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Abstract

For a k-uniform hypergraph H, let ν(m)(H) denote the maximum size of a set S of
edges of H whose pairwise intersection has size less than m. Let τ (m)(H) denote the
minimum size of a set S of m-sets of V (H) such that every edge of H contains some
m-set from S. A conjecture by Aharoni and Zerbib, which generalizes a conjecture
of Tuza on the size of minimum edge covers of triangles of a graph, states that
for a k-uniform hypergraph H, τ (k−1)(H)/ν(k−1)(H) 


k+1

2


. In this paper, we

show that this generalization of Tuza’s conjecture holds when ν(k−1)(H)  3. As a
corollary, we obtain a graph class which satisfies Tuza’s conjecture. We also prove
various bounds on τ (m)(H)/ν(m)(H) for other values of m as well as some bounds
on the fractional analogues of these numbers.
Mathematics Subject Classifications: 05C65, 05D15

1 Introduction

1.1 Definitions and Notation

Throughout this paper, unless otherwise specified, we will only be concerned with k-
uniform hypergraphs for k  3. We start by establishing some definitions and notation
which will be used throughout the paper.

For a set S with x ∈ S, y ∕∈ S, we denote S \ {x} by S − x and S ∪ {y} by S + y. For a
set Z with |Z| = 2, when we say z ∈ Z, we will let z = Z − z. For a hypergraph H, we
will use both E(H) and H to mean the edge set of H. Let H be a k-uniform hypergraph
with vertex set V and edge set E. A matching of H is any collection of disjoint edges of
H. We denote the largest matching of H by ν(H). A cover of H is a set C ⊆ V such
that for every e ∈ E, there is some v ∈ C ∩ e. We denote the size of the smallest cover of
H by τ(H). Clearly, for any k-uniform hypergraph H, ν(H)  τ(H)  kν(H).
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These definitions may be generalized in the following way: for 1  m  k − 1, an m-
matching of H is a collection M of edges of H such that for any e, e′ ∈ M , |e∩e′| < m. We
denote the size of the largest m-matching of H by ν(m)(H). Observe that ν(H) = ν(1)(H).
An m-cover of H is a set C ⊆


V
m


such that for every e ∈ H, there is some c ∈ C with

c ⊆ e. We denote the size of the smallest m-cover of H by τ (m)(H). Again, observe that
τ(H) = τ (1)(H). Similar to the inequality above, we trivially have ν(m)(H)  τ (m)(H) 

k
m


ν(m)(H). The main aim of this paper will be to improve the ratio τ (m)(H)/ν(m)(H)

for various values of m and ν(m)(H).

We will also study the fractional versions of these parameters. A fractional m-matching
is a function f : E(H) → R0 such that for every S ∈


V
m


, 

e⊇S f(e)  1. The size
of a fractional m-matching is |f | = 

e∈E(H) f(e). A fractional m-cover is a function
c :


V
m


→ R0 such that for every e ∈ H, 

S∈( e
m) c(S)  1. The size of a fractional

m-cover is |c| = 
S∈(V

m) c(S). The fractional m-matching number, ν∗(m)(H), and the
fractional m-cover number τ ∗(m)(H) are defined to be the maximum size of a fractional
m-matching and the minimum size of a fractional m-cover, respectively. We will denote
ν∗(1)(H) by ν∗(H) and τ ∗(1)(H) by τ ∗(H). Observe that by LP duality, we always have
ν∗(m)(H) = τ ∗(m)(H). Also, observe that an m-matching is a fractional m-matching and
an m-cover is a fractional m-cover. For any k-uniform hypergraph H and 1  m  k − 1,
we have:

ν(m)(H)  ν∗(m)(H) = τ ∗(m)(H)  τ (m)(H) 


k

m



ν(m)(H).

1.2 A generalization of Tuza’s conjecture

We introduce some notation which will be used throughout the paper. Let Hk denote the
family of all k-uniform hypergraphs. Then, define the following functions:

• h(k, m) = sup


τ (m)(H)
ν(m)(H) : H ∈ Hk



• gi(k, m) = sup


τ (m)(H)
ν(m)(H) : H ∈ Hk and ν(m)(H) = i



• h∗(k, m) = sup


τ∗(m)(H)
ν(m)(H) : H ∈ Hk



• g∗
i (k, m) = sup


τ∗(m)(H)
ν(m)(H) : H ∈ Hk and ν(m)(H) = i


.

For reference, some previous papers used g(k, m) for g1(k, m) and g∗(k, m) for g∗
1(k, m).

Observe that by definition, we have:

g∗
i (k, m)  gi(k, m)  h(k, m)

g∗
i (k, m)  h∗(k, m)  h(k, m).
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A famous conjecture of Tuza [7] states that for any graph G, the minimum number of edges
needed to intersect every triangle in G (τt(G)) is at most twice the maximum number of
edge disjoint triangles in G (νt(G)). If true, this conjecture is tight as seen e.g., by K4 or
K5. The conjecture has been shown to be true for various families of graphs (see e.g. [3],
[7]). Haxell [6] proved the best known general upper bound of τt(G)  66

23νt(G).

Note that for a graph G, if we define the triangle graph of G, T (G), to be the hypergraph
with edges corresponding to the triangles of G, Tuza’s conjecture states that for any graph
G, τ (2)(T (G))/ν(2)(T (G))  2. A conjecture of Aharoni and Zerbib generalizes Tuza’s,
conjecturing that for all 3-uniform hypergraphs H, τ (2)(H)/ν(2)(H)  2 (i.e. h(3, 2)  2).

Furthermore, they conjectured that a similar bound should hold for hypergraphs of any
fixed uniformity:
Conjecture 1 ([1]). Let k  3. Then, h(k, k − 1) 


k+1

2


.

Again, if true, the bound is tight as seen by the following example from [1]: for H =


[k+1]
k


,

the k-uniform hypergraph containing all k-subsets of [k + 1], one can easily check that
ν(k−1)(H) = 1 and τ (k−1)(H) =


k+1

2


.

1.3 The paper

We begin by studying the function gi(k, k − 1) in section 2. In [1], Aharoni and Zerbib
showed that g1(k, k−1) 


k+1

2


. We prove the same bound for g2(k, k−1) and g3(k, k−1):

Theorem 2. Let H be a k-uniform hypergraph with ν(k−1)(H) = 2. Then,

τ (k−1)(H)  2


k + 1
2



.

Theorem 3. Let H be a k-uniform hypergraph with ν(k−1)(H) = 3. Then,

τ (k−1)(H)  3


k + 1
2



.

