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Abstract

There is a rich history of studying the existence of cycles in planar graphs. The
famous Tutte theorem on the Hamilton cycle states that every 4-connected planar
graph contains a Hamilton cycle. Later on, Thomassen (1983), Thomas and Yu
(1994) and Sanders (1996) respectively proved that every 4-connected planar graph
contains a cycle of length n — 1,n — 2 and n — 3. Chen, Fan and Yu (2004) further
conjectured that every 4-connected planar graph contains a cycle of length ¢ for
¢e{n,n—1,...,n—25} and they verified that for £ € {n—4,n—5,n—6}. When we
remove the “4-connected” condition, how to guarantee the existence of a long cycle
in a planar graph? A natural question asks by adding a spectral radius condition:
What is the smallest real number C'(n) such that for sufficiently large n, every
planar graph G of order n with spectral radius p(G) greater than C'(n) contains a
long cycle? In this paper, we give a stronger answer to the above question. Let G be
a planar graph with order n > 1.8 x 10!” and k < |logy(n—3)| —8 be a non-negative
integer, we show that if p(G) > p(K2 V (Pp—2k—4 U2P;41)) then G contains a cycle
of length ¢ for every £ € {n—k,n—k—1,...,3} unless G = KoV (P, —2x-4U2P;1).
Mathematics Subject Classifications: 05C50; 05C35; 05C45

1 Introduction

For a family of graphs H, a graph is said to be H-free if it does not contain H € ‘H as a
subgraph. When H = {H} is a single graph, we use H-free instead of H-free. As usual,
we denote by K,,C, and P, the complete graph, the cycle and the path on n vertices,
respectively. The maximum number of edges in an H-free graph on n vertices is defined
as the Turdn number of H, denoted by ex(n,#). Considerable focus has been directed
toward the Turdn number on cycles. Fiiredi and Gunderson [6] determined ex(n, Coxi1)
for n > 1 and 2k+1 > 5. Ore [14] proved that ex(n, C,) < (",') + 1. However, the exact
value of ex(n, Cy) is still open.
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Let G; and G5 be two graphs. We denote the union of & disjoint copies of a graph G
by kG. The join of two disjoint graphs GG; and G5, denoted by GG V (G, is obtained from
the disjoint union G; U Gy by joining each vertex of Gy to each vertex of Go. Let A(G)
be the adjacency matrix of a connected graph G, and p(G) be its spectral radius, i.e., the
maximum modulus of eigenvalues of A(G). Let SPEX(n,H) be the set of graphs on n
vertices with maximum spectral radius among graphs not containing a subgraph in H. For
long cycles, Fiedler and Nikiforov [5] determined that SPEX(n, C,,) = { K,V (K,_sUK;)}.
Only recently, Ge and Ning [7] proved that SPEX(n,C,_1) = {K; V (K,—3 U K3)}. For
more information on relationships between the spectral radius and existence of long cycles
in a graph, the readers may refer to [9].

A graph is called planar if it can be drawn in the plane with no pair of edges cross-
ing, and such drawing is called a plane graph. Let spexp(n,H) denote the maximum
spectral radius of the adjacency matrix of any H-free planar graphs on n vertices, and
SPEXp(n,#H) denote the set of extremal graphs with respect to spexp(n, H). Let ¢tC be
the family of ¢ vertex-disjoint cycles without length restriction. Tait and Tobin [19] proved
that Ky V P,_s is the spectral extremal graph among all planar graphs with sufficiently
large n. This implies that the extremal graphs in both SPEXp(n,tCy) and SPEXp(n, tC)
are Ko V P, for t > 3,0 > 3. Only very recently, Fang, Lin and Shi [4] determined
spexp(n,tCy) and spexp(n,tC) and characterized the unique extremal graph with suffi-
ciently large n for 1 < ¢t < 2 and ¢ > 3, respectively. Zhai and Liu [22] characterized the
extremal graphs in SPEXp(n, H) when H is the family of k£ edge-disjoint cycles.

