ⊆ {N+1, N+2, . . . , K}.

Theorem 31. Let G be a graph and m ∈ N such that m 󰃍 Z(G). Then

pt+(G,m) 󰃑
󰀛
pt(G,m)

2

󰀜
.

Proof. Let B be a zero forcing set of G of size m 󰃍 Z(G) such that pt(G,B) = pt(G,m),

with corresponding propagating family of forces F = {F (k)}pt(G,m)
k=1 (where F (k) denotes

the set of forces during time-step k). Using Theorem 15, this induces a parallel increasing
path cover Q = {Qi}mi=1, where each Qi = {vi,j}ni−1

j=0 corresponds to a block partition

(Ai,j)
ni−1
j=1 of {0, 1, 2, . . . , pt(G,m)}. Now set N =

󰁯
pt(G,m)

2

󰁰
, and let B′ = V N

F . If either

V N−
F or V N+

F is empty then pt(G,m) 󰃑 1 and the result is immediate, so suppose that
V N−
F and V N+

F are nonempty sets of vertices. Then by Lemma 30, B′ is a vertex cut of
G, and as a result H1 = G[V N−

F ] and H2 = G[V N+
F ] are disjoint sets of components of

G−B′. By the definition of the PSD color change rule, PSD forcing in H1 = G[V N−
F ] and

H2 = G[V N+
F ] with B′ blue will occur independently and simultaneously. Using Corollary

29 on H1 and H2, we conclude that

pt+(G,B′) 󰃑 max{pt(H1, B), pt(H2, B)} 󰃑 max{pt(G,B)−N,N} =

󰀛
pt(G,m)

2

󰀜
.

Remark 32. In the preceding proof, B′ is chosen to be V N
F for N =

󰁯
pt(G,m)

2

󰁰
, but any

choice of N such that 0 󰃑 N 󰃑 pt(G,m) will yield a PSD forcing set of G of size m
with propagation time bounded above by max{pt(G,m) − N,N}. In particular, when

pt(G,m) is odd, the choice of N =
󰁭
pt(G,m)

2

󰁮
also establishes the bound in Theorem 31.

Throttling minimizes the sum of the resources used to accomplish a task (number
of blue vertices) and the time needed to complete that task (propagation time); see [14,
Chapter 10] for more information. Define th+(G,m) = m+pt+(G,m), the minimum throt-
tling that can be achieved with m vertices, and th+(G) = minZ+(G)󰃑m󰃑|V (G)| th+(G,m).

Corollary 33. For any graph G,

th+(G) 󰃑 min
m󰃍Z(G)

󰀓
m+

󰀛
pt(G,m)

2

󰀜󰀔
.

Corollary 34. For any graph G such that Z+(G) = Z(G),

pt+(G) 󰃑
󰀛
pt(G)

2

󰀜
.
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Remark 35. In [16], it was shown that for t ∈ {1, 2, 3}, Z+(Ps □ Pt) = Z(Ps □ Pt) =
min{s, t}, where Ps□Pt denotes the Cartesian product of the path graphs Ps and Pt, i.e.,
the graph with vertex set V (Ps)×V (Pt) such that (u, v) is adjacent to (u′, v′) if and only
if (1) u = u′ and vv′ ∈ E(Pt), or (2) v = v′ and uu′ ∈ E(Ps). It was also shown that

pt(Ps □ Pt) = max{s, t} − 1, and pt+(Ps □ Pt) =
󰁯
max{s,t}−1

2

󰁰
. Thus the infinite class of

graphs Ps □ Pt establishes that the bound in Corollary 34 is sharp.

Note that in the proof of Theorem 31, we started with a relaxed chronology F =
{F (k)}Kk=1 and chose a single time-step of vertices V N

F as the PSD forcing set. One can
generalize this approach and choose multiple time-steps. For example, choosing B =
V

⌈K/4⌉
F ∪ V

⌊3K/4⌋
F would construct a PSD forcing set with pt+(G,B) 󰃑

󰀉
K
4

󰀊
. In general,

this technique multiplies the size of the zero forcing set by some positive integer ℓ, and
reduces propagation time by approximately a factor of 2ℓ.

Letting ppt(G,m) denote the power propagation time for sets of size m, we can also
establish power domination versions of the results above. While one can do this by directly
generalizing the techniques of this section, we will see that the results of the next section
simplify arguments significantly. Hence, we present the proof of the following theorem in
Appendix A.