This immediately implies the following:
Corollary 4. Let G be a graph with the property that G does not contain 4 edge-disjoint
triangles. Then, Tuza’s conjecture holds for G.

In section 3, we study g1(k, m) for various values of m. We prove the first non-trivial
upper bounds for g1(k, m) when k

2  m  k − 2.
Theorem 5. Let k  6 and suppose k

2  m  k − 2. Then, g1(k, m) 


k
m


− m.

Theorem 6. Let k  3. Then, we have:

g1(k, k − 2) 


k2

4



=






1
4(k2 + 3), if k odd,
1
4k2, if k even.
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Aharoni and Zerbib [1] previously showed that g1(k, 2) <


k
2


and g1(4, 2) = 4. We go on

to improve the upper bound of g1(5, 2) (the first remaining open case when m = 2) with
the best previous bound being g1(5, 2)  9.
Theorem 7. We have 6  g1(5, 2)  7.

The lower bound has not been mentioned in previous papers but comes from the 2-cover
number of the (unique) symmetric 2 − (11, 5, 2) design (an explicit construction can be
seen in Table 1.19 in [4]).

In section 4, we study the fractional variants of the problem and prove bounds on g∗
1(k, m)

for certain choices of m:
Theorem 8. For all k  2, g∗

1(2k, k) 


1
2 + 1

2(k+1)

 
2k
k


.

The proof of this theorem is followed by a lemma, generalizing a result from [2], that
allows us to obtain upper bounds on h∗(k, m) from upper bounds on g∗

1(k, m). When
m = k/2, this gives the following corollary:
Corollary 9. For all k  2, h∗(2k, k) 


1 − k

4(k+2)

 
2k
k


.

We also prove a fractional upper bound on g∗
1(k, k−2) from which a bound for h∗(k, k−2)

may be derived in the same manner as above.
Theorem 10. g∗

1(k, k − 2)  1
6


k−2

2


+ 2k − 3.

It should be noted that other fractional variations and results have been shown in [2], [5],
among others.

2 gi(k, k − 1)

We begin this section with some useful definitions and a few short lemmas.
Definition 11. Let H be a k-uniform hypergraph and M be a maximum (k−1)-matching
in H. For any vertex v ∈ V (H), we denote dM(v) to be the number of edges of M that
contain v. For each e ∈ M , define the following two sets:

Se = {h ∈ H : |e ∩ h|  k − 1 and |h ∩ f | < k − 1 for all f ∈ M − e}
Te = {h ∈ H : |e ∩ h|  k − 1}.

Lemma 12. Let H be a k-uniform hypergraph and M a maximum (k − 1)-matching
in H. Then, for any e, f ∈ M , Se ∩ Sf = ∅. Further, ν(k−1)(Se) = 1, which implies
τ (k−1)(Se)  g1(k, k − 1).

Proof. This follows directly from the definition of Se.
Lemma 13. Let H be a k-uniform hypergraph and let M be a maximum (k −1)-matching
in H. If there exists some e ∈ M such that τ (k−1)(Te) 


k+1

2


, then

τ (k−1)(H) 


k + 1
2



+ (ν(k−1)(H) − 1)gν(k−1)(H)−1(k, k − 1).
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Proof. Let H be a k-uniform hypergraph and let M be a maximum (k − 1)-matching
in H. Suppose there exists some e ∈ M such that τ (k−1)(Te) 


k+1

2


. We claim that

H − Te has matching number at most ν(k−1)(H) − 1. Suppose not. Then, there exists
some matching M ′ of H − Te of size at least ν(k−1)(H). By definition, all edges of H − Te

intersect e in at most k − 2 vertices. But then, M ′ + e is a larger matching than M , a
contradiction. Therefore, we have:

τ (k−1)(H)  τ (k−1)(Te) + τ (k−1)(H − Te) 


k + 1
2



+ (ν(k−1)(H) − 1)gν(k−1)(H)−1(k, k − 1).

Lemma 14. Let H be a k-uniform hypergraph and let M be a maximum (k −1)-matching
in H. If there exists a partition P1, P2 of the edges of M such that for all e ∈ P1 and
e′ ∈ P2, |e ∩ e′| < k − 2, then Te ∩ Te′ = ∅ and

τ (k−1)(H)  |P1|g|P1|(k, k − 1) + |P2|g|P2|(k, k − 1).

We call such a matching disconnected.

Proof. Let H be a k-uniform hypergraph and let M be a maximum (k − 1)-matching in
H. Suppose there exists a partition P1, P2 of the edges of M such that for all e ∈ P1
and e′ ∈ P2, |e ∩ e′| < k − 2. Now, let e ∈ P1, e′ ∈ P2 and suppose f ∈ Te. Then,
f intersects e in k − 1 vertices and therefore, f can only intersect e′ in at most k − 2
vertices. So, Te ∩ Te′ = ∅. This means that the edges of H are the disjoint union of
the sets H1 := 

e∈P1 Te and H2 := 
e′∈P2 Te′ . Also, because there is no intersection of

size k − 1 between any edge of H1 and any edge in P2, ν(k−1)(H1) = |P1|. Similarly,
ν(k−1)(H2) = |P2|. Therefore,

τ (k−1)(H)  τ (k−1)(H1) + τ (k−1)(H2)  |P1|g|P1|(k, k − 1) + |P2|g|P2|(k, k − 1).

Lemma 15. Let H be a 3-uniform hypergraph and let M be a maximum 2-matching in
H. If there exists some e ∈ M such that 

v∈e dM(v)  4 and τ (2)(Se) = 1, then

τ (2)(H)  4 + (ν(2)(H) − 2)gν(2)(H)−2(k, k − 1).

Proof. Let H be a 3-uniform hypergraph and let M be a maximum 2-matching in H.
Suppose there exists some e ∈ M such that 

v∈e dM(v)  4 and τ (2)(Se) = 1. This
means that there are two vertices in e not contained in any other edge of M and at most
one vertex of e contained in at most one other edge, say f , of M . Then, it is clear that
(Te − Se) ⊆ Tf . Furthermore, ν(2)(H − Te − Tf ) = |M | − 2. Otherwise, if we may find a
2-matching M ′ of H − Te − Tf of size greater than |M | − 2, then M ′ + e + f is larger than
M , a contradiction. Now, let S be a 2-set, which 2-covers Se. Then, since Te − Se ⊆ Tf

and Sf ⊆ Tf , taking


f
2


to 2-cover Tf , we have found a 2-cover of Te ∪ Tf of size 4.