Studying the existence of long cycles in planar graphs is an intriguing subject. The
pioneering result in this area was established by Whitney [20], demonstrating that every
4-connected planar triangulation contains a Hamilton cycle. In 1956, Tutte [16] extended
this result to all 4-connected planar graphs. Subsequently, Thomassen [17], Thomas and
Yu [18] and Sanders [15] respectively proved that every 4-connected planar graph contains
a cycle of length n — 1,n — 2 and n — 3. In 1988, Malkevitch [10] posed a conjecture
concerning cycles of consecutive lengths in 4-connected planar graphs.

Conjecture 1. (/10/) Let G be a 4-connected planar graph on n vertices. If G contains
a cycle of length 4, then G contains a cycle of length ¢ for every £ € {n,n —1,...,3}.

Later on, Chen, Fan and Yu [2] found a counterexample that the line graph of a
cyclically 4-edge-connected cubic planar graph with girth at least 5 contains no cycle of
length 4. Furthermore, they proposed the following weaker conjecture and demonstrated
that every 4-connected planar graph contains a cycle of length ¢ for every ¢ € {n —4,n —
5,n—6}.

Conjecture 2. (/2/) Let G be a 4-connected planar graph on n vertices. Then G contains
a cycle of length ¢ for every £ € {n,n —1,...,n— 25} with ¢ > 3.

In 2009, Cui [3] proved the Conjecture 2 holds for ¢ = n — 7. Motivated by the study
of the existence of cycles in graphs from the perspective of eigenvalues. Naturally, we
consider the existence of a long cycle from a spectral perspective in a planar graph and
pose the following problem.
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Problem 3. What is the tight spectral radius condition for the existence of a long cycle
in a planar graph?

In this paper, we address Problem 3 by presenting preliminary findings focusing on
the spectral radius. In 2008, Nikiforov [12] posed the following open problem in spectral
graph theory as an analogue to the classical theorems on cycles of consecutive lengths by
Bondy and Bollobés.

Problem 4. What is the maximum C' such that for all positive ¢ < C and sufficiently

large n, every graph G of order n with p(G) > 4/ L%QJ contains a cycle of length ¢ for
every integer 3 < ¢ < (C' —¢)n?

The first contribution to the above problem is due to Nikiforov [12] who showed that
C > 55, and was improved to C' > 75 by Peng and Ning [13]. Only very recently, Zhai
and the second author [21] proved that the result holds for C' > 1 and they further showed
that “sufficiently large n” condition can be deleted, Li and Ning [8], Zhang [24] respectively
improved these results to C' > i and C > % Motivated by the aforementioned spectral
extremal results pertaining to planar graphs, we delve into a spectral extremal problem

concerning planar graphs with consecutive cycles, as stated in the following theorem.

Theorem 5. Let G be a planar graph of order n and let k < [logy(n — 3)] — 8 be
a non-negative integer, where n > 1.8 x 1017, If p(G) > p(Ks V (Py_op—a U 2P11)),
then G contains a cycle of length { for every { € {n —k,n—k —1,...,3} unless G =
KoV (Pp_ok—4 U2P;44).

The rest of this paper is organized as follows. In Section 2, we introduce some prelim-
inaries that will be employed to prove our main result. In Section 3, we give the proof of
Theorem 5. In Section 4, we conclude some open problems for further study.

2 Preliminaries

For a vertex v € V(G), the neighborhood of v is denoted by Ng(v) = {u : uwv € E(G)},
and the degree of v is denoted by dg(v) = |Ng(v)|. A linear forest is a disjoint union of
paths. For two non-negative integers n and a with n > a + 3, let £,, , denote the family
of linear forests of order n — 2 and size n — 3 — a. For simplicity, an isolated vertex is
referred to as a path of order 1. In order to obtain our main results, we first give the
following lemmas.

Lemma 6. Suppose n, a; and as are three integers withn > 4 and 0 < ay < a; < 2274.

Let L; € L, 4, for eachi € {1,2}. Then p(KyV Ly) > p(K2 V Ly).

