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Abstract

There is a rich history of studying the existence of cycles in planar graphs. The
famous Tutte theorem on the Hamilton cycle states that every 4-connected planar
graph contains a Hamilton cycle. Later on, Thomassen (1983), Thomas and Yu
(1994) and Sanders (1996) respectively proved that every 4-connected planar graph
contains a cycle of length n− 1, n− 2 and n− 3. Chen, Fan and Yu (2004) further
conjectured that every 4-connected planar graph contains a cycle of length ℓ for
ℓ ∈ {n, n−1, . . . , n−25} and they verified that for ℓ ∈ {n−4, n−5, n−6}. When we
remove the “4-connected” condition, how to guarantee the existence of a long cycle
in a planar graph? A natural question asks by adding a spectral radius condition:
What is the smallest real number C(n) such that for sufficiently large n, every
planar graph G of order n with spectral radius ρ(G) greater than C(n) contains a
long cycle? In this paper, we give a stronger answer to the above question. Let G be
a planar graph with order n 󰃍 1.8×1017 and k 󰃑 ⌊log2(n−3)⌋−8 be a non-negative
integer, we show that if ρ(G) 󰃍 ρ(K2 ∨ (Pn−2k−4 ∪ 2Pk+1)) then G contains a cycle
of length ℓ for every ℓ ∈ {n−k, n−k−1, . . . , 3} unless G ∼= K2∨ (Pn−2k−4∪2Pk+1).

Mathematics Subject Classifications: 05C50; 05C35; 05C45

1 Introduction

For a family of graphs H, a graph is said to be H-free if it does not contain H ∈ H as a
subgraph. When H = {H} is a single graph, we use H-free instead of H-free. As usual,
we denote by Kn, Cn and Pn the complete graph, the cycle and the path on n vertices,
respectively. The maximum number of edges in an H-free graph on n vertices is defined
as the Turán number of H, denoted by ex(n,H). Considerable focus has been directed
toward the Turán number on cycles. Füredi and Gunderson [6] determined ex(n,C2k+1)
for n 󰃍 1 and 2k+1 󰃍 5. Ore [14] proved that ex(n,Cn) 󰃑

󰀃
n−1
2

󰀄
+1. However, the exact

value of ex(n,C2k) is still open.
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Let G1 and G2 be two graphs. We denote the union of k disjoint copies of a graph G
by kG. The join of two disjoint graphs G1 and G2, denoted by G1 ∨G2, is obtained from
the disjoint union G1 ∪ G2 by joining each vertex of G1 to each vertex of G2. Let A(G)
be the adjacency matrix of a connected graph G, and ρ(G) be its spectral radius, i.e., the
maximum modulus of eigenvalues of A(G). Let SPEX(n,H) be the set of graphs on n
vertices with maximum spectral radius among graphs not containing a subgraph inH. For
long cycles, Fiedler and Nikiforov [5] determined that SPEX(n,Cn) = {K1∨(Kn−2∪K1)}.
Only recently, Ge and Ning [7] proved that SPEX(n,Cn−1) = {K1 ∨ (Kn−3 ∪K2)}. For
more information on relationships between the spectral radius and existence of long cycles
in a graph, the readers may refer to [9].

A graph is called planar if it can be drawn in the plane with no pair of edges cross-
ing, and such drawing is called a plane graph. Let spexP(n,H) denote the maximum
spectral radius of the adjacency matrix of any H-free planar graphs on n vertices, and
SPEXP(n,H) denote the set of extremal graphs with respect to spexP(n,H). Let tC be
the family of t vertex-disjoint cycles without length restriction. Tait and Tobin [19] proved
that K2 ∨ Pn−2 is the spectral extremal graph among all planar graphs with sufficiently
large n. This implies that the extremal graphs in both SPEXP(n, tCℓ) and SPEXP(n, tC)
are K2 ∨ Pn−2 for t 󰃍 3, ℓ 󰃍 3. Only very recently, Fang, Lin and Shi [4] determined
spexP(n, tCℓ) and spexP(n, tC) and characterized the unique extremal graph with suffi-
ciently large n for 1 󰃑 t 󰃑 2 and ℓ 󰃍 3, respectively. Zhai and Liu [22] characterized the
extremal graphs in SPEXP(n,H) when H is the family of k edge-disjoint cycles.

Studying the existence of long cycles in planar graphs is an intriguing subject. The
pioneering result in this area was established by Whitney [20], demonstrating that every
4-connected planar triangulation contains a Hamilton cycle. In 1956, Tutte [16] extended
this result to all 4-connected planar graphs. Subsequently, Thomassen [17], Thomas and
Yu [18] and Sanders [15] respectively proved that every 4-connected planar graph contains
a cycle of length n − 1, n − 2 and n − 3. In 1988, Malkevitch [10] posed a conjecture
concerning cycles of consecutive lengths in 4-connected planar graphs.

Conjecture 1. ([10]) Let G be a 4-connected planar graph on n vertices. If G contains
a cycle of length 4, then G contains a cycle of length ℓ for every ℓ ∈ {n, n− 1, . . . , 3}.

Later on, Chen, Fan and Yu [2] found a counterexample that the line graph of a
cyclically 4-edge-connected cubic planar graph with girth at least 5 contains no cycle of
length 4. Furthermore, they proposed the following weaker conjecture and demonstrated
that every 4-connected planar graph contains a cycle of length ℓ for every ℓ ∈ {n− 4, n−
5, n− 6}.

