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Abstract

In 1972 Tutte famously conjectured that every 4-edge-connected graph has a
nowhere-zero 3-flow; this is known to be equivalent to every 5-regular, 4-edge-
connected graph having an edge orientation in which every in-degree is either 1
or 4. In 1988 Jaeger conjectured a generalization of Tutte’s nowhere-zero 3-flow
conjecture, by stating that every (4p+ 1)-regular, 4p-edge-connected graph has an
edge orientation in which every in-degree is either p or 3p + 1. Inspired by the
work of Pra󰀀lat and Wormald investigating p = 1, we address p = 2 to show that
the conjecture holds asymptotically almost surely for random 9-regular graphs. It
follows that the conjecture holds for almost all 9-regular, 8-edge-connected graphs.
These results make use of the technical small subgraph conditioning method.

Mathematics Subject Classifications: 05C80, 05C21

1 Introduction

A k-flow of an undirected graph G = (V,E) is an orientation of its edge-set together with
a function f : E → {0,±1,±2, . . . ,±(k − 1)} such that the following is satisfied for each
vertex v ∈ V : 󰁛

e∈D+(v)

f(e)−
󰁛

e∈D−(v)

f(e) = 0.

To orient a graph G = (V,E), convert each edge e = {x, y} into either the ordered pair
e = (x, y) or e = (y, x), to represent the edge being oriented from x to y or from y to x,
respectively. We denote the set of all edges oriented towards v as D+(v) and the set of
all edges oriented away from v as D−(v); a k-flow is said to be a nowhere-zero k-flow if
f(e) ∕= 0 for all e ∈ E. We define the in-degree of v as d+(v) := |D+(v)| and the out-degree
of v as d−(v) := |D−(v)|. In 1972 Tutte famously conjectured the following (for instance,
see Bondy [5, Open Problem 48] or Jensen [13, Section 13.3]):
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Conjecture 1. (Tutte’s nowhere-zero 3-flow conjecture) Every 4-edge-connected graph
admits a nowhere-zero 3-flow.

Though Tutte’s nowhere-zero 3-flow conjecture has attracted considerable attention,
it has yet to be proven. For a significant period of time it was not known whether or not
there exists a fixed constant k such that every k-edge connected graph has a nowhere-
zero 3-flow (this is known as the weak 3-flow conjecture of Jaeger). It was proved for
k 󰃍 c log2 n for n-vertex graphs by Alon, Linial, and Meshulam in 1991 [1], as well as
by Lai and Zhang in 1992 [14]. The weak 3-flow conjecture was first proved in 2012 by
Thomassen [19], who showed that every 8-edge-connected graph admits a nowhere-zero
3-flow. This was improved to k = 6 in 2011 by Lovász, Thomassen, Wu, and Zhang [15].
It is a well-known fact that a graph admits a nowhere-zero 3-flow if and only if it has
a nowhere-zero 3-flow over Z3, for instance see Seymour [18] for more discussion. The
following is a reformulation of Tutte’s nowhere-zero 3-flow conjecture ([13, Section 13.3],
[5, Open Problem 48]):

Conjecture 2. (Tutte’s nowhere-zero 3-flow conjecture reformulated) Every 5-regular,
4-edge-connected graph has an edge orientation in which every in-degree is either 1 or 4.

Let k 󰃍 3 be an odd integer; an orientation is a modulo k-orientation if for every
vertex v ∈ V , d+(v) ≡ d−(v) (mod k). In 1988 Jaeger [11] conjectured the following for
all p of which Tutte’s nowhere-zero 3-flow conjecture is a sub-case when p = 1:

Conjecture 3. (Jaeger’s conjecture) For any integer p 󰃍 1, the edges of every (4p + 1)-
regular, 4p-edge-connected graph has a modulo (2p + 1)-orientation, i.e. can be oriented
so that every in-degree is either p or 3p+ 1.

Jaeger’s conjecture was originally formulated for 4p-edge-connected graphs but it can be
reduced to the case of (4p+1)-regular graphs (see for instance [16], [6], and [2], which use
the same formulation of the conjecture, and the following from Jaeger: [11, Theorem 5.9],
[10, Remark 2]). In 2019, Pra󰀀lat and Wormald [16] used the small subgraph conditioning
method to demonstrate that Jaeger’s conjecture is asymptotically almost surely true for
p = 1. In 2011, Alon and Pra󰀀lat [2] used the expander mixing lemma to demonstrate that
Jaeger’s conjecture is asymptotically almost surely true for p which are somewhat large
(though still finite). In 2018, Han, Li, Wu, and Zhang [9] demonstrated the existence of
4p-edge-connected graphs which do not admit a (2p+1)-orientation for p 󰃍 3. A natural
question is whether or not the conjecture holds asymptotically almost surely for the values
of p in between the value of p = 1 identified by Pra󰀀lat and Wormald [16] and the large –
though not explicitly determined – values of p identified by Alon and Pra󰀀lat [2].

We answer the question in the affirmative in the case where p = 2. Our results are
asymptotic, that is, we are holding that the probability that a random graph on n vertices
has a particular property tends to 1 as n tends to infinity. By utilizing the pairing model
of Bollobás (see [3]) – which a.a.s. produces 9-regular, 8-edge connected graphs – we
investigate the case where p = 2 and study 9-regular, 8-edge connected graphs to prove
the following theorem:
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Theorem 4. A random 9-regular graph Gn on n vertices a.a.s. has a modulo-5 orienta-
tion, i.e. has an orientation in which every in-degree is either 2 or 7.

Our result is of relevance to conjectures besides that of Jaeger. Modular 5-orientations
in highly connected graphs are particularly interesting object. As Han, Li, Wu, and Zhang
noted in [9], if 8-edge-connected graphs in general admit modular 5-orientations, it is
implied that Tutte’s famous 5-Flow Conjecture holds.

2 Overview of Our Proof of the Main Result

To prove Theorem 4 we utilize the famous pairing model introduced by Bollobás (for more
details, see [3]). In the pairing model we work with a random graph Pn,d, in which dn
points are arranged in n groups of d points each. Each of the n groups is referred to as a
vertex while the d points composing them continue to be referred to as points. A perfect
matching is then made amongst the points with each group of d points forming a vertex
of degree d. The result is a d-regular multi-graph. The convenience of the pairing model
lies in the fact that, when d = O(1), if a given statement is asymptotically almost surely
true in Pn,d then it is asymptotically almost surely true in the random d-regular graph on
n vertices (see Corollary 2.3 in [20]).

We are interested in orientations of the edge-set of 9-regular graphs in which every
vertex has an in-degree of either 2 or 7 (which implies an out-degree of either 7 or 2,
respectively); we call such orientations valid. An orientation of an element of Pn,9 is
referred to as “valid” when each of the n groups of d points has either exactly two of its
points serving as the terminal ends of two edges after orienting them, or exactly two of
its points serving as the initial ends of two edges after orienting them. Let Y = Y (n) be
the number of valid orientations of a random element of Pn,9.