Theorem 36. Let G be a graph and m ∈ N such that m 󰃍 Z(G). Then

ppt(G,m) 󰃑
󰀛
pt(G,m)

2

󰀜
.

5 Path bundles

In this section, we introduce path bundles (see Definition 41). These are sets of paths
contained in PSD forcing trees that are parallel increasing path covers for the induced
subgraph on the vertices in the bundle. We apply path bundles to compare PSD and
standard propagation times, and we establish a PSD analog of the reversal of standard
zero forcing. We start by showing that relaxed chronologies provide us a convenient
method of restricting forces to subgraphs.

Definition 37 (Restriction). Let G be a graph with induced subgraph H, and let CCR-X
be a consistent color change rule.

1. Given a set of X-forces F between the vertices in G, define its restriction to H,
denoted F |H , to be {v → u ∈ F : u, v ∈ V (H)}.

2. Given a relaxed chronology F = {F (k)}Kk=1 for some X-forcing set B of G, define its
restriction to H, denoted F|H , to be {F (k)|H}Kk=1.

Notice that in F|H , we preserve the time-step of each force. If F|H is a relaxed
chronology for some forcing set B′ of H, we have that ct(F|H) = ct(F). Additionally, it
is possible that for some k, F (k) ∕= ∅ and F (k)|H = ∅.
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Definition 38 (Forcing subtree). Let G be a graph, H be an induced subgraph of G,
and B be a PSD forcing set of G. Let F be a relaxed chronology of PSD forces of B on
G with expansion sequence {E [k]}Kk=0 and PSD forcing trees T = {Ti}|B|

i=1. A component
T of Ti ∩ H is a forcing subtree of Ti in H, and u ∈ V (T ) is an initial vertex if either

u ∈ B or there exists k ∈ N such that u ∈ E
(k)
F and v → u ∈ F (k) but v ∕∈ V (T ). When a

forcing subtree T is a path, we also call T a forcing subpath.

Lemma 39. Let G be a graph, H be an induced subgraph of G, B be a PSD forcing set
of G, and F be a relaxed chronology of PSD forces of B on G with forcing trees T . Let
B′ be the set of initial vertices in the forcing subtrees of T in H. Then B′ is a PSD
forcing set of H, and F|H defines a relaxed chronology of PSD forces for B′ in H with
pt+(H,F|H) 󰃑 pt+(G,F).

Proof. Let F = {F (k)}Kk=1 with corresponding expansion sequence {E [k]
F }Kk=0. We first

show that the PSD forces in F (k)|H are valid when E
[k−1]
F ∩ V (H) is blue. Consider

v → u ∈ F (k)|H . Since v → u ∈ F (k), u is the unique neighbor of v in some component

of G − E
[k−1]
F . The components of H − E

[k−1]
F are formed from induced subgraphs of

G− E
[k−1]
F , and hence v → u is a valid PSD force in H during time-step k.

We now claim that if (E
[k−1]
F ∩V (H))∪B′ is blue, then all vertices in (E

[k]
F ∩V (H))∪B′

will be blue after the forces in F (k)|H are performed. Consider v → u ∈ F (k) with

u ∈ (E
[k]
F ∩ V (H)) ∪ B′. If v /∈ V (H), then u is an initial vertex in some forcing subtree.

By definition, u ∈ B′, so we conclude that u is initially blue, and hence also blue after time-
step k. Otherwise, v ∈ V (H), so the preceding paragraph implies that v → u ∈ F (k)|H is
a valid PSD force in H, and u will be blue after time-step k. Combining these two results
with induction on k, we conclude that F|H is a relaxed chronology of PSD forces for B′

in H with expansion sequence {(E [k]
F ∩ V (H)) ∪B′}Kk=0.

In the case that F is a propagating set of PSD or standard forces, then by Lemmas
39 and 40, it follows that

pt+(H,B′) 󰃑 pt+(G,B) and pt(H,B′) 󰃑 pt(G,B).

The proof of Lemma 39 can be adapted to establish the next lemma.

