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Abstract

The concept of avoidable paths in graphs was introduced by Beisegel, Chud-
novsky, Gurvich, Milanič, and Servatius in 2019 as a common generalization of
avoidable vertices and simplicial paths. In 2020, Bonamy, Defrain, Hatzel, and
Thiebaut proved that every graph containing an induced path of order k also con-
tains an avoidable induced path of the same order. They also asked whether one
could generalize this result to other avoidable structures, leaving the notion of avoid-
ability up to interpretation. In this paper we address this question: we specify the
concept of avoidability for arbitrary graphs equipped with two terminal vertices.
We provide both positive and negative results, some of which are related to a re-
cent work by Chudnovsky, Norin, Seymour, and Turcotte in 2024. We also discuss
several open questions.
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1 Introduction

1.1 Motivation

A graph is chordal if it contains no induced cycles of length at least four. A classical
result of Dirac from 1961 [10] states that every (non-null) chordal graph has a simplicial
vertex, that is, a vertex whose neighborhood is a clique. This result was generalized in
the literature in various ways.

First, in 1976, Ohtsuki, Cheung, and Fujisawa [19] generalized Dirac’s result from the
class of chordal graphs to the class of all graphs using the concept of avoidable vertices. A
vertex v in a graph G is said to be avoidable if every induced 3-vertex path with midpoint
v is contained in an induced cycle. Ohtsuki et al. proved that an avoidable vertex is
inherently present in every (non-null) graph. In fact, it was later discovered that several
well-known graph searches such as LexBFS or LexDFS always end in an avoidable vertex
(see [4, 6, 20]).1

Second, in 2002, Chvátal, Rusu, and Shritaran [9] generalized Dirac’s result from the
class of chordal graphs to classes of graphs excluding all sufficiently long induced cycles,
by generalizing the concept of simpliciality from vertices to longer induced paths. An
extension of an induced path P in a graph G is any induced path in G that can be
obtained by extending P by one edge from each endpoint. An induced path in a graph G

1The term “avoidable vertex” was introduced by Beisegel, Chudnovsky, Gurvich, Milanič, and Ser-
vatius [2, 3]. Avoidable vertices were also called OCF-vertices in the literature (see [4, 5]).
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is said to be simplicial if it has no extensions. Chvátal et al. proved that for every positive
integer k, every graph without induced cycles of length at least k + 3 either contains no
induced k-vertex path, or contains a simplicial induced k-vertex path.

In 2019, Beisegel et al. [3] proposed a common generalization of all these results, by
introducing the concept of avoidable paths, a common generalization of avoidable vertices
and simplicial paths. An induced path P in a graph G is said to be avoidable if every
extension of P is contained in an induced cycle. Beisegel et al. conjectured that for every
positive integer k, an avoidable k-vertex path is inherently present in every graph that
contains an induced k-vertex path, and proved the statement for the case k = 2. The
general conjecture was proved in 2020 by Bonamy, Defrain, Hatzel, and Thiebaut [7]. A
further strengthening was given by Gurvich et al. [14], who showed that in every graph,
every induced path can be transformed into an avoidable one via a sequence of shifts
(where two induced k-vertex paths are said to be shifts of each other if their union is an
induced path with k + 1 vertices). In [14], analogous questions were also considered for
general (not necessarily induced) paths, isometric paths, trails, and walks.

Bonamy et al. concluded their paper [7] with a discussion on whether one can obtain
other avoidable structures. They pointed out that in some cases (e.g., for cliques) the
very notion of extension becomes unclear and formulated the following question.

Does there exist a family H of connected graphs, not containing any path, such
that any graph is either H-free or contains an avoidable element of H?

They left the notion of avoidability in this context up to interpretation.
In this paper we address the above question and suggest a framework for studying

avoidability in the context of arbitrary graphs and not only paths.

1.2 Our approach

In order to generalize the concept of an extension of a path to that of an arbitrary graph
H, the role of the endpoints of a path is taken by an arbitrary (but fixed) pair of vertices
s and t in H called roots. This naturally leads to a suitable definition of avoidability of
a two-rooted graph (H, s, t) (see Definition 1.3). Accordingly, we say that a two-rooted
graph (H, s, t) is inherent if every graph that contains a copy of H also has an avoidable
copy of (H, s, t) (see Definition 1.5). In this terminology, a result of Bonamy et al. [7]
states:

Theorem 1.1. All paths are inherent with respect to their endpoints.