In Section 3, we approximate E[Y ] using Stirling’s approximation:

Lemma 5.

E[Y ] ∼ 3

󰀕
81

8

󰀖n/2

> 0.

We will show that there are plenty of valid orientations per pairing, on average. In
order to show that pairings a.a.s. have at least one valid orientation (that is, P(Y > 0) ∼ 1
or, alternatively P(Y = 0) ∼ 0), a standard strategy is to estimate E[Y (Y − 1)] and show
that it is asymptotic to (E[Y ])2. To this end, in Section 4 using optimization, Taylor
series expansions and multivariate calculus we show the following approximation:

Lemma 6.

E[Y (Y − 1)] ∼
󰀕
81

8

󰀖n
81

7
.

One could hope that at this point the desired result would then immediately follow
from Chebyshev’s inequality:

P (Y = 0) 󰃑 E[Y (Y − 1)]

(E[Y ])2
− 1.
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Unfortunately, this proof technique fails here as there is a constant factor discrepancy in
the asymptotic ratio giving us an upper bound of 2/7 + o(1) for the failure probability
instead of o(1).

Corollary 7.
E[Y (Y − 1)]

E[Y ]2
∼ 9

7
> 0.

Instead to prove our main result Theorem 4, we will utilize the powerful but highly
technical small subgraph conditioning method introduced by Robinson and Wormald in
1994 [17]. We refer the curious reader to a survey paper by Wormald [20] for a more
detailed discussion about the small subgraph conditioning method. This technique was
used by Pra󰀀lat and Wormald to demonstrate the truth of Jaeger’s conjecture for p = 1 [16]
and it has been used to deal with similar problems, as in [6], where Delcourt and Postle
used it to demonstrate that a 4-regular graph G a.a.s. admits an S3-decomposition, that
is, G can be shown to consist of copies of three vertices which all make an edge with
another vertex. This line of inquiry in utilizing the small subgraph conditioning method
to study star-decompositions was extended by Delcourt, Greenhill, Isaev, Lidický, and
Postle in [7], where it is shown that the uniform random d−regular graph admits a
k−star decomposition for all d, k such that d/2 < k 󰃑 d/2 + max{1, log d/6}. We note
that [x]k := x(x− 1) · · · (x− k + 1) denotes the falling factorial:

Theorem 8 (Small Subgraph Conditioning Method). Let λj > 0 and δj > −1 be real
numbers for all j 󰃍 0. Suppose for each n there are non-negative random variables
Xj = Xj(n), j 󰃍 1, and Y = Y (n) (defined on the same probability space) such that Xj

is integer valued and E[Y ] > 0 (for n sufficiently large). Furthermore, suppose that

(a) For each k 󰃍 1, Xi (i ∈ {1, 2, . . . , k}) are asymptotically independent Poisson
random variables with E[Xi] ∼ λi;

(b) For every finite sequence j1, j2, . . . , jk of non-negative integers,

E[Y [X1]j1 . . . [Xk]jk ]

E[Y ]
∼

k󰁜

i=1

µji
i =

k󰁜

i=1

(λi(1 + δi))
ji ;

(c)
󰁓

i λiδ
2
i < ∞;

(d)

E[Y 2]

(E[Y ])2
󰃑 exp

󰀣
󰁛

i

λiδ
2
i

󰀤
+ o(1).

If the above four properties (a)–(d) hold, then

P(Y > 0) = exp

󰀣
−

󰁛

δi=−1

λi

󰀤
+ o(1).

the electronic journal of combinatorics 32(2) (2025), #P2.22 4



As with most applications of this method in the literature, we let Xj denote the
number of cycles of length j in the multi-graph corresponding to a random element of
Pn,9. Informally, we are in a situation where the distribution of Y is affected by small
but not too common (i.e., the expected number is bounded) subgraphs of the random 9-
regular graph, namely short cycles, and by conditioning on the small subgraph counts, we
are able to control the variance of Y and show that Y > 0 asymptotically almost surely.
In our setting, condition (a) of the Small Subgraph Conditioning Method (Theorem 8)
follows from a well known result of Bollobás [3], namely that for j 󰃍 1 X1, X2, . . . , Xj are
asymptotically independent Poisson distributions with mean

E[Xj] −→ λj :=
8j

2j
.

For condition (b) of Theorem 8, in Section 5, we compute E[Y Xj] and obtain that

Lemma 9. For all j 󰃍 1

E[Y Xj]

EY
=

8j

2j

󰀣
1 +

󰀕
−2

9

󰀖j
󰀤

= λj

󰀣
1 +

󰀕
−2

9

󰀖j
󰀤
.

Therefore, for all j 󰃍 1

δj := −
󰀕
2

9

󰀖j

> −1.

For any fixed subgraph H which has more edges than vertices, a multigraph corre-
sponding to a random element of Pn,9 a.a.s. contains no subgraph isomorphic to H. As
in other applications of the Small Subgraph Conditioning Method, we would not expect
two cycles to sharing edges (or for that matter vertices), and therefore, we concentrate
on disjoint cycles and think of them roughly as being independent. These observations
combined with Lemma 9 imply the following more general form of Lemma 9, computing
joint factorial moments:

Corollary 10. For all j 󰃍 1, if (ℓ1, ℓ2, . . . , ℓj) is a sequence of non-negative integers, the
following holds:

E(Y [X1]ℓ1 · · · [Xj]ℓj)

EY
∼

j󰁜

i=1

µℓi
i =

j󰁜

i=1

(λi(1 + δi))
ℓi =

j󰁜

i=1

󰀣
8i

2i

󰀣
1−

󰀕
2

9

󰀖i
󰀤󰀤ℓi

We now need to verify conditions (c) and (d) of Theorem 8:

Lemma 11.
󰁛

i

λiδ
2
i < ∞ and exp

󰀣
󰁛

i

λiδ
2
i

󰀤
=

9

7
∼ E(Y 2)

E[Y ]2
.
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Proof. Recall that λk =
8k

2k
and δk = −

󰀃
2
9

󰀄k
. Using the fact that− log(1−x) =

󰁓
k󰃍1 x

k/k,

exp

󰀣
󰁛

k󰃍1

λkδ
2
k

󰀤
= exp

󰀣
󰁛

k󰃍1

8k

2k

󰀕
4

81

󰀖k
󰀤

= exp

󰀕
1

2
− log

󰀕
1− 25

34

󰀖󰀖
=

9

7
.

Since exp

󰀕󰁓
k󰃍1

λkδ
2
k

󰀖
∼ E(Y 2)

E[Y ]2
∼ 9/7.

