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Abstract

For a graph G and a real number α ∈ [0, 1], Nikiforov (2017) proposed the Aα-
matrix for G, which is defined as Aα(G) = αD(G) + (1− α)A(G), where A(G) and
D(G) are the adjacency matrix and the degree diagonal matrix of G, respectively.
The largest eigenvalue of Aα(G) is called the Aα-index of G. Let F be a set of graphs,
we say a graph G is F-free if it does not contain a member in F as a subgraph.
In 2010, Nikiforov conjectured that for n large enough, the {C2k+1, C2k+2}-free
graph of maximum spectral radius is Sn,k, the join of a clique on k vertices with
an independent set of n − k vertices and that the C2k+2-free graph of maximum
spectral radius is S+

n,k, the graph obtained from Sn,k by adding one edge. Cioabă,
Desai and Tait (2022) used a novel method to solve this two-part conjecture. We
also note that the well-known Mantel’s theorem, which claims that every graph of
order n with size m > ⌊n/4⌋ contains a triangle. Recently, Zhai and Shu (2022)
obtained a spectral version of Mantel’s theorem. In this paper, on the one hand,
with the aid of Cioabă-Desai-Tait’s novel method, we identify the graphs with the
first two largest Aα-indices among the n-vertex C4-free graphs for 0 < α < 1 and
n 󰃍 9

α6 . On the other hand, with the help of Zhai-Shu’s eigenvector method, we
identify the C4-free graphs (other than the star) of size m with no isolated vertex
having the largest Aα-index for 1

2 󰃑 α < 1 and m 󰃍 3. Our results improve some
known ones of Tian, Chen, Cui (2021), Guo, Zhang (2022), Feng, Wei (2022) and
Li, Qin (2021).

Mathematics Subject Classifications: 05C50, 05C35

1 Introduction

Let F be a set of graphs and let G be a graph. We say that G is F -free if it does not
contain any graph in F as a subgraph. In particular, if F = {F}, we also say that G is
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F -free. As usual, let Pn, Cn and Kn be the path, the cycle and the complete graph on
n vertices, respectively. And let Ka,b be the complete bipartite graph with the sizes of
partite sets being a and b, respectively.

In 2013, Füredi and Simonovits [7] posed the following problem:

Problem 1 (Füredi-Simonovits type problem). Assume U is a family of graphs and G
is in U. For a specific pair of parameters (τ, υ) on G, our aim is to maximize the second
parameter υ under the condition that G is F -free and its first parameter τ is given.

For a simple graph G = (V (G), E(G)), we use n := |V (G)| and m := |E(G)| to denote
the order and the size of G, respectively. With no confusion, we also use the size to
denote the cardinality of a set.

If the pair of parameters in Problem 1 are the order and size of a graph, i.e., (τ, υ) =
(n,m), then the Füredi-Simonovits type problem is just the classical Turán type problem:
Determine the maximum number of edges, ex(n,F), of an n-vertex F -free graph. The
value ex(n,F) is called the Turán number of F . The research for the Turán number
attracts much attention, and it has become to be one of the most attractive fundamental
problems in extremal graph theory (see [7, 24] for surveys). Up till now, the exact value
of ex(n,C2k) is still unknown, even for k = 2.

Let G be a graph of order n. We say that two vertices u and v in G are adjacent (or
neighbours) if they are joined by an edge and we write it as u ∼ v. Then the adjacency
matrix of G is defined as an n× n (0, 1)-matrix A(G) = (aij) with aij = 1 if and only if
vi ∼ vj. The degree dG(u) of a vertex u (in a graph G) is the number of edges incident
with it. Then the degree diagonal matrix of G is defined as an n × n diagonal matrix
D(G) = diag(dG(v1), . . . , dG(vn)). In 2017, Nikiforov [25] proposed the Aα-matrix of G,
which is a convex combination of D(G) and A(G), i.e.,

Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1].

It is obvious that A0(G) = A(G), A 1
2
(G) = 1

2
Q(G) and A1(G) = D(G), where Q(G) =

D(G) + A(G) is the signless Laplacian matrix of G.
Note that Aα(G) is real symmetric, its eigenvalues are real. The largest eigenvalue of

Aα(G) is called the Aα-index of G, denoted by λα(G) as usual. The A0-index (resp. twice
of A 1

2
-index) of G is usually referred to as the index (resp. Q-index ) of G, denoted by

ρ(G) (resp. q(G)). If G is connected and α ∕= 1, then the matrix Aα(G) is non-negative
and irreducible. From Perron-Frobenius theorem, for α ∈ [0, 1), there exists a unique (up
to multiples) positive eigenvector of Aα(G) corresponding to λα(G), we call this vector
the Perron vector of Aα(G).

In Problem 1, if one lets (τ, υ) = (n, ρ(G)), i.e., the pair of parameters are the order
and the index on U, then it becomes to be the spectral Turán type problem (also known as
Brualdi-Solheid-Turán type problem, see [3]): What is the maximum index of an F -free
graph with order n? Over the past decade, much attention has been paid to the Brualdi-
Solheid-Turán type problem. For more details, one may see [4, 12, 23, 29, 31, 32, 33, 35]
and a survey [15].
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Let G and H be two disjoint graphs. The union of G and H is denoted by G ∪ H.
The join of G and H, denoted by G ∨ H, is the graph obtained from G ∪ H by joining
each vertex of G to each vertex of H. Then for odd n 󰃍 3, define Fn = K1 ∨ n−1

2
K2; for

even n 󰃍 4, define Fn = K1∨ (n−2
2
K2∪K1). Nikiforov [22] solved the spectral Turán type

problem for C4.

Theorem 2 ([22]). Let G be a graph of order n with ρ(G) = ρ. If G is C4-free, then
ρ2 − ρ− (n− 1) 󰃑 0. Equality holds if and only if n is odd and G ∼= Fn.

When the order of G is even, Zhai and Wang [37] extended the above result as follows.

Theorem 3 ([37]). Let G be a graph of even order n with ρ(G) = ρ. If G is C4-free, then
ρ3 − ρ2 − (n− 1)ρ+ 1 󰃑 0. Equality holds if and only if G ∼= Fn.