Therefore, we have:

τ (2)(H)  τ (2)(Te ∪ Tf ) + τ (2)(H − Te − Tf )  4 + (ν(2)(H) − 2)gν(2)(H)−2(k, k − 1).
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We now refine the ν(k−1) = 1 result of Aharoni and Zerbib [1] in order to help with our
proof of the ν(k−1) ∈ {2, 3} cases. First, we reiterate a lemma from [2]:
Lemma 16 (Lemma 2.2 from [2]). Let H be a k-uniform hypergraph with ν(k−1)(H) = 1.
Then, either τ (k−1)(H) = 1 or for any edge e ∈ E(H), there exists a unique vertex
v ∈ V (H) − V (e) such that for all e′ ∈ E(H) − e, e′ − e = {v}.

Now, we are ready to refine the ν(k−1) = 1 result from [1].
Lemma 17. Suppose H is a k-uniform hypergraph with ν(k−1)(H) = 1. Then, either
τ (k−1)(H) = 1 or τ (k−1)(H) 


e(H)

2


.

Proof. Let H be a k-uniform hypergraph with k  3. Suppose ν(k−1)(H) = 1 and
τ (k−1)(H) ∕= 1. Let e ∈ E(H) and let v ∈ V (H) − V (e) be the vertex described
in Lemma 16. Let e1, . . . , ee(H)−1 denote the edges of H − e. Observe that for any
1  i ∕= j  e(H) − 1, |ei ∩ ej ∩ e| = k − 2.

Suppose e(H) is odd. For 1  i  e(H)−1
2 , we may cover e2i−1, e2i with the set (e2i−1 ∩

e2i ∩ e) + v. Then, we may cover e with any set from


e
k−1


, giving a (k − 1)-cover of size

e(H)−1
2 + 1 = e(H)+1

2 =


e(H)
2


.

Suppose e(H) is even. For 1  i  e(H)−2
2 , we may cover e2i−1, e2i with the set (e2i−1 ∩

e2i ∩ e) + v. Then, we may cover ee(H)−1, e with the set e2i−1 ∩ e, giving a (k − 1)-cover
of size e(H)−2

2 + 1 = e(H)
2 =


e(H)

2


.

We obtain the ν(k−1) = 1 result as a corollary:
Corollary 18. We have g1(k, k − 1) 


k+1

2


.

Proof. Let H be a k-uniform hypergraph with ν(k−1)(H) = 1. We may assume τ (k−1)(H) >
1. Let e ∈ H and let v ∈ V (H) − V (e) be the unique vertex as described in Lemma 16.
Now, aside from e, every other edge of H consists of v together with some (k − 1)-subset
of e. Since e has k different (k − 1)-subsets, then the total number of edges of H is at
most k + 1. The result now follows from Lemma 17.

Next, we prove the case when ν(k−1) = 2.

Proof of Theorem 2. Let H be a k-uniform hypergraph with k  3. Suppose ν(k−1)(H) =
2. If there exists a (k − 1)-matching of H, {e, f}, where |e ∩ f | < k − 2, then e, f is a
disconnected matching and we are done by Lemma 14 together with Lemma 17.

Suppose then that for any maximum (k − 1)-matching {e, f} in H, |e ∩ f | = k − 2. To
this end, let {e, f} be a (k − 1)-matching of H with

e = S ∪ {u1, u2}
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f = S ∪ {v1, v2}.

Here, S = e ∩ f is a (k − 2)-subset of V (H). Since ν(k−1)(Se) = ν(k−1)(Sf ) = 1, then as
noted before, τ (k−1)(Se) 


k+1

2


and τ (k−1)(Sf ) 


k+1

2


. If every edge of Se contains S,

then we may cover Te with the sets S + u1 and S + u2. Next, we may cover Sf with at
most


k+1

2


(k − 1)-sets, giving a cover of H of size at most

2 +


k + 1
2



 2


k + 1
2



.

Similarly, we may find a cover of suitable size if every edge of Sf contains S. Further, if
τ (k−1)(Se) = 1, then we may cover Se with one (k − 1)-set and cover the rest of H with
elements from


f

k−1


, giving a cover of size at most

1 + k  2


k + 1
2



.

In a similar manner, we may find a cover of suitable size if τ (k−1)(Sf ) = 1. So, we may
assume τ (k−1)(Se) ∕= 1, τ (k−1)(Sf ) ∕= 1 and that there exists e′ ∈ Se − e, f ′ ∈ Sf − f such
that S ∕⊆ e′ and S ∕⊆ f ′.

If the unique vertex for all edges of Se − e described in Lemma 16 is not contained in
f − e, then e′, f is a disconnected matching. So, we may assume that for all e′′ ∈ Se − e,
e′′ −e = v for some v ∈ {v1, v2}. By a symmetric argument, for all f ′′ ∈ Sf −f , f ′′ −f = u
for some u ∈ {u1, u2}.

This tells us that every edge in Se − e is of the form S ′ ∪ {u1, u2, v} for some S ′ ∈


S
k−3



(i.e. there are at most k − 1 edges in Se). Similarly, every edge in Sf − f is of the
form S ′′ ∪ {v1, v2, u} for some S ′′ ∈


S

k−3


(i.e. there are at most k − 1 edges in Sf ).

By Lemma 17, we may cover every edge in Se with at most


k−1
2


(k − 1)-sets and we

may cover every edge in Sf − f with at most


k−2
2


(k − 1)-sets. Finally, we may cover

Tf − Sf + f with the sets S + v1 and S + v2. This gives us a cover of H of size at most


k − 1
2



+


k − 2
2



+ 2 = k + 1  2


k + 1
2



.

Now, we are ready to prove the ν(k−1) = 3 case:

Proof of Theorem 3. We break the proof into two parts. In the first part, we assume
we are dealing with a 3-uniform hypergraph. In the second part, we will deal with an
arbitrary k-uniform hypergraph with k  4.
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Let H be a 3-uniform hypergraph and let M = {e, f, g} be a maximum 2-matching in H.
If M is disconnected, then the result follows from Lemma 14. So, suppose M is connected.
We may assume |e ∩ f | = 1 and |e ∩ g| = 1. Then, M looks like one of the matchings
from Figure 1.

a2 a1 x b y c1 c2

f e g

(a) |f ∩ g| = 0

a2 a1 x b1 b2

c1

c2

f e

g

(b) |f ∩ g| = 1, f ∩ g = e ∩ f = e ∩ g

x

a

y

b

zc

f e

g

(c) |f ∩ g| = 1, Intersections between e, f, g
disjoint

Figure 1: 2-Matching Types when ν(k−1) = 3

Suppose there is a matching of type 1a. If there is no edge containing {a1, a2}, then we
are done by Lemma 13. Similarly, if there is no edge containing {c1, c2}, we are done. So,
suppose there are some edges f1, g1 with f1 = {a1, a2, u}, g1 = {c1, c2, v}. If u ∕∈ (e∪g)−x,
then e, f1, g is a disconnected matching and we are done. Similarly, if v ∕∈ (e∪f)−y, then
e, f, g1 is a disconnected matching and we are done. So, we may assume u ∈ (e ∪ g) − x
and v ∈ (e ∪ f) − y.