Conjecture 2. ([2]) Let G be a 4-connected planar graph on n vertices. Then G contains
a cycle of length ℓ for every ℓ ∈ {n, n− 1, . . . , n− 25} with ℓ 󰃍 3.

In 2009, Cui [3] proved the Conjecture 2 holds for ℓ = n− 7. Motivated by the study
of the existence of cycles in graphs from the perspective of eigenvalues. Naturally, we
consider the existence of a long cycle from a spectral perspective in a planar graph and
pose the following problem.
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Problem 3. What is the tight spectral radius condition for the existence of a long cycle
in a planar graph?

In this paper, we address Problem 3 by presenting preliminary findings focusing on
the spectral radius. In 2008, Nikiforov [12] posed the following open problem in spectral
graph theory as an analogue to the classical theorems on cycles of consecutive lengths by
Bondy and Bollobás.

Problem 4. What is the maximum C such that for all positive ε < C and sufficiently

large n, every graph G of order n with ρ(G) >
󰁴

⌊n2

4
⌋ contains a cycle of length ℓ for

every integer 3 󰃑 ℓ 󰃑 (C − ε)n?

The first contribution to the above problem is due to Nikiforov [12] who showed that
C 󰃍 1

320
, and was improved to C 󰃍 1

160
by Peng and Ning [13]. Only very recently, Zhai

and the second author [21] proved that the result holds for C 󰃍 1
7
and they further showed

that “sufficiently large n” condition can be deleted, Li and Ning [8], Zhang [24] respectively
improved these results to C 󰃍 1

4
and C 󰃍 1

3
. Motivated by the aforementioned spectral

extremal results pertaining to planar graphs, we delve into a spectral extremal problem
concerning planar graphs with consecutive cycles, as stated in the following theorem.

Theorem 5. Let G be a planar graph of order n and let k 󰃑 ⌊log2(n − 3)⌋ − 8 be
a non-negative integer, where n 󰃍 1.8 × 1017. If ρ(G) 󰃍 ρ(K2 ∨ (Pn−2k−4 ∪ 2Pk+1)),
then G contains a cycle of length ℓ for every ℓ ∈ {n − k, n − k − 1, . . . , 3} unless G ∼=
K2 ∨ (Pn−2k−4 ∪ 2Pk+1).

The rest of this paper is organized as follows. In Section 2, we introduce some prelim-
inaries that will be employed to prove our main result. In Section 3, we give the proof of
Theorem 5. In Section 4, we conclude some open problems for further study.

2 Preliminaries

For a vertex v ∈ V (G), the neighborhood of v is denoted by NG(v) = {u : uv ∈ E(G)},
and the degree of v is denoted by dG(v) = |NG(v)|. A linear forest is a disjoint union of
paths. For two non-negative integers n and a with n 󰃍 a + 3, let Ln,a denote the family
of linear forests of order n − 2 and size n − 3 − a. For simplicity, an isolated vertex is
referred to as a path of order 1. In order to obtain our main results, we first give the
following lemmas.

Lemma 6. Suppose n, a1 and a2 are three integers with n 󰃍 4 and 0 󰃑 a2 < a1 󰃑
√
2n−4
4

.
Let Li ∈ Ln,ai for each i ∈ {1, 2}. Then ρ(K2 ∨ L2) > ρ(K2 ∨ L1).

Proof. For each i ∈ {1, 2}, let Ei = E(Pn−2) \E(Li). Since Li ∈ Ln,ai , we have |Ei| = ai.
By the Perron-Frobenius theorem, there exists a positive eigenvector x = (x1, x2, . . . , xn)

T

corresponding to ρ := ρ(K2 ∨ L1) with maxu∈V (K2∨L1) xu = 1. Clearly, K2 ∨ L1 contains
exactly two dominating vertices, say u′ and u′′. Then xu′ = xu′′ = 1.
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Select an arbitrary vertex u ∈ V (L1). Note that L1 ∈ Ln,a1 . Then dL1(u) 󰃑 2, and
hence

2 = xu′ + xu′′ 󰃑 ρxu = xu′ + xu′′ +
󰁛

v∈NL1
(u)

xv = 2 +
󰁛

v∈NL1
(u)

xv 󰃑 4. (1)

Therefore, 2
ρ
󰃑 xu 󰃑 4

ρ
, which implies that

󰁓
v∈NL1

(u)

xv 󰃑 8
ρ
. According to (1), we obtain

xu ∈
󰀗
2

ρ
,
2

ρ
+

8

ρ2

󰀘
. (2)

Since K2,n−2 is a proper subgraph of K2 ∨ L1, we have

ρ > ρ(K2,n−2) =
√
2n− 4 󰃍 max{4a2, 2}.

Combining this with (2), we obtain

󰁛

uv∈E1

xuxv −
󰁛

uv∈E2

xuxv 󰃍 a1

󰀕
2

ρ

󰀖2

− a2

󰀕
2

ρ
+

8

ρ2

󰀖2

=
4(a1 − a2)

ρ2
− 8a2

ρ3
− 16a2

ρ4

󰃍 4

ρ2
− 2ρ

ρ3
− 4ρ

ρ4
=

2ρ− 4

ρ3
> 0.

Therefore,

ρ(K2 ∨ F2)− ρ(K2 ∨ F1) 󰃍
xT(A(K2 ∨ F2)− A(K2 ∨ F1))x

xTx

󰃍 2

xTx

󰀣
󰁛

uv∈E1

xuxv −
󰁛

uv∈E2

xuxv

󰀤
> 0,

as desired.