We provide several necessary conditions for inherence. We do this by developing a
technique for proving non-inherence of two-rooted graphs, which we call the pendant
extension method. In particular, we show that the inherence of paths depends on the
choice of the two roots s and t.

On the positive side, we develop a technique for proving inherence. We apply this
method to prove Theorem 1.1. We indicate the following interesting open problem.
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Conjecture 1.2. Let P = (s, t, v) be a two-edge path. Then, the two-rooted path (P, s, t)
is inherent.

The conjecture can be expressed in a self-contained way as follows.

Conjecture 1.2 (reformulated). Every graph G is either a disjoint union of complete
graphs, or it contains an induced P3 = (s, t, v) with the following property: For any
selection of x ∈ N(s) and y ∈ N(t) such that {s, t, v, x, y} induces a fork2 in G, vertices
x, y lie in the same component of G− (N [{s, t, v}] \ {x, y}).

Despite the small size of the two-rooted graph, resolving this conjecture seems to be
difficult. Recently, Chudnovsky, Norin, Seymour, and Turcotte [8] proved the following
result related to the cops and robbers game.

If G is connected and P5-free, with α(G) ⩾ 3, then there is a three-vertex
induced path of G with vertices a, b, c in order, such that every neighbor of c
is also adjacent to one of a, b.

This shows that Conjecture 1.2 holds for P5-free graphs, and furthermore demonstrates
its relation to the cops and robbers game. We show that the conjecture holds for the C5-
free graphs.

In the next two subsections we give the precise definitions and state our main results.

1.3 Avoidability and inherence of two-rooted graphs

A two-rooted graph is a triple (Ĥ, ŝ, t̂) such that Ĥ is a graph and ŝ and t̂ are two (not
necessarily distinct) vertices of Ĥ. For convenience, and without loss of generality, we
will always assume for a two-rooted graph (Ĥ, ŝ, t̂) that dĤ(ŝ) ⩽ dĤ(t̂).

3

Given a two-rooted graph (Ĥ, ŝ, t̂), we refer to ŝ and t̂ as the s-vertex and the t-vertex
of (Ĥ, ŝ, t̂), respectively. Given a graph G and a two-rooted graph (Ĥ, ŝ, t̂), a copy of
(Ĥ, ŝ, t̂) in G is any two-rooted graph (H, s, t) such that H is an induced subgraph of G
for which there exists an isomorphism of Ĥ to H mapping ŝ to s and t̂ to t.

Given a graph G, a two-rooted graph (Ĥ, ŝ, t̂), and a copy (H, s, t) of it in G, an
extension of (H, s, t) in G is any two-rooted graph (H ′, s′, t′) such that H ′ is an induced
subgraph of G obtained from H by adding to it two pendant edges ss′ and tt′. In other
words, V (H ′) = V (H)∪{s′, t′}, vertices s′ and t′ are distinct, the graph obtained from H ′

by deleting s′ and t′ is H, and s and t are unique neighbors of s′ and t′ in H ′, respectively.
Furthermore, we say that an extension (H ′, s′, t′) of (H, s, t) in G is closable if there exists
an induced s′, t′-path in G having no vertex in common with NG[V (H ′)] except s′ and t′.

Definition 1.3. Let (H, s, t) be a copy of a two-rooted graph (Ĥ, ŝ, t̂) in a graph G. We
say that (H, s, t) is avoidable (in G) if all extensions of (H, s, t) in G are closable.

2For the definition of the fork graph, see Figure 3.10.
3Standard definitions from graph theory will be given in Section 2.
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In particular, a copy (H, s, t) of (Ĥ, ŝ, t̂) in G that has no extensions is trivially avoid-
able. Such a copy (H, s, t) will be called simplicial.

Note that if Ĥ is a path and ŝ and t̂ are its endpoints, the above definitions of an
extension of a copy of (Ĥ, ŝ, t̂) in a graph G, a closable extension, a simplicial copy, and an
avoidable copy coincide with the corresponding definitions for paths as used by Beisegel et
al. [3], Bonamy et al. [7], and Gurvich et al. [14], in agreement with Chvátal et al. [9]. In
particular, the definitions of simplicial and avoidable copies also generalize the definitions
of simplicial and avoidable vertices in a graph.