Proof. For each i € {1,2}, let E; = E(P,—2) \ E(L;). Since L; € L,,,,, we have |E;| = a,.
By the Perron-Frobenius theorem, there exists a positive eigenvector x = (x1,zy, ..., z,)"
corresponding to p := p(K3 V Ly) with max,cy(k,vr,) Zu = 1. Clearly, K, V L; contains
exactly two dominating vertices, say «’ and u”. Then z,, = z,» = 1.
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Select an arbitrary vertex u € V/(L;). Note that Ly € L, ,,. Then dp,(u) < 2, and
hence

2 =Ty + Ty K PTy = Ty + Ty + Z Ty, =2+ Z T, < 4. (1)
vENL, (u) vENL, (u)

Therefore, % <y < %, which implies that > 1z, < %. According to (1), we obtain

vENL, (u)

22 8
. € |2, 24 2. 2
[pp pQ} @

Since Kj,_o is a proper subgraph of K, V Ly, we have
p > p(Kopn—2) = V2n —4 > max{4ay, 2}.

Combining this with (2), we obtain

2 2
Z Tuly — Z TyTy 2 A1 <2) — az (2+§>

2
uveFq uve o P p P
_ 4(ay —az)  8ay 16ay
R A
4 2 4 2p—4
SN L

Therefore,

T(A(KyV Fy) — A(Ky V F

P(Ka v Fy) — p(E v ) 3 A2 VD) — AR V)
xTx
2
Z T (Z Tyly — Z a:ua:v> > 0,
X X quEl U’UGEQ

as desired. .

Lemma 7. Let n,n,,ne and k be integers with ny = ne = k+2 > 2 and n > 288 + 3,
and let L be a linear forest with |V (L)| =n —2—mny —ny. Then

p(K V (Pn1+nzf(k+1) U P UL)) > p(Ky V(P UP,, UL)).

Proof. Assume that P,, := ujus - - - u,, and P, := wjws - - - wy,,. By the Perron-Frobenius
theorem, there exists a positive eigenvector x = (1,9, ...,7,)T corresponding to p :=
p(Ka V (P, U Py, U L)) with max,cy(k,v (P, uP,,ur) Tu = 1. Since Ky, » is a proper
subgraph of Ky V (P,, UP,,UL), we get p > p(K3,_2) = v/2n — 4. Furthermore, we have
the following claim.
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Claim 8. Let i be a positive integer. Set A; = [% — 8;2?, % + 8;221] and B; = [— 8:?, 8:?].
Then

(Z) fO’f’ any (S {17 crey L%JL pi<$ui+1 - xuz) S AZ and pi<$wz‘+1 - x'wi) € Ai;

(”) fO’f’ any (S {17 R L%J}: pz(‘rw - x’wi) € B;.

Proof. (i) We will proceed with the proof by using induction on i. Clearly,

2+ Ty, if j=1,
pru; = Y Tu= : e 3)
b 24Ty, + Ty, i 2<7 <0 — 1
ueV(G)

By using a similar analysis as (2), we have

Ly +$U3 — Ty € Ab if J 17
(T, = 2u;_,) + (Tuyy — 2o, ,) € By, if 2< <y — 2.

p(xuj+1 - xuj) = { (4)
< | &2], which implies that

So the result is true when ¢ = 1. Next, assume that 2 < ¢
= (xuj - xujﬂ) + (xuj+2 - xuj71)7

k>2i—2 Fori<j<n —i—1, wegetp(ry, , — )
and hence
P (@uypy = Tuy) = P By = Ty y) + P By n — Tuya)- (5)

By the induction hypothesis, it follows that

PN (@ — ) € Aiy and p N (@, — T, ) € Bia.
According to (5) and setting j = i, we have p'(2y,,, — Z4,) € A;, as desired. If i +1 <
7 <ny—1— 1, then by the induction hypothesis,

PN @y, — Tu,_,) € Bisy and p' N2, — Tu,,) € Bio1.
Again by (5), we can deduce that p'(x,,,, — #.,) € Bi_1, as desired. Thus, for any

ie{l,...,[ 2]}, we have

P i%uin ’ B, if i+1<j<n—i—1.
This completes the proof of p'(zy,,, — x,,) € A;.
The proof of p'(zy,,, — Ty,) € A; is similar to that of p’(z,,,, — 24,) € A; and thus
omitted here.
- (@) For any i € {1,..., |531} and j € {i,...,no — i}, we only need to show that
p'(Ty; — Ty,) € B;. Obviously

2 4 Ty, if j=1,
PLw; = Z Loy = : 1 J .
o, 24 Ty, t Ty, if 2<j<ny—1
weV(G)
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Combining this with (2) and (3), we obtain