Putting this all together, assuming the proofs of Lemma 5 (Section 3), Lemma 6
(Section 4), and Lemma 9 (Section 5) we are now ready to prove our main result via the
Small Subgraph Conditioning Method as follows:

Proof of Main Result (Theorem 4). Let 9 divide n. Let Y = Y (n) be the number of valid
orientations (orientations of the edge-set in which every vertex has an in-degree of either
2 or 7) of a random element of Pn,9 and let Xj denote the number of cycles of length j in a
random element of Pn,9. We apply the Small Subgraph Conditioning Method (Theorem 8)
to Y and the Xj. Similarly to most applications in the literature, condition (a) holds due

to a well-known result of Bollobás [3], here with λj :=
8j

2j
. Condition (b) holds by Lemma 9

and δj := −(2
9
)j. Condition (c) holds by Lemma 11. Condition (d) follows from Lemma 11

and Lemma 6. Hence, all four conditions of the small subgraph conditioning method are
satisfied, and we may conclude that P(Y > 0) ∼ 1, as desired.

3 Expected Number of Valid Configurations

Recall that the random variable Y = Y (n) was introduced to measure the number of valid
orientations of an element of Pn,9. A vertex in a valid orientation is called an in-vertex if
it has an in-degree of 2 and is called an out-vertex otherwise. Each point contained in an
edge oriented towards an in-vertex or away from an out-vertex is called special. A point
is referred to as an in-point if the edge containing it is pointing towards it and is referred
to as an out-point otherwise. We are now prepared to prove Lemma 5 as follows.

Proof of Lemma 5. The expected number of valid orientations is computed as follows:

E[Y ] =

󰀃
n

n/2

󰀄󰀃
9
2

󰀄n
(9n/2)!

M(9n)
, (1)

where

M(9n) =
(9n)!

(9n/2)!29n/2

is the number of perfect matchings on 9n points. Indeed, since the number of in-vertices
must match the number of out-vertices, there are

󰀃
n

n/2

󰀄
ways to choose in-vertices. There

are
󰀃
9
2

󰀄n
different ways to pick special points. Finally, there are (9n/2)! different ways
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to pair in-points with out-points. After expanding the expression and using Stirling’s
formula (x! ∼

√
2πx(x/e)x) we get that

E[Y ] =
n! (9 · 4)n (9n/2)!2 29n/2

(n/2)!2 (9n)!
∼ 3

󰀕
81

8

󰀖n/2

.

4 The Second Moment Method

To verify Lemma 6, we now turn our attention to estimating E[Y (Y − 1)]. Given two
orientations of the same graph, two vertices v and w can be related in one of three ways:

(i) v and w are in-vertices in both orientations;

(ii) v and w are out-vertices in both orientations;

(iii) One of v or w is an in-vertex in one orientation and the other is an out-vertex in
the other orientation.

Observe that if exactly k vertices are in-vertices in both orientations, since there are
in total n/2 in-vertices in the first orientation, n/2− k vertices are in-vertices in the first
orientation and out-vertices in the second orientation. Since there are n/2 − k vertices
which are out-vertices in the second orientation but not in the first and there are n/2 total
out-vertices in the second orientation, k vertices are out-vertices in both orientations. The
remaining n/2 − k vertices are out-vertices in the second orientation and in-vertices in
the second.

We use the term k211 to denote the number of vertices which are in-vertices in both
orientations and which have two special points in common. We use the term k111 to
denote the number of vertices which are in-vertices in both orientations but which have
only one special point in common. Note that k211 󰃑 k and k111 󰃑 k since k211 + k111 󰃑 k.
It follows that there are k− k211 − k111 vertices which are in-vertices in both orientations
but which have no special points in common.

Similarly, we use the term k200 to denote the number of vertices which are out-vertices
in both orientations and have two special points in common. k100 is defined as the number
of vertices which are out-vertices in both orientations but which only have one special point
in common. Note that k200 󰃑 k and k100 󰃑 k since k200 + k100 󰃑 k. It follows that there
are k − k200 − k100 vertices which are out-vertices in both orientations but which have no
special points in common.

The term k210 is used to denote the number of vertices which are in-vertices in the
first orientation but out-vertices in the second and which have both special points in
common. k110 denotes the number of points which are in-vertices in the first orientation
and out-vertices in the second but which have only one special point in common. Note
that k210 󰃑 n/2 − k and k110 󰃑 n/2 − k since k210 + k110 󰃑 n/2 − k. It follows that
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there are n/2 − k − k210 − k110 vertices which are in-vertices in the first orientation and
out-vertices in the second orientation but which have no special points in common.

The term k201 is used to denote the number of vertices which are out-vertices in the first
orientation but in-vertices in the second and which have both special points in common.
k101 denotes the number of vertices which are out-vertices in the first orientation and
in-vertices in the second but which have only one special point in common. Note that
k201 󰃑 n/2 − k and k101 󰃑 n/2 − k since k201 + k101 󰃑 n/2 − k. It follows that there are
n/2− k− k201− k101 vertices which are out-vertices in the first orientation and in-vertices
in the second orientation but which have no special points in common.

4.1 Multivariate Calculus

To approximate the second moment we will need to define a region that contains every
possible configuration of two orientations. Let

I := I(n) = {(k, k211, k111, k210, k110, k201, k101, k200, k100) ∈ N9
0

󰀏󰀏 k 󰃑 n/2, k211 + k111 󰃑 k,

k200 + k100 󰃑 k, k210 + k110 󰃑 n/2− k, k201 + k101 󰃑 n/2− k},

where N0 = N ∪ {0}. Fixing k = (k, k211, k111, k210, k110, k201, k101, k200, k100), we can
calculate the number of configurations corresponding to this vector. Letting k011 = k −
k211−k111, k000 = k−k200−k100, k010 = n/2−k−k210−k110, and k001 = n/2−k−k201−k101,
there are

n!

k211!k111!k011!k200!k100!k000!k210!k110!k010!k201!k101!k001!
(2)

different ways to partition n vertices into twelve groups. Given a particular partition of
the n vertices, there are

󰀕
9

2

󰀖k211+k210+k201+k200

· (9 · 8 · 7)k111+k110+k101+k100 ·
󰀕󰀕

9

2

󰀖󰀕
7

2

󰀖󰀖k011+k010+k001+k000

(3)

different ways to assign special points. To illustrate the accuracy of this formula, consider
a k000 vertex. This vertex will consist of two out-points and seven in-points. Since two
of the in-points in the first orientation are out-points in the other and because two of
its out-points are in-points in the other orientation, the remaining five in-points that it
consists of are in-points in both orientations. Similar reasoning is applied to the other
eleven groups of vertices.

Next we will note that an (in,in)-point naturally pairs with an (out,out)-point. (When-
ever we refer to say, (in,in)-points, the first “in” refers to the first orientation and the
second “in” refers to the second orientation.) The number of (in,in)-points is

2k211 + 7k200 + k111 + k110 + k101 + 6k100 + 5k000 + 2k010 + 2k001

= 2k211 + 2k200 + k111 − k110 − k101 + k100 + 2n+ k − 2k210 − 2k201.