Remark 1.4. The reader may wonder why, in the definition of extension, vertices s′ and t′

are not allowed to be adjacent in G. In fact, even if they were, it would not affect avoid-
ability, as any such extension would be trivially closable. We keep the above definition in
order to be consistent with previous works [2, 3, 7, 14, 9].

Finally, we introduce the core definition of this paper.

Definition 1.5. A two-rooted graph (Ĥ, ŝ, t̂) is inherent if every graph G that contains
a copy of Ĥ also contains an avoidable copy of (Ĥ, ŝ, t̂).

The following concept provides a natural certificate of non-inherence.

Definition 1.6. Given a two-rooted graph (Ĥ, ŝ, t̂) and a graph G, we say that G confines
(Ĥ, ŝ, t̂) (or: is a confining graph for (Ĥ, ŝ, t̂)) if G contains a copy of Ĥ but no avoidable
copy of (Ĥ, ŝ, t̂).

1.4 Results

Using the pendant extension method, we develop the following necessary condition for
inherence.

Definition 1.7. A subcubic two-rooted tree is a two-rooted graph (Ĥ, ŝ, t̂) such that Ĥ is
either

• a path with an endpoint ŝ, or

• a tree with maximum degree 3 such that 1 = dĤ(ŝ) ⩽ dĤ(t̂) ⩽ 2, with dĤ(t̂) = 1 if
and only if ŝ = t̂.

Theorem 1.8. Every inherent connected two-rooted graph is a subcubic two-rooted tree.

In addition to this result, we list a large collection of non-inherent subcubic two-rooted
trees in Section 4.

For paths we have the following results. By Theorem 1.8 a two-rooted path (Ĥ, ŝ, t̂)
is not inherent if both ŝ and t̂ are internal vertices of the path. In particular, not every
two-rooted path is inherent. We restrict further the family of inherent two-rooted paths
(see also Figure 1.1).
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Theorem 1.9. Let P = (v0, . . . , vℓ) be a path, s = v0, and t ∈ V (P ). Then, the two-rooted
path (P, s, t) is not inherent if one of the following conditions holds:

(i) ℓ ⩾ 1 and t = v0,

(ii) ℓ ⩾ 3 and t = vℓ−1,

(iii) ℓ = 3 and t = v1,

(iv) ℓ = 4 and t = v1,

(v) ℓ = 5 and t = v2.

s

t
v`

s

t
v`

(i) (ii)

s

t

s

t

s

t

(iii) (iv) (v)

Figure 1.1: Two-rooted paths for Theorem 1.9

As already mentioned, the Conjecture 1.2 holds for P5-free graphs [8]. We provide the
following result.

Theorem 1.10. Assume that graph G contains an induced copy of the two-edge path
P = (s, t, v) with roots s and t. Then G also contains an avoidable copy of it whenever
at least one of the following two conditions holds:

a) G has no induced C5,

b) all vertices of G have degree at most 3.

In fact, condition a) of Theorem 1.10 can be weakened as follows: G has no induced
subgraph isomorphic to C5 +K1 (that is, the graph obtained from C5 by adding to it an
isolated vertex).

In Proposition 5.8 we also obtain a sufficient condition for inherence of disconnected
two-rooted graphs.

Structure of the paper

In Section 2, we provide some definitions needed throughout the paper. In Section 3, we
introduce the method of pendant extension, which leads to the proof of Theorem 1.8. In
addition to this result, we list in Section 4 a large collection of non-inherent subcubic two-
rooted trees, which cannot be confined by the method of pendant extensions. This leads to
the proof of Theorem 1.9. In Section 5, we provide a more general approach that allows us
to provide an alternative proof of Theorem 1.1, as well as to prove Theorem 1.10. We also
list some other open cases and give a sufficient condition for inherence of disconnected two-
rooted graphs. In Section 6, we discuss some open questions and possible generalizations.
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2 Preliminaries

For the reader’s convenience we reproduce some standard definitions from graph theory
which will be used in the paper.