If τ (k−1)(Sf ) = 1 or τ (k−1)(Sg) = 1, we are done by Lemma 15. Therefore, we may assume
that |Sf | > 2 and |Sg| > 2. Let f2 ∈ Sf − f1 − f and g2 ∈ Sg − g1 − g. So, f2 = {a, x, u},
g2 = {c, y, v}, where a ∈ {a1, a2}, c ∈ {c1, c2}. Since f2 ∈ Sf and u ∈ (e ∪ g) − x, then
u must be in g − e since otherwise, |f2 ∩ e| = |f2 ∩ f | = 2, a contradiction to f2 ∈ Sf .
Similarly, v ∈ f − e. Now, we obtain a 2-cover of H of size exactly 6 as witnessed by
C = {


e
2


, {u, v}, {f − v}, {g − u}}.

Observe that for the other cases, if there are 2 disjoint edges in H, we are done. This is
because either the union of their 2-sets are a cover of H or we may extend the matching
to a matching of the first type or a disconnected matching.

Next, suppose there is a matching of type 1b. By Lemma 13, {c1, c2} must be contained
in some edge other than g, say g1. But then, either g1 is disjoint from e or g1 is disjoint
from f . In either case, we are done.
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In the final case, because H is assumed to have no disjoint edges, it can be checked that

C = {{x, y}, {x, z}, {y, z}, {x, c}, {y, b}, {z, a}}.

is a 2-cover of H. This concludes the proof for 3-uniform hypergraphs.

Next, suppose k  4 and let H be a k-uniform hypergraph with ν(k−1)(H) = 3. Let
M = {e, f, g} be a maximum (k − 1)-matching in H. Without loss of generality, suppose
|e∩f | = k −2. By Lemma 14, if |g ∩e|  k −3 and |g ∩f |  k −3, we are done. So, again,
without loss of generality, suppose |g ∩ e| = k − 2. We now define some notation that will
be used throughout the proof. Let S = e ∩ f , where |S| = k − 2 and S ′ = e ∩ f ∩ g. Let
e − f = {u1, u2}, f − e = {v1, v2}, and T = V (g) − e − f . Now, M will look like one of
the matchings from Figure 2.

In their respective pictures, s, s1, s2 ∈ S − S ′, w, w1, w2 ∈ T , {u, u} = {u1, u2}, and
{v, v} = {v1, v2}. Throughout the proof, we will often use the result from Theorem 2 and
arguments similar to the proof of the 3-uniform case.

If we have a type 2a matching, then observe that no edge e′ ∈ Se − e may contain the
set {u, u, s} since then, e′, g, f is a disconnected matching and we are done. Therefore,
we may (k − 1)-cover Te with three sets, namely S ′ ∪ A for each A ∈


{u,u,s}

2


. After

covering Te, ν(k−1)(H − Te) = 2 with M − e being a maximum (k − 1)-matching. Now,
by Theorem 2, we may find a (k − 1)-cover of H of size at most

3 + 2


k + 1
2



 3


k + 1
2



.

Suppose there is no type 2a matching. If there is a type 2b matching, then for all h ∈ M ,
there is no h′ ∈ Sh − h such that h′ contains h1, h2. (This is because if such an h′ existed,
then M − h + h′ is a disconnected matching or a type 2a matching.) Therefore, for each
h ∈ M , we may (k − 1)-cover Th with the sets S + h1 and S + h2, giving us a (k − 1)-cover
of H of size 6, which is less than 3⌈k+1

2 ⌉.

Next, suppose there is no type 2a or 2b matching. If there is a type 2c matching, then
notice that no edge in Se contains the set {u2, u1, s1, s2} since otherwise, we would be
able to find a disconnected matching. Therefore, we may (k − 1)-cover Te with four sets,
namely S ′ ∪ A for each A ∈


{u2,u1,s1,s2}

3


. If τ (k−1)(Sg) = 2 or τ (k−1)(Sf ) = 2, we are

done. Otherwise, for h ∈ {g, f}, we know that there exists some h′ ∈ Sh − h such that
h − e ⊆ h′. This tells us that for all g′ ∈ Sg − g, the unique vertex outside of g′ − g
described in Lemma 16 must be s, where s ∈ {s1, s2} (if not, then for any g′ ∈ Sg −g with
g−e ⊆ g′, M −g+g′ is a disconnected matching). Similarly, for all f ′ ∈ Sf −f , the unique
vertex outside of f ′ −f described in Lemma 16 must be u, where u ∈ {u1, u2}. Therefore,
every uncovered edge in Sg − g has the form S ′′ ∪ {w1, w2, s}, where S ′′ ∈


S′∪{u1,u2}

k−3


.

By Lemma 17, we may cover these edges as well as g with at most


k−1
2


(k − 1)-sets.

the electronic journal of combinatorics 32(2) (2025), #P2.20 9



S′uw1w2 s v1 v2

u

e

fg

(a) |S′| = k − 3, |(g ∩ f) − S′| = 0

S
u1u2 v1 v2

w1

w2

e f

g

(b) S = S′

S′u1u2w1w2 s1 s2 v1 v2

e fg

(c) |S′| = k − 4, |(g ∩ f) − S′| = 0

S′u1u2 s1 s2

v vw

e

fg

(d) |S′| = k − 4, |(g ∩ f) − S′| = 1

S′u1u2 v1 v2

s1

s2

g

e f

(e) |S′| = k − 4, |(g ∩ f) − S′| = 2

S′

w
u v

s
vu

e f

g

(f) |S′| = k − 3, |(g ∩ f) − S′| = 1

Figure 2: (k − 1)-Matching Types when ν(k−1) = 3, k  4
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A symmetric argument shows that we may cover the remaining uncovered edges of Sf

(including f) with at most


k−1
2


(k − 1)-sets. Now, we have found a cover of H of size

at most
4 + 2


k − 1

2



 3


k + 1
2



.

