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Abstract

For a real number r ⩾ 2, a circular r-colouring of a signed graph (G, σ) is a
mapping c : V (G) → [0, r) such that |c(x)− c(y)| ∈ [1, r − 1] for each positive edge
xy and |c(x) − c(y)| ∈ [0, r/2 − 1] ∪ [r/2 + 1, r) for each negative edge xy. This
concept is recently introduced by Naserasr, Wang, and Zhu in 2021, and they show
that for any ε > 0, there exist signed planar bipartite graphs (of girth 4) which are
not circular (4− ε)-colourable. In this paper, we prove that for each signed planar
graph (G, σ) of girth at least 5, there exists a real number ε = ε(G, σ) > 0 such that
(G, σ) is circular (4 − ε)-colorable. Our proof utilizes a Thomassen-type inductive
argument on the dual version in terms of circular flows, which is motivated by a
result of Richter, Thomassen, and Younger (2016) on group connectivity of 5-edge-
connected planar graphs.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

A signed graph is a pair (G, σ), where G is a graph and σ: E(G) → {+,−} is a
signature which assigns to each edge of G a sign. Let r ⩾ 2 be a real number. As
introduced by Naserasr, Wang, and Zhu in [6], a circular r-colouring of a signed graph
(G, σ) is a mapping c : V (G) → [0, r) such that |c(x)− c(y)| ∈ [1, r − 1] for each positive
edge xy and |c(x)−c(y)| ∈ [0, r/2−1]∪ [r/2+1, r) for each negative edge xy. The circular
chromatic number of a signed graph (G, σ) is defined as

χc(G, σ) = inf{r : G admits a circular r-colouring}.
It is shown in [6] that χc(G, σ) is well-defined and must be a rational number. This

concept is a refinement of 0-free 2k-coloring of signed graphs and extends the circular
coloring concept introduced by Vince [8] from graphs to signed graphs.
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The classical Grötzsch’s theorem states that every triangle-free planar graph is circular
3-colorable. This is no longer true for signed graphs, as it is observed in [6] that χc(G, σ) ⩽
4 for any signed bipartite graph (G, σ), and there exists a sequence of signed bipartite
planar graphs whose circular chromatic numbers are tending to 4. On the other hand,
the circular chromatic number of any signed bipartite planar graph cannot be equal to 4
as proved in [2].

Theorem 1. (Kardos, Narboni, Naserasr, and Wang [2]) For every signed bipartite planar
graph (G, σ), χc(G, σ) < 4.

In [2], it is also observed that every 2-degenerate signed graph has circular chromatic
number strictly less than 4. By Euler’s formula, it is straightforward to obtain that every
signed planar graph of girth at least 6 is 2-degenerate, and thus has circular chromatic
number strictly less than 4. Our main result of this paper shows that this property is still
valid for signed planar graphs of girth 5.

Theorem 2. For every signed planar graph (G, σ) of girth at least 5, χc(G, σ) < 4.

We conjecture that this conclusion is still true for signed planar graphs of girth 4,
which, if true, would be best possible as can be evidenced by K4 with all positive signs.

Conjecture 3. For every signed planar graph (G, σ) of girth 4, χc(G, σ) < 4.

Note that applying some standard arguments (see Proposition 22 in [6] or Theorem
2.2 in [2]), we may further extend Theorem 2 to show that every n-vertex signed planar
graph (G, σ) of girth at least 5 satisfies χc(G, σ) ⩽ 4 − 4

n+1
. But this upper bound still

relies on the order of the given signed graph. We propose below a stronger conjecture to
suggest a universal upper bound smaller than 4.

Conjecture 4. There exists a constant ε0 > 0 such that every signed planar graph (G, σ)
of girth at least 5 satisfies χc(G, σ) ⩽ 4− ε0.

It is proved in [5] that every signed planar graph (G, σ) of girth at least 7 satisfies
χc(G, σ) ⩽ 3, and so Conjecture 4 is true for that subclass of signed graphs.

2 Duality between circular coloring and circular flows in signed
graphs

Our proof of Theorem 2 actually uses the dual concept about circular flows of signed
graphs recently introduced in [3], which is a natural extension of the same concept on
graphs [1].

Definition 5. ([3]) Given a signed graph (G, σ) and a real number r ⩾ 2, a circular
r-flow is a pair (D, f) where D is an orientation and f : E(G) → (−r, r) satisfies the
following three conditions:

• for each positive edge e, |f(e)| ∈ [1, r − 1];
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• for each negative edge e, |f(e)| ∈ [0, r
2
− 1] ∪ [ r

2
+ 1, r);

• for each vertex v, ∂Df(v) =
∑

e∈
→
E(v)

f(e)− ∑
e∈
←
E(v)

f(e) = 0,

where
→
E(v) is the set of arcs that v is the tail, and

←
E(v) is the set of arcs that v is the

head.

The circular flow number of a signed graph (G, σ) is defined as

Φc(G, σ) = inf{r : G admits a circular r-flow}.

Theorem 6. ([3]) A signed plane graph (G, σ) admits a circular r-coloring if and only if
its dual signed graph (G∗, σ∗) admits a circular r-flow, and thus χc(G, σ) = Φc(G

∗, σ∗).

In the study of circular coloring and circular flows, we usually use the discrete form
for r = p

q
⩾ 2, where we have the following equivalent definition: a circular p

q
-flow is a

pair (D, f) where D is an orientation and f : E(G) → {0,±1, . . . ,±(p− 1)} such that for
each edge e ∈ E(G), |f(e)| ∈ {q, . . . , p− q} if σ(e) = + and |f(e)| ∈ {0, . . . , p

2
− q}∪ {p

2
+

q, . . . , p− 1} if σ(e) = −, and moreover, for each vertex v,

∂Df(v) =
∑

e∈
→
E(v)

f(e)−
∑

e∈
←
E(v)

f(e) = 0.

For convenience, we shall sometimes also use modular flows, whose definition is almost
the same except the equality above is taken modulo p. Some relations between circular
flow number and strongly connected orientation are established in [4].

Theorem 7. (Li, Thomassen, Wu, and Zhang [4]) A connected graph has circular flow
number strictly less than p

q
if and only if it admits a modular circular p

q
-flow (D, f) such

that f : E(G) → {q, q + 1, . . . , p− q − 1} and D is strongly connected.

Our result for signed graphs has a similar flavor. In fact, we prove the following result
concerning strongly connected orientations, which implies Theorem 2 as a corollary. We
shall need a few more definitions before presenting the following result. Let k ⩾ 2 be
an integer. A mapping α : V (G) → Zk is called a Zk-boundary if

∑
v∈V (G)

α(v) ≡ 0

(mod k). For a Zk-boundary α, a (Zk, α)-flow on a graph G is a pair (D, f) where D is an
orientation and f : E(G) → {±1,±2, . . . ,±(k − 1)} such that for each vertex v ∈ V (G),
∂Df(v) =

∑
e∈
→
E(v)

f(e)− ∑
e∈
←
E(v)

f(e) ≡ α(v) (mod k).

Theorem 8. Let G be a 5-edge-connected planar graph. Then for any Z4-boundary α,
there exists a (Zk, α)-flow (D, f) on G such that f : E(G) → {1, 2} and D is strongly
connected.
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Proof of Theorem 2 assuming Theorem 8: Let (G, σ) be a signed planar graph
of girth at least 5, and let (H, σ∗) be its dual signed graph. Then H is 5-edge-connected.
For each vertex v ∈ V (H), denote d−(v) to be the number of negative edges incident to
v. Define α(v) ≡ 2d−(v) (mod 4) for every v ∈ V (H). Then∑

v∈V (H)

α(v) ≡ 2
∑

v∈V (H)

d−(v) = 4|{e : σ∗(e) = −}| ≡ 0 (mod 4),

and so α is a Z4-boundary of H. By Theorem 8, H has a (Z4, α)-flow (D, f1) such that
f1 : E(G) → {1, 2} and D is strongly connected.

Define another mapping f2 : E(H) → Z4 such that for each e ∈ E(H),

f2(e) =

{
2 if σ∗(e) = −,

0 if σ∗(e) = +.

Let f3 = f1 + f2. Consider the pair (D, f3). For each edge e ∈ E(H), we have
f3(e) ∈ {1, 2} if e is positive and f3(e) ∈ {0, 3} otherwise. Moreover, for any vertex
v ∈ V (H), we have

∂Df3(v) = ∂Df1(v) + ∂Df2(v) ≡ α(v) + 2d−(v) ≡ 0 (mod 4).

Hence (D, f3) is a (Z4, 0)-flow on H.
Since D is strongly connected, every arc a in D(H) is contained in a directed cycle,

say Ca. For every arc a ∈ A(D(H)), define fa: E(H) → {0, 1} by setting

fa(e) =

{
1 e ∈ E(Ca),

0 otherwise.

Let M = |E(H)| + 1. Define f = Mf3 +
∑

a∈A(D(H)) fa. Clearly, ∂Df(v) ≡ 0

(mod 4M) for each v ∈ V (H) by definition. Furthermore, for any edge e ∈ E(H),
since

∑
a∈A(D(H))

fa(e) ∈ {1, . . . ,M − 1}, we have

f(e) ∈ {M + 1, . . . , 3M − 1} if e is positive

and
f(e) ∈ {1, . . . ,M − 1} ∪ {3M − 1, . . . , 4M − 1} if e is negative.