Lemma 40. Let G be a graph, H be an induced subgraph of G, B be a standard zero
forcing set of G, and F be a relaxed chronology of standard forces of B on G with chain
set C. Let B′ be the set of initial vertices in the forcing subpaths of C in H. Then B′ is
a standard zero forcing set of H, and F|H defines a relaxed chronology of standard forces
for B′ in H with pt(H,F|H) 󰃑 pt(G,F).

We now turn our attention to the case when the restriction of PSD forcing results in
standard zero forcing and the resulting zero forcing set has the same size as the original
PSD forcing set.
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Definition 41 (Path bundle). Let G be a graph, B be a PSD forcing set of G, and let
F be a relaxed chronology of PSD forces of B on G with associated PSD forcing tree
cover T = {Ti}|B|

i=1. Let Q = {Qi}|B|
i=1 be a set of paths such that V (Qi) ⊆ V (Ti). Define

H = G[
󰁖

Qi∈Q V (Qi)]. We say that Q is a path bundle of F if F|H is a relaxed chronology
of standard forces in H for the initial vertices in Q. We abuse notation and use F|Q to
also denote F|H .

v1 v2

v4

v3 v6

v5 v7 v8 v9

v10 v11 v12

(a) G

v1 v2 v3 v4 v5

v6 v7 v8 v9 v10

(b) H

Figure 7: (a) The graph G in Example 42 and (b) the graph H in Example 43.

Example 42. Consider the graph G in Figure 7(a) and let F = (F (1), F (2), F (3)), where

F (1) = {v1 → v3, v1 → v4, v2 → v7, v2 → v10}
F (2) = {v7 → v5, v7 → v8, v3 → v6, v10 → v11}
F (3) = {v8 → v9, v11 → v12}.

Then F is a relaxed chronology of PSD forces of B = {v1, v2} on G and forces are indicated
in the figure with arrows. If W1 = {v1, v3, v4, v6} and W2 = {v2, v5, v7, v8, . . . , v12}, then
the associated PSD forcing tree cover is T = {G[W1], G[W2]} and one of the path bundles
of F is Q = {G[{v1, v3, v6}], G[{v2, v7, v8, v9}]}. The path bundle Q is indicated with bold
edges in Figure 7(a).

Example 43. Consider the graph H in Figure 7(b). The set B = {v1, v6} is a PSD
forcing set of H with relaxed chronology

F = ({v1 → v2, v6 → v7}, {v2 → v3, v7 → v8}, {v3 → v4, v8 → v9}, {v4 → v5, v9 → v10})

and forcing trees given by the paths v1, . . . , v5 and v6, . . . , v10. Since the forcing trees,
denoted with bold edges, are themselves paths, they are forcing subpaths. However, since
Z(H) = 3, they cannot form a path bundle.

Observe that by definition, the chain set of F|Q will be Q itself. Additionally, any
path bundle Q is a parallel increasing path cover of the induced subgraph H. When Q
contains the vertices of B and |Q| = |B|, then the set of initial vertices of F in H is

the electronic journal of combinatorics 32(2) (2025), #P2.19 23



precisely B, and pt(H,B) 󰃑 pt+(G,B), see Corollary 48. There are trivial examples of
path bundles, such as the paths consisting of just the vertices of B or the set consisting of
a single path Q1 ⊆ T1. However, there are also many nontrivial cases where F|Q provides
us information about F and the original graph G. Since F|Q is a relaxed chronology of
standard forces for the subgraph H induced by the vertices of the paths in Q, we can
consider its terminus Term(F|Q).

Definition 44 (Vertex-induced path bundles). Let G be a graph, B be a PSD forcing set
of G, and F be a relaxed chronology of PSD forces of B on G. Fix a vertex x ∈ V (G). For

k = 0, 1, 2, . . . , rd(x)− 1, define Ck
x = comp(G−E

[k]
F , x) to be the component of G−E

[k]
F

containing x. Construct sets of paths Q[k] as follows:

1. Let {v0i }
|B|
i=1 be the vertices of B, and let Q[0] = {Q[0]

i }|B|
i=1 = {{v0i }}

|B|
i=1 be the set of

single-vertex paths on the vertices of B.

2. For each i, if vki forces some vertex w ∈ Ck
x at time-step k + 1 of F (i.e., vki → w ∈

F (k+1)), then define vk+1
i = w, and construct Q

[k+1]
i by adding vk+1

i to the end of

the path Q
[k]
i . For the remaining paths Q

[k]
i , define Q

[k+1]
i = Q

[k]
i and vk+1

i = vki .