Lemma 7. Let n, n1, n2 and k be integers with n1 󰃍 n2 󰃍 k + 2 󰃍 2 and n 󰃍 2k+8 + 3,
and let L be a linear forest with |V (L)| = n− 2− n1 − n2. Then

ρ(K2 ∨ (Pn1+n2−(k+1) ∪ Pk+1 ∪ L)) > ρ(K2 ∨ (Pn1 ∪ Pn2 ∪ L)).

Proof. Assume that Pn1 := u1u2 · · · un1 and Pn2 := w1w2 · · ·wn2 . By the Perron-Frobenius
theorem, there exists a positive eigenvector x = (x1, x2, . . . , xn)

T corresponding to ρ :=
ρ(K2 ∨ (Pn1 ∪ Pn2 ∪ L)) with maxu∈V (K2∨(Pn1∪Pn2∪L)) xu = 1. Since K2,n−2 is a proper

subgraph of K2∨ (Pn1 ∪Pn2 ∪L), we get ρ > ρ(K2,n−2) =
√
2n− 4. Furthermore, we have

the following claim.
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Claim 8. Let i be a positive integer. Set Ai = [2
ρ
− 8×2i

ρ2
, 2
ρ
+ 8×2i

ρ2
] and Bi = [−8×2i

ρ2
, 8×2i

ρ2
].

Then
(i) for any i ∈ {1, . . . , ⌊k+2

2
⌋}, ρi(xui+1

− xui
) ∈ Ai and ρi(xwi+1

− xwi
) ∈ Ai;

(ii) for any i ∈ {1, . . . , ⌊k+3
2
⌋}, ρi(xui

− xwi
) ∈ Bi.

Proof. (i) We will proceed with the proof by using induction on i. Clearly,

ρxuj
=

󰁛

u∼uj

u∈V (G)

xu =

󰀫
2 + xu2 , if j = 1,

2 + xuj−1
+ xuj+1

, if 2 󰃑 j 󰃑 n1 − 1.
(3)

By using a similar analysis as (2), we have

ρ(xuj+1
− xuj

) =

󰀫
xu1 + xu3 − xu2 ∈ A1, if j = 1,

(xuj
− xuj−1

) + (xuj+2
− xuj−1

) ∈ B1, if 2 󰃑 j 󰃑 n1 − 2.
(4)

So the result is true when i = 1. Next, assume that 2 󰃑 i 󰃑 ⌊k+2
2
⌋, which implies that

k 󰃍 2i− 2. For i 󰃑 j 󰃑 n1 − i− 1, we get ρ(xuj+1
− xuj

) = (xuj
− xuj−1

) + (xuj+2
− xuj−1

),
and hence

ρi(xuj+1
− xuj

) = ρi−1(xuj
− xuj−1

) + ρi−1(xuj+2
− xuj−1

). (5)

By the induction hypothesis, it follows that

ρi−1(xui
− xui−1

) ∈ Ai−1 and ρi−1(xui+2
− xui−1

) ∈ Bi−1.

According to (5) and setting j = i, we have ρi(xui+1
− xui

) ∈ Ai, as desired. If i + 1 󰃑
j 󰃑 n1 − i− 1, then by the induction hypothesis,

ρi−1(xuj
− xuj−1

) ∈ Bi−1 and ρi−1(xuj+2
− xuj−1

) ∈ Bi−1.

Again by (5), we can deduce that ρi(xuj+1
− xuj

) ∈ Bi−1, as desired. Thus, for any
i ∈ {1, . . . , ⌊k+2

2
⌋}, we have

ρi(xuj+1
− xuj

) ∈
󰀫
Ai, if j = i,

Bi, if i+ 1 󰃑 j 󰃑 n1 − i− 1.

This completes the proof of ρi(xui+1
− xui

) ∈ Ai.
The proof of ρi(xwi+1

− xwi
) ∈ Ai is similar to that of ρi(xui+1

− xui
) ∈ Ai and thus

omitted here.
(ii) For any i ∈ {1, . . . , ⌊k+3

2
⌋} and j ∈ {i, . . . , n2 − i}, we only need to show that

ρi(xuj
− xwj

) ∈ Bi. Obviously

ρxwj
=

󰁛

w∼wj

w∈V (G)

xw =

󰀫
2 + xw2 , if j = 1,

2 + xwj−1
+ xwj+1

, if 2 󰃑 j 󰃑 n2 − 1.
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Combining this with (2) and (3), we obtain

ρ(xuj
− xwj

) =

󰀫
xu2 − xw2 ∈ B1, if j = 1,

(xuj−1
− xwj−1

) + (xuj+1
− xwj+1

) ∈ B1, if 2 󰃑 j 󰃑 n2 − 1.

By induction on i. We have already observed that the assertion holds for i = 1, so assume
that i 󰃍 2. If i 󰃑 j 󰃑 n2 − i, then ρ(xuj

− xwj
) = (xuj−1

− xwj−1
) + (xuj+1

− xwj+1
), and

hence
ρi(xuj

− xwj
) = ρi−1(xuj−1

− xwj−1
) + ρi−1(xuj+1

− xwj+1
). (6)

By the induction hypothesis, we have

ρi−1(xuj−1
− xwj−1

) ∈ Bi−1 and ρi−1(xuj+1
− xwj+1

) ∈ Bi−1.