All graphs considered in this paper are simple and undirected. They are also finite
unless explicitly stated otherwise, and this is only relevant in Section 3. The order of a
graph is the cardinality of its vertex set. For a graph G and a set X ⊆ V (G), we denote
by NG(X) the (open) neighborhood of X, that is, the set of vertices in V (G) \X that are
adjacent to a vertex in X, and by NG[X] the closed neighborhood of X, that is, the set
X ∪ NG(X). Two vertices u and v are said to be twins if N(u) \ {v} = N(v) \ {u}; if
in addition they are adjacent, then they are said to be true twins, and false twins if they
are non-adjacent.

A clique in a graph G = (V,E) is a set of vertices C ⊆ V such that uv ∈ E for any
u, v ∈ C. A path is a graph with vertex set {v0, v1, . . . , vℓ} in which two vertices vi and
vj with i < j are adjacent if and only if j = i+1; the vertices v0 and vℓ are the endpoints
of the path. We sometimes denote such a path simply by the sequence (v0, . . . , vℓ). The
length of a path is defined as the number of its edges. We denote a k-vertex path by Pk.
A cycle is a graph obtained from a path of length at least three by identifying vertices
v0 and vℓ. The girth of a graph G is the minimal length of a cycle in it (or ∞ if G is
acyclic). It is known that for all integers k ⩾ 2 and g ⩾ 3, there exists a k-regular graph
and girth g (see [11], as well as [12]). Such a graph with smallest possible order is called
a (k, g)-cage.

An isomorphism from a graph G1 = (V1, E1) to a graph G2 = (V2, E2) is a bijection
f : V1 → V2 such that uv ∈ E1 if and only if f(u)f(v) ∈ E2. An isomorphism of two-rooted
graphs (G1, s1, t1) and (G2, s2, t2) is an isomorphism f from G1 to G2 such that f(s1) = s2
and f(t1) = t2. An automorphism of a graph G is an isomorphism of G to itself.

Let G = (V,E) be a graph, and let S ⊆ V be any subset of vertices of G. We define
the induced subgraph G[S] to be the graph with vertex set S whose edge set consists of all
of the edges in E that have both endpoints in S. In this paper, all subgraphs are assumed
to be induced unless explicitly indicated otherwise. Given two graphs G and H, a copy
of H in G is a subgraph of G isomorphic to H. We say that the graph G is H-free if it
does not admit any copy of H. For a collection of graphs H we say that G is H-free if it
does not admit any copy of H for any H ∈ H.

A bridge is an edge of a graph whose deletion increases the number of connected
components. All other edges are non-bridges.

The degree of a vertex v ∈ V (G) is denoted by dG(v). We denote the maximum
degree of a graph G by ∆(G). If dG(v) = 1 then we say that v is a pendant vertex, or
a leaf. If ∆(G) ⩽ 3 then we say that G is subcubic. A graph is cubic if all its vertices
have degree 3. As usual, the distance between two vertices u and v in a connected graph
G is the length of a shortest u, v-path; it is denoted by distG(u, v). The disjoint union
of graphs G1 = (V1, E1) and G2 = (V2, E2), where V1 ∩ V2 = ∅, is defined as a graph
G1+G2 = (V1∪V2, E1∪E2). A rooted tree is a pair (T, r) where T is a tree and r ∈ V (T ).
A rooted forest is a disjoint union of rooted trees. We define the depth of a rooted tree
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(T, r) as the eccentricity of its root r, i.e., maxv∈V (T ) distT (r, v). Correspondingly, the
depth of a rooted forest is defined as the maximal depth among all its rooted trees.

The operation of subdividing an edge uv in a graph G = (V,E) results in a graph
G′ = (V ∪ {w}, E ′) such that w /∈ V and E ′ = (E \ {uv}) ∪ {uw,wv}. The lexicographic
product of graphs G and H (see, e.g., [17]) is the graph G[H] such that

• the vertex set of G[H] is V (G)× V (H); and

• any two vertices (u, v) and (x, y) are adjacent in G[H] if and only if either u is
adjacent to x in G, or u = x and v is adjacent to y in H.

3 The method of pendant extensions

In this section we mainly consider connected two-rooted graphs, but some results are valid
without this assumption. We show that all the inherent graphs are forests. To prove this,
we introduce the following definitions.