Therefore, (D, f) is a modular circular 4M
M+1

-flow on the signed graph (H, σ∗). By

duality from Theorem 6, we conclude that (G, σ) admits a circular 4M
M+1

-coloring, i.e.,
χc(G, σ) < 4. This completes the proof of Theorem 2. ■

Next, we shall prove Theorem 8 in the rest of this paper. In fact, we utilize a
Thomassen-type induction to prove a stronger theorem, which implies Theorem 8. Our
technical theorem and proof ideas are mainly motivated by a result of Richter, Thomassen,
and Younger [7] on group connectivity of 5-edge-connected planar graphs. However, we
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have to make certain modifications for our purpose of searching strongly connected ori-
entations.

For a Z4-boundary β of a graph G and a subset A ⊆ V (G), we define

β(A) ≡
∑
v∈A

β(v) (mod 4).

For a vertex v ∈ V (G), we use δ(v) to denote the set of edges incident to v, and
similarly we use δ(A) to denote the set of edges with exactly one end in A for a vertex
subset A. We use deg(v) to denote the degree of a vertex v, and we say v is a k-vertex
if deg(v) = k. For a vertex subset A ⊆ V (G), we use Ac to denote the complement of A
in V (G), while Ā is the complement of A in the vertex set of a certain subgraph of G.
A k-cut is an edge cut of size k. A 2-cut [A,Ac] is said to be bad if β(A) ≡ β(Ac) ≡ 2
(mod 4).

Now we are ready to state our main theorem below:

Theorem 9. Let G be a 3-edge-connected planar graph embedded in the plane. Let β be
a given Z4-boundary of G. Suppose that G has at most two specified vertices d and t such
that:

(i) if d exists, then it is in the boundary of the unbounded face, has degree 3, 4, or 5,
and has its incident edges oriented and labelled with 1 or 2 satisfying boundary β(d)
(i.e., at vertex d the outflow minus inflow is congruent to β(d) modulo 4);

(ii) if t exists, then it has degree 3 and is in the boundary of the unbounded face;

(iii) except for possibly δ(d) and δ(t), every edge-cut of G is of size at least 4;

(iv) if d has degree 5, then t does not exist;

(v) every vertex not in the boundary of the unbounded face has five edge-disjoint paths
to the boundary of the unbounded face;

(vi) G− d has no bad 2-cut (Note that G− d = G when d does not exist).

Then the prescription at d can be extended to a (Z4, β)-flow (D, f) on G such that:

(a) ∂Df ≡ β (mod 4), that is,
∑

e∈
→
E(v)

f(e) − ∑
e∈
←
E(v)

f(e) ≡ β(v) (mod 4) for every v ∈

V (G);

(b) f(e) ∈ {1, 2} for every e ∈ E(G);

(c) D(G− d) is strongly connected.
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Theorem 8 follows from it when the first specified vertex d does not exist. The rest
of this paper is devoted to a proof of Theorem 9. We first investigate the properties
of a potential minimal counterexample in Section 3, especially those about small cuts,
which will be frequently used later. In Section 4, we apply some more structural results
to find certain local configurations to complete the proof. We will divide our proof into
three different cases, determined by whether there exists a copy of contractible structure
containing t, and whether the set of boundary vertices of the unbounded face is sparse
enough, and deal with them using proper methods accordingly.

3 Properties of the Minimal Counterexample to Theorem 9

With a little abuse of the usage of symbols, in the remaining part of this paper, we
always use G (with a Z4-boundary β) to denote the minimal counterexample of Theorem
9 in the sense of the lexicographical order (|V (G)| + |E(G)|, |E(G − d)|). It is a trivial
job to check that |V (G)| > 3.

We will deal with plenty of cuts and edges in the proof, for the sake of clarity and
readability, it is necessary to make a statement about notations at first. When multiple
cuts occur in a part of the proof, we name them after B, F , K and Q in sequence, and in
this section, we always use A to represent a cut when stating the content of a theorem.
When we need to operate on a single edge, if it is unoriented, we note it e; if it is an arc,
we note it a; the two end vertices are chosen to be x and y. When we need to operate
on a vertex, we note it z. These notations are independent between different theorems,
propositions and sections, and we suggest the readers to keep this statement in mind.

In this section, we study the necessary properties of G and list them by a series of
propositions. Prescribing a vertex means orienting all edges incident to it and labelling
each of them with a value. We say the orientation of a vertex is proper, or the vertex is
properly oriented if it is neither a sink nor a source; in other words, the vertex has both
indegree and outdegree nonzero.

We start with a lemma in [4], and we provide a proof here for completeness. For
convenience, a strongly connected orientation is called strong for short in the rest of the
paper.

Lemma 10. ([4]) Let H be a 2-edge-connected graph and e = xy be an edge of H. If H/e
has a strong orientation D, then D can be extended to a strong orientation of H.

Proof. If D is strong on H − e, just orient e arbitrarily; if D is not strong on H − e, then
there exists an arc e′ ∈ H − e not on a directed cycle, but e′ is on some directed cycle in
H/e. It can be deduced that there is a directed path between x and y in H − e, and that
all such paths are directed the same direction, say from x to y. Then orient e from y to
x. It is now easy to check that there exists a directed path between any pair of vertices
of H, and D is extended to a strong orientation of H.

Now we begin to present some properties of the minimal counterexample G. The first
one says that G is essentially a simple graph, which is the basis of the whole proof of
Theorem 9.
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Proposition 11. G− d contains no multiple edges (which are unoriented).

Proof. On the contrary, assume two vertices x and y form an unoriented sK2 (s ⩾ 2) in
G−d. By the induction, G/{x, y} admits a (Z4, β

′)-flow (D′, f ′) with a strong orientation
D′(G/{x, y} − d), where β′ is the Z4−boundary induced from β, with the contraction
vertex receiving value β(x) + β(y). As for sK2 itself, f ′ induces a Z4-boundary γ on it,
where γ(x) (γ(y)) is the difference of β(x) (β(y)) and the total value x (y) receives from
f ′.

We claim that there always exists a prescription of sK2 with a strong orientation to
realize γ(x) and γ(y) at x and y, except the only case s = 2 and γ(x) = γ(y) = 2. This is
clear when s ⩾ 3; as for s = 2, if γ(x) = γ(y) = 0, then we label the two edges with 1 and
orient them oppositely; if {γ(x), γ(y)} = {1, 3}, then we label the two edges with 1 and
2, and orient them oppositely. In these cases, sK2 receives a strong orientation, and thus
(D′, f ′) can be extended to a flow (D, f) on G naturally such that D(G − d) is strong,
resulting in a contradiction.

When s = 2 and γ(x) = γ(y) = 2, the two parallel edges between x and y must be
oriented to the same direction and labeled with 1. Now we apply Lemma 10, there exists
a certain orientation of the two edges to extend D′ to a strong orientation of G− d, and
f ′ is extended to a function f on E(G) with the desired boundary β by labelling the two
edges with 1. A contradiction is obtained too.

Proposition 12. G is 2-connected.

Proof. Let z be a cut vertex separating G into two subgraphs G1 and G2 with V (G1) ∪
V (G2) = V (G), V (G1) ∩ V (G2) = {z}, and d ∈ V (G1). We use degi(v) to denote the
degree of a vertex v in Gi (i = 1, 2). Notice that degi(z) = |δ(Gi \ {z})|, by assumption
(iii) of Theorem 9, degi(z) ⩾ 3 holds for i = 1, 2.

If degi(z) = 3 for some i, then δ(Gi \{z}) is a 3-cut, Gi \{z} can only be d or t, and by
Proposition 11, Gi\{z} = d. Now d is a pendent vertex of G whose only neighbour is z, we
can apply the induction on G− d (setting the prescribed special vertex non-existent) and
obtain a flow with a strong orientation, which is also a flow on G satisfying the conditions
in Theorem 9.

If both deg1(z) ⩾ 4 and deg2(z) ⩾ 4, then by the minimality of G, G1 admits a
(Z4, β1)-flow (D1, f1) with a strong orientation D1(G1− d), and G2 admits a (Z4, β2)-flow
with a strong orientation D2(G2) (setting the prescribed special vertex non-existent).
(D1 ∪ D2, f1 ∪ f2) is a desired (Z4, β)-flow on G with a strong orientation of G − d, a
contradiction.

From Proposition 12, we know that the boundary of the unbounded face of G is a
cycle, use C to represent it. We say a cut [A,Ac] of G is essential if min{|A|, |Ac|} ⩾ 2,
and peripheral if one of |A| and |Ac| is 1.

The next several propositions are concerned with essential 4-cuts and 5-cuts. We use
a contraction method in their proofs, that is, contracting the vertex set on one side of an
edge cut to a single vertex. Suppose vertex set X is contracted; the contraction naturally
induces a Z4−boundary of G/X from β, by choosing β(X) as the boundary value of the

the electronic journal of combinatorics 32(2) (2025), #P2.1 7



vertex contracted from X. In the remaining text, the phrase “the induced boundary”
is used to refer to it. At first we introduce a fact from straightforward observation of
the conditions (i)-(vi) in Theorem 9, which implies that contraction always preserves
planarity. Recall that a bond of a graph H is a minimal non-empty edge cut. If [X,Xc]
is a bond, then both H[X] and H[Xc] are connected induced subgraphs.

Fact 13. In G, cuts of size at most 5 are bonds; an essential 6-cut is a bond unless it is
δ({d, t}), on the premise that deg(d) = 3, and d and t are not adjacent.

Proposition 14. There does not exist an essential 4-cut [A,Ac] such that d ∈ A and
G[Ac] is 3-edge-connected.

Proof. By contracting Ac to a single vertex and applying the induction on G/Ac, we
obtain a (Z4, β1)-flow (D1, f1) with a strong orientation D1(G/Ac − d). Next, contract A
to a vertex z in G, prescribe z according to f1, and then apply the induction on G/A by
viewing z as the new ”d”. There is another (Z4, β1)-flow (D2, f2) with a strong orientation
D2(G[Ac] − z). Combining the two flows together, we obtain a flow on G with a strong
orientation of G− d, a contradiction.