Now, suppose there is no type 2a - 2c matching and suppose there is a type 2d matching.
If k = 4, we cover H as follows. First, we add {u1, u2, w}, {u1, u2, v}, {s1, s2, v}, {s1, s2, v}
to the cover, C. If τ (k−1)(Se) = 1, we are done. Otherwise, there is a unique vertex x
outside of e as described in Lemma 16 such that for all e′ ∈ Se −e, e′ −e = x. If x ∕∈ g ∪f ,
then for any e′ ∈ Se − e, M − e + e′ is a disconnected matching. Otherwise, suppose
x ∈ g ∪ f and without loss of generality, suppose x ∈ g. Then, there are at most three
edges in Se that are not already covered. Namely, the edges {s1, s2, u1, x}, {s1, s2, u2, x},
and e. By Lemma 17, we may cover these edges with two additional sets. Now, we wish
to show that the edges remaining uncovered in Sg ∪ Sf may be covered by at most three
3-sets. By Lemma 17, either we may cover the remaining elements of Sg with one 3-set
or we need to cover two edges with a unique vertex outside of g, which may be covered
by


2
2


= 1 set and similarly for Sf . In either case, we are done.

Now, suppose k  5. We begin by adding to our cover the two (k − 1)-sets contained
in g which contain S ′ ∪ {u1, u2} and the two (k − 1)-sets contained in f which contain
S ′ ∪ {s1, s2}. First, we aim to cover Se. Either τ (k−1)(Se) = 1 or there is a unique vertex
x outside of e such that for all e′ ∈ Se − e, e′ − e = x. If x ∕= v, then for any e′ ∈ Se − e,
M − e + e′ is a disconnected matching. So, we may assume x = v. Now, any edge
e′ ∈ Se − e which contains all of S ′ has already been covered. Therefore, all remaining
uncovered edges of Se − e have the form S ′′ ∪ {u1, u2, v1, v2, v} for some S ′′ ∈


S′

k−5


. Since

e also remains uncovered, we are left to cover at most k − 3 additional edges, which by
Lemma 17, may be done using at most


k−3

2


(k − 1)-sets.

We will now make an argument for Sg, which will hold true for Sf by symmetry. The re-
maining edges of Sg needing to be covered must use both w and v. Suppose the remaining
edges of Sg may not be covered by a single (k − 1)-set. Then, by Lemma 16, there is a
unique vertex y outside of g such that for all g′ ∈ Sg − g, g′ − g = y. This tells us that all
edges uncovered in Sg have the form S ′′ ∪ {w, v, y}, where S ′′ ∈


S′∪{u1,u2}

k−3


. Specifically,

there are at most k − 2 remaining edges to cover in Sg. By Lemma 17, we may cover
these edges with at most


k−2

2


(k − 1)-sets. We may make the same argument for the

uncovered edges of Sf . All together, we have found a cover for H of size:

4 +


k − 3
2



+ 2


k − 2
2



 3


k + 1
2



.

Next, suppose there is no type 2a - 2d matching and suppose there is a type 2e matching.
We will make an argument for Sg, which will hold true for Se, Sf by symmetry. Suppose
τ (k−1)(Sg) ∕= 1. Then, by Lemma 16, there is a unique vertex x outside of g such that for
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all g′ ∈ Sg − g, g′ − g = x. Suppose x ∕∈ (e ∪ f) − g. Then, for any g′ ∈ Sg − g, M − g + g′

is either a disconnected matching or a type 2d matching. Therefore, x ∈ {s1, s2}. Now, if
any edge of Sg −g contains S ′, then this edge is actually an element of Tg −Sg. Therefore,
every edge in Sg − g has the form S ′′ ∪ {u1, u2, v1, v2, x}, where S ′′ ∈


S′

k−5


. Since we wish

to also cover g, there are at most k − 3 edges needed to be covered in Sg. By Lemma 17,
this may be done using at most


k−3

2


(k − 1)-sets. Similarly, the edges of Se and Sf may

be covered with at most


k−3
2


(k − 1)-sets. We are left to cover the edges which intersect

more than one of e, f, g in k − 1 vertices. We cover the edges intersecting both g and
e in k − 1 vertices with the two (k − 1)-sets contained in e which contain S ′ ∪ {u1, u2}.
We cover the edges intersecting both g and f in k − 1 vertices with the two (k − 1)-sets
contained in f which contain S ′ ∪ {v1, v2}. Finally, we cover the edges intersecting e and
f with the two (k − 1)-sets contained in f which contain S ′ ∪ {s1, s2}. All together, we
have found a cover of H of size at most

3


k − 3
2



+ 6  3


k + 1
2



.

Finally, suppose there is only a matching of type 2f. We first show that in this case, there
are no two edges with intersection size k − 3. For sake of contradiction, suppose there
exists h, h′ ∈ H such that |h ∩ h′| = k − 3. Let us set A = h ∩ h′. Then, either h, h′ may
be extended to a matching of size 3 or h, h′ is a maximal matching. In the first case, the
extended matching must be disconnected or a matching of type 2a or 2d. Suppose then
that h, h′ is a maximal matching. That is, every edge of H intersects h or h′ in k − 1
vertices. Because |h ∩ h′| = k − 3, then no edge of H can intersect both h and h′ in
k − 1 vertices. Now, we construct a suitable cover in this case. First, we cover all edges
containing A with the three (k − 1)-sets contained in h which contain A and the three
(k − 1)-sets contained in h′ which contain A. Observe that we have also covered h and h′.

Next, let Hh be the set of uncovered edges intersecting h in k − 1 vertices and define
Hh′ similarly. We will make an argument for Hh, which will hold true by symmetry for
Hh′ . First, observe that ν(k−1)(Hh) = 1. Indeed, otherwise, we may find a disconnected
matching of size 3 in H. Also, it is the case that ν(k−1)(Hh ∪h) = 1. This is because by the
way Hh is defined, any matching of size two in Hh ∪ h does not contain h. Now, suppose
τ (k−1)(Hh ∪ h) > 1. Then, by Lemma 16, there is a unique vertex v outside of h such that
v ∈ e for all e ∈ Hh. This means that every edge of Hh has the form (A′ ∪ h − A) + v,
where A′ ∈


A

k−4


. This shows that |Hh|  k − 3 and so, by Lemma 17, we may find a

cover of Hh of size at most


k−3
2


. Similarly, τ (k−1)(Hh′) 


k−3

2


. Putting this together,

we have found a cover of H of size at most

6 + 2


k − 3
2



 3


k + 1
2



.