Definition 3.1 (Pendant Extension). Given a graph G, a two-rooted graph (Ĥ, ŝ, t̂), and
a simplicial copy (H, s, t) of (Ĥ, ŝ, t̂) in G, a pendant extension (PE) of G (with respect to
(H, s, t)) is any graph G′ obtained from G by adding to it the minimal number of pendant
edges to s and/or t so that (H, s, t) becomes non-simplicial in G′.

Definition 3.2 (PE-Sequence). A PE-sequence of a two-rooted graph (Ĥ, ŝ, t̂) is an
arbitrary sequence, finite or infinite, of graphs (Gi)i⩾0, obtained recursively as follows.
Initialize G0 = Ĥ. For i ⩾ 0, if Gi contains a simplicial copy (H, s, t) of (Ĥ, ŝ, t̂), then the
next graph in the sequence is any graph Gi+1 that is a PE of Gi with respect to (H, s, t).
Otherwise, the sequence is finite, having Gi as the final graph.

Example 3.3. The two-rooted graph (P1, s, t), where V (P1) = {s} = {t}, has an infinite
PE-sequence (see Figure 3.1). In the figures we mark the vertices of Gi by black and the
pendant vertices added to Gi by white.

s

t

s

t

s

t

s

t

s

t

. . .
G0 G1 G2 G3 G4 . . .

Figure 3.1: An infinite PE-sequence of (P1, s, t), where V (P1) = {s} = {t}

Contrary, for the two-rooted graph formed by the cycle C3 with the two roots s and t
adjacent, all PE sequences are finite (for an example, see Figure 3.2).

By construction, every PE-sequence has the following property, which we refer to as
the No New Cycle Property.

Lemma 3.4 (No New Cycle Property). For every two-rooted graph (Ĥ, ŝ, t̂), each PE-
sequence (Gi)i⩾0 of (Ĥ, ŝ, t̂), and all i ⩾ 0, the graph Gi is obtained from the graph G0 = Ĥ
by adding to it some pendant trees. Consequently, every cycle in Gi is contained in every
copy of Ĥ in Gi.
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s

t

s

t

G0 G1 G2

Figure 3.2: A finite PE-sequence of (C3, s, t), s ̸= t

Notice that a two-rooted graph (H, s, t) can have many different PE-sequences.

Example 3.5. The two-rooted graph (C4, s, t), where s and t are adjacent, has PE-
sequences of different lengths (see Figure 3.3). Note that the final graphs of the two
sequences coincide. This is not a coincidence (see Theorem 3.13).

s

t

s

t

s

t st s

t

Figure 3.3: Two PE-sequences for (C4, s, t), where s and t are adjacent

Definition 3.6. A sequence, finite or infinite, S = (G0, G1, . . .) of graphs, is said to be
non-decreasing if for all Gi ∈ S, i > 0, the graph Gi−1 is a subgraph of Gi. The limit
graph of a non-decreasing sequence S = (G0, G1, . . .) of graphs is the (finite or infinite)
graph G(S) such that

V (G(S)) =
⋃
i⩾0

V (Gi) and E(G(S)) =
⋃
i⩾0

E(Gi).

Let us note that given a two-rooted graph (Ĥ, ŝ, t̂), the limit graphs of two PE-
sequences of (Ĥ, ŝ, t̂) need not be isomorphic. Moreover, one of them may not contain
any simplicial copies of (Ĥ, ŝ, t̂), while the other may.

Example 3.7. Two nonisomorphic limit graphs for the two-rooted graph (P1, s, t), where
s = t, are shown in Figure 3.4. The first limit graph contains simplicial copies of (P1, s, t),
while the second does not.

Definition 3.8. A two-rooted graph (Ĥ, ŝ, t̂) is PE-confined if there exists a finite PE-
sequence of (H, s, t).

Proposition 3.9. Every PE-confined two-rooted graph is non-inherent.
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s

t

s

t

s

t

s

t
. . . . . .

the first limit graph

s

t

s

t

s

t

s

t . . . . . . . . .