Proposition 15. There does not exist an essential 5-cut [A,Ac] such that {d, t} ⊆ A,
and G[Ac] is 3-edge-connected.

Proof. The proof is very similar to the proof of Proposition 14. Note that, with the
assumption {d, t} ⊆ A, we can apply the induction on G/Ac and G/A appropriately, as
the conditions (i)-(vi) in Theorem 9 can be justified for both G/Ac and G/A. By applying
the same method as in the proof of Proposition 14, we combine the two flows on G/Ac

and G/A together to construct a flow on G with a strong orientation of G− d. This leads
to a contradiction, hence verifying the proposition.

We are now able to strengthen the two propositions above by deleting the restriction
”3-edge-connected”.

Proposition 16. There is no essential 4-cuts in G.

Proof. On the contrary, suppose that there exists an essential 4-cut [A,Ac] with d ∈ A,
we take the one with |Ac| minimized. Since G is 3-edge-connected and the only possible 3-
cuts are δ(d) or δ(t), G[Ac] is 2-edge-connected, and by Proposition 14 G[Ac] must contain
a 2-cut. From Proposition 11, it can be deduced that |Ac| ⩾ 3, and by the minimality of
|Ac|, this 2-cut can only be [t, Ac \ {t}]. As a result, δ(A ∪ {t}) is an essential 5-cut.

Among all essential 5-cuts [B,Bc] with A ∪ {t} ⊆ B, choose the one with |Bc| mini-
mized. G[Bc] is 2-edge-connected, and by Proposition 15, G[Bc] has a 2-cut [F, F̄ ], with
|[B,F ]| = 2 and |[B, F̄ ]| = 3, so |δ(F )| = 4 and |δ(F̄ )| = 5. By minimality of |Ac| and
|Bc|, both F and F̄ are singletons linked by parallel double edges, a contradiction to
Proposition 11.

Proposition 17. There does not exist an essential 5-cut [A,Ac] such that {d, t} ⊆ A.
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Proof. Suppose that there exists such an essential 5-cut, take the one with |Ac| minimized.
Since G is 3-edge-connected and the only possible 3-cuts are δ(d) or δ(t), G[Ac] is 2-edge-
connected, and by Proposition 15 G[Ac] must contain a 2-cut [B, B̄], |[A,B]| = 2 and
|[A, B̄]| = 3, so |δ(B)| = 4 and |δ(B̄)| = 5. From Proposition 16 and the minimality
of |Ac|, both B and B̄ are singletons linked by parallel double edges, a contradiction to
Proposition 11.

From Proposition 16 and Proposition 17, two corollaries are obtained, which will be
helpful in later proofs.

Corollary 18. G− d is 3-edge-connected.

Proof. Suppose [B, B̄] is a cut of G−d of size at most 2. First we point out that its size is
exactly 2. Assume |[B, B̄]| ⩽ 1, since G is 3-edge-connected and deg(d) ⩽ 5, |[d,B]| ⩾ 2,
|[d, B̄]| ⩽ 3, and both |δ(B)| and |δ(B̄)| are at most 4. From Proposition 16, both B and
B̄ are singletons, but we have mentioned that |V (G)| > 3 at the beginning of this section.

So |[B, B̄]| = 2, and |[d,B]| ⩾ 1, |[d, B̄]| ⩾ 1. If |[d,B]| or |[d, B̄]| equals 1 (assume
it is the former), then B = {t}, from condition (iv), deg(d) ⩽ 4, hence |[d, B̄]| ⩽ 3 and
|δ(B̄)| ⩽ 5. By Proposition 17, B̄ is a singleton as well, limiting G to 3 vertices.

So |[d,B]| ⩾ 2, |[d, B̄]| ⩾ 2, and since deg(d) ⩽ 5, at least one of the equalities holds
(still assume it is B). Thus δ(B) = 4, by Proposition 16, B is a singleton. |δ(B̄)| = 4
when deg(d) = 4 and 5 when deg(d) = 5, by Proposition 16 or 17 respectively, B̄ is a
singleton too, contradicting Proposition 11.

Corollary 19. An essential 7-cut of G is a bond unless it has the form δ({x1, x2}), where
x1, x2 are two vertices, deg(x1) = 3, deg(x2) = 4, and they are not adjacent in G.

Proof. Since G is 3-edge-connected, an essential 7-cut which is not a bond can only be a
union of two cuts, whose size are 3 and 4 respectively. By Proposition 16, both of them
are formed by a single vertex.

In the following three propositions, we show that the two special vertices d and t both
exist, and the are not adjacent.

Proposition 20. d exists in G, and deg(d) = 3 or 4.

Proof. If d does not exist, then G belongs to one of the following cases, and in each of
them we can apply the induction on a smaller graph with less unoriented edges.

(1) All vertices in the boundary have degree at least 5. Take an edge e in the boundary
and delete it, then essential cuts in G − e have size at least 4 by Proposition 16. Apply
the induction on G− e.

(2) There is no 3-vertex but a 4-vertex z in the boundary. G− z is 2-edge-connected;
assume there exists a 2-cut [B, B̄]. In this case G has no cut of size at most 3, so
|[z, B]| = |[z, B̄]| = 2. By Proposition 16, both B and B̄ are singletons with parallel
double edges in between, violating Proposition 11, so G−z is 3-edge-connected. Prescribe
z properly and appoint it as ”d” in Theorem 9, then we can apply the induction on G−z.
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(3) There exists a 3-vertex z′ in the boundary. Assume there exists a 2-cut [F, F̄ ] in
G− z′, setting |[z′, F ]| = 2, |[z′, F̄ ]| = 1 without loss of generality. By Proposition 16, F
is a singleton linked to z′ by parallel double edges, violating Proposition 11, so G− z′ is
3-edge-connected. Prescribe z′ properly and appoint it as ”d” in Theorem 9, then we can
apply the induction on G− z′.

Now we have proved the existence of d. If deg(d) = 5, choose an arc a in the boundary
incident to d, and apply the induction on G− a.

Proposition 21. t exists.

Proof. Presume on the contrary that t does not exist, then all boundary vertices except
d have degree at least 4.

When deg(d) = 4, choose an arc a in the boundary incident to d, and apply the
induction on G− a.

When deg(d) = 3, by Proposition 17, an essential cut formed by d and one of its
boundary neighbours has size at least 6, and it can be deduced that the minimum degree
of G − d is at least 4. Moreover, G − d contains no essential cut of size at most 3, since
such a cut yields an essential cut of size at most 4 in G. We apply the induction on G−d.

Proposition 22. d and t are not adjacent.

Proof. If d and t are adjacent, δ({d, t}) is an essential cut of size 4 or 5, contradicting
Proposition 16 or Proposition 17.

In the following propositions, we make some preliminary descriptions of the structure
of G, which is the basis of our analyses in Section 4. We end this section with a more
detailed depiction about essential 5-cuts as a corollary of these descriptions.

Proposition 23. t is not incident to a chord.

Proof. On the contrary, suppose tx is a chord separating G into two subgraphs G1 and
G2 with G1 ∪ G2 = G, V (G1) ∩ V (G2) = {t, x}, and d ∈ V (G1). We use degi to denote
the degree of a vertex in Gi (i = 1, 2). In G1, d and t are not adjacent; in G2, there
exists a vertex in the boundary other than {t, x}, with degree at least 4. By Proposition
11, each of Gi has at least four vertices, and it can be deduced from Proposition 16 that
degi(x) ⩾ 5.

In G1, contract tx to a vertex z. Denote the Z4−boundary of G1/tx by β1, β1(v) =
β(v) for v ∈ V (G1) \ {t, x} and set the boundary value β1(z) so as to make the sum∑
w∈V (G1/tx)

β1(w) = 0. G1/tx− d contains no bad 2-cut under β1, otherwise yielding a bad

2-cut under β in G− d. Now apply the induction on G1/tx, and we obtain a (Z4, β1)-flow
(D1, f1) with a strong orientation D1(G1/tx− d). We are going to construct a flow on G1

stemming from it. From the proof of Proposition 11, we can orient tx to extend D1 to a
strong orientation of G1 − d. We choose this orientation, but do not label tx right now.

Prescribe t to achieve β(t) in G with the two unlabelled edges in G2, hence tx has
been definitely oriented and labelled so far, a flow on G1 is obtained. Add an extra arc
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a = tx labelled with a fixed value 1 or 2. G2 + a has no essential cut of size at most 3,
since such a cut must separate t and x, and because |[t, V (G1) \ {t, x}]| = 1, it will yield
an essential cut of size at most 4 in G. Furthermore, G2 − t has no 2-cut, otherwise a cut
of size at most 3 is induced in G, which is neither δ(d) nor δ(t). Denote the Z4−boundary
of G2 by β2. Determine β2(t) according to its prescription in G2 + a, β2(v) = β(v) for
v ∈ V (G2) \ {t, x}, and set β2(x) so as to make the sum

∑
w∈V (G2)

β2(w) = 0. Now we can

apply the induction on G2 + a, a (Z4, β2)-flow (D2, f2) on G2 + a (and thus on G2) is
obtained, with a strong orientation D2(G2 − t). Combining the prescription of t, there
arises a (Z4, β)-flow on G with a strong orientation of G− d, a contradiction.

Proposition 24. The degree of boundary neighbours of t is exactly 4.

Proof. Assume one boundary neighbour of t has degree at least 5, then G − t satisfies
conditions (i), (ii) and (v) in Theorem 9, and our goal is to check (iii) and (vi) to apply
the induction on G− t. First, since deg(t) = 3, G− t has no essential cut of size at most
3, otherwise it induces an essential cut of size at most 4 in G. We will show that (vi)
holds if t has been wisely prescribed by a series of Lemmas and Claims.