For the remainder of the proof, we may assume that no two edges intersect in exactly
k − 3 vertices. Now, we proceed assuming that there is only a matching of type 2f. We
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may cover (Te ∪ Tf ∪ Tg) − (Se ∪ Sf ∪ Sg) with the three (k − 1)-sets containing S ′ and
exactly two elements from {u, v, s}.
Next, we make an argument for the uncovered edges of Sg, which holds true for Se, Sf

by symmetry. Suppose τ (k−1)(Sg) > 1. Then, by Lemma 16, there is a unique vertex x
outside of g such that for all g′ ∈ Sg − g, g′ − g = x. If x ∕∈ (e ∪ f) − g, then there is an
uncovered g′ ∈ Sg −g such that M −g+g′ is either a disconnected matching or a matching
of type 2a. Therefore, we may assume x ∈ (e ∪ f) − g. This tells us all uncovered edges of
Sg contain x and w. For any choice of x, there are at most k − 2 uncovered edges of Sg.
By Lemma 17, these uncovered edges of Se may be covered by at most


k−2

2


(k − 1)-sets.

Since a symmetric argument is true for Se and Sf , we have found a cover of H of size at
most

3 + 3


k − 2
2



 3


k + 1
2



.

3 Bounds on g1(k, m)

We begin this section with a useful definition and observation.
Definition 19. Let H be a k-uniform hypergraph and let e ∈ E(H). For 2  m  k − 1,
we call an m-set a of e dispensable if for every f ∈ E(H), f intersects e in some m-set
other than a. Otherwise, we call a indispensable.

For an indispensable m-set a of e, we call any edge f ∈ E(H) such that f ∩ e = a a
witness to the indispensability of a.
Observation 20. Let H be a k-uniform hypergraph with m-matching number 1, where
k
2  m  k − 2. Let e ∈ E(H). If there is a pair of indispensable m-sets a, b of e such
that |a ∩ b| = 2m − k, there exist unique witnesses f, g to a, b, respectively. Furthermore,
we can m-cover f and g with one m-set.
Lemma 21. Let H be a k-uniform hypergraph with m-matching number 1, m  2. Let
e ∈ H and set m′ = max{0, 2m−k}. For any set S ⊆


e
m


of m-sets of e with |S| > 1

2


k
m


,

there exists a pair a, b ∈ S such that |a ∩ b| = m′.

Proof. Let Ge be a graph with vertex set


e
m


. For u, v ∈ V (Ge), uv ∈ E(Ge) if and

only if |u ∩ v| = m′. Then, Ge is an ℓ-regular graph, where ℓ =


k−m
m


when m′ = 0 and

ℓ =


m
2m−k


when m′ > 0. Observe that an independent set I in Ge corresponds to a set

S of m-sets of e such that for any pair a, b ∈ I, |a ∩ b| ∕= m′. Using the fact that for any
graph G′, α(G′)  |E(G′)|

∆(G′) , we have:

α(Ge) 
|E(Ge)|
∆(Ge)

=


|V (Ge)|ℓ

2



ℓ
= |V (Ge)|

2 = 1
2


k

m



The result follows.
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We will also need the following inequality in order to prove Theorem 5:
Lemma 22. For all k  6, k

2  m  k − 2, 0  m′ < m,


k

m



> 4m − 2m′ − 4

In particular, 
k

m



− m′ − 2(m − m′ − 1) >
1
2


k

m



Proof. Fix k  6, k
2  m  k − 2, and 0  m′ < m. First, observe that

4m − 2m′ − 4  4m − 4  4(k − 2) − 4 = 4(k − 3)

On the other hand, we have:


k

m






k

k − 2



=


k

2



Now, it is left to show the following inequality


k

2



− 4(k − 3) = 1
2(k2 − 9k + 24) > 0

Let f(k) = 1
2(k2 − 9k + 24). It can be checked that f(6) = 3 > 0. Furthermore, f ′(k) > 0

for all k  5. So, f is increasing for all k  5 and therefore, f(k) > 0 for all k  6. We
obtain the second part of the lemma by rearranging the inequality.

With the help of the above two lemmas, we are able to prove Theorem 5.

Proof of Theorem 5. Let k  6, k
2  m  k − 2, and let H be a k-uniform hypergraph

with m-matching number 1. Fix e ∈ E(H) with the most dispensable m-sets. Observe
that for any non-witnessing edge f ∈ E(H), f contains at least m+1 m-sets of e. If e has
at least m dispensable m-sets, then we may delete any m of them and obtain an m-cover
of H with the remaining m-sets of e. Suppose then that e has m′ < m dispensable m-sets.
Denote the set of dispensable m-sets of e by S. So the number of indispensable sets is

k
m


− m′. We wish to find an m-cover of size at most


k
m


− m = (


k
m


− m′) − (m − m′).

We do this by deleting S from


e
m


and then finding m − m′ pairs of indispensable m-sets

ai, bi ∈


e
m


− S such that |ai ∩ bi| = 2m − k for 1  i  m − m′.

Note that while 0  i − 1  m − m′ − 1,


k
m


− m′ − 2i 


k
m


− m′ − 2(m − m′ − 1). Set

i = 0 and S ′ =


e
m


− S. While i  m − m′ − 1, by Lemmas 21 and 22, there exists a
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pair of indispensable m-sets of e, ai, bi, with witnessing edges fi, gi, respectively, such that
|ai ∩ bi| = 2m − k. We may cover fi, gi with the m-set xi = (ai ∩ bi) ∪ (fi − e). Note that
every non-witnessing edge other than e contains either at most one of a and b. Delete
ai, bi from S ′, increase i by 1, and repeat. Now, we have the following m-cover C of H:

C =


e

m



− S ′


∪



m−m′−1

i=0
{xi}





=





e

m



−


S ∪



m−m′−1

i=0
{ai, bi}











 ∪



m−m′−1

i=0
{xi}



 .

Now, we can compute |C|:

|C| =


k

m



− (m′ + 2(m − m′)) + (m − m′)

=


k

m



− m′ − 2(m − m′) + (m − m′)

=


k

m



− m′ − (m − m′)

=


k

m



− m

Therefore, g1(k, m) 


k
m


− m for all k

2  m  k − 2.

Next, we improve the previous upper bound for g1(5, 2) following a similar argument as
the above proof.