Likewise, the number of (out,out)-points is

2k211 + 2k200 + k111 − k110 − k101 + k100 + 2n+ k − 2k210 − 2k201. (4)
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The remaining points will be (in,out)-points and (out,in)-points. The number of (in,out)-
points is:

9n− 2(2k211 + 2k200 + k111 − k110 − k101 + k100 + 2n+ k − 2k210 − 2k201)

2
= 7n/2− (2k211 + 2k200 + k111 − k110 − k101 + k100 + k − 2k210 − 2k201) (5)

which also happens to be the number of (out,in)-points.
The set of (in,in)-points needs to be paired with the set of (out,out)-points. Similarly,

(in,out)-points need to be paired with (out,in)-points. Hence, the product of (2), (3),
and the factorials of both (4) and (5) reflect the number of configurations. Dividing this
product by the total number of matchings provides an estimate of the second-moment,
which is the expected number of pairs of valid orientations.

The second-moment is estimated as follows:

E[Y (Y − 1)] =
󰁛

k∈I

r(z)g(z) exp(nf(z)) (6)

where z = z(k) = k/n. The product within the sum is merely the result of applying
Stirling’s approximation (s! ∼

√
2πn(s/e)s). The error term, the polynomial component,

and the exponential component are represented by r(z), g(z), and exp(nf(z)) respectively

and defined below. Note that since
√
2πn(n

e
)ne(

1
12n

− 1
360n3 ) < n! <

√
2πn(n

e
)ne(

1
12n), r(z) =

O(1) for all z and r(z) ∼ 1 if z is bounded away from the boundary of

J := {(z, z211, z111, z210, z110, z201, z101, z200, z100) ∈ R9
0

󰀏󰀏 z 󰃑 1/2, z211 + z111 󰃑 z, z200

+ z100 󰃑 z, z210 + z110 󰃑 1/2− z, z201 + z101 󰃑 1/2− z}.

By letting b := 2z211 + 2z200 + z111 − z110 − z101 + z100 + 2 + z − 2z210 − 2z201 and letting
h(x) := x log x with the stipulation that h(0) = 0 we get

g =
󰀃
b(9− 2b)1/2

󰀄
/
󰀃 󰁳

128(πn)9(z211z111(z − z211 − z111)z200z100(z − z200 − z100)z210z110

(1− 2z − 2z210 − 2z110)z201z101(1− 2z − 2z201 − 2z101))
1/2

󰀄
. (7)

The exponential contribution from (2) is

f1 = log n− log e

f2 = −h(z211)− h(z111)− h(z − z211 − z111)− h(z200)− h(z100)− h(z − z200 − z100)

− h(z210)− h(z110)− h(1/2− z − z210 − z110)− h(z201)− h(z101)

− h(1/2− z − z201 − z101)− log n+ log e

which correspond to the numerator and denominator, respectively. The exponential con-
tribution from (3) is

f3 = log 9 + (z111 + z100 + z110 + z101) log 8 + (1− z211 − z200 − z210 − z201) log 7
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+ (1− z111 − z100 − z110 − z101) log 4

+ (1− z211 − z200 − z210 − z201 − z111 − z100 − z110 − z101) log 3.

The exponential contribution from the factorials of (4) and (5) is:

f4 = h(9/2− b) + h(b) + 9/2(log n− log e).

The exponential contribution from dividing by the total number of matchings is

f5 = −h(9) + 9/2 log 2 + h(9/2)− 9/2 log n+ 9/2 log e.

Summing f = f1 + f2 + f3 + f4 + f5 together we get

f =h(b) + h(9/2− b) + log(9 · 4 · 7 · 3)− 9/2 log 9− (z211 + z200 + z210 + z201) log 7

− (z211 + z200 + z210 + z200 + z111 + z100 + z110 + z101) log 3

+ (z111 + z100 + z110 + z101) log 2− h(z211)− h(z111)

− h(z − z211 − z111)− h(z200)− h(z100)− h(z − z200 − z100)− h(z210)− h(z110)

− h(1/2− z − z210 − z110)− h(z201)− h(z101)− h(1/2− z − z201 − z101). (8)

Since h(0) = 0, f is continuous towards the boundary of J , which allows us to explore
the question of whether or not f has a maximum. We calculate the partial derivatives of
f to identify stationary points in the interior of J . An algebraic manipulation tool such
as Maple can be utilized towards this end.1

We find that

δf

δz211
= log

󰀓 b2 · (z − z211 − z111)

7 · 3 · (9/2− b)2 · z211

󰀔
,

δf

δz111
= log

󰀓 2 · b · (z − z211 − z111)

3 · (9/2− b) · z111

󰀔
.

Setting these two partial derivatives equal to one another and re-arranging gives us

z111
z211

= 14

󰀕
9/2− b

b

󰀖
.

Likewise, the partial derivatives for z200 and z100 are

δf

δz200
= log

󰀓 b2 · (z − z200 − z100)

7 · 3 · (9/2− b)2 · z200

󰀔
,

δf

δz100
= log

󰀓 2 · b · (z − z200 − z100)

3 · (9/2− b) · z100

󰀔
.

Setting these two partial derivatives equal to one another and re-arranging gives us

z100
z200

= 14

󰀕
9/2− b

b

󰀖
.

1The worksheets can be found on-line: https://math.torontomu.ca/~pralat/.
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Since 14
󰀓

9/2−b
b

󰀔
= z111

z211
= z100

z200
, it follows that z211z100 = z200z111.

The partial derivatives of f with respect to z210 and z110 are

δf

δz210
= log

󰀓 (9/2− b)2 · (1/2− z − z210 − z110)

7 · 3 · b2 · z210

󰀔
,

δf

δz110
= log

󰀓 2 · (9/2− b) · (1/2− z − z210 − z110)

7 · 3 · b · z110

󰀔
.

The partial derivatives of f with respect to z201 and z101 are

δf

δz201
= log

󰀓 (9/2− b)2 · (1/2− z − z201 − z101)

7 · 3 · b2 · z201

󰀔
,

δf

δz101
= log

󰀓 2 · (9/2− b) · (1/2− z − z201 − z101)

7 · 3 · b · z101

󰀔
.

Repeating the same procedure with regards to δf
δz210

, δf
δz110

, δf
δz201

, and δf
δz101

tells us that

z210z101 = z201z110.

Setting δf
δz211

= 0 gives P211 = 0, where

P211 = b2 · (z − z211 − z111)− 7 · 3 · (9/2− b)2 · z211.

If we define P111, P200, etc. similarly, and obtain P from δf
δz
, we obtain nine polynomials

such that any local maximum in the interior of I must be a common zero of all polynomials.
We denote the resultant of two polynomials X and Y with respect to a variable x as
R(X, Y, x). When X = Y = 0 it is necessary that R(X, Y, x) = 0. Taking the resultant
of P211 and P200 with respect to z101 gives us

R(P211, P200, z101) = 46294416(zz200 − zz211 + z211z100 − z200z111)
2

= 46294416((z − z111)z200 − (z − z100)z211)
2.