Say a composition of b ∈ Z4 is a way of writing b as the sum of an ordered sequence
of values in Z4. We start with a preparing lemma:

Lemma 25. Let L1, L2 be two subsets of L3 = {1,−1, 2} ⊆ Z4, where |L1| = |L2| = 2.
For every value b ∈ Z4, b has a composition b = b1 + b2 + b3, bi ∈ Li (i = 1, 2, 3), where
either 2 ∈ {b1, b2, b3} or {1,−1} ⊆ {b1, b2, b3}.

Proof of Lemma 25. Both L1 and L2 can be regarded to be the remaining part
after deleting one value from L3. We make a table of all possible values of L1 + L2:
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Deleted values L1 + L2

1, 1 0, 1, 2
-1, -1 0, -1, 2
2, 2 0, 2
1, -1 0, 1, -1
1, 2 0, 1, -1, 2
-1, 2 0, 1, -1, 2

Anyway, L1 + L2 + L3 = {0, 1,−1, 2}. We discuss the composition of b according to
its parity.

• When b is even, there exists a 2 in any composition of b;

• When b = ±1, then if none of 2 is deleted, b = 2 + 2 + b; if one of 2 is deleted,
b = b+ 2 + 2 or b = 2 + b+ 2; if two of 2 are deleted, b = 1 + (−1) + b.

Claim 26. t can be prescribed properly without leaving any bad 2-cut in G− d− t, under
the induced Z4-boundary.

Proof. We show that the 2-cuts in G−d−t are too special and rare to make great influence
on the prescription of t. Let [B, B̄] be a 2-cut in G− d− t.

Subclaim 26.1. B or B̄ is a single vertex in N(t).

Proof of Subclaim 26.1. [B
⋃
t, B̄] or [B, B̄

⋃
t] is a 3-cut of G−d. We may assume

it is [B
⋃

t, B̄], and |[t, B̄]| = 1.
In G, |δ(B⋃

t)| > 4, |δ(B̄)| > 3, and deg(d) = 3 or 4. It can be deduced from these
facts that |[d, B̄]| ⩽ 2, |δ(B̄)| = 4 or 5. By Proposition 16 or 17, B̄ is a single vertex
adjacent to t.

Subclaim 26.2. There are at most two 2-cuts in G− d− t.

Proof of Subclaim 26.2. We write z the single vertex in a 2-cut for convenience.
If deg(d) = 3, deg(z) = 4, z is a boundary neighbour of t and the subclaim holds. If
deg(d) = 4, we presume that all three possible 2-cuts coexist, and the three correspond-
ing z are z1, z2 and z3. The configuration of G is shown in Figure 2.
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G is separated into two subgraphs G1 and G2, with V (G1)
⋂
V (G2) = {d, z3, t},

deg(z1) = deg(z2) = 4 and deg(z3) = 5. It can be deduced from Proposition 11 that the
internal vertex set of Gi is nonempty, and we use Ui to represent it (i = 1, 2). From condi-
tion (v) of Theorem 9, |δ(Ui)| ⩾ 5, but |δ(Ui)| = |δ(Ui)∩δ(zi)|+|δ(Ui)∩δ(z3)| ⩽ 2+2 = 4,
a contradiction.

Proof of Claim 26: To find a proper prescription of t, equivalently, we may make
the three edges incident to t all out-arcs, each of which is equipped with a value list
{1,−1, 2} ∈ Z4. Making at most two 2-cuts not bad is equivalent to selecting at most
two of the lists, and delete one value from each of them. By Lemma 25, there exists a
scheme of labelling containing 2 or {1,−1}. Since the edge labelled with 2 can be oriented
arbitrarily, it corresponds a proper prescription of t.

At last, we have proved that t has a proper prescription making (vi) hold in G − t.
We can apply the induction on G− t, and gain a flow on G− t with a strong orientation
of G− d− t, which can be naturally extended to a flow on G with a strong orientation of
G− d. The proof of Proposition 24 is finished.

Proposition 27. A vertex of degree 4 is not incident to an unoriented chord.

Proof. Similarly, let x be the 4-vertex, and xy is a chord separating G into two subgraphs
G1 and G2 with G1∪G2 = G, V (G1)∩V (G2) = {x, y}, and d ∈ G1. We use degi to denote
the degree of a vertex in Gi (i = 1, 2). In G2, there exists a vertex in the boundary other
than {x, y}, with degree at least 3, so G2 has at least four vertices, and by Proposition
16, deg2(y) ⩾ 4.
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Case 1. V (G1) \ {x, y} = {d}.

In this case deg2(x) = 3, otherwise there are parallel double arcs between d and x,
and thus δ({d, x}) is an essential 3 or 4-cut of G.

If there is an essential cut of size at most 3 in G2, then it separates x and y, or the
cut induces an essential cut of size at most 3 in G. Assume it is [B, B̄] and x ∈ B. d is
connected with B by a single arc dx, and δ(B) is an essential cut of size at most 4 in G.
So essential cuts in G2 have size at least 4.

Still in G2, assume [F, F̄ ] is a 2-cut of G2 − x and y ∈ F . |[x, F̄ ]| = 1 or 2, |δ(F̄ )| ⩽ 4,
so F̄ is a singleton. If so, |[x, F̄ ]| = 1 and deg(F̄ ) = 3, hence F̄ = {t}, and the possible
2-cut in G2−x is unique. Denote the Z4-boundary in G2 by β2, β2(x) and β2(y) are set to
achieve β(x) and β(y) under the restriction of d, and β2(w) = β(w) for w ∈ V (G2)\{x, y}.
The same as the proof of Claim 26, x can be prescribed properly so that there is no bad
2-cut in G2 − x under the induced boundary from β2. Applying the induction on G2, we
obtain a flow (D2, f2), where D2(G2 − x) is strong, and thus D2(G2) is strong.

Case 2. V (G1) \ {x, y} has at least two vertices.

Copy the proof of Claim 23. G1/xy admits a flow (D1, f1), where D1(G1/xy − d) is
strong. Add an extra arc a = xy labelled with a fixed value 1 or 2, G2 + a contains
no essential cut of size at most 3. Assume [K, K̄] is a 2-cut of G2 − x, and y ∈ K.
|δ(K̄)| ⩽ 4, so K̄ must be a single vertex adjacent to x. The only possible 2-cut of G2−x
is [t, V (G2) \ {x, t}].

(1) If x and t are not adjacent, prescribe x so thatD1 is extended to a strong orientation
of G1 − d; apply the induction on G2 + a, G2 admits a flow (D2, f2) where D2(G2 − x) is
strong. Combining the two parts together, we obtain a flow with a strong orientation of
G− d.
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(2) If x and t are adjacent and deg2(x) = 3, prescribe x so that D1 is extended to
a strong orientation of G1 − d and [t, V (G2) \ {x, t}] is not bad under the induced Z4-
boundary β2: the orientation of xy is fixed, and xt has at most one forbidden value, so this
is equivalent to composing a certain value in Z4 with three copies of list {1,−1, 2}, at most
two of which having one value deleted. By Lemma 25, there exists such a prescription,
then apply the induction on G2 + a as we have done in (1).

(3) If x and t are adjacent and deg2(x) = 2, prescribe x and t so that: (i) D1 is
extended to a strong orientation of G1 − d; (ii) the orientation of t is proper.

G2 − x − t is 3-edge-connected, and the sizes of essential cuts are at least 4: Let
[Q, Q̄] be a cut of size at most 3 with y ∈ Q, t is linked to Q̄ by at most two edges, so
4 ⩽ |δ(Q̄)| ⩽ 5. The only possible case is that Q̄ is a single vertex in N(t) \ {x} of degree
4 in G, and |[Q, Q̄]| = 3.

We apply the induction on G2 − x − t: by Proposition 16, the condition deg2(x) = 2
implies deg2(y) ⩾ 5; remember t is not incident to a chord, G2 − x − t contains at most
one 3-vertex. By the induction on G2 − x − t (setting the prescribed special vertex in
Theorem 9 non-existent), we obtain a flow (D2, f2) where D2(G2 − x − t) is strong. By
prescriptions (i) and (ii), we get a flow with boundary β and a strong orientation of G−d
formed by D1, D2 and {t}. This completes the proof.

Proposition 28. There does not exist an essential 5-cut [A,Ac] such that δ(A) ∩ δ(t) is
a single edge in the boundary.

Proof. Assume there exists such an [A,Ac]. By Proposition 17, d and t belong to different
sides of the cut, say d ∈ A and t ∈ Ac. Assume, furthermore that among all such cuts
|Ac| is minimum. Prescribe t in some way and delete it. Denote the boundary edge of
δ(A) ∩ δ(t) by e. First contract Ac \ {t} and apply the induction on (G − t)/(Ac − t)
(equivalently G/Ac − e), then contract A and apply the induction on G/A− t. It will be
shown that there exists a proper prescription of t to guarantee the proceeding of the two
inductions.

Edge connectivity: essential cuts in G/Ac−e have size at least 4 because of Proposition
16; G/A− t contains no essential cut of size at most 3, otherwise yielding an essential cut
of size at most 4 in G/A and thus in G.

Claim 29. There is at most one 2-cut in G/Ac − e− d.

Proof of Claim 29: By Corollary 18, G − d is 3-edge-connected; G/Ac − e − d is
2-edge-connected, and any 2-cut contains edge e in G. Let [B, B̄] be such a 2-cut, and
suppose the vertex contracted from Ac is in B̄. By Proposition 16, in G, |[d, B̄]| ⩾ 2,
|[d,B]| ⩽ 2, |δ(B)| ⩽ 5, so B is a singleton from Proposition 17, which can only be the
boundary neighbour of t contained in A.