G0 G1 G2 G3 . . . the second limit graph

Figure 3.4: Two PE-sequences of (P1, s, t), where V (P1) = {s} = {t}

Proof. Let (Ĥ, ŝ, t̂) be a PE-confined two-rooted graph. Fix a finite PE-sequence (Gi)i⩾0

of (Ĥ, ŝ, t̂). The limit graph G of this sequence is a finite graph. As we show next, G
certifies that (Ĥ, ŝ, t̂) is not inherent. Since G0 = Ĥ and G0 is a subgraph of G, we
infer that G contains a copy of Ĥ. On the other hand, if (H, s, t) is an arbitrary copy of
(Ĥ, ŝ, t̂) in G, then we show that this copy is not avoidable. Since G is the limit graph
of a finite PE-sequence of (Ĥ, ŝ, t̂), the copy (H, s, t) is not simplicial in G. Therefore,
it has an extension (H ′, s′, t′). By the No New Cycle Property, this extension is not
closable. Hence, the copy (H, s, t) is not avoidable. We conclude that G confines (Ĥ, ŝ, t̂).
Consequently, the two-rooted graph (Ĥ, ŝ, t̂) is non-inherent.

By Proposition 3.9, a necessary condition for a two-rooted graph to be inherent is that
all its PE-sequences are infinite. This motivates the next definition.

Definition 3.10. A two-rooted graph (Ĥ, ŝ, t̂) is PE-inherent if all PE-sequences of
(Ĥ, ŝ, t̂) are infinite.

By Definitions 3.8 and 3.10, every two-rooted graph is either PE-confined or PE-
inherent (see examples in Figures 3.1 and 3.2). As a consequence of Definitions 3.8
and 3.10 and Proposition 3.9, we obtain the following.

Corollary 3.11. Every inherent two-rooted graph is PE-inherent.

However, a PE-inherent two-rooted graph may be inherent or not (see examples in
Section 4).

We will show in Section 3.1 that no connected two-rooted graph (Ĥ, ŝ, t̂) can have
both a finite and an infinite PE-sequence. Thus, we can simply consider an arbitrary
PE-sequence to determine whether (Ĥ, ŝ, t̂) is PE-confined or PE-inherent.

Definition 3.12. A PE-sequence S of a two-rooted graph (Ĥ, ŝ, t̂) is called proper if the
limit graph G(S) has no simplicial copies of (Ĥ, ŝ, t̂).

Clearly, if a PE-sequence is finite, it is proper. Our next section deals with uniqueness
of the limit graph for proper PE-sequences of a connected two-rooted graph in both
finite and infinite cases. This is of independent interest. For our purposes, it would be
enough just to distinguish whether all PE-sequences are finite (in which case (Ĥ, ŝ, t̂) is
PE-confined) or whether they are all infinite (in which case (Ĥ, ŝ, t̂) is PE-inherent).
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3.1 All proper PE-sequences have the same limit

The purpose of this section is to prove the following theorem.

Theorem 3.13. Every two-rooted graph (Ĥ, ŝ, t̂) admits a proper PE-sequence. Moreover,
for an arbitrary PE-sequence S of (Ĥ, ŝ, t̂), its limit graph G(S) is a subgraph of the limit
graph of some proper PE-sequence of (Ĥ, ŝ, t̂). Furthermore, if Ĥ is connected, then the
limit graphs of all proper PE-sequences of (Ĥ, ŝ, t̂) are isomorphic to each other.

Before we prove the theorem, let us comment on its importance. Due to the theorem,
we are able to define the limit graph G(Ĥ, ŝ, t̂) of a connected two-rooted graph (Ĥ, ŝ, t̂)
as the limit graph of any proper PE-sequence of (Ĥ, ŝ, t̂). Whenever this limit graph
G(Ĥ, ŝ, t̂) is finite, it confines (Ĥ, ŝ, t̂), as can be seen from the proof of Proposition 3.9.
Furthermore, as we show in Proposition 3.26, the limit graph G(Ĥ, ŝ, t̂), if finite, is a
subgraph of any confining graph for (Ĥ, ŝ, t̂).

The proof of the theorem is based on the concept of a stage sequence, defined as
follows.