Proof of Theorem 7. Let H be a 5-uniform hypergraph with 2-matching number 1. Let
r = max{|e ∩ f | : e, f ∈ E(H)}. If r  3, then letting e, f ∈ E(H) such that |e ∩ f | = r,
we may cover H with the 2-sets


e∩f

2


together with the 2-sets containing exactly one

element from e − f and one element from f − e. This gives a cover of size 7. Suppose
then that r = 2. That is, every edge intersects every other edge in exactly two vertices.
Let e be an edge with the most dispensable sets. Observe that for any dispensable set a
of e, there is no edge intersecting e at a. If e has at least 3 dispensable sets, then we are
done. Otherwise, we may assume e has m′  2 dispensable sets and therefore, 10−m′  8
indispensable sets. Denote the set of dispensable sets by S. Observe that for any pair
a, b of indispensable 2-sets of e with |a ∩ b| = 0, there exist unique witnesses f, g of a, b,
respectively. Let S ′ =


e
2


− S. So, |S ′| = 10 − m′. Now, by Lemma 21, we may find at

least


|S′|−5
2


=


5−m′

2


pairs of indispensable 2-sets, ai, bi for 1  i 


5−m′

2


such that

|ai ∩ bi|  2 with witnesses fi, gi, respectively. For 1  i 


5−m′

2


, we may 2-cover fi, gi
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with fi ∩ gi. Now, we have the following 2-cover of H:

C =



S ′ −


5−m′

2





i=1
{ai, bi}



 ∪


5−m′

2





i=1
(fi ∩ gi).

The size of this 2-cover is:

|C| =


(10 − m′) − 2 ·


5 − m′

2



+


5 − m′

2



= 10 − m′ −


5 − m′

2



 7.

We next improve the bound given by Theorem 5 for the case when m = k − 2. We will
need the following lemma:
Lemma 23. Let k  5 and let G be a graph with vertex set


[k]

k−2


and for A, B ∈ V (G),

AB ∈ E(G) if and only if |A ∩ B| = k − 4. Then, G has a perfect matching if


k
2


is even

and G has a matching with one unsaturated vertex when


k
2


is odd.

Proof. By Theorem 1.2 from [8], G has a maximum matching such that any pair of
unsaturated vertices have no common neighbors. Therefore, if every pair of vertices have
a common neighbor, we are done. When k  6, by inclusion-exclusion, it is easy to
check that for any x, y ∈ V (G), |N(x) ∩ N(y)| > 0. When k = 5, let M be a maximum
matching of G such that any pair of unsaturated vertices have no common neighbors.
Suppose A, B are unsaturated by M . Then, AB ∕∈ E(G) as this would contradict that
M is a maximum matching. This implies that |A ∩ B| = 2. But then, the vertex
C = {A−B, B −A, [k]− (A∪B)} is a common neighbor of A and B, a contradiction.
Lemma 24. Let k  5 and let H be a k-uniform hypergraph with ν(k−2)(H) = 1. If there
exists an edge that intersects every other edge in exactly k − 2 vertices, then

τ (k−2)(H) 





k

k−2


+ 1

2




=






k
2


+ 1

2




.

Proof. Let k  5 and let H be a k-uniform hypergraph with ν(k−2)(H) = 1. Suppose there
exists an edge e ∈ E(H) that intersects every other edge in exactly k − 2 vertices. Using
the graph Ge from Lemma 21 which satisfies the properties of the graph in Lemma 23,
there exists a matching M of Ge of size


|V (Ge)|

2


.

For each uv ∈ M , if there are witnessing edges fu, fv of u and v, respectively, these
witnessing edges are unique and their intersection has size exactly k − 2. We may cover
this pair of edges with the (k − 2)-set fu ∩ fv. If there is only one of the two witnessing
edges, say fu, then v is a dispensable (k − 2)-set and we may cover all edges intersecting
e in u by the (k − 2)-set u. Doing this for all edges of M , we arrive at collection of
(k − 2)-sets covering all edges of H − e with the exception of the witnessing edges of at
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most one (k −2)-set. We may cover the remaining edges with at most 1 (k −2)-set, giving
a (k − 2)-cover of H of size

|M | + 1 =




k

k−2



2

 + 1 =





k
2


+ 1

2




.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We will prove the odd and even case separately by induction. First,
suppose k is odd. It is not hard to show that g1(3, 1) = 3 = 1

4(k2 + 3). Now, let H be
a k-uniform hypergraph with k  5, k odd, where ν(k−2)(H) = 1. Furthermore, we will
assume g1(k − 2, k − 4)  1

4((k − 2)2 + 3). If there is an edge e of H such that every
other edge of H intersects e in exactly k − 2 vertices, then by Lemma 24, we may find an
(k − 2)-cover of H of size

( k
k−2)+1

2


=

(k
2)+1

2


 1

4(k2 + 3).

Suppose then that there is a pair of edges e, f such that |e ∩ f | = k − 1. Let us denote
e∩f by S and suppose e−S = u, f −S = v. Observe that all edges intersect S in at least
k − 3 vertices. We may (k − 2)-cover all edges intersecting S in at least k − 2 vertices by
the k −1 (k −2)-sets


S

k−2


. Now, observe that the uncovered edges all intersect S in k −3

vertices. Therefore, they must contain both u and v since H has (k −2)-matching number
1. Take H ′ to be the (k − 2) uniform hypergraph with vertex set V (H) − {u, v} and edge
set E(H ′) = {g − {u, v} : g ∈ E(H), |g ∩ S| = k − 3}. Now, H ′ has (k − 4) matching
number 1. Otherwise, there exist edges h′

1, h′
2 ∈ H ′ such that |h1 ∩ h2|  k − 5. But then,

setting h1 = h′
1 ∪ {u, v}, h2 = h′

2 ∪ {u, v}, we find that h1, h2 is a (k − 2)-matching in H,
a contradiction. By induction, we have:

τ (k−2)(H ′)  g1(k − 2, k − 4)  1
4((k − 2)2 + 3).

Letting C ′ be a (k − 4) cover of H ′ of size τ (k−2)(H ′), then the following is a cover of H:

C = {T ∪ {u, v} : T ∈ C ′} ∪


S

k − 2



.

We compute the size of C to be:

|C| = τ (k−2)(H ′) + (k − 1)  1
4((k − 2)2 + 3) + (k − 1) = 1

4(k2 + 3).

The proof for k even is almost the exact same. We include it here for completeness.
Suppose k is now even. It was shown in [1] that g1(4, 2) = 4 = 1

442. Now, let H be
a k-uniform hypergraph with k  6, k even, where ν(k−2)(H) = 1. We will assume
g1(k − 2, k − 4)  1

4(k − 2)2. If there is an edge e of H such that every other edge of H

the electronic journal of combinatorics 32(2) (2025), #P2.20 17



intersects e in exactly k − 2 vertices, then by Lemma 24, we may find an (k − 2)-cover of
H of size

( k
k−2)+1

2


=

(k
2)+1

2


 1

4k2.