In Problem 1, if one lets (τ, υ) = (m, ρ(G)), i.e., the pair of parameters are the size
and the index on U, then it becomes to be another spectral Turán type problem (also
known as Brualdi-Hoffman-Turán type problem, see [2]): What is the maximum index
of an F -free graph with size m? Nosal [27] solved this spectral Turán type problem for
triangle. Nikiforov [19, 20] solved this spectral Turán type problem for Kr+1. Over the
past three years, much attention has been focused on this spectral Turán type problem.
For more details, one may see [5, 16, 17, 18, 28, 34].

Note that Nikiforov [22] solved Brualdi-Hoffman-Turán type problem for C4, which is
described as follows.

Theorem 4 ([22]). Let G be a graph of size m 󰃍 10 with no isolated vertex. If G is
C4-free, then ρ(G) 󰃑 ρ(K1,m). Equality holds if and only if G ∼= K1,m.

Let K1,m−1 + e be the graph obtained from K1,m−1 by adding an edge within its
independent set. Following Theorem 4, Zhai and Shu [36] considered the spectral Turán
type problem for C4 in non-bipartite graphs and obtained the following result.

Theorem 5 ([36]). Let G be a non-bipartite graph of size m 󰃍 26 with no isolated vertex.
If G is C4-free, then ρ(G) 󰃑 ρ(K1,m−1 + e). Equality holds if and only if G ∼= K1,m−1 + e.

In Problem 1, if one lets (τ, υ) = (n,λα(G)), i.e., the pair of parameters are the order
and the Aα-index on U, then it becomes to be the Aα-spectral Turán type problem posed
by Nikiforov [25]:

Problem 6 ([25]). Given a graph F, what is the maximum λα(G) of an F -free graph G
of order n?

Nikiforov [25] solved Problem 6 for Kr; the authors of the current paper [13] solved
Problem 6 for C2k, where k 󰃍 3. The authors of the current paper and Zhang [14] solved
Problem 6 for disjoint cycles. Tian, Chen, Cui [30] and Guo, Zhang [10], independently,
considered Problem 6 for C4.

Let G(n,C4) denote the set of C4-free graphs of order n, and let Fn − e be the graph
obtained from Fn by deleting the edge e which joins two vertices of degree 2 in Fn.
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Theorem 7 ([30, 10]). Let n 󰃍 4 and let α ∈ [1
2
, 1). If G ∈ G(n,C4), then λα(G) 󰃑 λα(Fn)

and equality holds if and only if G ∼= Fn.

Motivated by Theorem 7, our first result solves Problem 6 for C4, which extends the
result of Theorem 7.

Theorem 8. Let 0 < α < 1 be given, and let n 󰃍 9
α6 .

(i) If G ∈ G(n,C4), then λα(G) 󰃑 λα(Fn) with equality if and only if G ∼= Fn.

(ii) If G ∈ G(n,C4)\Fn, then λα(G) 󰃑 λα(Fn−e) with equality if and only if G ∼= Fn−e.

In Problem 1, if one lets (τ, υ) = (m,λα(G)), i.e., the pair of parameters are the size
and the Aα-index on U, then it becomes to be another Aα-spectral Turán type problem:

Problem 9. Given a graph F, what is the maximum λα(G) of an F -free graph G of size
m with no isolated vertex?

In this paper, we consider Problem 9 when F = C4 for
1
2
󰃑 α < 1. LetH(m) denote the

set of graphs of size m with no isolated vertex, and let H(m,C4) denote the set of C4-free
graphs of size m with no isolated vertex. Feng, Wei [6] and Li, Qin [11], independently,
determined the graphs with maximum Aα-index over H(m) for 1

2
󰃑 α < 1.

Theorem 10 ([6, 11]). Let 1
2
󰃑 α < 1 be given. If G ∈ H(m), then λα(G) 󰃑 λα(K1,m).

Equality holds if and only if G ∼= K1,m, unless α = 1
2
and m = 3, in which case equality

holds if and only if G ∼= K1,3 or G ∼= K3.

Note that both K1,m and K3 are C4-free. By Theorem 10, the following result is clear.

Corollary 11. Let 1
2
󰃑 α < 1 be given. If G ∈ H(m,C4), then λα(G) 󰃑 λα(K1,m).

Equality holds if and only if G ∼= K1,m, unless α = 1
2
and m = 3, in which case equality

holds if and only if G ∼= K1,3 or G ∼= K3.

Based on Corollary 11, and motivated by Theorem 5, our second main result is given
by:

Theorem 12. Let 1
2
󰃑 α < 1 be given, and let m 󰃍 3. If G ∈ H(m,C4)\K1,m, then

λα(G) 󰃑 λα(K1,m−1 + e). Equality holds if and only if G ∼= K1,m−1 + e.

As K1,m is bipartite, and K1,m−1+e is non-bipartite. From Theorem 12, we can obtain
the following corollary immediately.

Corollary 13. Let 1
2
󰃑 α < 1 be given, and let G be a non-bipartite graph of size m 󰃍 3

with no isolated vertex. If G is C4-free, then λα(G) 󰃑 λα(K1,m−1 + e). Equality holds if
and only if G ∼= K1,m−1 + e.
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Outline of our paper. In the remainder of this section, we introduce some necessary
notations and terminologies. In Section 2, we give some necessary preliminaries. In Sec-
tion 3, we progressively refine the structure of our extremal graphs and complete the
proof of Theorem 8, finally. The techniques used in the proof of Theorem 8 is originated
from Cioabǎ, Desai and Tait [4]. In Section 4, we complete the proof of Theorem 12, the
technique in our proof borrows some ideas from Zhai and Shu [36].

Notations and terminologies. In this paper, we consider only simple and finite graphs.
Unless otherwise stated, we follow the traditional notations and terminologies (see, for
instance, Bollobás [1], Godsil and Royle [8]). For two disjoint vertex subsets V1 and V2

of V (G), denote by G[V1] a subgraph of G induced on V1 and G[V1, V2] a subgraph of G
induced on the edges between V1 and V2. Then the number of edges of G[V1] and G[V1, V2]
can be abbreviated to e(V1) and e(V1, V2), respectively. The set of neighbours of a vertex
v (in a graph G) is denoted by NG(v). The maximum degree and minimum degree of G
are denoted by ∆(G) and δ(G), respectively.