Claim 30. There is at most one 2-cut in G[Ac \ {t}].
Proof of Claim 30: Assume [F, F̄ ] is a 2-cut of G[Ac \ {t}].
(1) If |[A,F ]| or |[A, F̄ ]| = 4, we may suppose it is the former without loss of generality

(for convenience, we will always choose F as the special one later in this proof). |δ(F̄ )| ⩽ 4,
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by Proposition 16, F̄ is a singleton incident to t, resulting in a 3-vertex w /∈ {d, t} or
multiple edges.

(2) If |[A,F ]| = 3, and |[t, F ]| or |[t, F̄ ]| = 2, then |δ(F̄ )| = 3 or 5, F̄ is a singleton
incident to t, resulting in a 3-vertex w /∈ {d, t} or multiple edges too. So |[t, F ]| = |[t, F̄ ]| =
1, |δ(F̄ )| = 4, and F̄ is the boundary neighbour of t not in A, see Figure 4.

d

t

F F̄

A

Figure 4

(3) If |[A,F ]| = |[A, F̄ ]| = 2, and |[t, F ]| = |[t, F̄ ]| = 1, then |δ(F )| = |δ(F̄ )| = 5, by
Proposition 17, both F and F̄ are singletons with parallel double edges in between. So t
is linked to one of F and F̄ by two edges (See Figure 5, where we take F as the special
one as usual). |δ(F ∪ {t})| = 5, and δ(t) ∩ δ(F ∪ {t}) is a single edge in the boundary of
G, a contradiction to the minimality of |Ac|.

d

t

F F̄

A

Figure 5
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With the two claims above, we make a scheme to prescribe t to satisfy condition (vi)
in Theorem 9, as we have mentioned at the beginning of this proposition.

There are three ways to orient and label e, of which we choose the one so that: (I)
the only possible 2-cut of G/Ac − e − d is not bad under the induced Z4-boundary; (II)
the induced boundary value of the remaining two edges of t is not 2. We can apply the
induction on G/Ac − e, and obtain a flow (D1, f1), where D1(G/Ac − e − d) is strong.
Transfer this flow to G/A− t.

If the only possible 2-cut in G/A−t exists, orient and label the remaining two edges of
t to achieve β(t), so that: (1) the 2-cut is not bad under the induced Z4-boundary, with
the restriction of (D1, f1); (2) the orientation of t is proper. Because of (II), these can be
realized, see the illustration in the proof of Proposition 11. We can apply the induction on
G/A− t, and obtain a flow (D2, f2), where D2(G[Ac \ {t}]) is strong. Combining (D1, f1),
(D2, f2) as well as {t}, we get a flow with a strong orientation of G− d.

4 Proof of Theorem 9

In this section, we denote the two boundary neighbours of t by u and v, while the
internal neighbour is w. The neighbours of v are v1, v2, v3 and t in cyclic order, where
v1 is in the boundary. Let e1 = vv1 and e2 = vv2. d and t cut the boundary cycle C
(We named it in Section 3 when finishing the proof of Proposition 12) into two segments
separating u and v. Denote the two boundary neighbours of d by u′ and v′, where u and
u′ are on the same side and v and v′ are on the same side.

With v specialized, we will perform different operations on the neighbours of t to
create turning points for induction. As a result, a flow with a strong orientation of G− d
will be obtained.

4.1 Case 1: w ∈ N(u) ∩ N(v), and v and d are not adjacent.

t
vu

w v2

v1

d

e2
e1

u′ v′

Figure 6: Case I, notice v1 and v′ may be identical.
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Orient and label e1 and e2 to realize β(v). Let D∗ = {u, t, v, w}, and denote by d∗ the
vertex to which D∗ is contracted. Delete e1 and e2 and let G′ = G/D∗ − e1 − e2. The
Z4−boundary β′ is induced from β by the contraction and deletion.

Lemma 31. A flow on G′ − d with a strong orientation can be extended to a flow on
G− d, whose orientation is strong too.

Proof. This can be done by prescribing u and t wisely within the diamond D∗. Let (D, f)
be such a flow on G′ − d. First, by Lemma 10, there exists a certain orientation of uw so
that D is extended to a strong orientation of G− d− t− v, then we prescribe u with this
orientation of uw to achieve β(u). The value and orientation of ut may be determined
but still, we can prescribe t properly and since the Z4−boundary value of v in D∗ is
0, we prescribe vw with the same value and orientation as tv. As the result, utvw is a
directed path, or utw, tvw are two directed paths. Anyway, (D, f) is extended to a flow
on G− d− {e1, e2} with a strong orientation, and thus on G− d.

Lemma 32. There is no essential cut of size at most 3 in G′.

Proof. Assume [B,Bc] is such a cut with d∗ ∈ B. The only possible case is that |δ(B)| = 3
and v1, v2 ∈ Bc. But if so, then Bc together with v induces an essential 5-cut in G
intersecting δ(t) at tv, a contradiction to Proposition 17 or Proposition 28.

We now present the last lemma stating that there is at most one 2-cut in G′ − d.
With the three lemmas, we can apply the induction on G′ by making it not bad in the
prescription of e1 and e2.

Lemma 33. There is at most one possible 2-cut in G′−d, and if there is one, it can only
be δ(v1) ∩ E(G′ − d).

The proof of Lemma 33:

Let [F, F̄ ] be a 2-cut of G′ − d with d∗ ∈ F , where F̄ ̸= {v1}. We will show that such
a cut actually cannot exist.

• If |[d, F̄ ]| ⩽ 1, then |δ(F̄ )| ⩽ |[d, F̄ ]| + |δ(F̄ ) ∩ {e1, e2}| + 2 ⩽ 5, so F̄ is a single
vertex by Proposition 16 or 17. The only possible case is that |δ(F̄ )| = 4 and thus
F̄ = {v1}.

• If |[d, F ]| ⩽ 1, then |δ(F )| ⩽ 5. While by Proposition 16, |δ(F )| ⩾ 5, the only
possible case is that |δ(F )| = 5, and v1, v2 ∈ F̄ . δ(F \ {v}) is an essential 5-cut in
G intersecting δ(t) at tv, a contradiction to Proposition 28.

So |[d, F ]| = |[d, F̄ ]| = 2, and at least one of vi (i = 1, 2) must be in F̄ , since if not,
|δ(F )| = 4, violating Proposition 16.

If exactly one vi is in F̄ , |δ(F̄ )| = 5, so it is v2 and F̄ = {v2}. Since d ̸= v1, from
planarity, it can be shown from Figure 6 that {d, v, v2} forms an essential 7-cut which is
not a bond, since G−{d, v, v2} is divided into two non-empty components. By Corollary
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19, this will not happen. So both v1 and v2 are in F̄ . This last case, see Figure 7, is more
subtle than the ones above, requiring further research on the structures of F and F̄ to
eliminate it. Denote the two edges of [F, F̄ ] by e′1 and e′2. Contract F ∪ {d} to a vertex
d1, and contract F̄ ∪ {d} to a vertex d2 (but not at the same time).

t
vu

w v2

v1

d

e2
e1

u′ v′

F F̄e′1
e′2

Figure 7: |[d, F ]| = |[d, F̄ ]| = 2, and {v1, v2} ⊆ F̄ .

Claim 34. G[F̄ ] has at most one possible 2-cut, and if there is one, it can only be δ(v1)∩
E(G[F̄ ]); G[F ] has no 2-cut.

Proof. First concentrate on G[F̄ ]. Suppose [K, K̄] is a 2-cut of G[F̄ ]. It is obvious that
both K and K̄ are connected with d1 by at least one edge from E(G′). For convenience,
we call a path P an inner path if internal vertices of P do not lie on C.

Subclaim 34.1. Vertices on C from v′ to v1 in cyclic order are contained in F̄ .

Proof of Subclaim 34.1: By Fact 13, both δ(F ) and δ(F̄ ) are bonds of G, so the
boundary vertices belonging to F and F̄ are consecutive respectively, otherwise G[F ] and
G[F̄ ] cannot be connected at the same time by planarity. F ∪ F̄ ∪ {d} = V (G), v ∈ F
and v1 ∈ F̄ , where it can be deduced that the boundary vertices in F̄ are vertices from v′

to v1 in cyclic order.

Subclaim 34.2. In G′, |[d1, K]| = |[d1, K̄]| = 2 is impossible.

Proof of Subclaim 34.2: If so, v1 and v2 cannot be separated by the cut, because
otherwise |δ(K)| = |δ(K̄)| = 5 in G, by Proposition 17, K and K̄ are singletons with
parallel double edges in between. Assume v1, v2 ∈ K without loss of generality, then
K̄ is a boundary 4-vertex of G. In fact, K̄ = {v′}, since δ(K) is an essential 6-bond,
the boundary vertices within Kc = F ∪ {d} ∪ K̄ are consecutive on C. What is more,
|δ(v′) ∩ {e′1, e′2}| = 1 because there is exactly one edge between d and v′.

the electronic journal of combinatorics 32(2) (2025), #P2.1 19



t
vu

w v2

v1

d
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e1
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F F̄

e′1e′2 M(d)

Figure 8: If v′ forms a 2-cut of G[F̄ ].