3. Finally, let Q[k+1] = {Q[k+1]
i }|B|

i=1.

We call Q = Q[rd(x)] the path bundle of F induced by x. If we wish to speak of this type of
path bundle in general rather than a specific instance of one, then we will refer to them
as vertex-induced path bundles or path bundles induced by a vertex.

Example 45. Refer to G, B, and F in Example 42. The path bundle induced by v9 is
Q = {G[{v1, v4}], G[{v2, v7, v8, v9}]}, but the path bundle in Example 42 is not induced
by a vertex.

Lemma 46. Let G be a graph, B be a PSD forcing set of G, F be a relaxed chronology of
PSD forces of B on G, and T be the PSD forcing tree cover defined by F . Then at each
time-step k, given a component C of G− E

[k]
F and a PSD forcing tree T ∈ T , there is at

most one vertex v ∈ V (T ) ∩ E
[k]
F such that v has white neighbors in C.

Proof. We proceed by contradiction. Suppose there are distinct v, w ∈ V (T ) ∩ E
[k]
F re-

spectively adjacent to v′, w′ ∈ V (C). Then at time k, there exists a path of white
vertices v′, . . . , w′ entirely within C. Let u ∈ T be the vertex such that the forces
u → v1 → · · · → v and u → w1 → · · · → w are in F with v1 ∕= w1. Without loss
of generality, assume v1 is forced at the same time as or before w1. Letting j be the time
when v1 is forced, we see that the path v1, . . . , v, v

′, . . . , w′, w, . . . , w1 consists entirely of
white vertices in a single component of G − E

[j−1]
F . Then at time j, vertex u is adjacent

to two white vertices v1 and w1 in the same component of G− E
[j−1]
F , which contradicts

the fact that u → v1 at this time-step.
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Lemma 47. Let G be a graph, B be a PSD forcing set of G, and F be a relaxed chronology
of forces of B on G. For any x ∈ V (G), the path bundle Q of F induced by x is a path
bundle that contains B and x. Furthermore, if F is a propagating family of forces, then
in F|Q, there is at least one force in each round until all vertices of G[

󰁖
P∈Q V (P )] are

blue.

Proof. We prove by induction that each Q[k] is a path bundle. Label B = {v0i }mi=1, and
note that Q[0] is the set of trivial paths on B, so this is a path bundle. Now suppose that
we have constructed the path bundle Q[k] = (Q

[k]
1 , . . . , Q

[k]
m ) with corresponding induced

subgraph Hk. If no forces occur into Ck
x at time-step k + 1 of F , then Q[k+1] = Q[k] is

again a path bundle. Otherwise, we let S ⊆ {1, 2, . . . ,m} contain all indices such that

for each i ∈ S, there exists vi ∈ Ti ∩ E
[k]
F and wi ∈ Ck

x with vi → wi ∈ F (k+1), where
T = {Ti}mi=1 is the PSD forcing tree cover induced by F .

If vi = v0i , then v0i ∈ Q
[k]
i , and by definition of the PSD forcing rule, vi → wi is a

valid standard force in G[V (Hk) ∪ V (Ck
x)] with the vertices vi and wi forming a forcing

chain, and thus a path, of length 1. If vi ∕= v0i , then there exists some sequence of forces
in F from v0i to vi consisting of vertices in Ti. Some vertex v in this sequence is the last

one in Q
[k]
i , as we have that the vertex v0i ∈ Q

[k]
i . Lemma 46 implies that this v was the

unique vertex in Ti with a white neighbor in Ck′
x for some k′ 󰃑 k. Since Ck

x is contained in
Ck′

x , our construction of Q[k] implies that if k′ < k and v forced a vertex v′ in Ck′
x during

F (k′+1), then v′ must also be in Q
[k]
i . Since we chose v as the last vertex in Q

[k]
i in the

chain from v0i to vi, we conclude that v has not forced any vertex in Ck′
x , and in particular

v = vi. Again, we see that vi → wi is a valid standard force in G[V (Hk)∪V (Ck
x)]. Hence,

if we define Q
[k+1]
i = Q

[k]
i when i /∈ S and Q

[k+1]
i to be Q

[k]
i with wi appended when i ∈ S,

then (v0i , . . . , vi, wi) is a forcing chain, and thus a path, in Ti[V (Hk+1)], and we obtain a
strictly larger path bundle Q[k+1] from Q[k] by adding the vertices in Ck

x forced during
time-step k + 1.