2 Preliminaries

Lemma 14 ([21]). Assume that k 󰃍 1 and let the vertex set of a graph G be partitioned
into two sets U and W. If

2e(U) + e(U,W ) > (2k − 1)|U |+ k|W |,

then there exists a path of order 2k + 1 with both ends in U.

Lemma 15 ([25]). Let G be a graph, for 0 󰃑 α 󰃑 1, one has

α∆(G) 󰃑 λα(G) 󰃑 α∆(G) + (1− α)ρ(G).

Lemma 16 ([25]). Let G be a graph, for 1
2
󰃑 α < 1, one has

λα(G) 󰃍 α∆(G) +
(1− α)2

α
.

Lemma 17 ([4]). Let B be a non-negative symmetric matrix, and let y be a non-negative
non-zero vector. If there is a constant c > 0 such that By 󰃍 cy entrywise, then λ(B) 󰃍 c,
where λ(B) is the largest eigenvalue of B.

Lemma 18 ([26]). Let α ∈ [0, 1) and let G be a connected graph with Perron vector x.
Suppose that u, v ∈ V (G) and S ⊆ V (G) satisfy u, v /∈ S and for every w ∈ S, w ∼ u and
w ≁ v. Let H be the graph obtained from G by deleting the edges wu and adding the edges
wv for all w ∈ S. If S is nonempty and xv 󰃍 xu, then λα(H) > λα(G).

Lemma 19 ([13]). Let G be a connected graph and let y be a Perron vector of Aα(G).
Then, for each v ∈ V (G), one has

λ2
α(G)yv = αdG(v)λα(G)yv + α(1− α)

󰁛

u∼v

dG(u)yu + (1− α)2
󰁛

w∼v

󰁛

u∼w

yu. (1)
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3 Proof of Theorem 8

For α ∈ (0, 1) and n 󰃍 3, let G (resp. G′) be a graph in G(n,C4) (resp. G(n,C4)\Fn) with
maximum Aα-index. (Note that G and G′ depend on α and n.) In this section, we are
going to progressively refine the structure of our extremal graphs G and G′, and complete
the proof of Theorem 8, finally.

Our first lemma shows both G and G′ are connected.

Lemma 20. If n 󰃍 5, then the graphs G and G′ are connected.

Proof. By the Perron-Frobenius theory, adding an edge between two components of a
disconnected graph does not create any quadrilaterals and increases the Aα-index strictly.
The graph G is connected.

On the other hand, suppose to the contrary that G′ is not connected. Let G1 and G2

be two components of G′ with λα(G2) 󰃑 λα(G1) = λα(G
′). Take a vertex u ∈ V (G1) with

dG1(u) = δ(G1) and an arbitrary vertex v ∈ V (G2). Let G
′′ = G′ + uv. As n 󰃍 5, G′′ is

C4-free and G′′ ≇ Fn, i.e., G
′′ ∈ G(n,C4)\Fn. However, by the Perron-Frobenius theory,

λα(G
′′) > λα(G1) = λα(G

′), a contradiction to the choice of G′.

The following lemma establishes a lower bound and an upper bound on λα(G) and
λα(G

′), which will be used frequently in this section.

Lemma 21. Let 0 < α < 1 be given. One has

α(n− 1) 󰃑 λα(G
′) 󰃑 λα(G) 󰃑 α(n− 1) + (1− α)

1 +
√
4n− 3

2
.

Proof. Note that Fn−e ∈ G(n,C4)\Fn, by the definition of G′, one has λα(G
′) 󰃍 λα(Fn−

e). Then by Lemma 15,

λα(G
′) 󰃍 λα(Fn − e) 󰃍 α∆(Fn − e) = α(n− 1).

According to the definition of G and G′, λα(G
′) 󰃑 λα(G) is clear.

On the other hand, as G is C4-free. By Theorem 2 and Lemma 15, one has

λα(G) 󰃑 α∆(G) + (1− α)ρ(G) 󰃑 α(n− 1) + (1− α)
1 +

√
4n− 3

2
.

This completes the proof.

In what follows, we fix 0 < α < 1 and n 󰃍 9
α6 . In this section, we denote by

λα := λα(G) and λ′
α := λα(G

′). Let x (resp. y) be the Perron vector of Aα(G) (resp.
Aα(G

′)) whose maximum entry is equal to 1, and let z (resp. z′) be a vertex in G (resp.
G′) with xz = yz′ = 1.

Denote by V := V (G), V ′ := V (G′), and let

L =

󰀝
v ∈ V |xv 󰃍

2

3

󰀞
, S =

󰀝
v ∈ V |xv <

2

3

󰀞
;
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L′ =

󰀝
v ∈ V ′|yv 󰃍

2

3

󰀞
, S ′ =

󰀝
v ∈ V ′|yv <

2

3

󰀞
.

For v ∈ V and v′ ∈ V ′, denote by d(v) := dG(v), d
′(v′) := dG′(v′). And let N2

G(v)
(resp. N2

G′(v′)) be the set of vertices at distance 2 from v ∈ V (resp. v′ ∈ V ′).
As G and G′ are both C4-free, for each v ∈ V and v′ ∈ V ′, G[NG(v) ∪ N2

G(v)] (resp.
G′[NG′(v′)∪N2

G′(v′)]) contains no P3 with both endpoints in NG(v) (resp. NG′(v′)). Then
by Lemma 14, one has

2e(NG(v)) + e(NG(v), N
2
G(v)) 󰃑 n− 1 and 2e(NG′(v′)) + e(NG′(v′), N2

G′(v′)) 󰃑 n− 1.
(2)

The next lemma shows the vertices in L (resp. L′) have “large” degrees in G (resp.
G′).

Lemma 22. For all v ∈ L and v′ ∈ L′, one has d(v) 󰃍 n−
√
n and d′(v′) 󰃍 n−

√
n.

Proof. Suppose to the contrary that there is a vertex v ∈ L such that d(v) < n −
√
n.