We can use the fact that z211z100 = z200z111 and R(P211, P200, z101) = 0 to demonstrate
that z211 = z200, which then implies that z111 = z100.

Calculating the resultant of P201 and P210 with respect to z100 gives us

R(P210, P201, z100) = 185177664(2zz201 − 2zz210 − 2z210z101 + 2z201z110 − z201 + z210),

= 740710656((−1/2 + z + z110)z201 − (−1/2 + z + z101)z210)
2.

We can use the fact that z210z101 = z201z110 and R(P210, P201, z100) = 0 to demonstrate
that z210 = z201, which then implies that z110 = z101.

We will now consider the nature of possible critical points. Let z111 = z100 = c1,
z211 = z200 = c2, z110 = z101 = c3, and z210 = z201 = c4. Setting δf

δz211
= δf

δz200
= 0 implies

that 󰀕
9/2− b

b

󰀖2

=
z − c1 − c2

21c2
.
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After squaring δf
δz100

= δf
δz111

= 0, it follows that

󰀕
9/2− b

b

󰀖2

=

󰀕
2(z − c1 − c2)

3c1

󰀖2

.

Since 󰀕
9/2− b

b

󰀖2

=
z − c1 − c2

21c2
=

󰀕
2(z − c1 − c2)

3c1

󰀖2

,

we have z =
3c21
28c2

+ c1 + c2.

From setting δf
δz210

= δf
δz110

we get

9/2− b

b
=

14c4
c3

.

After setting δf
δz110

= δf
δz101

= 0 we get

9/2− b

b
=

3c3
2(1/2− z − c4 − c3)

.

Together these imply that

󰀕
9/2− b

b

󰀖2

=
21c4

(1/2− z − c3 − c4)
.

After squaring δf
δz110

= δf
δz101

, it follows that

󰀕
9/2− b

b

󰀖2

=

󰀕
3c3

2(1/2− z − c3 − c4)

󰀖2

.

Since 󰀕
9/2− b

b

󰀖2

=

󰀕
3c3

2(1/2− z − c3 − c4)

󰀖2

=
21c4

(1/2− z − c3 − c4)
,

it follows that 1/2− z =
3c23
28c4

+ c3 + c4.
We now consider another parametrization of our variables that will hold when we are

at a critical point. This parametrization is invaluable for finding the specific values of b
and z that form a critical point for f . When δf

δz111
= δf

δz100
= 0, it follows that

c1 = 14

󰀕
9/2− b

b

󰀖
c2.

Likewise when δf
δz211

= δf
δz200

= 0, it follows that

b2(z − c1 − c2) = 21

󰀕
9

2
− b

󰀖2

c2,
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which implies that

z =

󰀣
21

󰀕
9/2− b

b

󰀖2

+ 14

󰀕
9/2− b

b

󰀖
+ 1

󰀤
c2.

When δf
δz110

= δf
δz101

= 0,

c3 = 14

󰀕
b

9/2− b

󰀖
c4.

Setting δf
δz210

= δf
δz201

= 0 implies that

(9/2− b)2
󰀕
1

2
− z − c3 − c4

󰀖
= 21b2c4

which in turn implies that

1

2
− z =

󰀣
21

󰀕
b

9/2− b

󰀖2

+ 14

󰀕
b

9/2− b

󰀖
+ 1

󰀤
c4.

Since

z =

󰀣
21

󰀕
9/2− b

b

󰀖2

+ 14

󰀕
9/2− b

b

󰀖
+ 1

󰀤
c2,

it follows that

c4 =

1/2−
󰀕
21

󰀓
9/2−b

b

󰀔2

+ 14
󰀓

9/2−b
b

󰀔
+ 1

󰀖
c2

21
󰀓

b
9/2−b

󰀔2

+ 14
󰀓

b
9/2−b

󰀔
+ 1

.

c3 can be stated as

c3 = 14

󰀕
b

9/2− b

󰀖 1/2−
󰀕
21

󰀓
9/2−b

b

󰀔2

+ 14
󰀓

9/2−b
b

󰀔
+ 1

󰀖
c2

21
󰀓

b
9/2−b

󰀔2

+ 14
󰀓

b
9/2−b

󰀔
+ 1

.

After substituting these values for c1, c2, c3, and c4 into our partials, we are left
with the task of discovering when our partials equal one another. It was found that for
δf

δz211
= δf

δz200
= δf

δz111
= δf

δz100
,

c∗2(b) = − 4b3(32b2 + 104b− 171)

5120b4 − 46080b3 + 285120b2 − 816480b− 688905

when 0 < b < 9/2.
After substituting our values for c1, c2, c3, and c4 into δf

δz
, we attain an expression for

δf
δz

as a function of b and c2. We can substitute c∗2(b) for c2 into our re-parameterized δf
δz
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and then check which, if any, values of b satisfy δf
δz

= 0. These values of b are as follows:
b = b1 ≈ 0.8065779289, b = b2 = 9/4, and b = b3 ≈ 3.693422071.

It now remains to see whether these values of b satisfy

0 < c2 = c∗2(b) <
1/2󰀕

21
󰀓

9/2−b
b

󰀔2

+ 14
󰀓

9/2−b
b

󰀔
+ 1

󰀖 .

Since c∗2(b1) ≈ −0.0001175309606 < 0, c∗2(b1) is not within the feasible region of J .
The associated upper-bound

c <
1/2󰀕

21
󰀓

9/2−b
b

󰀔2

+ 14
󰀓

9/2−b
b

󰀔
+ 1

󰀖

for b3 is approximately 0.09883651395. Since c∗2(b3) ≈ 0.1105793451, c∗2(b3) is also not
within the feasible region J .

We are now left with considering b = b2, which corresponds to c2 = 1/144. The upper-
bound for this value is 1/72, meaning that it is within the feasible region of f . This value
and the corresponding values for c1, c3, c4, and z imply that

ẑ = (1/4, 1/144, 7/72, 1/144, 7/72, 1/144, 7/72, 1/144, 7/72)

is the sole critical point of f in the interior of J . Note that

f(ẑ) = log
756 · 9

4

9/2 · 27/18 · 121/18

3113/12 · 71/36 · 7
72

7/18 · 7
48

7/12
≈ 2.315007612.

4.2 Analyzing the Boundary Points

We will now consider candidate points to be global maxima which reside on the boundary
of J . We will first consider any point on the boundary at which 0 < z < 1/2. In
this case, 0 󰃑 z211 + z111 󰃑 z, 0 󰃑 z200 + z100 󰃑 z, 0 󰃑 z110 + z210 󰃑 1/2 − z, and
0 󰃑 z101 + z201 󰃑 1/2− z.

