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Abstract

In this paper, we construct a new family of (q4 + 1)-tight sets in Q(24, q) or
Q−(25, q) depending on whether q = 3f or q ≡ 2 (mod 3). The novelty of the
construction is the use of the action of the exceptional simple group F4(q) on its
minimal module over Fq, and the construction has a close connection with the F4(q)
geometry and metasymplectic spaces.
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1 Introduction

Let q be a prime power, Fq the finite field of order q, and V a finite-dimensional vector
space over Fq. Let κ be a non-degenerate reflexive sesquilinear form or a non-singular
quadratic form on V . The finite classical polar space P associated with (V,κ) is the
geometry consisting of the totally singular or totally isotropic subspaces with respect
to κ of the ambient projective space PG(V ), depending on whether κ is a quadratic or
sesquilinear form. The totally singular or totally isotropic one-dimensional subspaces
are the points of P . The totally singular or totally isotropic subspaces of maximum
dimension are called the generators of P . The rank of P is the vector space dimension of
its generators. A finite classical polar space of rank 2 is a point-line geometry, and it is a
finite generalized quadrangle. A spread of P is a collection of pairwise disjoint generators
that partition the point set of P .

Tight sets in generalized quadrangles were first introduced by Payne [22], and this
definition has been generalized to finite classical polar spaces by Drudge [10]. There are
several different but equivalent definitions of a tight set in a finite classical polar space.
We will be using the following definition in this paper.
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Definition 1. Let Pr be a finite classical polar space of rank r  2 over Fq. A subset M
of points of Pr is said to be tight if for all points P of Pr, there is an integer i > 0 such
that

|P⊥ ∩M| =






i(qr−1 − 1)

q − 1
+ qr−1, if P ∈ M,

i(qr−1 − 1)

q − 1
, if P /∈ M,

(1.1)

where P⊥ is the set of points in Pr that are collinear with P . The integer i is called the
parameter of the tight set; a tight set with parameter i is usually called an i-tight set.

Parallel to the notion of a tight set is the concept of an m-ovoid of Pr. The notions of
tight sets andm-ovoids were unified under the umbrella of intriguing sets in [2]. During the
past two decades, intriguing sets have been extensively investigated because of their close
connections with many other combinatorial/geometric objects such as strongly regular
graphs, partial difference sets, Boolean degree one functions, and Cameron-Liebler line
classes, cf. [2, 11, 12].

Nontrivial tight sets with large parameters are rare, and they tend to exist in finite
classical polar spaces of low ranks. Trivially 1-tight sets exist in finite classical polar space
Pr for all ranks r  2 since each generator of Pr is a 1-tight set. In fact, Drudge [10]
proved that any 1-tight set of Pr must be a generator. Tight sets with large parameters are
much more complicated. One of the main problems concerning tight sets is to determine
for which values of i there exist i-tight sets in Pr. A second problem is to characterize all
the i-tight sets in Pr for a specific parameter i.

As we saw before, each generator of Pr is a 1-tight set. Suppose that A and B are
an i-tight set and a j-tight set in Pr, respectively. If A,B are disjoint, then A ∪ B is an
(i+j)-tight set; if A ⊆ B, then B\A is a (j−i)-tight set. Thus, the union of any i pairwise
disjoint generators of Pr forms an i-tight set. For this reason, the first question has a
simple and complete answer if the classical polar space Pr admits a spread of generators.
Thus, we will only consider the problem of constructing tight sets for polar spaces which
do not admit a spread; and for such a polar space, it is interesting to construct tight sets
with large parameters i, where i is greater than the maximum size of a partial spread.
Some results on existence of spreads of classical polar spaces can be found in [14, Table
7.4].

In this paper, we construct a new family of (q4 +1)-tight sets in Q(24, q) or Q−(25, q)
depending on whether q = 3f or q ≡ 2 (mod 3). Our main theorem in this paper is the
following.

Theorem 1.1. Let q = pf , where p is prime and f  1. If q ≡ 2 (mod 3), then the classical
polar space Q−(25, q) admits a (q4+1)-tight set with an automorphism group isomorphic
to the exceptional group F4(q); if q = 3f , then the classical polar space Q(24, q) admits a
(q4+1)-tight set with an automorphism group isomorphic to the exceptional group F4(q).

There are few constructions of intriguing sets in high dimensional orthogonal polar
spaces, which do not follow from field reduction or nondegenerate hyperplane sections,
cf. [2, 16]. The tight sets in Theorem 1.1 follow from neither of those two construction
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methods. The novelty of our construction is the use of the action of the exceptional simple
group F4(q) on its minimal module over Fq, and the construction has a close connection
with the F4(q) geometry and metasymplectic spaces, cf. Section 4. We remark that
the result in the characteristic 3 case of Theorem 1.1 is essentially due to Cohen and
Cooperstein. They showed in [8, Table 2] that the group F4(q) has two orbits on the
singular points of the polar space Q(24, q) associated with its 25-dimensional minimal
module, and from this fact we deduce that each orbit is a tight set.