δ(F \ {v}) and δ(F̄ ∪ {v}) are essential 6-bonds, so both G[F \ {v}] and G[F̄ ∪ {v}]
are connected. Define M(d) to be the internal vertex set which d can reach through an
inner path in G[F̄ ∪ {d, v}]. By planarity, d does not form a chord with any vertex in
{v′, . . . , v1, v}, because one of e′1, e

′
2 is incident to v′. But d contributes another edge to

δ(F̄ ) besides dv′, soM(d) ̸= ∅. Still by planarity, there is no inner path withinG[F̄∪{d, v}]
connecting d with a boundary vertex in F̄∪{v} except v′. These are shown in figure 8. As a
result, |δ(M(d))| = |δ(M(d))∩δ(d)|+|δ(M(d))∩δ(v′)|+|δ(M(d))∩{e′1, e′2}| ⩽ 1+1+1 = 3,
a contradiction.

Subclaim 34.3. In G′, |[d1, K]| = 1 or 3 is impossible unless v′ = v1 and deg(v1) = 4 in G.

t
vu

w v2

v1

d

e2
e1

u′ v′

F F̄

e′1

e′2 U

Figure 9: If v1 forms a 2-cut of G[F̄ ].

Proof of Subclaim 34.3: Let |[d1, K]| = 3 without loss of generality. |δ(K̄)| ⩽
5, so K̄ is a singleton. Actually K̄ can only be v1 with degree 4 in G. If v′ ̸= v1,
then there is no chord between d and v1, because otherwise there exists an essential
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4-cut in G. So |δ(v1) ∩ {e′1, e′2}| = 1. Consider the 6-bond δ(F̄ ∪ {v}), by planarity,
in G[F̄ ∪ {v}], no boundary vertex between d and v1 admits an inner path to v. We
define U to be these boundary vertices as well as the internal vertices they can reach
through an inner path in G[F̄ ], see Figure 9. δ(U) is a cut not separating d and t, while
|δ(U)| = |δ(U)∩δ(v1)|+ |δ(U)∩δ(d)|+ |δ(U)∩{e′1, e′2}| ⩽ 2+2+1 = 5. So U = {v′} with
degree 4 or 5 in G, as the result, at least two inequalities of the three terms in the sum
hold, causing parallel double edges between v′ and d or v1, neither of which is possible.

The former part of Claim 34 can be deduced from the above three subclaims, and now
we turn to G[F ]. Assume [Q, Q̄] is a 2-cut of G[F ] with d∗ ∈ Q. In G′, |[d2, Q̄]| ⩾ 2 and
by Proposition 16, |[d2, Q]| ⩾ 1. If |[d2, Q]| = 1, then |δ(Q)| = 5, and δ(Q \ {v}) is an
essential 5-cut of G intersecting δ(t) at tv, violating Proposition 28.

t
vu

w v2

v1

d

e2
e1

u′ v′

F F̄

e′1

e′2
Ũ

Figure 10: If u′ forms a 2-cut in G[F ].

So |[d2, Q]| = |[d2, Q̄]| = 2, and Q̄ is a 4-vertex of G. δ(Q̄ ∪ F̄ ∪ {d}) is a 6-bond,
so Q̄ can only be u′ with degree 4 in G. There is exactly one edge between d and u′,
so |δ(u′) ∩ {e′1, e′2}| = 1. Consider the 6-bond δ(F̄ ∪ {d, v, u′}), by planarity, there is
no chord nor an inner path in G[F̄ ∪ {d, v, u′}] connecting u′ with boundary vertices in
{v′, . . . , v1, v} because |δ(d) ∩ δ(F \ {v, u′})| = 1. Define Ũ to be the set of internal
vertices cannot be reached by {v′, . . . , v1, v} through an inner path in G[F̄ ∪ {v}], see
Figure 10. It can be deduced that Ũ ̸= ∅ and u′ is linked to Ũ by one of e′1 and e′2.
|δ(Ũ)| = |δ(Ũ)∩ δ(d)|+ |δ(Ũ)∩{e′1, e′2}| ⩽ 1+2 = 3, a contradiction. The proof of Claim
34 is completed.

In the end, we are able to verify Lemma 33 by constructing a flow on G[F ] and G[F̄ ]
respectively. Remember we have prescribed e1 and e2 to achieve β(v). Now prescribe e′1
and e′2 to achieve β(F ) and make sure that the directions of {e1, e2, e′1, e′2} between F and
F̄ are not identical. G[F ] has no 2-cut, applying the induction on F ∪ {d2} in G′, G[F ]
admits a flow with a strong orientation. G[F̄ ] has one possible 2-cut δ(v1)∩E(G[F̄ ]) only
when v′ = v1 and the degree of v1 is 4 in G. When this case arises, we can guarantee the
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cut not bad in the prescription of e1 and e2: there are at least two ways to orient and
label e1 to make the cut not bad, of which there exists one so that e2 is not labelled with
0 to achieve β(v). So we can apply the induction on F̄ ∪ {d1} and obtain a flow on G[F̄ ]
with a strong orientation too. Combining them together, there is a flow with a strong
orientation of G′ − d. By Lemma 31, a flow with a strong orientation of G − d can be
obtained.

4.2 Case 2: N(v) ∩ N(t) = ∅.

In this case we adopt the lifting method. Consider a vertex z with two neighbours x,
y. The lifting of two edges xz and yz means deleting them and adding a new edge xy
(even if one already exists).

t

d

w

vu

v3 v2

v1
e1

e2

u′ v′

Figure 11: Case II, v1 and d may be identical.

In G, lift e1 and e2 at v, orient and label the remaining two edges to realize β(v),
and properly prescribe t with the other two edges to realize β(t). Then delete {v, t} and
denote the resulted graph by G′′. Let β′′ be the induced Z4-boundary of G′′. β′′ and β
differ only at the three vertices u, w and v3, according to the deletion of t and v, while
for any other vertex z ∈ V (G′′), β′′(z) = β(z).

Lemma 35. A flow on G′′ − d with a strong orientation can be extended to a flow on
G− d, whose orientation is strong too.

Proof. If a graph has a flow with a strong orientation, then there is also one if we subdivide
an edge of the graph. In G′′, we subdivide the edge v1v2 from the lifting with v; since t
is properly prescribed, either utw or utv is a directed path. So there is a flow on G − d
with a strong orientation.

Lemma 36. There is no essential cut of size at most 3 in G′′.
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Proof. Let [B, B̄] be an essential cut of size s′ ⩽ 3 in G′′, with d ∈ B. We use this cut
to restore an essential cut of G by adding v and t to either B or B̄. The rule is to add
v (t) to the side containing the larger number of its neighbours. Since three vertices in
N(v) and two vertices in N(t) are concerned, the resulted cut has size s ⩽ s′ + 3 ⩽ 6 (do
not forget the edge tv), which must be a bond. Moreover, by Proposition 16, s ⩾ 5, so
s = s′ + 2 or s′ + 3.

If s = s′ + 2, then s′ = 3, s = 5, and thus t is added to B̄. Notice that if in the
restoration, both t and vt contribute an edge to the cut at the same time, we can move
t to B and obtain an essential cut of size at most 4 in G, so there are only two possible
situations: (1) v is added to B, v contributes one edge and t contributes no edge; (2) v is
added to B̄, and both of them contribute one edge to the cut. As for (1), we will restore
an essential cut of size at most 5 intersecting δ(t) at tv, a contradiction to Proposition
28; as for (2), v1 and v2 cannot be separated, and δ(t) ∩ δ(B) is not in the boundary, so
{v3, w} ⊆ B and {v1, v2, u} ⊆ B̄. δ(B ∪ {t}) is an essential 6-cut of G which is not a
bond, because by planarity, G[B ∪ {t}] and G[B̄ ∪ {v}] cannot be connected at the same
time, which is a contradiction too.

If s = s′ + 3, then v, t and vt contribute one edge respectively, and moreover, v1 and
v2 are not separated. t can be transferred to v’s side, resulting in an essential cut of size
s − 1 in G, so s′ = 3, s = 6; v is added to B̄, and t is added to B. What is more,
by Proposition 28, it is implied that {v3, w} ⊆ B and {v1, v2, u} ⊆ B̄, which is just the
content of (2).

Lemma 37. There is at most one 2-cut in G′′ − d, and if there is one, it can only be
δ(u) ∩ E(G′′ − d).

Proof of Lemma 37:
Let [F, F̄ ] be a 2-cut of G′′ − d.
(1) If |[d, F ]| or |[d, F̄ ]| ⩽ 1, since essential cuts in G′′ have size at least 4 and the only

3-vertex except d is u, F or F̄ = {u}. This is just the exception we mentioned in the
statement of the lemma.

(2) If |[d, F ]| = |[d, F̄ ]| = 2, write T = {v, t} for convenience. The first thing we
need to point out is that |[d, F ]| = |[d, F̄ ]| = 2 implies d ̸= v1. When d = v1 happens,
|[T, F ]| + |[T, F̄ ]| = 3, so |δ(F )| ⩽ 5 or |δ(F̄ )| ⩽ 5 holds in G, whence F or F̄ must be
a singleton. Let v2 ∈ F without loss of generality. If the singleton is F = {v2}, then
deg(v2) = 5 and v2 ∈ N(t), contradicting the premise of Case 2; if the singleton is F̄ , it
can only be v3 or w with degree 5 in G, as well as double arcs between d. As the result,
δ({d, w, t}) is a bond of size 6, or δ({d, v3, v}) is a bond of size 5 in G. However, G is
separated by three vertices into two disjoint components in both situations.

Moreover, |[T, F ]| ⩾ 1 and |[T, F̄ ]| ⩾ 1, otherwise δ(F ∪ T ) or δ(F̄ ∪ T ) is an essential
4-cut in G, violating Proposition 16. We analyse the possible cuts between T and the two
parts, with F̄ specialized to be the side gaining less edges.