When z111 → 0, δf
δz111

is dominated by the z111 term on its denominator, which tends

to −∞. Likewise, when z211 → 0, δf
δz211

is dominated by the z211 term on its denominator,
which also tends to −∞.

When z211 + z111 → z, the z − z211 − z111 term in the numerator of δf
δz111

will tend to

∞. Likewise, the z− z211− z111 term in the numerator of δf
δz211

will also tend to ∞. Thus,
there is no global maximum at these particular points.

The same arguments also apply for z200 and z100, ensuring that no global maximum
is reached at the points where either or both of them approach 0 and where their sum
approaches z.

When z110 → 0, δf
δz110

is dominated by the z110 term in its denominator, which tends

to −∞. Likewise, when z210 → 0, δf
δz210

is dominated by a z210 term in its denominator,
which also tends to −∞.
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When z210 + z110 → 1/2 − z, the 1/2 − z − z210 − z110 term in the numerator of δf
δz110

will tend to ∞. Likewise, the z − z210 − z110 term in the numerator of δf
δz210

will also tend
to ∞. Thus, there is no global maximum at these particular points.

The same arguments also apply for z201 and z101, ensuring that no global maximum
is reached at the points where either or both of them approach 0 and where their sum
approaches 1/2− z.

It now remains to consider the points where z = 0 and z = 1/2. We first consider
z = 0.

Case 1: z = 0
When z = 0, z211 = z111 = z200 = z100 = 0 as well. We can thus state f solely in

terms of the remaining variables. Substituting z = z211 = z111 = z200 = z100 = 0 gives the
function f̄(z210, z110, z201, z101) with domain [0, 1/2]4.

Setting δf̄
δz210

= δf̄
δz110

gives us

z210
z110

= − (5 + 2z110 + 2z101 + 4z210 + 4z201)

28(2− z110 − z101 − 2z210 − 2z201)
.

Likewise, setting δf̄
δz201

= δf̄
δz101

gives us

z201
z101

= − (5 + 2z110 + 2z101 + 4z210 + 4z201)

28(2− z110 − z101 − 2z210 − 2z201)
.

Together these imply that z210z101 = z201z110.
Setting δf̄

δz110
= δf̄

δz101
implies

z110
1− 2z210 − 2z110

=
z101

1− 2z201 − 2z101

which implies that z110 = z101.
Setting δf̄

δz210
= δf̄

δz201
implies

z210
1− 2z210 − 2z110

=
z201

1− 2z201 − 2z101

which implies that z210 = z201. We are thus well-justified in considering

f̄(z110, z210, z110, z210)

in our search for critical points on this particular part of the boundary.
We now consider the segment 0 󰃑 z110 + z210 󰃑 1/2. The derivative of

f̄(z110, z210, z110, z210)

with respect to z110 is

δf̄(z110, z210, z110, z210)

δz110
=

(5 + 4z110 + 8z210)(−1 + 2z210 + 2z110)

12(−1 + z110 + 2z210)z110
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which is not 0 on the interior of the segment. It is only 0 when z110 + z210 = 1/2.

δf̄(z110, z210, z110, z210)

δz210
= −(5 + 4z110 + 8z210)

2(−1 + 2z210 + 2z110)

168(−1 + z110 + 2z210)2z210

is also only 0 when z110 + z210 = 1/2. Differentiating f̄(z110, 1/2 − z110, z110, 1/2 − z110)
with respect to z110 produces

f̄(z110, 1/2− z110, z110, 1/2− z110)

δz110
=2 log(2z110)− 2 log(9− 4z110) + 4 log 2 + 2 log 7

− 2 log z110 + 2 log(1/2− z110)

which is 0 when z110 = 19/52. Since

f(0, 0, 0, 1/2− 19/52, 19/52, 1/2− 19/52, 19/52, 0, 0) = log
133
26

19/26 · 98
13

49/13

37 · 19
52

19/26 · 227/26 7
52

7/26

≈ 1.672261141 <f(ẑ),

this point cannot be a global maximum.

Case 2: z = 1/2
What follows for z = 0 is very similar to what was argued for z = 0. When z = 1/2,

z210 = z110 = z201 = z101 = 0 as well. We can thus state f solely in terms of the remaining
variables. Substituting z210 = z110 = z201 = z101 = 0 and z = 1/2 gives the function
f̄(z211, z111, z200, z100) with domain [0, 1/2]4.

Setting δf̄
δz211

= δf̄
δz111

gives us

z211
z111

= − (5 + 2z111 + 2z100 + 4z200 + 4z211)

28(2− z111 − z100 − 2z211 − 2z200)
.

Likewise, setting δf̄
δz200

= δf̄
δz100

gives us

z200
z100

= − (5 + 2z111 + 2z100 + 4z200 + 4z211)

28(2− z111 − z100 − 2z211 − 2z200)
.

Together these imply that z211z100 = z200z111. Setting
δf̄

δz111
= δf̄

δz100
implies that

z111
1− 2z211 − 2z111

=
z100

1− 2z200 − 2z100
,

which in turn implies that z111 = z100. Setting
δf̄

δz211
= δf̄

δz200
implies that

z211
1− 2z211 − 2z111

=
z200

1− 2z200 − 2z100
,

which in turn implies that z211 = z200.
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We are thus well-justified in considering f̄(z111, z211, z111, z211) in our search for critical
points on this particular part of the boundary. We now consider the segment 0 󰃑 z111 +
z211 󰃑 1/2. The derivative of f̄(z111, z211, z111, z211) with respect to z111 is

δf̄(z111, z211, z111, z211)

δz111
=

(5 + 4z111 + 8z211)(−1 + 2z211 + 2z111)

12(−1 + z111 + 2z211)z111

which is only zero when z211 = z111 = 1/2.
Differentiating f̄(z111, 1/2− z111, z111, 1/2− z111) with respect to z111 produces

f̄(z111, 1/2− z111, z111, 1/2− z111)

δz111
=2 log(2z111)− 2 log(9− 4z111) + 4 log 2 + 2 log 7

− 2 log z111 + 2 log(1/2− z111)

which is 0 when z111 = 19/52. Since

f(1/2, 1/2− 19/52, 19/52, 0, 0, 0, 0, 1/2− 19/52, 19/52) = log
133
26

19/26 · 98
13

49/13

37 · 19
52

19/26 · 227/26 7
52

7/26

≈1.672261141 < f(ẑ),

this point cannot be a maximum.
The Hessian matrix of f(ẑ) is

B =
1

63

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

−1672 544 488 544 488 −544 −488 −544 −488
544 −9280 −320 224 112 −224 −112 −224 −112
488 −320 −1024 112 56 −112 −56 −112 −56
544 224 112 −9280 −320 −224 −112 −224 −112
488 112 56 −320 −1024 −112 −56 −112 −56
−544 −224 −112 −224 −112 −9280 −320 224 112
−488 −112 −56 −112 −56 −320 −1024 112 56
−544 −224 −112 −224 −112 224 112 −9280 −320
−488 −112 −56 −112 −56 112 56 −320 −1024

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

To calculate the signs of the eigenvalues of B, we can calculate the eigenvalues of B∗ :=
63B. The characteristic polynomial of B∗ is

(x2 + 10584x+ 10077696)3(x3 + 11136x2 + 21055680x+ 3072577536).