The paper is organized as follows. In Section 2, we introduce some preliminary results
on intriguing sets, octonions and the minimal module of F4(q). In particular, we give a
more effective way to decide whether a subset M of points of a finite classical polar space
Pr is an intriguing set, see Lemma 2. In Section 3, we present the proof of Theorem 1.1.

2 Preliminary

2.1 Intriguing sets on finite classical polar spaces

Let Fq be the finite field of order q, where q = pf , p is a prime and f  1. Let V be a
d-dimensional vector space over Fq equipped with a nondegenerate reflexive sesquilinear
form or quadratic form κ, and let Pr be the associated polar space. A point of Pr is
defined as a 1-dimensional totally isotropic/singular subspace of V . A maximal totally
isotropic/singular subspace of Pr is called a generator of Pr. The vector space dimension
of a generator, denoted by r, is called the rank of Pr. A generator of Pr has

qr−1
q−1

points.
An ovoid of Pr is a set of points which meets each generator in exactly one point. We use
θr to denote the size of a putative ovoid, which we call the ovoid number of Pr. A simple
counting argument shows that |Pr| = θr · qr−1

q−1
. We list the ranks and the ovoid numbers

of the six classes of classical polar spaces in Table 2.1.

Table 2.1: The parameters r and θr
d f polar space Pr rank r ovoid number θr

S even - W (d− 1, q) d/2 qd/2 + 1

O
even - Q+(d− 1, q) d/2 qd/2−1 + 1
even - Q−(d− 1, q) d/2− 1 qd/2 + 1
odd - Q(d− 1, q) (d− 1)/2 q(d−1)/2 + 1

U
odd even H(d− 1, q) (d− 1)/2 qd/2 + 1
even even H(d− 1, q) d/2 q(d−1)/2 + 1

Suppose that r  2, and let M be a nonempty set of points of Pr. The set M is
called an intriguing set if there exist some constants h1 ∕= h2 such that |P⊥ ∩M| = h1 or
h2 depending on whether P ∈ M or not, where P ranges over all the points of Pr, cf. [2].
An intriguing set M is proper if M ∕= Pr. There are exactly two types of intriguing sets:

(1) i-tight sets: |M| = i(qr−1)
q−1

, h1 = qr−1 + i(qr−1−1)
q−1

, h2 =
i(qr−1−1)

q−1
, and

(2) m-ovoids: |M| = mθr, h1 = (m− 1)θr−1 + 1, h2 = mθr−1.
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We refer the reader to [2] for more properties of intriguing sets. In particular, if H is a
subgroup of semisimilarities that has exactly two orbits O1, O2 on the points of Pr, then
both O1 and O2 are intriguing sets of the same type.

To prove that a candidate subset M of points of Pr is an intriguing set, one needs to
show that M is a two-intersection set with respect to the perp of singular points, cf. [2].
However, there is one shortcut method which seems to have gone unnoticed (see Lemma
2.1 below). We observe that θr − 1 = q(θr−1 − 1) by Table 2.1.

Lemma 2. Let M be a subset of size i(qr−1)
q−1

or mθr in Pr for some positive integers i or

m, and let h1, h2 be the corresponding parameters determined by |M| (see above). Then
the following are equivalent:

(1) M is an intriguing set in Pr;

(2) |P⊥ ∩M| = h1 for all P ∈ M;

(3) |P⊥ ∩M| = h2 for all P ∈ Pr \M.

Proof. We observe that M is an i-tight set if and only if the complement Pr \ M is a

(θr − i)-tight set, and M is an m-ovoid if and only if Pr \M is a


qr−1
q−1

−m

-ovoid. We

deduce that the equivalence of (1) and (3) for M is the same as the equivalence of (1)
and (2) for Pr \M. Therefore, it suffices to establish the equivalence of (1) and (2). It is
clear that (1) implies (2). So we only need to prove that (2) implies (1). We will use Pj to
denote the polar space of rank j and of the same type as Pr. We compute


P∈Pr

|P⊥∩M|
and


P∈Pr

|P⊥∩M|2, and will show that


P∈Pr\M

|P⊥ ∩M|− h2

2
= 0. First we have



P∈Pr

|P⊥ ∩M| = |{(P, z) : P ∈ Pr, z ∈ M, P ∼ z}|

=


z∈M

|z⊥ ∩ Pr| = q|M| · |Pr−1|+ |M|.