This process terminates at rd(x), and induction implies that Q[rd(x)] is a path bundle.
By construction, it contains both B and x. Additionally, if F is propagating, then there
cannot be time-steps where no forces occur in Ck

x , as PSD forcing in each component
occurs independently. Hence, Q[k] ∕= Q[k+1] for all 0 󰃑 k 󰃑 rd(x) − 1, and at least one
force occurs at each time-step of F|Q until we reach rd(x).

Corollary 48. Let G be a graph, B be a PSD forcing set of G of size k, and F be a
propagating family of PSD forces for B on G. Let H be the set of subgraphs H of G such
that H = G

󰀅󰁖
P∈Q V (P )

󰀆
for some path bundle Q of F induced by some x ∈ V (G). Then

max
H∈H

pt(H,B) 󰃑 pt+(G,B).

Moreover, if x ∈ B(pt+(G,B)), then

pt+(G,B) 󰃑 min
H∈H

|V (H)|− k.
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Proof. Since F is a propagating family of PSD forces for B on G, we have that

pt(H,B) 󰃑 ct(F|Q) = pt+(G,F) = pt+(G,B),

and the first result follows from maximizing on the left. Using Lemma 47, any such H
with corresponding B and F satisfies

pt+(G,F) 󰃑 |V (H)|− k.

Since pt+(G,F) = pt+(G,B), the second result follows from minimizing on the right.

If F is a relaxed chronology of forces for a PSD forcing set B, then the set of vertices
that do not perform a force in F need not have the same size as B. However, vertex-
induced path bundles allow us to produce PSD forcing sets of the same size using the
terminus of the resulting standard zero forcing set.

Theorem 49. Let G be a graph and B be a PSD forcing set of G. Let F be a relaxed
chronology of forces for B on G, and let Q be the path bundle of F induced by x ∈ V (G).
Then Term(F|Q) is a PSD forcing set of G. Furthermore, a relaxed chronology of PSD
forces for Term(F|Q) can be constructed by reversing the forces between vertices in Q and
preserving all remaining forces.

Proof. Since Q is a path bundle, F|Q is a relaxed chronology of standard forces. By
Theorem 15, one can use F|Q to construct a multiset of block partitions witnessing that
Q is a parallel increasing path cover of H = G[

󰁖
Qi∈Q V (Qi)] and thus the sets of vertices

{V N
F|Q}

rd(x)
N=0 as described in Definition 27. Define the sets of vertices {Rk}rd(x)k=0 such that

for each k, Rk =
󰁖k

i=0 V
rd(x)−i
F|Q = V

[rd(x)−k,rd(x)]
F|Q . First note that Term(F|Q) = R0. We

will now show inductively that for k with 0 󰃑 k < rd(x), if Rk is blue, then Rk+1 can be
forced blue using only the reverses of PSD forces contained in F|Q. This inductive process
terminates at Rrd(x), which contains the PSD forcing set B of G. Thus any remaining
white vertices can be forced using only PSD forces found in F , and this will show that
Term(F|Q) is a PSD forcing set of G.

Let k ∈ {0, 1, . . . , rd(x)− 1}, and suppose Rk is currently blue. Since F|Q is a relaxed
chronology of standard forces in H, it follows by Lemma 25 that Rev(F|Q) is a relaxed
chronology of standard forces for Term(F|Q) in H. Due to this, for each u ∈ Rk+1 \ Rk,
there exists a vertex v ∈ Rk such that u is the only white neighbor of v in H. We claim
that u is the only white neighbor of v in comp(G−Rk, u), the component of G−Rk that
contains u, and hence v → u ∈ S+(G,Rk).

Let k′ = rd(x) − k. Since u → v at time k′, v ∈ V (Ck′−1
x ) ⊆ V (Ct−1

x ) for any
t 󰃑 k′. Now, suppose by way of contradiction that there exists u′ ∈ (N(v)∩V (comp(G−
Rk, u))) \ V (H). Then there exists a path u′ = p0, p1, . . . , pm = u with pi /∈ Rk. Let
j = min{i : pi ∈ V (H)} > 0, which is well-defined since u ∈ V (H). Finally, let y = pj.