Definition 3.14. A stage sequence of a two-rooted graph (Ĥ, ŝ, t̂) is any PE-sequence
S = (G0, G1, . . .), finite or infinite, of (Ĥ, ŝ, t̂) obtained in countably many stages, as
follows. We set G0 = Ĥ and S = (G0); this is the output of stage 0. For every j ⩾ 0,
the output of stage j is the input to stage j + 1. The output of stage j is a sequence
of the form S = (G0, . . . , Gkj). Note that k0 = 0. Stage j + 1 works as follows. If Gkj

does not contain any simplicial copies of (Ĥ, ŝ, t̂), then we output the current sequence S.
Otherwise, let Hj be the set of all simplicial copies of (Ĥ, ŝ, t̂) in Gkj and set G′ = Gkj .
We iterate over all two-rooted graphs in Hj and keep updating the graph G′ by extending

the current copy of (Ĥ, ŝ, t̂), whenever necessary (as in Definition 3.2), so that in the
end no copy from Hj is simplicial in G′. Each intermediate version of G′ is appended to
the current sequence S. This completes the description of stage j + 1 and, thus, of the
construction of a stage sequence S as well. The number kj will be referred to as the stage
j index of S and the graph Gkj as the stage j graph of S.

Lemma 3.15. Any stage sequence of a two-rooted graph (Ĥ, ŝ, t̂) is a proper PE-sequence
of (Ĥ, ŝ, t̂).

Proof. Arguing by contradiction, suppose that S is a stage sequence of a two-rooted graph
(Ĥ, ŝ, t̂) such that the limit graph G(S) has a simplicial copy (H, s, t) of (Ĥ, ŝ, t̂). Then
(H, s, t) is also a simplicial copy of (Ĥ, ŝ, t̂) in the stage j graph of S for some j. Thus,
the stage j + 1 graph of S exists and (H, s, t) is not simplicial in it. Since the stage j + 1
graph is a subgraph of the limit graph G(S), this copy is also not simplicial in G(S), a
contradiction.

An example of a stage sequence of the two-rooted graph (P1, s, t) with s = t is shown
in Figure 3.4 (the second sequence), where kj = 2j − 1 for j > 0.
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Lemma 3.16. For every connected two-rooted graph (Ĥ, ŝ, t̂), every two stage sequences
S and S ′ of (Ĥ, ŝ, t̂), and every j ⩾ 0, the stage j graphs of S and S ′ are isomorphic to
each other.

In view of Lemma 3.16, the notion of a stage j graph of a connected two-rooted graph
(Ĥ, ŝ, t̂) is well-defined (up to isomorphism) for every non-negative integer j, and will
stand for the stage j graph of an arbitrary but fixed stage sequence of (Ĥ, ŝ, t̂). Before
giving a proof of Lemma 3.16, we illustrate it with an example.

Example 3.17. In Figure 3.5 the stage 3 graph of (P3, s, t), where s and t are adjacent,
is shown.

0 0 01 1

1

2 2

2 2

2

3

3

3

3

3
3

3

3

Figure 3.5: The stage 3 graph of (P3, s, t), where s and t are adjacent. Each vertex is
labeled by the minimal i such that the stage i graph contains this vertex.

We prove Lemma 3.16 by proving a more detailed statement Lemma 3.20. To this end
we define a graph transformation that takes as input a two-rooted graph (Ĥ, ŝ, t̂) and a
graph G and computes a graph G′. As will be shown in the proof of Lemma 3.20, given a
stage sequence S of a two-rooted graph (Ĥ, ŝ, t̂) and a stage j graph G of S, the resulting
graph G′ is the stage j + 1 graph of S. This implies the claimed uniqueness of the limit
graph of any stage sequence of a two-rooted graph (Ĥ, ŝ, t̂).

Definition 3.18. Let G be a graph and let (Ĥ, ŝ, t̂) be a two-rooted graph. The (Ĥ, ŝ, t̂)-
extension of a graph G is the graph G′ obtained from G as follows.

• If ŝ ̸= t̂, we add one pendant edge to each vertex v ∈ V (G) such that there exists a
copy (H, s, t) of (Ĥ, ŝ, t̂) in G such that v ∈ {s, t} and dG(v) = dH(v).

4

• If ŝ = t̂, then to each vertex v ∈ V (G) such that there exists a copy (H, s, t) of
(Ĥ, ŝ, t̂) in G such that v = s, we add

– one pendant edge if dG(v) = dH(v) + 1;

– two pendant edges if dG(v) = dH(v).

4Note that such a copy is necessarily simplicial.
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In other words, G′ is the graph obtained fromG by adding exactly 2−(dG(v)−dH(v))
pendant edges to v.