For the last equality, we observe that for a point z ∈ M, z⊥ ∩ Pr is a cone with vertex z
and base Pr−1. Furthermore, we have



P∈Pr

|P⊥ ∩M|2 =


P∈Pr

|{(P, z1, z2) : z1, z2 ∈ M, z1 ∼ P, z2 ∼ P}|

=


z∈M

|z⊥ ∩ Pr|+


z1,z2∈M,
z1 ∕=z2

|〈z1, z2〉⊥ ∩ Pr|. (2.1)

For the last summation in (2.1), each summand takes value either q2 · |Pr−2| + q + 1
or |Pr−1| depending on whether z1, z2 are perpendicular or not: 〈z1, z2〉⊥ ∩ Pr is a cone
with vertex 〈z1, z2〉 and base Pr−2 if 〈z1, z2〉 is totally singular or isotropic, and it is Pr−1

otherwise. Next we compute directly


P∈Pr


|P⊥ ∩M|− h2

2
=



P∈Pr


|P⊥ ∩M|2 − 2h2|P⊥ ∩M|+ h2

2
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= |M| ·

|Pr−1|(|M|+ q − h1 − 2h2q) + (qh1 − q + h1 − 2h2)

+ q2(h1 − 1)|Pr−2|+
h2
2|Pr|
|M|


. (2.2)

First consider the case where M is an i-tight set, so that |M| = i q
r−1
q−1

, h1 = i q
r−1−1
q−1

+

qr−1, h2 = i q
r−1−1
q−1

. Observe that the right hand side of (2.2) divided by |M| can be viewed
as a degree-one polynomial in variable i. Then some tedious but routine computations
show that the coefficient of i equals 0. Hence we are only concerned with the constant
term of the aforementioned polynomial, which equals

|M|

|Pr−1|(q − qr−1) + (q + 1)qr−1 − q + q2(qr−1 − 1)|Pr−2|



=|M| · q2r−2 = |M| · (h1 − h2)
2.

From


P∈Pr


|P⊥ ∩M|− h2

2
= |M|(h1 − h2)

2 we deduce that



P∈Pr\M


|P⊥ ∩M|− h2

2
= 0.

This proves that (2) implies (1) when M is an i-tight set. When M is an m-ovoid, we
can use the same method to obtain the result. This completes the proof.

3 A Construction of (q4 + 1)-Tight Sets

3.1 Octonions and the minimal module of F4(q)

The split octonion algebra OFq is an 8-dimensional non-commutative and non-associative
algebra over Fq. A detailed introduction to octonions can be found in the book [25]. Let
{x1, . . . , x8} be the basis of the octonion algebra O (here in order to simplify notation we
omit the subscript) as defined in [28, (4.26)]. With respect to this basis, the multiplication
of O is defined as follows:

x1 x2 x3 x4 x5 x6 x7 x8

x1 x1 x2 −x3 −x4

x2 −x1 x2 −x5 x6

x3 x1 x3 −x5 x7

x4 x1 x4 x6 x7

x5 x2 x3 x5 x8

x6 −x2 −x4 x6 x8

x7 x3 −x4 x7 −x8

x8 −x5 −x6 x7 x8

(3.1)

where the blank entries are 0, cf. [28, (4.27)]. It is clear that 1 := x4+x5 is the identity of
O. The octonion conjugation − swaps x4, x5 and maps the other xi’s to their negations,
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and it is an anti-isomorphism of O. For an octonion x =
8

i=1 λixi, we define its trace
as Tr(x) = x + x = λ4 + λ5 and its norm as N(x) = xx. It is routine to show that
N(x) =

4
i=1 λiλ9−i which takes value in Fq, and defines a nondegenerate hyperbolic

quadric Q+(7, q). Its associated bilinear form is B(x, y) := N(x+ y)−N(x)−N(y), and
we have B(x, y) = Tr(xy) for x, y ∈ O. In particular, we have Tr(x) = B(x, 1). The
split octonion algebra O is an alternative ring by [27, Lemma 3], so that the subalgebra
generated by any two elements is associative, cf. [25, Chapter 1.4]. It follows that O is
a composition algebra, i.e., N(xy) = N(x)N(y) for x, y ∈ O. The automorphism group
of the octonion algebra O is known as G2(q), and each of its elements fixes the vector
1 := x4 + x5. It holds that x

2 − Tr(x)x+N(x) = 0 for x ∈ O by [25, Proposition 1.2.3],
so G2(q) lies in the isometry group of the quadratic form N . We write 1⊥ for the perp of
1 with respect to B, which is stabilized by G2(q).

The G2(q)-orbits on the nonzero octonions are implicitly known by the results in [28,
Chapter 4.3]. We list them explicitly in the next lemma for future use.