It is asserted that for all 0 󰃑 i < j, rdF(pi) > k′. Otherwise, when the first such pi
was forced by some vertex z at time t 󰃑 k′, it was in the same component of G − E

[t−1]
F
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as v. Thus, pi ∈ V (comp(G − E
[t−1]
F , v)) = V (Ct−1

x ). This would imply, though, that
z → pi ∈ F|Q, and so pi ∈ V (H).

Thus, for all 0 󰃑 i < j, pi ∈ V (comp(G − E
[k′−1]
F , v)) = V (Ck′−1

x ). Since y ∈ V (H),
but y /∈ Rk, there must be some time-step t 󰃑 k′ and some vertex y′ ∈ V (Ct−1

x ) such that

y → y′ ∈ F|Q at time t. However, this implies that {pj−1, y
′} ⊆ NG(y) \E [t−1]

F , so y → y′

is not a valid PSD force at time t, a contradiction.

Example 50. Refer to H in Figure 7(b). Even though the vertices v5, v10 in H are the
endpoints of forcing trees that are paths, the set {v5, v10} cannot be the terminus of any
vertex-induced path bundle as it is not a PSD forcing set.

Remark 51. Alternatively, it is worth noting that the process of multiple-vertex migration
introduced in [12] by Hogben et al. could also be used inductively for the purposes of the
proof. In some sense the restriction to the induced subgraph given by vertex-induced
path bundles allows the concept of parallel increasing path covers to be useful in the PSD
forcing setting. Together, parallel increasing path covers and vertex-induced path bundles
do globally in the graph G what multiple-vertex migration does locally.

Corollary 52. Let G be a graph with T being the PSD forcing trees for some PSD forcing
set of size k. For any v ∈ V (G), there exists a PSD forcing set B of size k containing v
and a relaxed chronology of forces F for B with T as its induced forcing trees.

Proof. Let F be a relaxed chronology of forces inducing T , and letQ be the path bundle of
F induced by v. Theorem 49 implies that Term(F|Q) is a PSD forcing set of G containing
v, and a corresponding relaxed chronology F ′ can be constructed by reversing the forces
between vertices in Q and preserving the other forces. Observe that F and F ′ contain
forces between the same pairs of vertices, albeit possibly in different directions. Hence,
they induce the same forcing trees T .

Our results on path bundles have connections with rigid linkages studied by Ferrero
et al. [10]. We detail the explicit relationship in Appendix B.

6 Concluding remarks

In this paper, we introduced the concept of a relaxed chronology as a generalization
of a chronological list of forces. This framework permitted the development of parallel
increasing path covers, an alternative formulation of a zero forcing process from a more
global perspective. These parallel increasing path covers allowed for the construction of
families of graphs with predetermined chain sets, as well as the establishment of certain
relations between standard zero forcing and other zero forcing variants.

Relaxed chronologies also were used to discuss the restriction of forcing to subgraphs.
A special case of such restrictions, called path bundles, was introduced for which the
restriction of PSD forcing is standard zero forcing. These path bundles allowed the con-
struction of PSD forcing sets containing a chosen vertex that have the same PSD forcing
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trees as a chosen initial PSD forcing set. Connections between path bundles and rigid
linkage forcing were established in the appendices.

Looking forward, it is hoped that these new frameworks and concepts will prove useful
outside the confines of this particular paper. It is intended that these ideas and definitions
will help serve as a foundation for a broader and more robust discussion of zero forcing
and its variants.

A Proof of Theorem 36

In this section, we generalize the results in Section 4 to establish that

ppt(G,m) 󰃑
󰀛
pt(G,m)

2

󰀜
.

Note that we use the results of Section 5 extensively, further demonstrating their useful-
ness. We start with generalizing the sets from Definition 27.

Definition 53 (Sets V
(M,N ]
F , V

[M,N)
F , V

(M,N)
F , V

bd(M+)
F , V

bd(N−)
F ). Let F = {F (k)}Kk=1 be a

relaxed chronology of standard forces for a graph G and some standard zero forcing set.
For any M,N ∈ {0, 1, . . . , K} with M 󰃑 N , define

V
[M,N)
F = V

[M,N ]
F \ V N

F ,

V
(M,N ]
F = V

[M,N ]
F \ V M

F , and

V
(M,N)
F = V

[M,N ]
F \ (V M

F ∪ V N
F ).