Tyy — Ty € Bl, if ] = 1,
(Tu;_y = Tw; ) + (Tuyyy — Twyy) € By, if 2<j<ng — 1.

p(muj - ij) = {

By induction on 7. We have already observed that the assertion holds for i = 1, so assume
that i > 2. If i < j < ng —14, then p(zy, — Tw,) = (Tu,_; — Tw,_,) + (Tu;y — Tu,,,), and
hence
pi(xuj - ij) = pi_l(xuj—l - ij—l) + pi_l(xuj+1 - ij+1)' (6)
By the induction hypothesis, we have
pi_l(xuj—l - ij—1) S Bi—l and pi_l(xUj+l - ij+1) S Bi—1~

Combining this with (6), we have p'(z,, — ©4,) € B;. O

Since n > 288 43, we have p > v/2n — 4 > 8 x 2*3° . For any 1 < %, we get

2 8 x 2! <2 8><2’> 8 x 2¢
— > 0.

pitl B pit2 pitl - pit2 pit2

Combining this with Claim 8, we obtain

2 8 x 2¢
Ty — Tuy 2 F—W >0 (7)

and

2 8x 2\ 8x2i
><)—X>0 (8)

Lujpr — Tw; = (xuz'ﬂ - xuz) + (:Euz - xwi) > (p”l - F

pit2
for any i < |%£2]. Similarly,

. k+2
Ty, y > Ty, and .., >z, forany i< {TJ : 9)
Denote by Hy = P, UP,, UL and Hy = P, 1y,—(k+1) U Pry1 U L. Let £; and ¢, be
two non-negative integers with ¢; +t, = k+ 1. Let H* be the graph obtained from H; by
deleting edges s, uy, +1 and wy,wy, 11, and adding edges ug, wy, and uy, 11wy, +1. Note that
H*%JHQ as t1+t2:]€+1 Then

XT(A(K2 V HQ) - A(K2 \% Hl))x
xTx

IO(K2 V Hg) — p(K2 V Hl) >
2

m(zut1+l - xth)(mwt2+1 - IEutl). (10)

>

Next, we will divide the proof into the following two cases basing on the parity of £.
Case 1. k is odd.
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Set t; = % Since t; + to = k + 1, it follows that ¢, = % By (8) and (9), we
get @y, ., > Tu,, and Ty, ., > @, . Combining this with (10), we can deduce that
p(KQ V Hz) > p(Kg V Hl)

Case 2. k is even.

We first consider x,,,, = 7y,,,. Let t; = g Then t, = % due to t; + 1ty = k + 1.

2 2
Since Ty, = Tw,,,, it follows that z,, ., > ©,,,. From (9), we can get @y, ,, > Ty, and

Ty, > x:: This_iQIzlplies that y,,,, > 2y, . By (10), we have p(Ky V Hy) > p(Ka V Hy).
If p(KyV Hy) = p(K2 V Hy), then x is also a positive eigenvector of p(K» V Hy). Hence,
p(KaV Hy)Ty,, = 242w, +2u, . On the other hand, p(KoV H)Zw,, = 24T, +Tuw,, ;-
This implies that x,,,,, = ., , a contradiction. Therefore, p(Ky V Hy) > p(Kq V Hy).
Next, we consider ﬂfu%_z < xw%é. Let t; = % Then by t; +t; = k + 1, we have

ty = %. Since Tugy < Twys it follows that @, ,, > 7, . By (7) and (8), we can get

Tuy oy > Ty, and 2y, > 2y, . Thus, 2, ., > 7y, Combining this with (10), we have
p(KQ V HQ) > p(Kg V Hl)
This completes the proof. O

3 Proof of Theorem 5

Before proceeding, we describe some notation and terminology necessary for stating and
proving results. Let G be a planar graph with vertex set V(G) and edge set E(G). The
order and size of G are denoted by |V(G)| and |E(G)| = e(G), respectively. For two
disjoint subsets X,Y C V(G), we denote by G[X,Y] the bipartite subgraph of G with
vertex set X UY and edges having one endpoint in X and the other endpoint in Y. The
subgraph of G induced by X, denoted by G[X], is the graph with vertex set X and an
edge set consisting of all edges of G that have both ends in X. Let Nx(v) := Ng(v) N X
and dx(v) := |[Nx(v)|. Define e(X,Y) as the number of edges in the bipartite subgraph
G[X,Y], and e(X) as the number of edges in the subgraph G[X]|. Moreover,

e(X) <3|X| -6 and e(X,Y) <2(|X|+|Y]) — 4. (11)
Denote by G, = 3<eL<J k{ G | G is a Cj-free planar graph of order n}. Let C,  be

the set of graphs attaining the maximum spectral radii over all graphs in G, ;. We first
give a lemma which plays a key role in the proof of Theorem 5.