Lemma 3. Suppose that q > 2. For q odd, let α be a nonsquare of F∗
q and T be a complete

set of coset representatives of {1,−1} in F∗
q; for q even, let β be an element of F∗

q with
absolute trace 1 and S be a complete set of coset representatives of {0, 1} in Fq. Then the
G2(q)-orbits on the octonions are as listed in Table 3.1.

Table 3.1: The G2(q)-orbits on the octonions
Representative Orbit size Stabilizer Trace Norm Condition

k, k ∈ Fq 1 G2(q) 2k k2

x1 + k, k ∈ Fq q6 − 1 q2+1+2 : SL2(q) 2k k2

a(x4 − x5) + k,
a ∈ T, k ∈ Fq

q6 + q3 SL3(q) 2k k2 − a2
q odd

a(x1 − αx8) + k,
a ∈ T, k ∈ Fq

q6 − q3 SU3(q) 2k k2 − αa2

a(x4 + k),
a ∈ F∗

q, k ∈ S
q6 + q3 SL3(q) a a2(k2 + k)

q even
a(x4 + x1 + βx8 + k),

a ∈ F∗
q, k ∈ S

q6 − q3 SU3(q) a a2(k2 + k + β)

Proof. We give a sketch of the proof by quoting the relevant results in [28, Chapter 4.3].
Since each element of G2(q) fixes 1, each element k ∈ Fq is stabilized by G2(q). Take an
element k ∈ Fq and set v = x1 + k. For an element g ∈ G2(q), it stabilizes v if and only if
it stabilizes x1. The stabilizer of 〈x1〉 is a maximal parabolic subgroup q2+1+2 : GL2(q),
and the stabilizer of x1 in the latter subgroup is q2+1+2 : SL2(q). Hence the G2(q)-orbit

of x1 + k has size |G2(q)|
q5·|SL2(q)| = q6 − 1 for each k ∈ Fq. The trace and norm of x1 + k are

respectively 2k, k2, so we obtain the representatives for q distinct G2(q)-orbits as k varies.
The arguments so far work for both even and odd q.
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Suppose that q is odd and set u = x4 − x5, v = x1 − αx8, where α is a nonsquare in
F∗
q. The stabilizer of 〈u〉 in G2(q) is a maximal subgroup SL3(q) : 〈s〉, where s has order

2 and swaps x4 and x5. The stabilizer of u in the latter subgroup is SL3(q). As in the

previous paragraph, we deduce that the G2(q)-orbit of au + k has size |G2(q)|
|SL3(q)| = q6 + q3

for each a ∈ F∗
q and k ∈ Fq. The trace and norm of au+ k are respectively 2k,−a2 + k2,

so au+ k and a′u+ k′ are in the same G2(q)-orbit if and only if a′ = ±a and k′ = k. The
subalgebra C := 〈1, v〉 is isomorphic to Fq2 , and the stabilizer of v in G2(q) is SU3(q).
There is an involution r ∈ G2(q) that maps x1, x8 to −x1,−x8 and thus v to −v, and
SU3(q) : 〈r〉 is a maximal subgroup of G2(q) that stabilizes 〈v〉. Similarly, we deduce that

the G2(q)-orbit of av+ k has size |G2(q)|
|SU3(q)| = q6 − q3 for each a ∈ F∗

q and k ∈ Fq. The trace

and norm of av + k are respectively 2k, k2 − a2, so av + k and a′v + k′ are in the same
G2(q)-orbit if and only if a′ = ±a and k′ = k. Since

q + q · (q6 − 1) +
1

2
(q − 1)q · (q6 + q3) +

1

2
(q − 1)q · (q6 − q3) = q8,

we conclude that we have obtained all the G2(q)-orbits and their relevant information is
as listed in Table 3.1 for q odd.

Suppose that q is even and set u = x4, v = x1 + βx8 + x4, where β has absolute trace
1, i.e., X2 + X + β is irreducible over Fq. The element v has trace 1 and norm β, and
there are q6 − q3 octonions with those properties. The stabilizer of u in G2(q) is SL3(q),
and there is an order 2 element s that swaps u4, u5 such that SL3(q) : 〈s〉 is a maximal
subgroup. We have v2 + v + β = 0, so the subalgebra 〈1, v〉 is a field with q2 element.
There is an involution r ∈ G2(q) that fixes x1, x8 and swaps x4 and x5, so that r maps v
to v + 1. The stabilizer of v in G2(q) is SU3(q), and SU3(q) : 〈r〉 is a maximal subgroup.
The remaining arguments are exactly the same as in the q odd case, and we omit the
details. This completes the proof.

For a nonzero element a in O, we define its left and right annihilators as follows

annL(a) = {x ∈ O : xa = 0}, annR(a) = {x ∈ O : ax = 0}.