Combining this with (6), we have ρi(xuj
− xwj

) ∈ Bi.

Since n 󰃍 2k+8 + 3, we have ρ 󰃍
√
2n− 4 > 8× 2

k+3
2 . For any i 󰃑 k+3

2
, we get

2

ρi+1
− 8× 2i

ρi+2
>

󰀕
2

ρi+1
− 8× 2i

ρi+2

󰀖
− 8× 2i

ρi+2
> 0.

Combining this with Claim 8, we obtain

xui+1
− xui

󰃍 2

ρi+1
− 8× 2i

ρi+2
> 0 (7)

and

xui+1
− xwi

= (xui+1
− xui

) + (xui
− xwi

) 󰃍
󰀕

2

ρi+1
− 8× 2i

ρi+2

󰀖
− 8× 2i

ρi+2
> 0 (8)

for any i 󰃑 ⌊k+2
2
⌋. Similarly,

xwi+1
> xwi

and xwi+1
> xui

for any i 󰃑
󰀙
k + 2

2

󰀚
. (9)

Denote by H1 = Pn1 ∪ Pn2 ∪ L and H2 = Pn1+n2−(k+1) ∪ Pk+1 ∪ L. Let t1 and t2 be
two non-negative integers with t1+ t2 = k+1. Let H∗ be the graph obtained from H1 by
deleting edges ut1ut1+1 and wt2wt2+1, and adding edges ut1wt2 and ut1+1wt2+1. Note that
H∗ ∼= H2 as t1 + t2 = k + 1. Then

ρ(K2 ∨H2)− ρ(K2 ∨H1) 󰃍
xT(A(K2 ∨H2)− A(K2 ∨H1))x

xTx

󰃍 2

xTx
(xut1+1 − xwt2

)(xwt2+1 − xut1
). (10)

Next, we will divide the proof into the following two cases basing on the parity of k.
Case 1. k is odd.
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Set t1 = k+1
2
. Since t1 + t2 = k + 1, it follows that t2 = k+1

2
. By (8) and (9), we

get xut1+1 > xwt2
and xwt2+1 > xut1

. Combining this with (10), we can deduce that
ρ(K2 ∨H2) > ρ(K2 ∨H1).
Case 2. k is even.

We first consider xu k+2
2

󰃍 xw k+2
2

. Let t1 = k
2
. Then t2 = k+2

2
due to t1 + t2 = k + 1.

Since xu k+2
2

󰃍 xw k+2
2

, it follows that xut1+1 󰃍 xwt2
. From (9), we can get xwt2+1 > xwt2

and

xwt2
> xut1

. This implies that xwt2+1 > xut1
. By (10), we have ρ(K2 ∨H2) 󰃍 ρ(K2 ∨H1).

If ρ(K2 ∨H2) = ρ(K2 ∨H1), then x is also a positive eigenvector of ρ(K2 ∨H2). Hence,
ρ(K2∨H2)xwt2

= 2+xwt2−1+xut1
. On the other hand, ρ(K2∨H1)xwt2

= 2+xwt2−1+xwt2+1 .
This implies that xwt2+1 = xut1

, a contradiction. Therefore, ρ(K2 ∨H2) > ρ(K2 ∨H1).

Next, we consider xu k+2
2

< xw k+2
2

. Let t1 = k+2
2
. Then by t1 + t2 = k + 1, we have

t2 = k
2
. Since xu k+2

2

< xw k+2
2

, it follows that xwt2+1 > xut1
. By (7) and (8), we can get

xut1+1 > xut1
and xut1

> xwt2
. Thus, xut1+1 > xwt2

. Combining this with (10), we have
ρ(K2 ∨H2) > ρ(K2 ∨H1).

This completes the proof.

3 Proof of Theorem 5

Before proceeding, we describe some notation and terminology necessary for stating and
proving results. Let G be a planar graph with vertex set V (G) and edge set E(G). The
order and size of G are denoted by |V (G)| and |E(G)| = e(G), respectively. For two
disjoint subsets X, Y ⊂ V (G), we denote by G[X, Y ] the bipartite subgraph of G with
vertex set X ∪ Y and edges having one endpoint in X and the other endpoint in Y . The
subgraph of G induced by X, denoted by G[X], is the graph with vertex set X and an
edge set consisting of all edges of G that have both ends in X. Let NX(v) := NG(v) ∩X
and dX(v) := |NX(v)|. Define e(X, Y ) as the number of edges in the bipartite subgraph
G[X, Y ], and e(X) as the number of edges in the subgraph G[X]. Moreover,

e(X) 󰃑 3|X|− 6 and e(X, Y ) 󰃑 2(|X|+ |Y |)− 4. (11)

Denote by Gn,k = ∪
3󰃑ℓ󰃑n−k

{ G | G is a Cℓ-free planar graph of order n}. Let Cn,k be

the set of graphs attaining the maximum spectral radii over all graphs in Gn,k. We first
give a lemma which plays a key role in the proof of Theorem 5.

Lemma 9. Let k be a non-negative integer and n 󰃍 max{1.8 × 1017, 2k+8 + 3}. Then
every graph in Cn,k contains a spanning subgraph K2 ∨ (n− 2)K1.