Lemma 9. Let k be a non-negative integer and n > max{1.8 x 1017 2¥8 4+ 3} Then
every graph in C, . contains a spanning subgraph K,V (n — 2)Kj.

Proof. Choose an arbitrary graph G € C,; and let p = p(G). By the Perron-Frobenius
theorem, there exists a positive eigenvector x = (1, s, ..., 7,)" corresponding to p with
maxycy(q) To = 1. Let v’ € V(G) with z,, = 1. Clearly, Ky, is planar and C,,_;-free,
which implies Ks,_2 € G, . Then

p = p(Kon—a)=+v2n—4. (12)

We proceed with a sequence of claims.
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Claim 10. Let M = {u € V(G) | 2, > t5z}. Then |M| < 7.
Proof. For each vertex u € V(G), by (12) and the definition of M, we get

van—d = S m<

1
vENG(u)
Therefore,
v2n —4
MY < S dolw) <Y da(u) < 23— 6)
ueM ueV(G)
Since n > 1.8 x 10'7, we have |M| < 3 x 10°v/2n — 4 < 4. O

Claim 11. For any u € M, we have dg(u) > (z, — t57)n.

Proof. Since G is planar, by Claim 10 and (11), we have e(M) < 3|M| < 3%, and hence

2n

e(No(w) \ M, M) < 2(|No(u) \ M| +|M]) - 4 < 2dg(u) + =

Combining the above two inequalities gives

Z AN (uy (v Z dNg(uynm (V) + Z ANg(u\m (V)

veM veEM veM
< 2e(M) + e(Ng(u) \ M, M)
8n
< 2d = 14

On the other hand,

dg(v) _ 2¢(G) _ 6n
veV(G)\M veV(G)

Combining this with (14), we obtain that

14n
2.
(2n — 4)z, < pPa, = Z Ay (V) < 2da(u) + 57 (16)
veV (G
which yields that dg(u) > (2, — $5r)n as n > 1.8 x 10'7, as desired. O

Claim 12. Assume that v’ = maxX,ev(G)\(w} Tu- Then T, > .

Proof. By Claim 11, we have dy gy m(v) = dg(u') — [M| = (1 — 37)n. It follows that

e(Na(u') \ M, M\ {u'}) = e(Na(u') \ M, M) — dyyu ()

<@ -0 - (- < (41 a7
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Recall that e(M) < 3|M| < 104 Thus,

Z AN (wynar (V)T < Z dyr(v) = 2e(M) < o

veM\{u'} veEM

Assume that v” = max,cy @)\ (v} Tu- Consequently,

Zng(u) Z dNG ﬁM 931: Z dNG \M( )xv+dG( )xu’

veEM veM\{u'} veM\ ('}
6n
< 1_04 +6(NG( ) \MaM\{u/})ZEu// +n.

Setting u = v’ and combining this with (15), we obtain

2n — 4 < pPay < 11272 +e(Ng(u')\ M, M\ {u'})xu + n,
which leads to that e(Ng(u') \ M, M \ {u'})xw > (1 — $5)n. This, together with (17),
gives that z,» > ELﬁ; > %, as desired. O
Note that z,, = 1 and z,» > %. By Claim 11, we have
L) > 999n and dg(u") > 996n (18)

1000

Now, let R = Ng(u') N Ng(u”) and S = V(G) \ ({v/,4"} UR). So |S| < (n —dg(u')) +
(n — de(u")) < qons. Next, we show the eigenvector entries of vertices in V/(G) \ {u/, u"}
are small.