Applying (1) to v, one has

λ2
αxv =αd(v)λαxv + α(1− α)

󰁛

u∼v

d(u)xu + (1− α)2
󰁛

w∼v

󰁛

u∼w

xu

󰃑αd(v)λαxv + α(1− α)[d(v) + 2e(NG(v)) + e(NG(v), N
2
G(v))]

+ (1− α)2[d(v) + 2e(NG(v)) + e(NG(v), N
2
G(v))]

󰃑αd(v)λαxv + (1− α)(d(v) + n− 1). (by (2))

That is

λα(λα − αd(v))xv 󰃑 (1− α)(d(v) + n− 1) < (1− α)(2n−
√
n− 1). (3)

On the other hand, as d(v) < n−
√
n. By Lemma 15 and the definition of L, one has

λα(λα − αd(v))xv > α(n− 1)[α(n− 1)− α(n−
√
n)] · 2

3
=

2

3
α2(n− 1)(

√
n− 1).

Together with (3), one has

2

3
α2(n− 1)(

√
n− 1) < (1− α)(2n−

√
n− 1).

This is equivalent to

2

3
α2(

√
n)3 −

󰀕
2

3
α2 + 2− 2α

󰀖
(
√
n)2 −

󰀕
2

3
α2 − 1 + α

󰀖√
n+

2

3
α2 + 1− α < 0. (4)

Note that n 󰃍 9
α6 . By (4), one has

󰀕
2

α
− 2

3
α2 − 2 + 2α

󰀖
(
√
n)2 −

󰀕
2

3
α2 − 1 + α

󰀖√
n+

2

3
α2 + 1− α < 0. (5)
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Since 2
α
− 2

3
α2 − 2 + 2α 󰃍 4− 2

3
α2 − 2 > 1, n 󰃍 9

α6 , it can be deduced from (5) that

󰀕
3

α3
− 2

3
α2 + 1− α

󰀖√
n+

2

3
α2 + 1− α < 0,

a contradiction. Therefore, for all v ∈ L, one has d(v) 󰃍 n−
√
n.

By a similar discussion as above, we can show d′(v′) 󰃍 n −
√
n for all v′ ∈ L′. This

completes the proof.

Lemma 23. Both L and L′ contain exactly one vertex.

Proof. By the choice of z and the definition of L, we know that z ∈ L, i.e., L ∕= ∅. Suppose
to the contrary that L contains two or more vertices. Take v ∈ L with v ∕= z. Then by
Lemma 22, one has d(v) 󰃍 n−

√
n and d(z) 󰃍 n−

√
n. And so d(v)+d(z) 󰃍 2(n−

√
n) 󰃍

n+2 (as n 󰃍 9
α6 ). This implies |NG(v)∩NG(z)| = |NG(v)|+|NG(z)|−|NG(v)∪NG(z)| 󰃍 2,

i.e., there are at least two vertices being adjacent to both v and z. Then G contains a
quadrilateral, a contradiction. Therefore, L contains exactly one vertex.

By a similar discussion as above, we can show L′ contains exactly one vertex. This
completes the proof.

By Lemma 23, we know that L = {z}, L′ = {z′}. Let N = NG(z), N
′ = NG′(z′),

and let R = V \(N ∪ {z}), R′ = V ′\(N ′ ∪ {z′}). By Lemma 22, we know that |N | 󰃍
n−

√
n, |N ′| 󰃍 n−

√
n. And so |R| 󰃑 √

n− 1, |R′| 󰃑 √
n− 1.

3.1 Proof of Theorem 8 (i)

In order to complete the proof of Theorem 8 (i), we need the following two lemmas.

Lemma 24. For all v ∈ V, it holds that xv 󰃍 1−α
λα−α

.

Proof. If v = z, then xv = 1 󰃍 1−α
λα−α

. In what follows, we only need consider v ∈ V \{z} =
N ∪R.

If v ∈ N, then z ∼ v. By Aα(G)x = λαx, one has

λαxv = αd(v)xv + (1− α)
󰁛

u∼v

xu 󰃍 αxv + (1− α)xz = αxv + 1− α.

And so xv 󰃍 1−α
λα−α

.
The remainder of our proof is to consider v ∈ R. If R = ∅, then we complete the proof

of this lemma. If R ∕= ∅, then for all v ∈ R, v is not adjacent to z and is adjacent to at
most one vertex in N. Now, Aα(G)x = λαx gives

λαxv = αd(v)xv + (1− α)
󰁛

u∼v

xu 󰃑 α|R|xv +
2

3
(1− α)|R|.

And so xv 󰃑 2(1−α)|R|
3(λα−α|R|) .

the electronic journal of combinatorics 32(2) (2025), #P2.23 8



Suppose to the contrary that there is a vertex v ∈ R such that xv <
1−α
λα−α

. Construct
a new graph G∗ = G− {vu|u ∈ NG(v)} + vz. Clearly, G∗ is C4-free. On the other hand,
as x is the Perron vector of G, by the Courant-Fischer theorem (see [9, Section 2.6]), one
has

λα(G
∗)− λα 󰃍xT (Aα(G

∗)− Aα(G))x

xTx

=
[αx2

z + 2(1− α)xzxv + αx2
v]−

󰁓
u∼v[αx

2
u + 2(1− α)xuxv + αx2

v]

xTx

=
[α + (1− α)xv]−

󰁓
u∼v[αxu + (1− α)xv]xu

xTx

+
xv[αxv + 1− α−

󰁓
u∼v(αxv + (1− α)xu)]

xTx
. (6)

As xv <
1−α
λα−α

, one has
󰁓

u∼v(αxv+(1−α)xu) = λαxv = (λα−α)xv+αxv < 1−α+αxv.
Together with (6), one has

λα(G
∗)− λα >

[α + (1− α)xv]−
󰁓

u∼v[αxu + (1− α)xv]xu

xTx
. (7)

Note that xu < 2
3
if u ∈ N, and xu 󰃑 2(1−α)|R|

3(λα−α|R|) if u ∈ R. Together with (7) and the

facts v is not adjacent to z, and is adjacent to at most one vertex in N, at most |R|− 1
vertices in R, we obtain