By [25, Lemma 1.3.3], we have x(xa) = N(x)a and (ax)x = N(x)a, so if N(a) = 0 then
both annL(a) and annR(a) are totally singular subspaces for the quadratic form N . If
N(a) ∕= 0, then both of its annihilators are trivial by a similar argument. The following
result is [3, Theorem 5], and the interested reader can verify it by using Lemma 3.

Lemma 4. Suppose that D,E are nonzero elements in O such that DE = 0. Then
DD = EE = 0, annL(D) and annR(D) are totally isotropic subspaces of dimension 4,
and

(1) annL(D) ∩ annR(D) has size q3 or q depending on whether D ∈ 1⊥ or not;

(2) annL(D) ∩ annR(E) has size q3.
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The following result is well known, and we include a short proof here. We refer the
reader to [13, Proposition 9.10] for the case where q is odd. For a property P, we use the
Iverson bracket [[P]] which takes the value either 1 or 0 depending on whether P holds or
not.

Lemma 5. For a natural number k and an element a ∈ Fq, write Nk(a) for the number
of tuples (a1, . . . , a2k) ∈ F2k

q such that a1a2 + · · ·+ a2k−1a2k = a. Then

Nk(a) = q2k−1 − qk−1 + qk · [[a = 0]] for a ∈ Fq.

Proof. It is easy to see that the claim holds for k = 1. We have

Nk(a) =


a2k−1∈Fq



a2k∈Fq

Nk−1(a− a2k−1a2k)

= q2Nk−1(1) + (Nk−1(0)−Nk−1(1)) · |{a2k−1, a2k ∈ Fq : a2k−1a2k = a}|
= q2Nk−1(1) + (Nk−1(0)−Nk−1(1)) (q − 1 + q · [[a = 0]]) ,

and the claim follows by induction on k.

Lemma 6. For a ∈ Fq there are q7 − q3 + q4 · [[a = 0]] octonions of norm a, and among
them there are q6 − q3 + q4 · [[a = 0]] such octonions α that Tr(x1α) = 0.

Proof. The first claim immediately follows by specifying k = 4 in Lemma 5. For an
octonion α =

8
i=1 λixi, we have Tr(x1α) = λ8 and N(α) =

4
i=1 λiλ9−i. If λ8 = 0, then

N(α) =
4

i=2 λiλ9−i. We deduce that there are q · N3(a) such octonions α that λ8 = 0
and N(α) = a, where N3(a) is as in Lemma 5. This completes the proof.

Lemma 7. There are (q6 − q3 + q4 − 1)(q4 − 1) pairs (D,E) of nonzero octonions such
that DE = 0 and Tr(x1D) = 0.

Proof. If DE = 0 for some nonzero D,E, then DD = 0 by Lemma 4. There are q6− q3+
q4 − 1 nonzero octonions D such that DD = 0 and Tr(x1D) = 0 by Lemma 6, and for
each such D there are q4 − 1 nonzero octonions E such that DE = 0 by Lemma 4. The
claim then follows.

Let A be the algebra of 3×3 Hermitian matrices over the octonions O. To be specific,
a 3× 3 matrix x over O is a Hermitian matrix if x⊤ = x and the diagonal entries of x lie
in Fq. Here, x is the matrix obtained by applying the octonion conjugate to the entries
of x. For d, e, f ∈ Fq and D,E, F ∈ O, we define

(λ0,λ
′
0,λ

′′
0 | D,E, F ) :=




λ0 F E
F λ′

0 D
E D λ′′

0





which is in A. For u, v ∈ A, their product in the algebra A is u ◦ v := uv + vu, where uv
and vu are matrix multiplications. We set I := (1, 1, 1 | 0, 0, 0), so that I ◦ a = 2a for any
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element a in A. The algebra A has close connections with Albert algebras and Jordan
algebras, cf. [19, 24]. We choose a basis {wi, w

′
i, w

′′
i : 0  i  8} of A as follows:

w0 = (1, 0, 0 | 0, 0, 0) and wi = (0, 0, 0 | xi, 0, 0) for i > 0,

w′
0 = (0, 1, 0 | 0, 0, 0) and w′

i = (0, 0, 0 | 0, xi, 0) for i > 0,

w′′
0 = (0, 0, 1 | 0, 0, 0) and w′′

i = (0, 0, 0 | 0, 0, xi) for i > 0.