Claim 13. Let u € V(G) \ {v/,u"}. Then x, <

m.
Proof. We assert that for each v € S, u is adjacent to at most one of v’ and u”, and

is adjacent to at most 2 vertices in R. Otherwise, G would contains a copy of K33,
contradicting that G is planar. Thus,

45n
YT <Y do(w) < Y (3+ds(w) < 3[S| +2¢(S) < 91| < T

u€es ueS ueS

where the second-to-last inequality holds by e(S) < 3|S|. Dividing both sides by p, we

get %xu < f’T’(}p. Since G is K3 s-free, we get u is adjacent to at most 4 vertices in
u

RU{u/,u"} for any u € V(G) \ {/,u"}. It follows that

45
:wa<4+zxw<4+zxw<4+mogp,

et iy wes
and hence z,, < % + 161055; >. Combining this with (12), we get z, < 135. O
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Claim 14. If G[R] = U!_|P,,, where t > 2 and ny = ng > --- = ny, then G[{v/,v"} U R]
18 Cy_g-free if and only if ny +ny <n—k — 3.

Proof. We can find that the longest cycle in K5V G[R)] is of length n; + ny + 2. Moreover,
K>V (P,, UP,,) contains a cycle of length ¢ for every ¢ € {3,4,...,n1+ny+2}. Therefore,
ny+ne+2<n—k—1if and only if Ky V G[R] is C,,_i-free, as desired. O

Let G be a planar embedding of G[{«/,w"} U R], and let uy, us, . .. ,u|g| be the vertices
around u” in clockwise order in G with subscripts interpreted modulo |R| (see Fig. 1).

ul

Figure 1: A local structure of G.

Claim 15. S is empty.

Proof. Suppose to the contrary that S is non-empty. Let |S| = s > 1. Recall that for
each u € S, u is adjacent to at most one of v/ and u”, and is adjacent to at most 2 vertices
in R. Since G is K3 s-minor free, we can see that G[R] is K; s-minor free. This indicates
that G[R] is either isomorphic to C|g|, or a disjoint union of paths and isolated vertices.
Since G[S] is planar, there exists a vertex v; € S with dg(v;) < 5. Let Sp = S and
S1 = 5o \ {v1}. Repeat this step, we obtain a sequence of sets Sy, Si,...,Ss_1 such that
ds, ,(v;) <5and S; = S;—1 \ {v;} for each i € {1,2,...,s — 1}. By Claims 12 and 13, we
get

121 7
T;i T < 1+wz\l;xw+ wzw; T < m <xu/+xu//—m. (19)
we{u w'TURUS; _1 weER wWES;_1

The rest of the proof will be divided into two cases according to the value of |R|.
Case 1. |R|>n—Fk—2.

Since G € C,x and |R| > n — k — 2, it follows that G[R] is a disjoint union of
paths and isolated vertices. Furthermore, G[R] is P,_j_o-free. It remains the case that
GIR] = U._|P,., where t > 2 and ny > ny > --- > n;. Then there exists an integer
io < |R| such that u/us u"u;, 410/ is a face of G. Let G* be the graph obtained from G by
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joining each vertex in S to each vertex in {u/,u”} and making these edges cross the face
wui u"ug, v’ Clearly, G* is planar.

Next we show that G* € G, . Since G[R] = Ul_,P,,, we have G*[RU S| = Ul_,P,, U
(|S] - P1). Therefore, the longest cycle in G* is of length ny + no +2 < n—k — 1. By
Claim 14, we get G* is C,,_j-free. This indicates that G* € G, .

One can observe that in the graph G the set of edges incident to vertices in S is
U {wv;|w € Nyw wiurus, ; (vi)}. Combining this with (19), we have

xT(A(G*) — A(G))x

xTx

p(G") = p(G) =

i=1 weov;
we{u' w’'}URUS; _1

contradicting that G € C,, .
Case 2. |R| <n—Fk—3.

Since G is planar, G[R] is either isomorphic to C|g or a linear forest. Suppose first
that G[R] = Cjg. Since G is planar, we have v'v” ¢ E(G). Let G* be the graph obtained
from G by deleting the edges uyus, usus, adding the edge w'v”, joining each vertex in S
to each vertex in {u/,u”} and making these edges cross the face u/usu”usu’. Clearly, G*
is planar and the longest cycle in G* is of length |R| + 2. Since |R| < n — k — 3, we have
|R| +2 < n—k — 1, which implies that G* € G,, ;. By Claim 13 and (19), we get

x'(A(G") — A(G))x

p(G) = p(G) >

xTx
s
2
2 E Loy Tyt — Ly (xul + xug) + E Lo, (:Eu’ + xu”) - E Ty
i=1 w~v;
we{u' w’'JURUS; _1
> 0,

contradicting that G € C, ;. Thus, G[R] is a linear forest. Based on this, we discuss the
following in two subcases.
Subcase 2.1. |R| <n—k —4.