[λα(G
∗)− λα]x

Tx >[α + (1− α)xv]−
󰁛

u∼v,u∈N

[αxu + (1− α)xv]xu

−
󰁛

u∼v,u∈R

[αxu + (1− α)xv]xu

>[α + (1− α)xv]−
2

9
[2α + 3(1− α)xv]

− (|R|− 1)
2(1− α)|R|
3(λα − α|R|)

󰀗
2(1− α)|R|
3(λα − α|R|)α + (1− α)xv

󰀘

=α

󰀗
5

9
− 4(1− α)2|R|2(|R|− 1)

9(λα − α|R|)2

󰀘

+ (1− α)

󰀗
1

3
− 2(1− α)|R|(|R|− 1)

3(λα − α|R|)

󰀘
xv

>α

󰀗
5

9
− 4(1− α)2|R|2(|R|− 1)

9(λα − α|R|)2

󰀘
− 2(1− α)2|R|(|R|− 1)

3(λα − α|R|) xv

󰃍5

9
α− 4(1− α)2|R|2(|R|− 1)

9(λα − α|R|)2 (by xv 󰃑 2(1−α)|R|
3(λα−α|R|))

>
5

9
α− 4(1− α)2|R|3

9(λα − α|R|)2 .
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As |R| 󰃑 √
n− 1 and λα 󰃍 α(n− 1) (see Lemma 21), one has

[λα(G
∗)− λα]x

Tx >
5

9
α− 4(1− α)2(

√
n− 1)3

9[α(n− 1)− α(
√
n− 1)]2

󰃍 5

9
α− 4(1− α)2

9α2
√
n

> 0

for n 󰃍 9
α6 . Therefore, λα(G

∗) > λα, a contradiction to the choice of G. This completes
the proof.

Lemma 25. R = ∅, and so d(z) = n− 1.

Proof. Suppose to the contrary that R ∕= ∅. For all v ∈ R, by Lemma 24, one has
xv 󰃍 1−α

λα−α
. As v is not adjacent to z, and is adjacent to at most one vertex in N .

According to Aα(G)x = λαx, one has

λαxv =αd(v)xv + (1− α)
󰁛

u∼v

xu

=αd(v)xv + (1− α)

󰀣
󰁛

u∼v, u∈N

xu +
󰁛

u∼v, u∈R

xu

󰀤

󰃑α(1 + dG[R](v))xv + (1− α)

󰀣
2

3
+

󰁛

u∼v,u∈R

xu

󰀤

=αxv +
2

3
(1− α) +

󰀥
αdG[R](v)xv + (1− α)

󰁛

u∼v,u∈R

xu

󰀦

=αxv +
2

3
(1− α) + (Aα(G[R])w)v

for all vertices v ∈ R, where w is the restriction of the vector x to the set R. Then

(Aα(G[R])w)v
(λα − α)xv

󰃍 1− 2(1− α)

3(λα − α)xv

󰃍 1− 2

3
=

1

3

for all vertices v ∈ R. And so (Aα(G[R])w)v 󰃍 1
3
(λα − α)xv = 1

3
(λα − α)wv for all

vertices v ∈ R, i.e., Aα(G[R])w 󰃍 1
3
(λα − α)w entrywise. Then by Lemma 17, one has

λα(G[R]) 󰃍 1
3
(λα − α). And so by Lemma 21, one has λα(G[R]) 󰃍 1

3
(n− 2)α.

On the other hand, as G[R] is C4-free and |R| <
√
n, by Lemma 21, one has

λα(G[R]) 󰃑 α(|R|− 1) + (1− α)
1 +

󰁳
4|R|− 3

2
< α(

√
n− 1) + (1− α)

1 +
󰁳

4
√
n− 3

2
.

And so

1

3
(n− 2)α < α(

√
n− 1) + (1− α)

1 +
󰁳

4
√
n− 3

2
< α(

√
n− 1) + (1− α)

1 + 2 4
√
n

2
,

i.e.,

α

3
n− α

√
n− (1− α) 4

√
n+

5α

6
− 1

2
< 0. (8)
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Note that n 󰃍 9
α6 , by (8), one has

󰀕
1

α2
− α

󰀖√
n− (1− α) 4

√
n+

5α

6
− 1

2
< 0.

Together with n 󰃍 9
α6 > 1 and α < 1, one has

0 >

󰀕
1

α2
− α− 1 + α

󰀖
4
√
n+

5α

6
− 1

2
>

1

α2
− 1 +

5α

6
− 1

2
󰃍 2

󰁵
5

6α
− 3

2
> 0,

a contradiction.
Therefore, R = ∅, and so d(z) = n− 1.

Proof of Theorem 8(i). It follows from Lemma 25 that d(z) = n − 1. As G is C4-
free, G[NG(z)] is P3-free. And so G ⊆ Fn. By the Perron-Frobenius theory, one has
λα(G) 󰃑 λα(Fn), with equality if and only if G ∼= Fn. This completes the proof of
Theorem 8 (i).

3.2 Proof of Theorem 8(ii)

In order to complete the proof of Theorem 8(ii), we need the following two lemmas.

Lemma 26. If |R′| 󰃍 2, then for all v ∈ V ′, it holds that yv 󰃍 1−α
λ′
α−α

.

Proof. If v = z′, then yv = 1 󰃍 1−α
λ′
α−α

. In what follows, we only need consider v ∈
V ′\{z′} = N ′ ∪R′.

If v ∈ N ′, then z′ ∼ v. By Aα(G
′)y = λ′

αy, one has

λ′
αyv = αd′(v)yv + (1− α)

󰁛

u∼v

yu 󰃍 αyv + (1− α)yz′ = αyv + 1− α.

And so yv 󰃍 1−α
λ′
α−α

.

The remainder of our proof is to consider v ∈ R′. Suppose to the contrary that there
is a vertex v ∈ R′ such that yv < 1−α

λ′
α−α

. Construct a new graph G∗ = G′ − {vu|u ∈
NG′(v)} + vz′. Clearly, G∗ is C4-free. And as |R′| 󰃍 2, the graph G∗ is not isomorphic
to Fn, i.e., G

∗ ∈ G(n,C4)\Fn. On the other hand, a similar discussion as the proof of
Lemma 24 shows λα(G

∗) 󰃍 λ′
α, a contradiction to the choice of G′. This completes the

proof.