Proof. Choose an arbitrary graph G ∈ Cn,k and let ρ = ρ(G). By the Perron-Frobenius
theorem, there exists a positive eigenvector x = (x1, x2, . . . , xn)

T corresponding to ρ with
maxu∈V (G) xu = 1. Let u′ ∈ V (G) with xu′ = 1. Clearly, K2,n−2 is planar and Cn−k-free,
which implies K2,n−2 ∈ Gn,k. Then

ρ 󰃍 ρ(K2,n−2) =
√
2n− 4. (12)

We proceed with a sequence of claims.
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Claim 10. Let M = {u ∈ V (G) | xu 󰃍 1
104

}. Then |M | 󰃑 n
104

.

Proof. For each vertex u ∈ V (G), by (12) and the definition of M , we get

√
2n− 4

104
󰃑 ρxu =

󰁛

v∈NG(u)

xv 󰃑 dG(u). (13)

Therefore,

|M |
√
2n− 4

104
󰃑

󰁛

u∈M

dG(u) 󰃑
󰁛

u∈V (G)

dG(u) 󰃑 2(3n− 6).

Since n 󰃍 1.8× 1017, we have |M | 󰃑 3× 104
√
2n− 4 󰃑 n

104
.

Claim 11. For any u ∈ M , we have dG(u) 󰃍 (xu − 8
104

)n.

Proof. Since G is planar, by Claim 10 and (11), we have e(M) 󰃑 3|M | 󰃑 3n
104

, and hence

e(NG(u) \M,M) 󰃑 2(|NG(u) \M |+ |M |)− 4 󰃑 2dG(u) +
2n

104
.

Combining the above two inequalities gives

󰁛

v∈M

dNG(u)(v) =
󰁛

v∈M

dNG(u)∩M(v) +
󰁛

v∈M

dNG(u)\M(v)

󰃑 2e(M) + e(NG(u) \M,M)

󰃑 2dG(u) +
8n

104
. (14)

On the other hand,

󰁛

v∈V (G)\M

dNG(u)(v)xv 󰃑
󰁛

v∈V (G)

dG(v)

104
󰃑 2e(G)

104
󰃑 6n

104
. (15)

Combining this with (14), we obtain that

(2n− 4)xu 󰃑 ρ2xu =
󰁛

v∈V (G)

dNG(u)(v)xv 󰃑 2dG(u) +
14n

104
, (16)

which yields that dG(u) 󰃍 (xu − 8
104

)n as n 󰃍 1.8× 1017, as desired.

Claim 12. Assume that u′′ = maxu∈V (G)\{u′} xu. Then xu′′ 󰃍 997
1000

.

Proof. By Claim 11, we have dV (G)\M(u′) 󰃍 dG(u
′)− |M | 󰃍 (1− 9

104
)n. It follows that

e(NG(u
′) \M,M \ {u′}) = e(NG(u

′) \M,M)− dV (G)\M(u′)

󰃑 (2n− 4)− (1− 9

104
)n 󰃑 (1 +

9

104
)n. (17)
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Recall that e(M) 󰃑 3|M | 󰃑 3n
104

. Thus,

󰁛

v∈M\{u′}

dNG(u)∩M(v)xv 󰃑
󰁛

v∈M

dM(v) = 2e(M) 󰃑 6n

104
.

Assume that u′′ = maxu∈V (G)\{u′} xu. Consequently,

󰁛

v∈M

dNG(u)(v)xv =
󰁛

v∈M\{u′}

dNG(u)∩M(v)xv +
󰁛

v∈M\{u′}

dNG(u)\M(v)xv + dG(u
′)xu′

󰃑 6n

104
+ e(NG(u) \M,M \ {u′})xu′′ + n.

Setting u = u′ and combining this with (15), we obtain

2n− 4 󰃑 ρ2xu′ 󰃑 12n

104
+ e(NG(u

′) \M,M \ {u′})xu′′ + n,

which leads to that e(NG(u
′) \M,M \ {u′})xu′′ 󰃍 (1 − 14

104
)n. This, together with (17),

gives that xu′′ 󰃍 (1− 14
104

)n

(1+ 9
104

)n
󰃍 997

103
, as desired.

Note that xu′ = 1 and xu′′ 󰃍 997
1000

. By Claim 11, we have

dG(u
′) 󰃍 999n

1000
and dG(u

′′) 󰃍 996n

1000
. (18)

Now, let R = NG(u
′) ∩ NG(u

′′) and S = V (G) \ ({u′, u′′} ∪ R). So |S| 󰃑 (n − dG(u
′)) +

(n− dG(u
′′)) 󰃑 5n

1000
. Next, we show the eigenvector entries of vertices in V (G) \ {u′, u′′}

are small.

Claim 13. Let u ∈ V (G) \ {u′, u′′}. Then xu 󰃑 3
100

.

Proof. We assert that for each u ∈ S, u is adjacent to at most one of u′ and u′′, and
is adjacent to at most 2 vertices in R. Otherwise, G would contains a copy of K3,3,
contradicting that G is planar. Thus,

ρ
󰁛

u∈S

xu 󰃑
󰁛

u∈S

dG(u) 󰃑
󰁛

u∈S

(3 + dS(u)) 󰃑 3|S|+ 2e(S) < 9|S| 󰃑 45n

1000
,

where the second-to-last inequality holds by e(S) < 3|S|. Dividing both sides by ρ, we
get

󰁓
u∈S

xu 󰃑 45n
1000ρ

. Since G is K3,3-free, we get u is adjacent to at most 4 vertices in

R ∪ {u′, u′′} for any u ∈ V (G) \ {u′, u′′}. It follows that

ρxu =
󰁛

w∼u

xw 󰃑 4 +
󰁛

w∼u
w∈S

xw 󰃑 4 +
󰁛

w∈S

xw 󰃑 4 +
45n

1000ρ
,

and hence xu 󰃑 4
ρ
+ 45n

1000ρ2
. Combining this with (12), we get xu 󰃑 3

100
.
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Claim 14. If G[R] ∼= ∪t
i=1Pni

, where t 󰃍 2 and n1 󰃍 n2 󰃍 · · · 󰃍 nt, then G[{u′, u′′} ∪ R]
is Cn−k-free if and only if n1 + n2 󰃑 n− k − 3.