The eigenvalues of B∗ are

λ1 = λ2 = λ3 = −108
√
1537− 5292 ≈ −9526.09588932514,

λ4 = λ5 = λ6 = 108
√
1537− 5292 ≈ −1057.90411067487,

λ7 = −8
√
3
√
105631 sin((π − arctan((9

√
5834559781407)/26571068))/3)

− 8
√
105631 cos((π − arctan((9

√
5834559781407)/26571068))/3)− 3712
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≈ −8776.89694570535,

λ8 = 8
√
3
√
105631 sin((π − arctan((9

√
5834559781407)/26571068))/3)

− 8
√
105631 cos((π − arctan((9

√
5834559781407)/26571068))/3)− 3712

≈ −2199.97604519778,

λ9 = 16
√
105631 cos((π − arctan((9

√
5834559781407)/26571068))/3)− 3712

≈ −159.127009096879.

Since all of these values are negative the Hessian matrix at ẑ is negative definite, implying
that ẑ is a local maximum. The determinant of B is found to be −23665185138564661248

117649
.

We will now approximate E[Y 2] using a method reminiscent of Lemma 6.3 in [8], to
which the reader is referred to for a more detailed perspective on what follows. To the
end of approximating E[Y 2], we will set z = 1/4 + y, z2jk = 1/144 + y2jk, and z1jk =
7/72 + y1jk. Setting y = (y, y211, y111, y200, y100, y210, y110, y201, y101) and using Taylor’s
Theorem to expand around ẑ gives us

f = log(81/8) +
yByT

2
+O(x3).

Let x = x(z) = ||y|| with || · || denoting the L2 norm. Let J0 = {z : x 󰃑 n−2/5}. For
z ∈ J0 we have r(z)g(z) ∼ g(ẑ) and x3 = O(n−6/5) since J0 is bounded away from the
boundary of J and z ∈ J0 are close to ẑ.

Taking all of this together gives us

󰁛

k:k/n∈J0

r(z)g(z) exp(nf(z)) =
󰁛

k:k/n∈J0

r(z)g(z) exp(nf(ẑ+ nyByT +O(x−3))),

∼
󰀕
81

8

󰀖n

g(ẑ)eO(n−1/5)
󰁛

k:k/n∈J0

eny
B
2
yT

,

∼
󰀕
81

8

󰀖n

g(ẑ)
󰁛

k:k/n∈J0

eny
B
2
yT

. (9)

Dividing
󰁓

k:k/n∈J0
eny

B
2
yT

by n9 gives us a Riemann sum as n → ∞. By changing k to

z = k/n and defining w =
√
ny to rescale the region of integration we get

1

n9

󰁛

k:k/n∈J0

eny
B
2
yT

=
1

n9

󰁛

k:k/n∈J0

ew
B
2
wT

=

󰁝

J0

ew
B
2
wT

d9w.

Since the side-length of the scaled region is
√
n ·n−2/5 = n1/10 which goes to ∞ as n → ∞

we have 󰁝

J0

ew
B
2
wT

d9w ∼
󰁝

R9

ew
B
2
wT

d9w =

󰁝

R9

eny
B
2
yT

d9y.
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After diagonalizing and using the Gaussian integral
󰁕∞
−∞ e−x2

=
√
π we get

󰁝

R9

eny
B
2
yT

d9y =
1

n9
·
󰁶

n9 · π9

| det B
2
|
=

1

n9
·

󰁶
n9 · 29 · π9

| detB| =
29/2π9/2

n9/2
󰁳

| detB|

which leaves us with
󰀕
81

8

󰀖n

g(ẑ)
󰁛

k:k/n∈J0

eny
B
2
yT

=

󰀕
81

8

󰀖n

g(ẑ)
(2πn)9/2󰁳
| detB|

. (10)

It now remains to consider points in J\J0.
On the boundary of J0 the value of f is f(ẑ) − Ω(n−4/5). Recall that B is negative

definite (meaning yByT < 0 for all y ∈ R9). Furthermore, f is a fixed function that is
independent of n and has a single global maximum at ẑ. This implies that

max
z∈J\J0

f(z) = f(ẑ)− Ω(n−4/5) = log(81/8)− Ω(n−4/5).

Since r and g are polynomially bounded it follows that the terms in the summation
(6) for which k/n ∈ J/J0 are bounded by (81/8)ne−Ω(n1/5). Since there are polynomially

many such terms their sum is (81/8)ne−Ω(n1/5).
It follows, then, that

E[Y (Y − 1)] =
󰁛

k:k/n∈J

r(z)g(z) exp(nf(z)),

=
󰁛

k:k/n∈J0

r(z)g(z) exp(nf(z)) +
󰁛

k:k/n∈J\J0

r(z)g(z) exp(nf(z)),

∼
󰀕
81

8

󰀖n

g(ẑ)
29/2π9/2

n9/2
󰁳

| detB|
+ (81/8)ne−Ω(n1/5),

∼
󰀕
81

8

󰀖n

g(ẑ)
29/2π9/2

n9/2
󰁳

| detB|
,

∼
󰀕
81

8

󰀖n
81

7
. (11)

Thus we have verified Lemma 6 and Corollary 7 follows:

E[Y (Y − 1)]

E[Y ]2
=

󰀃
81
8

󰀄n 81
7

9
󰀃
81
8

󰀄n =
9

7
.

5 Joint Factorial Moments

To complete our proof of Theorem 4 we introduce random variables X1, X2, . . . , Xk for
k 󰃍 1 which represent the number of cycles of length k in P(n, 9). Here condition (a) of
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the Small Subgraph Conditioning Method (Theorem 8) follows from a well known result
by Bollobás (see Corollary 2.19 in [4]) stipulates that X1, X2, . . . , Xk are asymptotically
independent Poisson distributions with mean

E[Xk] −→ λk :=
8k

2k
.

To satisfy the condition (b) for the small subgraph conditioning method and thereby
prove Theorem 4, we will need to show that there is a constant µk for each k 󰃍 1 such
that

E[Y Xk]

EY
−→ µk

and that the joint factorial moments satisfy

E[Y [X1]j1 [X2]j2 . . . [Xk]jk ]

EY
−→

k󰁜

i=1

µji
i

for any fixed j1, j2, . . . , jn, where [x]k is the falling factorial x!/(x − k)!. To estimate
E[Y Xk] we will count the mean number of triples (P,C,O), where P represents a pairing,
C represents a k-cycle, and O represents an orientation by dividing the number of such
pairings by the total number of matchings |P(9, n)| = M(9n).