If 'v” € E(G), then there exists a face F in G such that w'v” € E(F). On the other
hand, if v'u” ¢ E(G), then there exists an integer i such that F' := v/u;u"u; v is a face
of G. In either case, we can insert |S| isolated vertices in F', and let G* be the graph
obtained from G by connecting each vertex in S to each vertex in {v/,u"} and making
these edges cross the face F'. Clearly, G* is planar, and the longest cycle of G* is of length
IR|+3<n—k—1as|R <n—Fk—4 Then G* € G,x. Note that G C P and
|R| < n—k—4. A similar discussion in Case 1 shows that p(G*) > p(G), a contradiction.
Subcase 2.2. |R|=n—k — 3.

Suppose first that G[R] is a proper subgraph of P, j_3. Let G* be the graph that
defined as in the proof of Case 1. Similar arguments in the proof of Case 1 show that
G* € G, and p(G*) > p(G), which gives a contradiction.
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It remains the case G[R] = P,_j_3. Clearly, s =n —2 — |R| = k + 1. We first prove
that x,, > % for each v; € S. Otherwise, there exists a vertex v;, € S such that x,, < %,

and hence pz,, = >z, < 1. Let G** be the graph obtained from G by deleting all

wENG(viO)
edges incident to v;, and adding the edge u'v;,. Clearly, G** is planar and C,,_-free, and
so G** € G, . However,

xT(A(G™) — A(G))x

xTx

p(G™) = p(G) =

2
Z 5oy, | Tw — g Ty | >0,
X X
wENG (vig)

contradicting that G' € C,, ;. Hence, z,, > % for each v; € S.
Recall that dgr(v;) < 2 for any v; € S. Thus,

e(S,R) =Y dr(v:) < 2[S| = 2(k +1).

v; €S

Let R’ be the set of vertices in R incident to vertices in S. One can observe that |R'| <
e(S,R) < 2(k + 1), and the subgraph G[R \ R'] contains at most |R'| + 1 paths. On the
other hand, since |R| =n — k — 3, we have

IR\ R'| > |R|—|R'|>(n—k—-3)—2(k+1)=n—3k—5.
By the pigeonhole principle, we have

[R\R| _n—3k=5
IR|+17 2(k+1)

= 3,

where the last inequality holds as n > 288 4+ 3 > 9k + 10. This implies that G[R \ R/]
contains a path of order 3, say P := wu;,_1u; u;,+1. By the definition of R’, we can see
that Ng(u) = @ for any u € V(P). Then,

PTy, = Z Ly = Loyt + Ty + Z Ty < dG(ul) < 4

uwENgG (u;) uENR(u;)
for each i € {ip — 1,4, 4o + 1}. Consequently, z,,, < ﬁ, and hence

32

= (20)

$Ui0 —1 xuio + xuio xui0+1 <

Let G*** be the graph obtained from G by first deleting the edges w;,—1ui,, WiyWio+1
and all the edges incident to at least one vertex in S, and then adding the edges v;u’ and
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vu” for each v; € S and making these edges cross the face u'u; u"u;,1u'. Clearly, G*** is
planar and C),_j-free, and hence G*** € G,, . Then

xT(A(G) — A(G))x

WV

p(G™) = p(G)

xTx
9 k+1
> @ § :xvi (l‘u/ + xu”) - E , Tw | = Tugy_1Pusy — LPuzgLuigia | - (21)
=1 wn

Vi
we{u u"’}URUS; _1

Combining this with (19)-(21), we have
— 2 E+17 32
oG =06 > o (AT - ) 50

contradicting that G' € C,, .
Therefore, S is empty. O

Claim 16. v'v” € E(G).

Proof. Suppose to the contrary that u'u” ¢ E(G). Note that G € C,j. Thus, G[R] is
P, _k_o-free. Then there exists some integer iy € {1,2,...,n — 2} such that w; u;, 11 ¢
E(G[R]). This implies that w/u;,u"u; 1% is a face in G.