The multiplication table of A with respect to the basis {wi, w
′
i, w

′′
i : 0  i  8} can be

written down explicitly as in [28, (4.90)-(4.92)]. The similarity group of the Dickson-
Freudenthal determinant of A, which we denote by Ẽ6(q), is the universal covering group
of the simple group E6(q), cf. [4, 27]. It has three orbits on the nonzero vectors of A,
which are called the white, gray and black vectors, respectively, cf. [1, 8]. They correspond
to vectors of rank 1, rank 2 and rank 3 in [17]. The 1-dimensional subspace spanned by
a white, gray or black vector is called a white, gray or black point, respectively. The
stabilizer of I in Ẽ6(q) is F4(q).

For an element v =
8

t=0(λtwt + λ′
tw

′
t + λ′′

tw
′′
t ) ∈ A, we define the trace of v as

TrA(v) = λ0+λ′
0+λ′′

0. We define the F4(q)-invariant subspaces U = {v ∈ A : TrA(v) = 0},
U ′ = 〈I〉Fq , and set W := U/(U ∩ U ′). For v ∈ U , we define

Q0(v) = λ2
0 + λ0λ

′
0 + λ′2

0 +
4

t=1

(λtλ9−t + λ′
tλ

′
9−t + λ′′

tλ
′′
9−t).

In particular, if v = (λ0,λ
′
0,λ

′′
0 | D,E, F ), then Q0(v) = λ2

0+λ0λ
′
0+λ′2

0 +DD+EE+FF .
The quadratic form Q0 on U is F4(q)-invariant and has U ∩U ′ as its radical, so it induces
a nondegenerate quadratic form Q on W . The space W is the minimal module of F4(q),
and dim(W ) = 25 or 26 depending on whether the characteristic of Fq is 3 or not. The
form Q on W is hyperbolic if q ≡ 1 (mod 3) and is elliptic if q ≡ 2 (mod 3). The polar
spaces in Theorem 1.1 are defined by the quadratic space (W,Q).

3.2 The proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. Take the same notation as in the previous
section, and we consider the polar space defined by the quadratic space (W,Q). If the
characteristic of Fq is 3, then the associated polar space is Q(24, q) and the group F4(q)

has two orbits on the singular points by [8, Table 2]. One orbit M1 has size (q
4 +1) q

12−1
q−1

which is not divisible by the ovoid number q12 + 1; thus M1 is a (q4 + 1)-tight set of
Q(24, q) as desired. We suppose that q ≡ 2 (mod 3) in the following, so that W = U and
the associated polar space is Q−(25, q). Let M1 be the set of white vectors in U , and write
M1 for the corresponding set of projective points. The set M1 has size (q4 + 1)(q12 − 1)
and forms a single F4(q)-orbit by [8, (W.3)]. By [27, Lemma 5] or [4, Lemma 7.1], we
enumerate the white vectors in U as follows:

(I) v = f · (AA,BB, 1 | B,A,AB) for some f ∈ F∗
q and A,B ∈ O such that AA+BB+

1 = 0,
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(II) v = e · (CC, 1, 0 | A,CA,C) for some e ∈ F∗
q and octonions A,C such that AA = 0,

CC + 1 = 0,

(III) v = (0, 0, 0 | D,E, F ), where D,E, F are octonions such that

DD = EE = FF = 0, DE = EF = FD = 0. (3.2)

In particular, M1 is F∗
q-invariant and it contains the singular vector (0, 0, 0 | x1, 0, 0). It

follows that M1 has size (q4 + 1) q
12−1
q−1

and consists of singular points of Q−(25, q).

We claim that M1 is a (q4 + 1)-tight set of Q−(25, q). By Lemma 2 and the fact that

M1 is a single F4(q)-orbit, it suffices to show that there are q11 + (q4 + 1) q
11−1
q−1

points in

M1 that are perpendicular to 〈(0, 0, 0 | x1, 0, 0)〉. Suppose that 〈v〉 is such a point in M1,
and we examine the three types (I)-(III) one by one. If v = (λ,λ′,λ′′ | D,E, F ), then the
condition that 〈v〉 is perpendicular to 〈(0, 0, 0 | x1, 0, 0)〉 translates into Tr(x1D) = 0.

First consider the case where 〈v〉 is of type (I). The number of such points in M1

that are perpendicular to 〈(0, 0, 0 | x1, 0, 0)〉 equals the number of (A,B) pairs such that
AA+BB+1 = 0, Tr(x1B) = 0. If we write B =

8
i=1 bixi, then Tr(x1B) = −b8 = 0 and

BB = b2b7 + b3b6 + b4b5. By Lemma 5, we deduce that the number of such pairs (A,B)
is q · N7(−1) = q7(q7 − 1). Here, q is contributed by the choices for b1 and N7(−1) is as
defined in Lemma 5.

Next consider the case where 〈v〉 is of type (II). The number of such points in M1

perpendicular to 〈(0, 0, 0 | x1, 0, 0)〉 equals the number of (A,C) pairs such that CC+1 =
0, AA = 0 and Tr(x1A) = 0. By Lemma 6, it equals (q7 − q3)(q6 − q3 + q4).