Suppose then that there is a pair of edges e, f such that |e ∩ f | = k − 1. Let us denote
e∩f by S and suppose e−S = u, f −S = v. Observe that all edges intersect S in at least
k − 3 vertices. We may (k − 2)-cover all edges intersecting S in at least k − 2 vertices by
the k −1 (k −2)-sets


S

k−2


. Now, observe that the uncovered edges all intersect S in k −3

vertices. Therefore, they must contain both u and v since H has (k −2)-matching number
1. Take H ′ to be the (k − 2) uniform hypergraph with vertex set V (H) − {u, v} and edge
set E(H ′) = {g − {u, v} : g ∈ E(H), |g ∩ S| = k − 3}. Now, H ′ has (k − 4)-matching
number 1. Otherwise, there exist edges h′

1, h′
2 ∈ H ′ such that |h1 ∩ h2|  k − 5. But then,

setting h1 = h′
1 ∪ {u, v}, h2 = h′

2 ∪ {u, v}, we find that h1, h2 is a (k − 2)-matching in H,
a contradiction. By induction, we have:

τ (k−2)(H ′)  g1(k − 2, k − 4)  1
4(k − 2)2.

Letting C ′ be a (k − 4) cover of H ′ of size τ (k−2)(H ′), then the following is a cover of H:

C = {T ∪ {u, v} : T ∈ C ′} ∪


S

k − 2



.

We compute the size of C to be:

|C| = τ (k−2)(H ′) + (k − 1)  1
4(k − 2)2 + (k − 1) = 1

4k2.

4 Fractional Results

We begin this section by proving Theorem 8:

Proof of Theorem 8. Let k  2 and H be a 2k-uniform hypergraph with k-matching
number 1 and take e ∈ H. Begin by assigning every m-set contained in e a weight of 1

k+1 .
In doing this, every edge intersecting e in at least k + 1 vertices is fractionally k-covered.
The remaining uncovered edges intersect e in exactly k vertices and currently have weight

1
k+1 . Observe that for any k-set S of e, there is a unique k-set T of e such that S ∪ T = e

and S ∩ T = ∅. There are exactly 1
2


2k
k


such pairs of k-sets of e. Let us label them as

{(Si, Ti) : 1  i  1
2


2k
k


}. Now, for each pair Si, Ti, either there is a unique pair of edges

f, g intersecting Si, Ti, respectively or there are multiple edges intersecting one of these
k-sets and no edges intersecting the other k-set. In either case, we may find a single k-set
and assign it weight k

k+1 in order to fractionally k-cover all uncovered edges intersecting
e at Si and Ti. Now, we have covered all edges with a total weight of:

1
k + 1


2k

k



+ k

k + 1


2k
k



2 =


1
k + 1 + k

2(k + 1)

 
2k

k



=


1
2 + 1

2(k + 1)

 
2k

k



.
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We may obtain bounds on h∗(k, m) from g∗
1(k, m) using the following lemma. This gen-

eralizes the upper bound proof strategy of Proposition 14 in [2] to work for all choices of
k and m.
Lemma 25. For all 2  m < k, we have h∗(k, m)  1

2


k
m


+ g∗

1(k, m)

.

Proof. Let H be a k-uniform hypergraph and fix 2  m < k. Suppose H has m-matching
number ν and let M = {e1, . . . , eν} be a maximum m-matching in H. Begin by assigning
weight 1/2 to all of the m-sets in ν

i=1


ei

m


. Any edge which intersects at least 2 edges

of the matching in m vertices is now fractionally m-covered as well as any edge which
intersects a matching edge in more than m vertices. The uncovered edges now intersect
exactly 1 matching edge in exactly m vertices. For 1  i  ν, let Sei

= {f ∈ H :
|f ∩ ei| = m and f is uncovered}. Clearly, all uncovered edges are contained in some Sei

.
Furthermore, for any i, the subgraph of H with edge set Sei

has m-matching number
1. Otherwise, we may find an m-matching of H of size larger than M . So, for each i,
we may fractionally m-cover the uncovered edges in Sei

with a total weight of at most
1
2g∗

1(k, m) (We only need 1
2g∗

1(k, m) since each m-set of a matching edge was intially given
a weight of 1

2). Now, we have fractionally m-covered H with a total weight of at most
1
2


k
m


+ g∗

1(k, m)


ν, giving us

h∗(k, m)  1
2


k

m



+ g∗
1(k, m)



.

As mentioned in the introduction, using Lemma 25 together with Theorem 8, we obtain
Corollary 9.

Lastly, we improve the upper bound on g∗
1(k, k − 2) by proving Theorem 10:

Proof of Theorem 10. Let H be a k-uniform hypergraph with (k − 2)-matching number
1. If there exists some edge e of H such that every other edge of H intersects e in k − 1
vertices, then assigning weight 1

k−1 to every (k −2)-set of e, we obtain a fractional (k −2)-
cover of size k

2 . Otherwise, we may find two edges e, f of H such that |e ∩ f | = k − 2. Let
S = e ∩ f . Then, for any other edge g ∈ H − e − f , |g ∩ S| ∈ {k − 2, k − 3, k − 4}. We
fractionally cover all edges intersecting S in k − 2 vertices (including e, f) by assigning
weight 1 to S. Now, the edges which intersect S in k − 3 vertices also intersect e − S
and f − S in at least 1 vertex. Assigning weight 1

k−3 to every (k − 2)-set of the form
S ′ ∪ {x, y}, where S ′ ∈


S

k−4


, x ∈ e − S, y ∈ f − S, we fractionally (k − 2)-cover all edges

intersecting S in k −3 vertices. Also, all edges intersecting S in k −4 vertices are partially
covered (each have weight 4

k−3). Now, for every edge g intersecting S in k − 4 vertices,
(e ∪ f) − S ⊆ g. So, assigning weight


1 − 4

k−3


1

(k−4
2 ) to every (k − 2)-set of the form

S ′′ ∪ ((e ∪ f) − S), where S ′′ ∈


S
k−6


, we fractionally (k − 2)-cover the edges intersecting
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S in k − 4 vertices and we have now covered all edges of H. The weight of this cover is:

1 + 1
k − 3



4


k − 2
k − 4



+


1 − 4
k − 3

 1


k−4
2




k − 2
k − 6



= 1 +
4


k−2

2



k − 3 + k − 7
k − 3

1


k−4
2




k − 2
4



= 1 + 2(k − 2) + k − 7
6(k − 3)


k − 2

2



 1
6


k − 2

2



+ 2k − 3.
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