Let G* be the graph obtained from G by adding the edge w'v” and making /v
cross the face w'u;,u"u; 1u’. Clearly, G* is a plane graph and p(G*) > p(G). We next
assert that G* € G, . Otherwise, G* contains a subgraph H isomorphic to Cy for every
e {3,...,n—k}. Clearly, v'v” € E(H). Assume that H = v'u"u|u}, ... u,_,u’. However,

1,0 5,01, ,1

an (-cycle v'uju"ujy .. uyu' is already present in G, a contradiction. This implies that
G* € G, ;. But this contradicts the maximality of G. Therefore, v'v” € E(G). O

From Claims 15 and 16, we can see that G contains a copy of Ky V (n — 2)K;. This
completes the proof of Lemma 9. O

By Lemma 9, we find that v’ and «” are dominating vertices of G, yielding x,, = z,» =
1. With the above necessary tools and properties of a graph with maximum spectral radii
in G, x, we are now prepared to prove the existence of cycles of consecutive lengths from
a spectral perspective.

Proof of Theorem 5. Assume that G € C,j;. By Lemma 9, G = K, V G[R], where
G[R] € L, for some a > 0. We first prove a = 2. Set G* = K3V (P—op—4U P17 U Piyq).
Clearly, P,,_og—4 U Py+1 U Piy1 € L,,2 and the longest cycle in G* is of length n — k — 1.
This indicates that G* € G, and p(G) > p(G*). By Lemma 6, we obtain 0 < a < 2.
If @ < 1, then G contains a copy of Cy for every £ € {n,n—1,...,3}. So, G ¢ Gk, a
contradiction. Hence a = 2.

Since G[R] € L,,2, we may assume that G[R| = P,, U P,,, U P,,,, where ny > ny > nj
and n; +ne +n3 = n — 2. Since G € G, , we have ny +ny < n —k — 3, and hence
N9 2 ng 2 k + 1.
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Now, we prove that no, = k + 1. Suppose to the contrary that no > k + 2. Let
L' = Py U Py U Py, where nj = ny +ny — (k+1), ny = k+ 1 and nj = nz. Clearly,
n} = n4y > nh and n} +nf =n—k—3. By Claim 14, K, V L' € G,, .. However, by Lemma
7, we have p(Ky V L') > p(G), contradicting that G € C,, . Hence, ny =k + 1.
Recall that Kk +1 < ng < ny = k+ 1. Thus, n3 = k + 1. This implies that G =
Ky V (P, o4 U2P;,1), completing the proof of Theorem 5.
]

4 Concluding remarks

The result below follows directly from Theorem 5 with & = 0, and is therefore presented
as a corollary without requiring a separate proof.

Corollary 17. Let G be a planar graph of order n with n > 1.8 x 10'7. If p(G) >
p(KsV (P,_4U2P))). Then G contains a cycle of length ¢ for every £ € {n,n—1,...,3}
unless G = Ky V (P,_y U2P)).

Theorem 5 implies that for £ € [n — |logy(n — 3)| + 8,n] and n > 1.8 x 107, we have
SPEXp(n,C)) = KoV (Py—9k—4U2P41). Nikiforov [11] proved that SPEX(n,Cy) = {K;V
2=L Ky} for n is odd, while Zhai and Wang [23] proved SPEX(n, Cy) = {K; V(K ;U2 K,)}
for n is even. Observe that K; V nT_lKQ and KV (K U nT_QKQ) are both planar graphs.
Thus, SPEXp(n,Cy) = SPEX(n,Cy). For £ = 3 and 5 < ¢ < f(n), Fang, Lin and
Shi [4] characterized the spectral extremal graphs among Cy-free planar graphs, where
f(n) = min{[2(logy(n — 3) —log,9)] + 2, | £+/2(n — 2)] + 2}. It remains mysterious to
determine the extremal graph with the maximum spectral radius among Cy-free planar
graphs for some ¢ € [f(n),n — |logy(n —3)| +8]. This motivates us to propose the
following problem.

Problem 18. For sufficiently large n, what are the tight spectral conditions for the
existence of Cy in planar graphs, where ¢ € [f(n),n — |logy(n — 3)| + §].
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