• |[T, F̄ ]| = 1. F̄ is a singleton with degree 4 or 5 in G, and degree 4 in G′′, so
F̄ ∈ {w, v1, v3}. If F̄ = {w}, then δ({t, w, d}) is an essential 5 or 6-cut which
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cannot be a bond by planarity, a contradiction to Fact 13; if F̄ = {v1}, δ({d, v1}) is
an essential 4-cut of G, a contradiction to Proposition 16; if F̄ = {v3}, deg(v3) = 5
and δ({v, v3, d}) is an essential 7-cut which is not a bond by planarity, a contradiction
to Corollary 19.

• |[T, F̄ ]| is 2. If {w, v} ⊆ F̄ , then δ(F̄ ∪ {d, t}) is an essential 5-cut in G, a contra-
diction to Proposition 17.

If two neighbours of v are in F̄ : δ(F̄ ∪ {d, v}) is an essential 5-cut intersecting δ(t)
at tv if v3 ∈ F̄ , violating Proposition 28, so {v1, v2} ⊆ F̄ and v3 ∈ F .

If one of {w, u} and one of {v1, v2, v3} are in F̄ : δ(F̄ ∪ {d, t}) is an essential 6 or
7-cut, which must be a bond, so the boundary vertices of G contained in F̄ ∪ {d, t}
are consecutive. v /∈ F̄ , so u ∈ F̄ and w ∈ F . If v1 or v2 ∈ F̄ , δ(F̄ ) is an essential
5-cut in G not separating d and t, violating Proposition 17. Above all, the only
possible case is {u, v3} ⊆ F̄ .

t
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e1

e2

u′ v′

F F̄
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FF̄
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Figure 12: Two bad situations.

Figure 12 shows the configurations of the two possible situations, and for the five
concerning vertices {u,w, v1, v2, v3}, we marked each of them with a small circle if it is
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in F , or a small square if it is in F̄ . The same as the proof of Case 1, to exclude them,
we will work on F and F̄ respectively. We inherit the notations e′1, e

′
2, d1, d2 and M(d)

from Case 1. We will discuss the two situations separately with two claims. Actually
there is little difference between the proofs of them, and some notations are shared by
both proofs.

4.2.1 {v1, v2} ⊆ F̄ .

Claim 38. G[F̄ ] has no 2-cut; G[F ] has at most one possible 2-cut, and if there is one,
it can only be δ(u) ∩ E(G[F ]).

Proof of Claim 38:

Subclaim 38.1. Boundary vertices from v′ to v1 in cyclic order are contained in F̄ .

Proof. The proof is quite similar to that of Subclaim 34.1. By Fact 13 and Corollary 19,
both δ(F ) and δ(F̄ ) are bonds of G, so the boundary vertices belonging to F and F̄ are
consecutive on C respectively, otherwise G[F ] and G[F̄ ] cannot be connected at the same
time by planarity. F ∪ F̄ ∪{d, t, v} = V (G), v1 ∈ F̄ and u ∈ F , so it can be deduced that
the boundary vertices in F̄ are vertices from v′ to v1 in cyclic order.

Suppose [K, K̄] is a 2-cut of G[F̄ ]. By Proposition 16, both K and K̄ are connected
with d1 by at least one edge.

Subclaim 38.2. |[d1, K]| = |[d1, K̄]| = 2 is impossible.

Proof. v1 and v2 cannot be separated by such a cut, otherwise |δ(K)| = |δ(K̄)| = 4 in
G, by Proposition 16, K and K̄ are just the two vertices v1 and v2, whence deg(v2) = 4
is ridiculous. So assume {v1, v2} ⊆ K̄ without loss of generality, then |δ(K)| = 4, K
is a single 4-vertex in the boundary; |δ(K̄)| = 6, δ(K̄) is an essential 6-bond, and the
boundary vertices in K̄ are consecutive. It can be deduced that K = {v′} distinct from
v1. There is exactly one edge between d and v′, so |δ(v′) ∩ {e′1, e′2}| = 1.

t
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v1
e1

e2

u′ v′

F F̄
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M(d) e′1

Figure 13: If |[d1, K]| = |[d1, K̄]| = 2, and v′ forms a 2-cut in G[F̄ ].
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δ(F ∪ {t}) and δ(F̄ ∪ {v}) are essential 6-bonds, so both G[F ∪ {t}] and G[F̄ ∪ {v}]
are connected. Define M(d) to be the internal vertex set which d can reach through an
inner path in G[F̄ ∪ {d, v}]. By planarity, d does not form a chord with any vertex in
{v′, . . . , v1, v}, because one of e′1, e

′
2 is incident to v′. But d contributes another edge to

δ(F̄ ) besides dv′, soM(d) ̸= ∅. Still by planarity, there is no inner path withinG[F̄∪{d, v}]
connecting d with a boundary vertex in F̄ ∪ {v} except v′. These are shown in Figure
13. As a result, |δ(M(d))| = |δ(M(d))∩ δ(d)|+ |δ(M(d))∩ δ(v′)|+ |δ(M(d))∩ {e′1, e′2}| ⩽
1 + 1 + 1 = 3, a contradiction.

Subclaim 38.3. |[d1, K]| = 1 or 3 is impossible.

Proof. By symmetry, we only need to prove |[d1, K]| = 1 does not hold. If |[d1, K]| = 1,
then |δ(K)| ⩽ 5 in G, by Proposition 17, it is a single vertex with degree at least 4, so
|[T,K]| ⩾ 1, and K = {v1} or {v2}. Remember we added an extra edge between v1 and
v2 in the lifting, it is deduced that the degree of K is actually 3 in G, which is impossible.

We have finished the former part of the claim, now we turn to G[F ]. Assume [Q, Q̄]
is a 2-cut of G[F ]. By Proposition 16 and 17, both Q and Q̄ are connected with d2 by at
least one edge.

Subclaim 38.4. |[d2, Q]| = |[d2, Q̄]| = 2 is impossible.

Proof. We prove this fact by analysing the edges between T and the two parts, and
suppose |[T,Q]| < |[T, Q̄]| without loss of generality. Then there are two possibilities:
|[T,Q]| = 0 or |[T,Q]| = 1.

t

d

w

vu
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v1
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u′ v′

F F̄

ũ′
e′1

Figure 14: If |[T,Q]| = 0, and u′ forms a 2-cut in G[F ].

If |[T,Q]| = 0, |δ(Q)| = 4 in G, then Q is a 4-vertex by Proposition 16. Moreover,
δ(F̄ ∪ Q ∪ {d}) is an essential 6-cut which must be a bond, so the boundary vertices
contained in F̄ ∪Q∪{d} are consecutive in cyclic order. It can be deduced that Q = {u′},
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and u′ ̸= u. Moreover, |δ(u′) ∩ {e′1, e′2}| = 1 because there is exactly one edge between d
and u′.

Since G[F̄ ] is connected, there is an inner path within G[F̄ ∪ {d, u′}] linking u′ to a
boundary vertex of {v′, . . . , v1} (note it ũ′, see Figure 14), while d contributes another
edge to δ(F̄ ∪ {d, u′}), violating planarity.

If |[T,Q]| = 1, |δ(Q)| = 5 in G, so Q is a 5-vertex by Proposition 17. Since deg(u) = 4,
Q = {v3} or {w}. Q = {v3} is impossible: if so, δ(Q̄∪{t}) is an essential 5-cut intersecting
δ(t) at tv, a contradiction to Proposition 28. So Q = {w}.

t
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v1
e1

e2

u′ v′

F F̄

w̃

e′1
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Sw

Figure 15: If |[T,Q]| = 1, and w forms a 2-cut in G[F ].

There are two edges in δ(d)∩ δ(F ), one of which is the boundary edge du′, so |δ(w)∩
{e′1, e′2}| ⩾ 1. Because G[F̄ ] is connected, there is an inner path Pw linking w to a
boundary vertex of {v′, . . . , v1} (note it w̃), whose internal vertices lie in F̄ . wPww̃Ctw is
a cycle enclosing a non-empty set of internal vertices not in F̄ (v3 is enclosed), see Figure
15. Use Sw to denote this set, |δ(Sw)| = |δ(Sw)∩δ(v)|+|δ(Sw)∩δ(w)|+|δ(Sw)∩{e′1, e′2}| ⩽
1 + 2 + 1 = 4, a contradiction.

Subclaim 38.5. |[d2, Q]| = 1 or 3 is impossible unless u′ = u and the degree of u is 4 in G.
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Figure 16: If |[d2, Q]| = 1, and u forms a 2-cut in G[F ].

Proof. By symmetry, it is enough to prove that the subclaim holds when |[d2, Q]| = 1.
obviously |[T,Q]| > 0. If |[T,Q]| = 3, δ(Q ∪ {t}) is an essential 5-cut intersecting δ(t) at
tv, a contradiction to 28. So |[T,Q]| ⩽ 2, |δ(Q)| ⩽ 5, and thus Q is a single vertex by
Proposition 16 and 17. The only possible case is that Q = {u}, and deg(u) = 4.

When u′ ̸= u, there is no chord between d and u, because otherwise there exists an
essential 4-cut in G. So the edge d2u is one of e′1, e

′
2. There is an inner path Pu linking u

to some vertex in {v′, . . . , v1} (note it ũ), whose internal vertices lie in F̄ , and uPuũCtu
is a cycle enclosing a non-empty set of internal vertices not in F̄ (v3 and w are enclosed),
see Figure 16. Use Su to denote this set,, |δ(Su)| = |δ(Su)∩δ(v)|+ |δ(Su)∩δ(t)|+ |δ(Su)∩
δ(u)| + |δ(Su) ∩ {e′1, e′2}| ⩽ 1 + 1 + 1 + 1 = 4, a contradiction. So the only possible case
of this configuration is u = u′, and the only 2-cut is δ(u) ∩ E(G[F ]). This completes the
proof of Claim 38.

4.2.2 {u, v3} ⊆ F̄ .