Finally, consider the case where 〈v〉 is of type (III), i.e., v = (0, 0, 0 | D,E, F ) such
that (3.2) holds and Tr(x1D) = 0. We observe that the conditions in (3.2) are invariant
under the cyclic shift of (D,E, F ). We divide into the following three cases.

(1) Suppose that D,E, F are all nonzero. There are (q6−q3+q4−1)(q4−1) pairs (D,E)
of nonzero octonions such thatDE = 0, Tr(x1D) = 0 by Lemma 7. For a pair (D,E)
of nonzero octonions such that DE = 0, there are q3 − 1 nonzero octonions F such
that EF = FD = 0 by Lemma 4, and we deduce that DD = EE = FF = 0 for
such D,E, F by the same lemma. This case contributes q4−1

q−1
(q6−q3+q4−1)(q3−1).

(2) Suppose that exactly one of D,E, F is zero. If F = 0, then (3.2) reduces to DE = 0
by Lemma 4. There are (q6 − q3 + q4 − 1)(q4 − 1) pairs (D,E) of nonzero octonions
such that DE = 0, Tr(x1D) = 0 by Lemma 7. By symmetry, we obtain the same
number if E = 0. If D = 0, then (3.2) reduces to EF = 0 and similarly there are
(q3 + 1)(q4 − 1)2 such pairs (E,F ) of nonzero octonions that EF = 0 by Lemmas 4

and 6. To sum up, this case contributes q4−1
q−1


2(q6 − q3 + q4 − 1)+ (q3 +1)(q4 − 1)


.

(3) Suppose that exactly one of D,E, F is nonzero. If E = F = 0, then (3.2) re-
duces to DD = 0. There are q6 − q3 + q4 − 1 nonzero octonions D such that
DD = 0 and Tr(x1D) = 0 by Lemma 6. If D = E = 0, then (3.2) reduces to
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FF = 0 and there are (q3 + 1)(q4 − 1) such nonzero octonions F . By symme-
try, we obtain the same number if D = F = 0. To sum up, this case contributes
1

q−1
(q6 − q3 + q4 − 1 + 2(q3 + 1)(q4 − 1)).

By adding up all the numbers, we deduce that there are exactly q11+(q4+1) q
11−1
q−1

points

in M1 that are perpendicular to 〈(0, 0, 0 | x1, 0, 0)〉. This completes the proof of Theorem
1.1.

Remark 8. Suppose that the characteristic of Fq is not 3. Take the same notation as
in Section 2, and let K be the normalizer of F4(q) in the normalizer of the quadratic
form Q0 on U . The vectors x = w1, y = w4 + w′

4, z = w0 − w′′
0 + w4 − w5 are singular

vectors of Q0 in U , and they are stabilized by the Frobenius automorphism that raises
the coordinates of a vector with respect to the basis {wi, w

′
i, w

′′
i : 0  i  8} to their p-th

powers respectively. Moreover, they are white, gray and black vectors, respectively, and
lie in distinct Ẽ6(q)-orbits. We conclude that K has at least three orbits on the singular
points of the polar space associated with (U,Q0). When q = 2, we verify with Magma [5]
that there are exactly three F4(q)-orbits on the singular point. They are tight sets with
parameters 17, 212 − 24, 212 in Q−(25, 2), respectively. It is not clear whether these will
lead to new infinite families of tight sets in Q−(25, q) with q ≡ 2 (mod 3), and we leave
it as an open problem.

4 Further discussions

Let A be the algebra of 3 × 3 Hermitian matrices over the octonions O and let U , W
and Q0 be as introduced in Section 3.1. Let W0 be the set of white points in U , and for
each white vector v we define σ(v) = {v ◦ x : x ∈ V }. We shall make use of the facts
on F4(q) geometry and metasymplectic spaces in [7, 20, 23] freely in the following. By
[9] the transitive action of F4(q) on W0 has five orbitals, which we describe now. For
u = (0, 0, 0 | x1, 0, 0), we have

σ(u) = 〈(0, a, a | kx1, B, C) : a, k ∈ Fq, B ∈ 〈x1, x2, x3, x4〉, C ∈ 〈x1, x2, x3, x5〉〉.