Proof. We can find that the longest cycle in K2∨G[R] is of length n1+n2+2. Moreover,
K2∨(Pn1∪Pn2) contains a cycle of length ℓ for every ℓ ∈ {3, 4, . . . , n1+n2+2}. Therefore,
n1 + n2 + 2 󰃑 n− k − 1 if and only if K2 ∨G[R] is Cn−k-free, as desired.

Let G̃ be a planar embedding of G[{u′, u′′}∪R], and let u1, u2, . . . , u|R| be the vertices

around u′′ in clockwise order in G̃ with subscripts interpreted modulo |R| (see Fig. 1).

u1 u2

. . .
ui ui+1

. . .
u|R|−1 u|R|

u′

u′′

Figure 1: A local structure of G̃.

Claim 15. S is empty.

Proof. Suppose to the contrary that S is non-empty. Let |S| = s 󰃍 1. Recall that for
each u ∈ S, u is adjacent to at most one of u′ and u′′, and is adjacent to at most 2 vertices
in R. Since G is K3,3-minor free, we can see that G[R] is K1,3-minor free. This indicates
that G[R] is either isomorphic to C|R|, or a disjoint union of paths and isolated vertices.
Since G[S] is planar, there exists a vertex v1 ∈ S with dS(v1) 󰃑 5. Let S0 = S and
S1 = S0 \ {v1}. Repeat this step, we obtain a sequence of sets S0, S1, . . . , Ss−1 such that
dSi−1

(vi) 󰃑 5 and Si = Si−1 \ {vi} for each i ∈ {1, 2, . . . , s− 1}. By Claims 12 and 13, we
get

󰁛

w∼vi
w∈{u′,u′′}∪R∪Si−1

xw 󰃑 1 +
󰁛

w∼vi
w∈R

xw +
󰁛

w∼vi
w∈Si−1

xw 󰃑 121

100
< xu′ + xu′′ − 7

10
. (19)

The rest of the proof will be divided into two cases according to the value of |R|.
Case 1. |R| 󰃍 n− k − 2.

Since G ∈ Cn,k and |R| 󰃍 n − k − 2, it follows that G[R] is a disjoint union of
paths and isolated vertices. Furthermore, G[R] is Pn−k−2-free. It remains the case that
G[R] ∼= ∪t

i=1Pni
, where t 󰃍 2 and n1 󰃍 n2 󰃍 · · · 󰃍 nt. Then there exists an integer

i0 󰃑 |R| such that u′ui0u
′′ui0+1u

′ is a face of G̃. Let G∗ be the graph obtained from G̃ by
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joining each vertex in S to each vertex in {u′, u′′} and making these edges cross the face
u′ui0u

′′ui0+1u
′. Clearly, G∗ is planar.

Next we show that G∗ ∈ Gn,k. Since G[R] ∼= ∪t
i=1Pni

, we have G∗[R ∪ S] = ∪t
i=1Pni

∪
(|S| · P1). Therefore, the longest cycle in G∗ is of length n1 + n2 + 2 󰃑 n − k − 1. By
Claim 14, we get G∗ is Cn−k-free. This indicates that G

∗ ∈ Gn,k.
One can observe that in the graph G the set of edges incident to vertices in S is

∪s
i=1{wvi|w ∈ N{u′,u′′}∪R∪Si−1

(vi)}. Combining this with (19), we have

ρ(G∗)− ρ(G) 󰃍 xT(A(G∗)− A(G))x

xTx

=
2

xTx

s󰁛

i=1

xvi

󰀳

󰁅󰁃(xu′ + xu′′)−
󰁛

w∼vi
w∈{u′,u′′}∪R∪Si−1

xw

󰀴

󰁆󰁄 > 0,

contradicting that G ∈ Cn,k.
Case 2. |R| 󰃑 n− k − 3.

Since G is planar, G[R] is either isomorphic to C|R| or a linear forest. Suppose first
that G[R] ∼= C|R|. Since G is planar, we have u′u′′ /∈ E(G). Let G∗ be the graph obtained

from G̃ by deleting the edges u1u2, u2u3, adding the edge u′u′′, joining each vertex in S
to each vertex in {u′, u′′} and making these edges cross the face u′u2u

′′u3u
′. Clearly, G∗

is planar and the longest cycle in G∗ is of length |R|+ 2. Since |R| 󰃑 n− k − 3, we have
|R|+ 2 󰃑 n− k − 1, which implies that G∗ ∈ Gn,k. By Claim 13 and (19), we get

ρ(G∗)− ρ(G) 󰃍 xT(A(G∗)− A(G))x

xTx

󰃍 2

xTx

󰀳

󰁅󰁃xu′xu′′−xu2(xu1 + xu3) +
s󰁛

i=1

xvi

󰀳

󰁅󰁃(xu′ + xu′′)−
󰁛

w∼vi
w∈{u′,u′′}∪R∪Si−1

xw

󰀴

󰁆󰁄

󰀴

󰁆󰁄

> 0,

contradicting that G ∈ Cn,k. Thus, G[R] is a linear forest. Based on this, we discuss the
following in two subcases.
Subcase 2.1. |R| 󰃑 n− k − 4.