Lemma 27. |R′| 󰃑 1, and so d′(z′) 󰃍 n− 2.

Proof. Suppose to the contrary that |R′| 󰃍 2. Then by Lemma 26, for all v ∈ R′, one
has yv 󰃍 1−α

λ′
α−α

. A similar discussion as the proof of Lemma 25 shows 1
3
(n − 2)α <

α(
√
n− 1) + (1− α)

1+
√

4
√
n−3

2
, a contradiction to n 󰃍 9

α6 .
Therefore, |R′| 󰃑 1, and so d′(z′) 󰃍 n− 2.
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Proof of Theorem 8(ii). It follows from Lemma 27 that d′(z′) 󰃍 n−2. If d′(z′) = n−2,
then let v be the unique non-neighbour of z′ (in G′). As G′ is C4-free, G

′[NG′(z′)] is P3-
free, and v is adjacent to at most one vertex in NG′(z′). The graph G′ is a subgraph of G∗

or G∗∗, where G∗ (resp. G∗∗) is obtained from Fn−1 by adding a vertex v and an edge vu,
where u is a vertex of Fn−1 with degree 2 (resp. 1). (Note that G∗∗ does exist only when n
is odd.) By the Perron-Frobenius theory, one has λα(G

′) 󰃑 λα(G
∗) or λα(G

′) 󰃑 λα(G
∗∗),

with equality if and only if G′ ∼= G∗ or G′ ∼= G∗∗.
If d′(z′) = n− 1, then as G′ is C4-free, G

′[NG′(z′)] is P3-free. Together with G′ ≇ Fn,
we know that G′ is a subgraph of Fn − e. By the Perron-Frobenius theory, one has
λα(G

′) 󰃑 λα(Fn − e), with equality if and only if G′ ∼= Fn − e.
As all of G∗, G∗∗ and Fn − e are contained in G(n,C4)\Fn, the extremal graph G′ is

isomorphic to one member in {G∗, G∗∗, Fn − e}. In order to complete the proof of this
theorem, we consider the following two cases.

Case 1. n is odd. If G′ is isomorphic to G∗ or G∗∗. Then Fn−e = G′−vu+vz′. Note
that yz′ = 1 > 2

3
> yu. By Lemma 18, we know that λα(Fn − e) > λ′

α, a contradiction to
the choice of G′.

Case 2. n is even. In this case, G∗∗ does not exist. If G′ is isomorphic to G∗, then
Fn − e = G′ − uv − u1u2 + z′v, where u1 and u2 are two vertices in NG′(z′)\{u} with
u1 ∼ u2. As y is the Perron vector of G′, by the Courant-Fischer theorem (see [9, Section
2.6]), one has

λα(Fn − e)− λ′
α 󰃍 1

yTy
[yT (Aα(Fn − e)− Aα(G

′))y]

=
1

yTy
[αy2

z′ + 2(1− α)yvyz′ + αy2
v − αy2

u − 2(1− α)yvyu − αy2
v

− αy2
u1

− 2(1− α)yu1yu2 − αy2
u2
]. (9)

Note that yz′ = 1, and by the symmetry of G′, we know that yu1 = yu2 (see [25, Propo-
sition 16]). Together with (9), one has

[λα(Fn−e)−λ′
α]y

Ty 󰃍 α+2(1−α)yv−αy2
u−2(1−α)yvyu−2y2

u1
> α−αy2

u−2y2
u1
. (10)

Let u′ be a vertex inNG′(z′) with u′ ∼ u. As yz′ = 1 and yw < 2
3
for all w ∈ V (G′)\{z′}.

By Aα(G
′)y = λ′

αy, one has

λ′
αyu = 3αyu + (1− α)(yz′ + yu′ + yv) ⇒ yu <

7(1− α)

3(λ′
α − 3α)

󰃑 7(1− α)

3(n− 4)α
󰃑 7(1− α)α

15

and

λ′
αyu1 = 2αyu1 + (1− α)(yz′ + yu1) ⇒ yu1 <

5(1− α)

3(λ′
α − 2α)

󰃑 5(1− α)

3(n− 3)α
󰃑 5(1− α)α

18
.

Together with (10), we obtain

[λα(Fn − e)− λ′
α]y

Ty > α− α
49(1− α)2α2

225
− 25(1− α)2α2

162
> α(1− 49

225
− 25

162
) > 0,

i.e., λα(Fn − e) > λ′
α, a contradiction to the choice of G′.

Therefore, G′ ∼= Fn − e. This completes the proof.
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4 Proof of Theorem 12

For α ∈ [1
2
, 1) and m 󰃍 3, let H be a graph in H(m,C4)\K1,m with maximum Aα-index

(Note that H depends on α and m). In this section, we are going to complete the proof
of Theorem 12.

Our first lemma shows H is connected.

Lemma 28. The graph H is connected.

Proof. Suppose to the contrary that H is not connected. Let H1, H2, . . . , Hs be all compo-
nents of H with λα(H1) = λα(H). Take ui ∈ Hi for i = 1, 2, . . . , s with dH1(u1) = δ(H1).
Let H∗ be the graph obtained from H1, H2, . . . , Hs by identifying u1, u2, . . . , us. Clearly,
H∗ ∈ H(m,C4). Furthermore, as K1,m−1 + e ∈ H(m,C4)\K1,m, by the choice of H, we
know that λα(H1) = λα(H) 󰃍 λα(K1,m−1 + e) 󰃍 2. Then H1 ≇ K2, and so H∗ ≇ K1,m.
Now, we have H∗ ∈ H(m,C4)\K1,m. However, H

∗ contains H1 as a proper subgraph. By
the Perron-Frobenius theory, λα(H

∗) > λα(H1) = λα(H), a contradiction to the choice of
H. Therefore, H is connected.

In the remainder of our paper, fix 1
2
󰃑 α < 1 and m 󰃍 3. Denote by λα := λα(H).