Finally, define V
bd(M+)
F to be the initial vertices of the chain set for F in G[V

(M,N ]
F ] and

V
bd(N−)
F to be the initial vertices for Rev(F) in G[V

[M,N)
F ].

Lemma 54. Let F = {F (k)}Kk=1 be a relaxed chronology of standard forces for a graph
G and some standard zero forcing set B and let M ∈ {0, 1, 2, . . . , K − 1} and N ∈
{1, 2, 3, . . . , K}. Then

1. B1 = V
bd(N−)
F is a zero forcing set of H1 = G[V N−

F ] = G[V
[0,N)
F ] with pt(H1, B1) 󰃑

N − 1.

2. B2 = V
bd(M+)
F is a zero forcing set of H2 = G[V M+

F ] = G[V
(M,K]
F ] with pt(H2, B2) 󰃑

K −M − 1.

Proof. Lemma 28 implies V 0
F is a zero forcing set of H = G[V

[0,N−1]
F ] with propagation

time at most N − 1. Lemma 40 then implies V 0
F is a zero forcing set of the subgraph of H

given by H1 = G[V
[0,N)
F ], where the propagation time is again at most N − 1. Since B1 is

the terminus of F|H1 , Lemma 25 implies (1). Applying (1) on Rev(F) and Term(F) = V K
F

then implies claim (2).
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Corollary 55. Let F = {F (k)}Kk=1 be a relaxed chronology of forces for a graph G for
some standard zero forcing set. For any 0 󰃑 M < N 󰃑 K,

• V
bd(M+)
F and V

bd(N−)
F are zero forcing sets of G[V

(M,N)
F ], and both sets have propa-

gation time at most N −M − 2.

• V M
F and V

bd(N−)
F are zero forcing sets of G[V

[M,N)
F ], and both sets have propagation

time at most N −M − 1.

• V
bd(M+)
F and V N

F are zero forcing sets of G[V
(M,N ]
F ], and both sets have propagation

time at most N −M − 1.

Proof. Each claim follows immediately from applying Lemma 40 with either Corollary 29
or the preceding lemma.

We now use these results to establish our power propagation time bound.

Proof of Theorem 36. We can assume pt(G,m) > 0, as otherwise the result is trivial. As
in the proof of Theorem 31, we let B be an m-efficient standard zero forcing set of G

with corresponding relaxed chronology F = {F (k)}pt(G,m)
k=1 . Letting N =

󰁯
pt(G,m)

2

󰁰
, we

have that NG[V
N
F ] contains V

bd(N−)
F and V

bd(N+)
F . By Lemma 54, V

bd(N−)
F is a standard

zero forcing set of G[V N−
F ] with pt

󰀓
G[V N−

F ], V
bd(N−)
F

󰀔
󰃑 N − 1. Likewise, V

bd(N+)
F is a

standard zero forcing set of G[V N+
F ] with pt

󰀓
G[V N+

F ], V
bd(N+)
F

󰀔
󰃑 K − N − 1 󰃑 N − 1,

since K = pt(G,m). Since Lemma 30 implies that V N
F separates V N−

F and V N+
F and

every vertex in V N
F is blue, the forcing process can proceed independently in G[V N−

F ] and
G[V N+

F ]. It thus follows that

ppt(G,m) 󰃑 1 + max
󰁱
pt

󰀓
G[V N−

F ], V
bd(N−)
F

󰀔
, pt

󰀓
G[V N+

F ], V
bd(N+)
F

󰀔󰁲
󰃑

󰀛
pt(G,m)

2

󰀜
.

B Rigid linkages and path bundles

In this section, we discuss a connection between path bundles and rigid linkages. We
establish that the path bundle induced by a relaxed chronology and a vertex forms a rigid
linkage. We refer the reader to Ferrero et al. [10] for further details of rigid linkages and
their applications.