If u′u′′ ∈ E(G), then there exists a face F in G̃ such that u′u′′ ∈ E(F ). On the other
hand, if u′u′′ /∈ E(G), then there exists an integer i such that F := u′uiu

′′ui+1u
′ is a face

of G̃. In either case, we can insert |S| isolated vertices in F , and let G∗ be the graph
obtained from G̃ by connecting each vertex in S to each vertex in {u′, u′′} and making
these edges cross the face F . Clearly, G∗ is planar, and the longest cycle of G∗ is of length
|R| + 3 󰃑 n − k − 1 as |R| 󰃑 n − k − 4. Then G∗ ∈ Gn,k. Note that G ⊆ P|R| and
|R| 󰃑 n−k− 4. A similar discussion in Case 1 shows that ρ(G∗) > ρ(G), a contradiction.
Subcase 2.2. |R| = n− k − 3.

Suppose first that G[R] is a proper subgraph of Pn−k−3. Let G∗ be the graph that
defined as in the proof of Case 1. Similar arguments in the proof of Case 1 show that
G∗ ∈ Gn,k and ρ(G∗) > ρ(G), which gives a contradiction.
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It remains the case G[R] ∼= Pn−k−3. Clearly, s = n − 2 − |R| = k + 1. We first prove
that xvi 󰃍 1

ρ
for each vi ∈ S. Otherwise, there exists a vertex vi0 ∈ S such that xvi0

< 1
ρ
,

and hence ρxvi0
=

󰁓
w∈NG(vi0 )

xw < 1. Let G∗∗ be the graph obtained from G by deleting all

edges incident to vi0 and adding the edge u′vi0 . Clearly, G
∗∗ is planar and Cn−k-free, and

so G∗∗ ∈ Gn,k. However,

ρ(G∗∗)− ρ(G) 󰃍 xT(A(G∗∗)− A(G))x

xTx

󰃍 2

xTx
xvi0

󰀳

󰁃xu′ −
󰁛

w∈NG(vi0 )

xw

󰀴

󰁄 > 0,

contradicting that G ∈ Cn,k. Hence, xvi 󰃍 1
ρ
for each vi ∈ S.

Recall that dR(vi) 󰃑 2 for any vi ∈ S. Thus,

e(S,R) =
󰁛

vi∈S

dR(vi) 󰃑 2|S| = 2(k + 1).

Let R′ be the set of vertices in R incident to vertices in S. One can observe that |R′| 󰃑
e(S,R) 󰃑 2(k + 1), and the subgraph G[R \ R′] contains at most |R′| + 1 paths. On the
other hand, since |R| = n− k − 3, we have

|R \R′| 󰃍 |R|− |R′| 󰃍 (n− k − 3)− 2(k + 1) = n− 3k − 5.

By the pigeonhole principle, we have

|R \R′|
|R′|+ 1

󰃍 n− 3k − 5

2(k + 1)
󰃍 3,

where the last inequality holds as n 󰃍 2k+8 + 3 󰃍 9k + 10. This implies that G[R \ R′]
contains a path of order 3, say P := ui0−1ui0ui0+1. By the definition of R′, we can see
that NS(u) = ∅ for any u ∈ V (P ). Then,

ρxui
=

󰁛

u∈NG(ui)

xu = xu′ + xu′′ +
󰁛

u∈NR(ui)

xu 󰃑 dG(ui) 󰃑 4

for each i ∈ {i0 − 1, i0, i0 + 1}. Consequently, xui
󰃑 4

ρ
, and hence

xui0−1
xui0

+ xui0
xui0+1

󰃑 32

ρ2
. (20)

Let G∗∗∗ be the graph obtained from G by first deleting the edges ui0−1ui0 , ui0ui0+1

and all the edges incident to at least one vertex in S, and then adding the edges viu
′ and
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viu
′′ for each vi ∈ S and making these edges cross the face u′ui0u

′′ui0+1u
′. Clearly, G∗∗∗ is

planar and Cn−k-free, and hence G∗∗∗ ∈ Gn,k. Then

ρ(G∗∗∗)− ρ(G) 󰃍 xT(A(G∗∗∗)− A(G))x

xTx

󰃍 2

xTx

󰀳

󰁅󰁃
k+1󰁛

i=1

xvi

󰀳

󰁅󰁃(xu′ + xu′′)−
󰁛

w∼vi
w∈{u′,u′′}∪R∪Si−1

xw

󰀴

󰁆󰁄− xui0−1
xui0

− xui0
xui0+1

󰀴

󰁆󰁄 . (21)

Combining this with (19)-(21), we have

ρ(G∗∗∗)− ρ(G) 󰃍 2

xTx

󰀕
k + 1

ρ

7

10
− 32

ρ2

󰀖
> 0,

contradicting that G ∈ Cn,k.
Therefore, S is empty.

Claim 16. u′u′′ ∈ E(G).

Proof. Suppose to the contrary that u′u′′ /∈ E(G). Note that G ∈ Cn,k. Thus, G[R] is
Pn−k−2-free. Then there exists some integer i0 ∈ {1, 2, . . . , n − 2} such that ui0ui0+1 /∈
E(G̃[R]). This implies that u′ui0u

′′ui0+1u
′ is a face in G̃.