Let x be the Perron vector of Aα(H) whose maximum entry is equal to 1, and let z be a
vertex in H with xz = 1. For convenience, denote by V := V (H) and d(v) := dH(v) for
v ∈ V . Furthermore, let N := NH(z) and W := V \(N ∪ {z}).

As K1,m−1 + e ∈ H(m,C4)\K1,m. According to the choice of H, and by Lemma 16,
we have

λα 󰃍 λα(K1,m−1 + e) 󰃍 α∆(K1,m−1 + e) +
(1− α)2

α
= α(m− 1) +

(1− α)2

α
. (11)

The following lemma shows the degree of z in H is at least 2.

Lemma 29. It holds that d(z) 󰃍 2.

Proof. Suppose to the contrary that d(z) = 1, let v be the neighbor of z. Then by
Aα(H)x = λαx, one has

λαxz = αxz + (1− α)xv.

And so xv =
λα−α
1−α

xz > xz, a contradiction. So d(z) 󰃍 2.

Lemma 30. It holds that

λα(λα − αd(z))

1− α
󰃑 d(z) +

2(1− α)e(N) + |W |
λα − 1− α

+ e(N,W ). (12)

Proof. Applying (1) to z gives us

λ2
αxz = αd(z)λαxz + α(1− α)

󰁛

u∼z

d(u)xu + (1− α)2
󰁛

u∼z

󰁛

w∼u

xw.
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Then

λα(λα − αd(z)) =α(1− α)
󰁛

u∼z

[1 + e({u}, N) + e({u},W )]xu

+ (1− α)2

󰀳

󰁃d(z) +
󰁛

uw∈E(H[N ])

(xu + xw) +
󰁛

u∼z

󰁛

w∼u,w∈W

xw

󰀴

󰁄

󰃑(1− α)

󰀳

󰁃d(z) +
󰁛

uw∈E(H[N ])

(xu + xw) + e(N,W )

󰀴

󰁄 . (13)

For each uw ∈ E(H[N ]), as H is C4-free, the induced subgraph H[N ] is P3-free. And
so NH(u) ∩N = {w}, NH(w) ∩N = {u}. Then by Aα(H)x = λαx, we have

λαxu = αd(u)xu + (1− α)
󰁛

v∼u

xv = 2αxu + (1− α)(xz + xw) +
󰁛

v∼u,v∈W

[αxu + (1− α)xv]

and

λαxw = αd(w)xw + (1−α)
󰁛

v∼w

xv = 2αxw + (1−α)(xz +xu) +
󰁛

v∼w,v∈W

[αxw + (1−α)xv].

Then

(λα − 1− α)(xu + xw) =2(1− α)xz +
󰁛

v∼u,v∈W

[αxu + (1− α)xv]

+
󰁛

v∼w,v∈W

[αxw + (1− α)xv]

󰃑2(1− α) + e({u},W ) + e({w},W ).

Now
󰁛

uw∈E(H[N ])

(xu + xw) 󰃑
1

λα − 1− α

󰁛

uw∈E(H[N ])

[2(1− α) + e({u},W ) + e({w},W )]. (14)

As H is C4-free, each vertex in W has at most one neighbor in N. Then
󰁛

uw∈E(H[N ])

[e({u},W ) + e({w},W )] 󰃑 |W |.

Together with (14), one has

󰁛

uw∈E(H[N ])

(xu + xw) 󰃑
2(1− α)e(N) + |W |

λα − 1− α
.

Then by (13), we obtain

λα(λα − αd(z))

1− α
󰃑 d(z) +

2(1− α)e(N) + |W |
λα − 1− α

+ e(N,W ).

This completes the proof.
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Proof of Theorem 12. It suffices to show H ∼= K1,m−1 + e. As H ∈ H(m,C4)\K1,m, it
holds that ∆(H) 󰃑 m− 1, and so d(z) 󰃑 m− 1.

Next we show the following claim.

Claim 31. If W ∕= ∅, then for all v ∈ W , one has dH[W ](v) 󰃍 1.

Proof of Claim 31. Suppose to the contrary that W ∕= ∅ and there is a vertex v ∈ W
such that dH[W ](v) = 0. As H is connected and contains no quadrilateral, there is exactly
one vertex, say u, in N such that u ∼ v. If |W | = 1 and e(N) = 0, then H − v + wu =
K1,m−1 + e ∈ H(m,C4)\K1,m, where w is a vertex in N\{u}.

On the other hand, by Aα(H)x = λαx, one has

λαxw = αxw + (1− α)xz and λαxv = αxv + (1− α)xu.

Then

xw =
(1− α)xz

λα − α
󰃍 (1− α)xu

λα − α
= xv.

And so by Lemma 18, we have

λα < λα((K1,m−1 + e) ∪ {v}) = λα(K1,m−1 + e),

a contradiction to the choice of H.
If |W | 󰃍 2 or e(N) 󰃍 1. Let H∗ = H − uv + zv, then H∗ ∈ H(m,C4)\K1,m. In fact,

by the choice of v, we know that zv is a cut edge of H∗. Therefore, H ∈ H(m,C4) gives
H∗ ∈ H(m,C4). On the other hand, |W | 󰃍 2 or e(N) 󰃍 1 imply that there is at least
one edge in H∗ not adjacent to z. Hence, H∗ ≇ K1,m, i.e., H

∗ ∈ H(m,C4)\K1,m. On the
other hand, by the choice of z, we know that xz 󰃍 xu, and so by Lemma 18, one has
λα(H

∗) > λα(H), a contradiction to the choice of H.
This completes the proof of the claim.

Now we come back to show our result. By Claim 31, one has e(W ) =
󰁓

v∈W dH[W ](v)

2
󰃍

|W |
2
. Together with (12), one has

λα(λα − αd(z))

1− α
󰃑d(z) +

2(1− α)e(N) + 2e(W )

λα − 1− α
+ e(N,W )

=m+

󰀗
2(1− α)

λα − 1− α
− 1

󰀘
e(N) +

󰀗
2

λα − 1− α
− 1

󰀘
e(W ). (15)

In order to complete the proof of this theorem, it suffices to show d(z) = m − 1 and
W = ∅.