Claim 39. G[F̄ ] has at most one possible 2-cut, and if there exists one, it can only be
δ(u) ∩ E(G[F̄ ]); G[F ] has no 2-cut.

Proof of Claim 39:

Subclaim 39.1. Boundary vertices from v′ to v1 in cyclic order are contained in F .

Proof. By Fact 13 and Corollary 19, both δ(F ) and δ(F̄ ) are bonds of G, so the boundary
vertices belonging to F and F̄ are consecutive on C respectively, otherwise G[F ] and G[F̄ ]
cannot be connected at the same time by planarity. Because F ∪ F̄ ∪ {d, t, v} = V (G),
v1 ∈ F and u ∈ F̄ , it can be deduced from these facts that the boundary vertices in F
are vertices from v′ to v1 in cyclic order.

Suppose [K, K̄] is a 2-cut of G[F̄ ]. |[T,K]|+ |[T, K̄]| = 2, both K and K̄ are connected
with d1 by at least one edge because otherwise there exists an essential 4-cut in G.
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Subclaim 39.2. |[d1, K]| = |[d1, K̄]| = 2 is impossible.
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FF̄
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Figure 17: If |[d1, K]| = |[d1, K̄]| = 2, and u′ forms a 2-cut in G[F̄ ].

Proof. If so, then u and v3 cannot be separated by the cut, because otherwise |δ(K)| =
|δ(K̄)| = 5 in G, and K and K̄ are singletons with parallel double edges in between. So
assume u, v3 ∈ K without loss of generality, then K̄ is a boundary 4-vertex of G. In fact,
K̄ = {u′}, since δ(F ∪{d, u′}) is an essential 7-bond, the boundary vertices in F ∪{d, u′}
must be consecutive. Moreover, |δ(u′) ∩ {e′1, e′2}| = 1 because there is exactly one edge
between d and u′.

As a result, consider the 7-cut δ(F ∪ {d, u′}), there is an inner path within G[F ∪
{d, u′}] linking u′ to a boundary vertex of {v′, . . . , v1} (note it ũ′, see Figure 17), while d
contributes an edge to δ(F ∪ {d, u′}), violating planarity.

Subclaim 39.3. |[d1, K̄]| = 1 or 3 is impossible unless u′ = u and the degree of u is 4 in G.
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Figure 18: If u′ ̸= u, and u forms a 2-cut in G[F̄ ].
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Proof. By symmetry, we only need to prove that the subclaim holds when |[d1, K̄]| = 1.
|δ(K̄)| ⩽ 5 inG, so K̄ is a singleton. Actually |δ(K̄)| = 4 and K̄ can only be {u}. If u′ ̸= u,
then there is no chord between d and u, because otherwise there exists an essential 4-cut
in G. So the edge d1u is one of e′1, e

′
2. There is an inner path Pu linking u to some vertex in

{v′, . . . , v1} (note it ũ), whose internal vertices lie in F , and uPuũCtu is a cycle enclosing
a non-empty set of internal vertices not in F (v3 is enclosed), see Figure 18. Use Su to
denote this set, |δ(Su)| = |δ(Su)∩ δ(v)|+ |δ(Su)∩ δ(u)|+ |δ(Su)∩{e′1, e′2}| ⩽ 1+1+1 = 3,
a contradiction. So [K, K̄] does not exist on the premise that |[d1, K̄]| = 1 unless u = u′,
whence the only possible 2-cut is δ(u) ∩ E(G[F̄ ]).

Now we deal with G[F ]. Suppose [Q, Q̄] is a 2-cut of G[F ], |[T,Q]| + |[T, Q̄]| = 3, so
Q and Q̄ are connected with d2 by at least one edge for otherwise in G, there exists an
essential 4-cut, or an essential 5-cut not separating d and t.

Subclaim 39.4. |[d2, Q]| = |[d2, Q̄]| = 2 is impossible.

Proof. v1 and v2 cannot be separated by such a cut, for otherwise Q or Q̄ containing
w induces an essential 5-cut not separating d and t. There are two possibilities: w and
{v1, v2} are separated; or all three vertices are on the same side. We now eliminate them
respectively with Q̄ specialized.
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Figure 19: If |[d2, Q]| = |[d2, Q̄]| = 2, and w forms a 2-cut in G[F ].

If w ∈ Q and {v1, v2} ⊆ Q̄, then |δ(Q)| = 5 in G and Q = {w}. δ(d) ∩ δ(F )
contains one boundary edge dv′, so |δ(w) ∩ {e′1, e′2}| ⩾ 1. Because G[F ] is connected,
there is an inner path Pw linking w to a boundary vertex of {v′, . . . , v1} (note it w̃),
whose internal vertices lie in F . wPww̃Ctw is a cycle enclosing a non-empty set of
internal vertices not in F (v3 is enclosed), see Figure 19. Use Sw to denote this set,
|δ(Sw)| = |δ(Sw) ∩ δ(v)|+ |δ(Sw) ∩ {e′1, e′2}| ⩽ 1 + 2 = 3, a contradiction.
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Figure 20: If |[d2, Q]| = |[d2, Q̄]| = 2, and v′ forms a 2-cut in G[F ].

If {v1, v2, w} ⊆ Q̄, then Q is a boundary 4-vertex of G in F . In fact, Q = {v′},
since δ(F̄ ∪ {d,Q}) is an essential 6-bond, the boundary vertices in δ(F̄ ∪ {d,Q}) must
be consecutive. There is exactly one edge between d and v′, so |δ(v′) ∩ {e′1, e′2}| = 1.
Define M(d) to be the set of internal vertices which d can reach through an inner path in
G[F ∪ {d}]. By planarity, d does not form a chord with any vertex in {v′, . . . , v1}, while
d contributes another edge to δ(F ) besides dv′, so M(d) ̸= ∅. Still by planarity, there is
no inner path within G[F ∪ {d}] connecting d with w or v2, nor a boundary vertex in F
except v′. These are shown in Figure 20. So |δ(M(d))| = |δ(M(d)) ∩ δ(d)| + |δ(M(d)) ∩
δ(v′)|+ |δ(M(d)) ∩ {e′1, e′2}| ⩽ 1 + 1 + 1 = 3, a contradiction.

Subclaim 39.5. |[d2, Q]| = 1 or 3 is impossible.

Proof. By symmetry, it is enough to prove that the subclaim holds when |[d2, Q]| = 1.
3 ⩽ |δ(Q)| ⩽ 3 + |[T,Q]| ⩽ 6, by Proposition 16 and 17, |[T,Q]| = 1 or 3 are possible,
whence |δ(Q)| = 4 or 6. If |δ(Q)| = 4, Q can only be {v1}, however v1 and v2 are separated
and thus deg(v1) = 3 in G, which is ridiculous. So |δ(Q)| = 6 and {v1, v2, w} ⊆ Q, then
δ(Q ∪ {t, v}) is an essential 5-cut intersecting δ(t) at tu, which is a contradiction to
Proposition 28. This completes the proof of Claim 39.

Having finished the proofs of Claim 38 and Claim 39, now we can eliminate the two
situations we mentioned at the beginning of Lemma 37.

By Lemma 25, t can be prescribed properly so that: when d and u are adjacent,
δ(u)∩E(G[F ]) (or δ(u)∩E(G[F̄ ])) is not a bad 2-cut under the induced Z4− boundary;
the value of arc vt is not β(v) so that the value of vv3 is non-zero. Remember we lifted the
two edges vv1 and vv2. In G, orient the 3-path v1vv2 as the orientation of edge v1v2, and
label the two edges with the same value. Then in G there is a directed 3-path through v
connecting F with F̄ , and prescribe {e′1, e′2} to make sure that at least one of them has
an opposite direction to this path. By the induction, both G[F ] and G[F̄ ] admit a flow
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with a strong orientation respectively, from which we manage to construct a flow with a
strong orientation of G− d. This completes the proof of Lemma 37.

Having proved Lemma 36 and Lemma 37, we can prescribe t properly so that the only
possible 2-cut in Lemma 37 is not bad under β′′, as we just mentioned. Then we can apply
the induction on G′′ to obtain a flow with a strong orientation of G′′ − d. By Lemma 35,
it can be naturally extended to a flow with a strong orientation of G− d.

4.3 Case 3: w, d ∈ N(u) ∩ N(v).

t
vu

w

d

Figure 21

Finally we show that this last case is not possible either. When deg(w) > 5, we can
still lift e1 and e2, prescribe t and v wisely to achieve β(t) and β(v), then delete them as
we have done in Case 2. This is actually a special case of Case 2 with v3 = w, so we can
repeat the analyses about essential cuts and bad 2-cuts before, and the restriction v3 = w
will only make things simpler. The method of Case 2 is still available when deg(w) > 5,
so deg(w) = 5, and this last configuration is shown in Figure 21. Write Y = {d, u, v, w, t},
d and w cannot be adjacent, otherwise G is separated into two parts by the path dwt. A
cut of size at most 3 would be formed by a set of internal vertices. Obviously |Y c| ⩾ 2.
First contract Y c, there is a flow (D1, f1) on G/Y c and D1(G/Y c − d) is strong; then
contract Y to a vertex y and delete an edge in E(y). y has degree 5 in the resulted graph
G̃, G̃ neither contains a vertex of degree less than 4 nor an essential cut of size less than
5. What is more, G̃−y has no 2-cut, otherwise this will yield double edges or an essential
cut of size at most 5 not separating d and t in G. By the induction, G/Y admits a flow
(D2, f2) and D2(Y

c) is strong. Combining (D1, f1) and (D2, f2) together, we can obtain
a flow (D, f) of G and D(G− d) is strong. This completes the proof of Theorem 9.
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