Let G be a graph. A linkage in G is a subgraph whose connected components are
paths. Note that a linkage need not contain all vertices of G. Let α, β ⊆ V (G). A linkage
P is an (α, β)-linkage if α consists of one endpoint of each path in P and β consists of the
other endpoint of each path. In the case that a path is a single vertex, the vertex is in
both α and β. A linkage P is (α, β)-rigid if P is the unique (α, β)-linkage in G. A linkage
P is rigid if there exist α and β such that P is an (α, β)-linkage and P is (α, β)-rigid.
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For X ⊆ V (G), define the boundary ∂G(X) of X to be the set of vertices not in X that
have at least one neighbor in X. When C is a subgraph of G, define ∂G(C) = ∂G(V (C)).
Rigid linkage forcing is defined by the rigid linkage color change rule (CCR-RL). Given
a current set of blue vertices B[k], an application of CCR-RL (to go from time-step k to
time-step k + 1) consists of the following:

• Choose a component C of G−B[k], such that ∂G(C) does not contain any inactive
blue vertices (that is, those which have previously performed a force).

• Select an active blue vertex u such that w is the only white neighbor of u in C:

– Let u force w, so that B[k+1] = B[k] ∪ {w}.
– Update the active vertices (w becomes active, u becomes inactive).

For a given rigid linkage forcing process F on G with r steps:

• A rigid linkage forcing chain is a path (v0, v1, . . . , vℓ) such that v0 ∈ B[0], vi → vi+1

for all i = 0, . . . , ℓ− 1, and vℓ is active after time-step r.

• The rigid linkage chain set is the set of all rigid linkage forcing chains (for the given
forcing process).

Ferrero et al. established that zero forcing is a special type of rigid linkage forcing and
identified the close connection between rigid linkage forcing and rigid linkages.

Proposition 56. [10, Proposition 2.3] Any zero forcing process on a graph G is a rigid
linkage forcing process.

Theorem 57. [10, Theorem 2.10] Let G be a graph and P be a linkage in G. Then P is a
rigid linkage if and only if P is a rigid linkage chain set under some rigid linkage forcing
process.

Given a graph G and a set of blue vertices B, since PSD forcing works independently
in different components of G− B, we have the observation below.

Observation 58. Let G be a graph, B be a PSD forcing set of G, F be a chronological
list of PSD forces of B on G, x ∈ V (G), Q be the path bundle of F induced by x, and
H = G

󰀅󰁖
P∈Q V (P )

󰀆
. Construct F∗ by performing the forces in F|Q first (in order) and

afterwards performing the remaining forces in F (in order). Then F∗ is a chronological
list of PSD forces for G.

We now establish the connection between rigid linkages and vertex-induced path bun-
dles.

Theorem 59. Let G be a graph, B be a PSD forcing set of G, F be a relaxed chronology
of PSD forces of B on G, x ∈ V (G), Q be the path bundle of F induced by x, and
H = G

󰀅󰁖
P∈Q V (P )

󰀆
. Then Q is a rigid linkage of G.
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Proof. Let K = |V (H)| − |B|. By Observation 58, we can suppose without loss of gen-
erality that F is a chronological list of forces where the K forces in F|Q are performed
first. Since Q is a linkage, we proceed by first showing that {F (k)|Q}Kk=1 is a valid rigid
linkage forcing process and then applying Theorem 57 to complete the proof. Prior to
application of the first force, all vertices in B are active, so the first force in F is a valid
rigid linkage force.

We proceed by induction. Fix k ∈ {0, 1, . . . , K−1}, and suppose that B[k] is blue and
every force in {F (i)|Q}ki=1 is a valid rigid linkage force. Additionally, let uk+1 → vk+1 ∈
F (k+1)|Q. We assert that this force is a valid rigid linkage force. Suppose uj → vj ∈ F (j)|Q
for some j 󰃑 k. Then vj was the only neighbor of uj in Cj−1

x . Since V (Ck
x) ⊆ V (Cj−1

x )\B[k]

and vj ∈ B[k], it follows that uj has no neighbors in Ck
x . Thus ∂G(C

k
x) contains no inactive

blue vertices. Since vk+1 is the only white neighbor of uk+1 in Ck
x , uk+1 → vk+1 is a valid

rigid linkage force. Finally, {F (k)|Q}Kk=1 is a valid rigid linkage forcing process with rigid
linkage chain set Q, so applying Theorem 57 completes the proof.
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S.M. Cioaba, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson,

S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander
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