If d(z) 󰃑 m − 3, then by Lemma 29, one has m 󰃍 d(z) + 3 󰃍 5. On the other hand,
by (11),

λα(λα − αd(z))

1− α
󰃍 1

1− α

󰀗
α(m− 1) +

(1− α)2

α

󰀘 󰀗
2α +

(1− α)2

α

󰀘
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=
2α2(m− 1)

1− α
+ (1− α)(m+ 1) +

(1− α)3

α2

󰃍2α(m− 1) + (1− α)(m+ 1) +
(1− α)3

α2
(by α 󰃍 1

2
)

>(1 + α)m+ 1− 3α. (16)

If W = ∅, then e(N) = m − d(z) 󰃍 3. As H is C4-free, the induced subgraph H[N ] is
P3-free. And so d(z) 󰃍 6, then m 󰃍 9.

On the other hand, together with (11), (15) and (16), one has

αm+ 1− 3α <

󰀗
2(1− α)

λα − 1− α
− 1

󰀘
e(N) <

󰀗
2(1− α)

α(m− 2)− 1
− 1

󰀘
(m− d(z)).

Then 2(1−α)
α(m−2)−1

− 1 > 0. As d(z) 󰃍 6, it holds that α(m − 2) <
󰁫

2(1−α)
α(m−2)−1

− 1
󰁬
(m − 6).

And so α < 2(1−α)
α(m−2)−1

− 1, by a direct calculation, this induces a contradiction to m 󰃍 9.

If W ∕= ∅, then together with (15) and (16), one has

αm+ 1− 3α <

󰀗
2(1− α)

λα − 1− α
− 1

󰀘
e(N) +

󰀗
2

λα − 1− α
− 1

󰀘
e(W )

󰃑
󰀗

2

λα − 1− α
− 1

󰀘
[e(W ) + e(N)]. (17)

Then 2
λα−1−α

− 1 > 0.
As W ∕= ∅ and H is connected (see Lemma 28), one has e(N,W ) 󰃍 1. If e(N,W ) = 1,

then as e(W ) 󰃍 1 (by Claim 31), the graph H∗ = H − uv + zv ∈ H(m,C4)\K1,m, where
uv ∈ H[N,W ] with u ∈ N and v ∈ W. However, as xz 󰃍 xu, by Lemma 18, it holds that
λα(H

∗) > λα(H), a contradiction to the choice of H. Therefore, e(N,W ) 󰃍 2.
By Lemma 29, we know that d(z) 󰃍 2, and so d(z) + e(N,W ) 󰃍 4. Then e(W ) +

e(N) = m − d(z) − e(N,W ) 󰃑 m − 4. On the other hand, as α 󰃍 1
2
, by (11), one has

λα − 1− α > α(m− 2)− 1 󰃍 m−4
2

. Together with (17), we have

α(m− 3) + 1 < (
4

m− 4
− 1)(m− 4) = 8−m,

and so m < 7+3α
1+α

< 6, i.e., m 󰃑 5.
In the case m = 5, one has d(z) = m − 3 = 2, e(N,W ) = 2 and e(W ) = 1. Then

H ∼= C5, and so λα = 2 < 4α + (1−α)2

α
, a contradiction to (11); or by Lemma 18, we can

construct a graph H∗ ∈ H(5, C4)\K1,5 such that λα(H
∗) > λα, which is a contradiction

to the choice of H.
If d(z) = m − 2, then we claim W = ∅. Otherwise, as H is connected, it holds that

e(N,W ) 󰃍 1. Also by Claim 31, e(W ) 󰃍 1. And so e(N,W ) = e(W ) = 1. Say uv ∈
E(H[N,W ]) with u ∈ N and v ∈ W. Then uv is a cut edge of H. Let H∗ = H − uv + zv,
then H∗ ∈ H(m,C4)\K1,m. On the other hand, as xz 󰃍 xu, by Lemma 18, one has
λα(H

∗) > λα, a contradiction to the choice of H.
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Therefore, e(N) = m − d(z) = 2. As H is C4-free, the induced subgraph H[N ] is
P3-free. Then e(N) = 2 implies d(z) 󰃍 4, and so m 󰃍 6. By (11) and (15), we have

1

1− α

󰀗
α(m− 1) +

(1− α)2

α

󰀘 󰀗
α +

(1− α)2

α

󰀘
󰃑 λα(λα − αd(z))

1− α

< m+
4(1− α)

α(m− 2) + (1−α)2

α
− 1

− 2. (18)

As α 󰃍 1
2
, i.e., α 󰃍 1−α. And when m 󰃍 6, the function g2(α) := α(m−2)+ (1−α)2

α
−1 =

α(m− 1) + 1
α
− 3 is increasing on α ∈ [1

2
, 1). It holds that α(m− 2) + (1−α)2

α
− 1 󰃍 m−3

2
.

Together with (18), one has

α(m− 1) +m(1− α) +
(1− α)3

α2
< m− 2 +

8(1− α)

m− 3
.

And so 2− α < 8(1−α)
m−3

, i.e., m < 8(1−α)
2−α

+ 3 󰃑 17
3
. This induces a contradiction to m 󰃍 6.

If d(z) = m−1, then W = ∅. Otherwise, as H is connected, it holds that e(N,W ) 󰃍 1.
Also by Claim 31, e(W ) 󰃍 1. And so d(z) = m−e(N,W )−e(W ) 󰃑 m−2, a contradiction.
This implies e(N) = m− d(z) = 1, and so H ∼= Km−1 + e, as desired.
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[4] S. Cioabă, D.N. Desai, M. Tait, The spectral even cycle problem, Comb. Theory 4
(1) (2024) Paper No. 10, 17 pp.

[5] X.N. Fang, L.H. You, The maximum spectral radius of graphs of given size with
forbidden subgraph, Linear Algebra Appl. 666 (2023) 114-128..

[6] Z.M. Feng, W. Wei, On the Aα-spectral radius of graphs with given size and diameter,
Linear Algebra Appl. 650 (2022) 132-149.

the electronic journal of combinatorics 32(2) (2025), #P2.23 17
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