Let G∗ be the graph obtained from G̃ by adding the edge u′u′′ and making u′u′′

cross the face u′ui0u
′′ui0+1u

′. Clearly, G∗ is a plane graph and ρ(G∗) > ρ(G). We next
assert that G∗ ∈ Gn,k. Otherwise, G∗ contains a subgraph H isomorphic to Cℓ for every
ℓ ∈ {3, . . . , n−k}. Clearly, u′u′′ ∈ E(H). Assume that H = u′u′′u′

1u
′
2 . . . u

′
ℓ−2u

′. However,
an ℓ-cycle u′u′

1u
′′u′

2 . . . u
′
ℓu

′ is already present in G, a contradiction. This implies that
G∗ ∈ Gn,k. But this contradicts the maximality of G. Therefore, u′u′′ ∈ E(G).

From Claims 15 and 16, we can see that G contains a copy of K2 ∨ (n − 2)K1. This
completes the proof of Lemma 9.

By Lemma 9, we find that u′ and u′′ are dominating vertices of G, yielding xu′ = xu′′ =
1. With the above necessary tools and properties of a graph with maximum spectral radii
in Gn,k, we are now prepared to prove the existence of cycles of consecutive lengths from
a spectral perspective.

Proof of Theorem 5. Assume that G ∈ Cn,k. By Lemma 9, G = K2 ∨ G[R], where
G[R] ∈ Ln,a for some a 󰃍 0. We first prove a = 2. Set G∗ = K2∨ (Pn−2k−4∪Pk+1∪Pk+1).
Clearly, Pn−2k−4 ∪ Pk+1 ∪ Pk+1 ∈ Ln,2 and the longest cycle in G∗ is of length n− k − 1.
This indicates that G∗ ∈ Gn,k and ρ(G) 󰃍 ρ(G∗). By Lemma 6, we obtain 0 󰃑 a 󰃑 2.
If a 󰃑 1, then G contains a copy of Cℓ for every ℓ ∈ {n, n − 1, . . . , 3}. So, G /∈ Gn,k, a
contradiction. Hence a = 2.

Since G[R] ∈ Ln,2, we may assume that G[R] ∼= Pn1 ∪ Pn2 ∪ Pn3 , where n1 󰃍 n2 󰃍 n3

and n1 + n2 + n3 = n − 2. Since G ∈ Gn,k, we have n1 + n2 󰃑 n − k − 3, and hence
n2 󰃍 n3 󰃍 k + 1.
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Now, we prove that n2 = k + 1. Suppose to the contrary that n2 󰃍 k + 2. Let
L′ = Pn′

1
∪ Pn′

2
∪ Pn′

3
, where n′

1 = n1 + n2 − (k + 1), n′
2 = k + 1 and n′

3 = n3. Clearly,
n′
1 󰃍 n′

3 󰃍 n′
2 and n′

1+n′
3 = n− k− 3. By Claim 14, K2 ∨L′ ∈ Gn,k. However, by Lemma

7, we have ρ(K2 ∨ L′) > ρ(G), contradicting that G ∈ Cn,k. Hence, n2 = k + 1.
Recall that k + 1 󰃑 n3 󰃑 n2 = k + 1. Thus, n3 = k + 1. This implies that G ∼=

K2 ∨ (Pn−2k−4 ∪ 2Pk+1), completing the proof of Theorem 5.

4 Concluding remarks

The result below follows directly from Theorem 5 with k = 0, and is therefore presented
as a corollary without requiring a separate proof.

Corollary 17. Let G be a planar graph of order n with n 󰃍 1.8 × 1017. If ρ(G) 󰃍
ρ(K2 ∨ (Pn−4 ∪ 2P1)). Then G contains a cycle of length ℓ for every ℓ ∈ {n, n− 1, . . . , 3}
unless G ∼= K2 ∨ (Pn−4 ∪ 2P1).

Theorem 5 implies that for ℓ ∈ [n− ⌊log2(n− 3)⌋+ 8, n] and n 󰃍 1.8× 1017, we have
SPEXP(n,Cl) = K2∨(Pn−2k−4∪2Pk+1). Nikiforov [11] proved that SPEX(n,C4) = {K1∨
n−1
2
K2} for n is odd, while Zhai and Wang [23] proved SPEX(n,C4) = {K1∨(K1∪ n−2

2
K2)}

for n is even. Observe that K1 ∨ n−1
2
K2 and K1 ∨ (K1 ∪ n−2

2
K2) are both planar graphs.

Thus, SPEXP(n,C4) = SPEX(n,C4). For ℓ = 3 and 5 󰃑 ℓ 󰃑 f(n), Fang, Lin and
Shi [4] characterized the spectral extremal graphs among Cℓ-free planar graphs, where
f(n) = min{⌊2(log2(n− 3)− log2 9)⌋ + 2, ⌊ 8

25

󰁳
2(n− 2)⌋ + 2}. It remains mysterious to

determine the extremal graph with the maximum spectral radius among Cℓ-free planar
graphs for some ℓ ∈ [f(n), n− ⌊log2(n− 3)⌋+ 8]. This motivates us to propose the
following problem.

Problem 18. For sufficiently large n, what are the tight spectral conditions for the
existence of Cℓ in planar graphs, where ℓ ∈ [f(n), n− ⌊log2(n− 3)⌋+ 8].
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