There are (9·8)k
2k

· n!
(n−k)!

different ways to choose vertices that make up the cycle. There
are i vertices with in-degree 2, b of which are in-vertices. Since the sum of in-degrees in
the cycle must equal the number of out-degrees in the cycle, there are i vertices in the
cycle with out-degree 2, c of which are out-vertices. This implies that k−2i vertices in the
cycle have an in-degree and out-degree of 1 in the context of the cycle. We let ai = 2

󰀃
k
2i

󰀄

refer to the number of orientations. The number of choices of in-vertices among i-vertices
with in-degree 2 is

󰀃
i
b

󰀄
. Likewise, there are

󰀃
i
c

󰀄
possible choices of out-vertices among i

vertices with out-degree 2. Turning our attention to the vertices outside of the cycle, we
see that there are

󰀃
n−2i

n/2−i−b+c

󰀄
ways to select the in- and out-vertices that are not in C.

We now consider the distribution of special points between our orientations. There

are
󰀃
7
2

󰀄i−b
ways to select special points in vertices that have an in-degree of 2 in the cycle

and are out-vertices in the graph. Likewise, there are
󰀃
7
2

󰀄i−c
ways to select special points

in vertices that have an out-degree of 2 in the cycle and which are in-vertices in the graph.
The special points for vertices with in-degree 2 in C and which are in-vertices and for
vertices with out-degree 2 in C and which are out-vertices do not need to be identified.
There are 7k−2i ways to select special points among vertices in C which have an in-degree

of 1 and an out-degree of 1. There are
󰀃
9
2

󰀄n−k
ways to select special points for vertices

outside of C. Given that 9n/2− k must be in-points, there are (9n/2− k)! different ways
to pair in-points with out-points. We are now ready to verify Lemma 9.

Proof of Lemma 9. We calculate E[Y Xk]
E[Y ]

as follows:

E[Y Xk]

E[Y ]
∼

⌊k/2⌋󰁓
i=0

[n]k(9·8)k
2k

ai
󰀃
9
2

󰀄n−k
(9n/2− k)!7k−2i

i󰁓
b=0

i󰁓
c=0

󰀃
i
b

󰀄󰀃
i
c

󰀄󰀃
n−2i

n/2−i−b+c

󰀄󰀃
7
2

󰀄i−b󰀃7
2

󰀄i−c

󰀃
n

n/2

󰀄󰀃
9
2

󰀄n
(9n/2)!

,
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∼

⌊k/2⌋󰁓
i=0

[n]k(9·8)k
2k

ai7
k−2i

i󰁓
b=0

i󰁓
c=0

󰀃
i
b

󰀄󰀃
i
c

󰀄󰀃
n−2i

n/2−i−b+c

󰀄󰀃
7
2

󰀄i−b󰀃7
2

󰀄i−c

󰀃
n

n/2

󰀄
(9 · 4)k(9n/2)k

,

∼

⌊k/2⌋󰁓
i=0

nk

2k
ai2

k7k−2i (n−2i)!
n!

i󰁓
b=0

󰀃
i
b

󰀄
(7 · 3)b

i󰁓
c=0

󰀃
i
c

󰀄
(7 · 3)c n/2!

(n/2−i+b−c)!
n/2!

(n/2−i−b+c)!

(9n
2
)k

.

Since n → ∞ and k is finite, Stirling’s approximation implies that (n−2i)!
n!

∼
󰀃
n
e

󰀄−2i
and

n/2!
(n/2−i+b−c)!

n/2!
(n/2−i−b+c)!

∼
󰀃

n
2e

󰀄2i
. We therefore get

E[Y Xk]

E[Y ]
∼

⌊k/2⌋󰁓
i=0

nk

2k
ai2

k7k−2i (n−2i)!
n!

i󰁓
b=0

󰀃
i
b

󰀄
(7 · 3)b

i󰁓
c=0

󰀃
i
c

󰀄
(7 · 3)c n/2!

(n/2−i+b−c)!
n/2!

(n/2−i−b+c)!

(9n
2
)k

,

∼
⌊k/2⌋󰁛

i=0

󰀕
28

9

󰀖k
ai
2k

i󰁛

b=0

󰀕
i

b

󰀖
21b

i󰁛

c=0

󰀕
i

c

󰀖
21c

󰀓n
e

󰀔−2i 󰀓 n

2e

󰀔2i

.

Since
i󰁓

b=0

󰀃
i
b

󰀄
21b =

i󰁓
c=0

󰀃
i
c

󰀄
21c = (1 + 21)i we get the following:

E[Y Xk]

EY
∼

⌊k/2⌋󰁛

i=0

1

2k

󰀕
28

9

󰀖k

ai

󰀕
1

7

󰀖2i

222i
󰀕
1

2

󰀖2i

,

∼ 1

2k

󰀕
28

9

󰀖k ⌊k/2⌋󰁛

i=0

2

󰀕
k

2i

󰀖󰀕
11

7

󰀖2i

.

This can be completed by defining q(x) := 2(1 + x)k =
k󰁓

i=0

2
󰀃
k
i

󰀄
· i. We can consider

our particular sum to be the even terms of the summation
⌊k/2⌋󰁓
i=0

2
󰀃
k
2i

󰀄 󰀃
11
7

󰀄2i
. Since the

exponential term will be negative for odd i we can simplify our expression as follows:

⌊k/2⌋󰁛

i=0

2

󰀕
k

2i

󰀖󰀕
11

7

󰀖2i

=
1

2

󰀕
q

󰀕
11

7

󰀖
+ q

󰀕
−11

7

󰀖󰀖
.

Returning to our calculation of E[Y Xk]
EY gives us

E[Y Xk]

EY
=

1

2k

󰀕
28

9

󰀖k
󰀣󰀕

18

7

󰀖k

+

󰀕
−4

7

󰀖k
󰀤

=
1

2k

󰀣
8k +

󰀕
−16

9

󰀖k
󰀤
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=
8k

2k

󰀣
1 +

󰀕
−2

9

󰀖k
󰀤

= λk

󰀣
1 +

󰀕
−2

9

󰀖k
󰀤
.

We conclude that µk = λk

󰀓
1 +

󰀃
−2

9

󰀄k󰀔
.

Since Corollary 2.19 from [4] stipulates that the cycles are asymptotically independent,
Lemma 1 by Janson from [12] implies that for every finite sequence j1, j2, . . . , jk of non-
negative integers, the following holds:

E(Y [X1]j1 · · · [Xk]jk)

EY
∼

k󰁜

i=1

µji
i =

k󰁜

i=1

(λi(1 + δi))
ji

where δi =
µi

λi
− 1 to satisfy condition (c). For the i that we concerned ourselves with

above δi = −
󰀃
2
9

󰀄i
.
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