A nonzero vector v = (0, a, a | kx1, B, C) in U ∩ σ(u) is white if and only if a = 0 and
BC = 0, and it holds that v ◦ u = 0 for such a v. It holds that u ∈ σ(y1), and 〈u, y1〉 ⊆
∩z∈〈u,y1〉σ(z) for y1 = (0, 0, 0 | 0, x1, 0). Let y2 = (0, 0, 0 | x5, 0, 0), which satisfies x◦y2 = 0
but is not in σ(u). We have σ(u) ∩ σ(y2) = {(0, a, a | 0, B, C) : a ∈ Fq, B ∈ 〈x1, x4〉, C ∈
〈x2, x3〉} which contains (q + 1)(q2 + 1) white points in W0. Let y3 = (0, 0, 0 | 0, x5, 0), so
that x◦y3 = (0, 0, 0 | 0, 0, x1). We similarly deduce that σ(u)∩σ(y2) = 〈(0, 0, 0 | 0, 0, cx1)〉,
which contains exactly an element of W0. Let y4 = (0, 0, 0 | x8, 0, 0), and we have
σ(u) ∩ σ(y4) = {0}. The points 〈u〉 and 〈y1〉, . . . , 〈y4〉 are representatives for the five

orbits of F4(q)〈u〉 on W0, and their orbit sizes are 1, q4−1
q−1

q(q3 + 1), q6−1
q−1

q5, q4−1
q−1

q8(q3 + 1)

and q15, respectively. The first four orbit lengths add up to q11 + (q4 + 1) q
11−1
q−1

, and

the quotient images of 〈u〉, 〈y1〉, . . . , 〈y4〉 in W = U/(U ∩ 〈I〉) are singular points of Q0
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perpendicular to 〈u〉. This provides an alternative proof of Theorem 1.1, and it also
explains why the same construction fails for q ≡ 1 (mod 3).

Suppose that q ≡ 0 or 2 (mod 3), and let M1 be the tight set corresponding to W0

in the polar space Q associated with (U,Q0) as in Theorem 1.1. Let Γ be the collinearity
graph of Q. We define a graph Γ0 as follows: the vertex set is W0, and two vertices 〈x〉, 〈y〉
are adjacent if and only if y ∈ σ(x). It is an undirected graph of diameter 3, since x ∈ σ(y)
implies y ∈ σ(x). Moreover, 〈x〉, 〈y〉 are adjacent if and only if 〈x, y〉 ⊆ ∩z∈〈x,y〉σ(z), cf.
[20]. For two vertices 〈x〉, 〈y〉 at distance 2 in Γ0, they have either 1 or (q + 1)(q2 + 1)
common neighbors. By the previous paragraph, we deduce that the distance-3 graph of
Γ0 embeds naturally in the distance-2 graph of Γ as an induced subgraph. This provides
more geometric insights into the tight sets that we have constructed in Theorem 1.1, and
it is of theoretical interest to study this phenomenon in a more general context.

There is a striking similarity between our construction and the construction of Kantor’s
unitary ovoids in [15]; and there is a general pattern behind these constructions. If we use
an associative split subalgebra of O instead of O itself, then we obtain more intriguing
sets by the same procedure. To be specific, we take an associative subalgebra D of O, and
let AD = {(d, e, f | D,E, F ) : d, e, f ∈ Fq, D,E, F ∈ D}, UD = U ∩ AD. The stabilizer
of AD in F4(q) has been determined in [18, 5.12] when the characteristic is not 2 or 3.
We set WD = UD/(UD ∩ 〈I〉), and let MD be the projective points corresponding to white
vectors in WD. If D is properly chosen, then the restriction of Q0 to WD is a nondegenerate
quadratic form QD and the white points in WD yield a tight set MD in the polar space
associated with (WD, QD). First suppose that D is a split quaternion. The stabilizer of UD
in F4(q) contains a copy of Sp6(q) by [28, 4.8.9], so MD is invariant under Sp6(q). If q is a
power of 3, then we obtain a (q2+1)-tight set in Q(12, q). If q ≡ 5, 11 (mod 12) or q is an
odd power of 2, then we obtain a (q2 + 1)-tight set in Q−(13, q). Next suppose that D is
a split quadratic extension of Fq. The stabilizer of UD in F4(q) contains a copy of SL3(q)
by [28, 4.8.9], so MD is invariant under SL3(q). The Sp6(q)-invariant (q

2 + 1)-tight sets
in Q(12, q) (for q = 3f ) and Q−(13, q) for q ≡ 5, 11 (mod 12) have been constructed in [6]
by using the geometry of the line Grassmannian of the symplectic polar space W (5, q).
We remark that the conclusion in [6, Proposition 14] also holds for q ≡ 5 (mod 12), so
[6, Theorem 15] also holds for such q’s. The (q + 1)-tight sets in Q(6, q) (for q = 3f ) and
in Q−(7, q) (for q ≡ 2 (mod 3)) have been obtained by Ran and collaborators [26], and
they informed us that the proof makes use of weak generalized hexagons of order (q, 1)
and is a slight modification of those in [21].
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