Remark 3.19. Let G be any stage graph of a stage sequence of (Ĥ, ŝ, t̂) and let G′ be
the (Ĥ, ŝ, t̂)-extension of G. Then no copy of (Ĥ, ŝ, t̂) in G is simplicial in G′. However,
when G is an arbitrary graph containing a copy of Ĥ, this is not necessarily the case. For
example, take a graph G and a two-rooted graph (Ĥ, ŝ, t̂) such that G is isomorphic to
C4 and (Ĥ, ŝ, t̂) is isomorphic to the endpoint-rooted path P2. In this case the (Ĥ, ŝ, t̂)-
extension of G coincides with G, although C4 contains simplicial copies of (Ĥ, ŝ, t̂).

Lemma 3.16 is an immediate consequence of the following lemma.

Lemma 3.20. Let S = (G0, G1, . . .) be a stage sequence of a connected two-rooted graph
(Ĥ, ŝ, t̂). Then for any j ⩾ 1, the stage j graph of S coincides with the (Ĥ, ŝ, t̂)-extension
of the stage j − 1 graph of S.

Proof. Fix j ⩾ 1. Let us denote by G the stage j − 1 graph of S, by G′ the (Ĥ, ŝ, t̂)-
extension of G, and by G′′ the stage j graph of S.

We obtain G′′ from G by processing in some order all simplicial copies of (Ĥ, ŝ, t̂) in
G. We show that G′′ is isomorphic to G′. Note that both graphs G′′ and G′ are obtained
from G by adding some non-negative number of pendant edges to each vertex. For each
vertex v ∈ V (G), let us denote by

• f1(v) the number of pendant edges added to v when constructing G′ from G, that
is, f1(v) = dG′(v)− dG(v);

• f2(v) the number of pendant edges added to v when constructing G′′ from G, that
is, f2(v) = dG′′(v)− dG(v).

Note that for all v ∈ V (G), we have

f1(v) ∈ {0, 1}, if ŝ ̸= t̂;
f1(v) ∈ {0, 1, 2}, if ŝ = t̂.

To prove that G′′ and G′ are isomorphic, it suffices to show that f2(v) = f1(v) for all
v ∈ V (G). Suppose for a contradiction that f2(v) ̸= f1(v) for some v ∈ V (G). Consider
first the case when f2(v) < f1(v). Since f1(v) > 0, there exists a simplicial copy (H, s, t)
of (Ĥ, ŝ, t̂) in G such that v = s (or v = t) and that gives rise to f1(v) new pendant edges
at v. By analyzing the cases (i) ŝ ̸= t̂, (ii) ŝ = t̂ and dG(v) = dH(v), and (iii) ŝ = t̂
and dG(v) ̸= dH(v), it is not difficult to verify that, since the number of added edges to
v in G′′ from G is smaller than f1(v), the copy (H, s, t) still remains simplicial in G′′, a
contradiction. This shows that f2 ⩾ f1, that is, f2(v) ⩾ f1(v) for all v ∈ V (G).

Suppose now that f2(v) > f1(v). Recall that kj−1 and kj denote the stage j − 1 and
stage j indices of S, respectively. Since in the process of transforming G = Gkj−1

to
G′′ = Gkj , pendant edges are added to v, there exists a minimal integer ℓ ∈ {kj−1, kj−1 +
1, . . . , kj−1} such that dGℓ+1

(v) > dGℓ
(v)+f1(v). This means that Gℓ+1 is produced from
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Gℓ by adding more than f1(v) pendant edges to the vertex v, where v = s or v = t for
some copy (H, s, t) of the two-rooted graph (Ĥ, ŝ, t̂) in G. We present the proof for the
case v = s; the arguments for the case v = t are the same. We claim that only f1(v) edges
can be used in the extension considered and come to a contradiction with the minimality
of the number of pendant edges in a PE.

Consider the possible cases.

(A) f1(v) = 2. This implies that ŝ = t̂. Due to the minimality requirement of Defini-
tion 3.1, at most two pendant edges are added, a contradiction.

(B) f1(v) = 1, ŝ ̸= t̂. In this case, at most one pendant edge is added to the vertex in
the PE, a contradiction.

(C) f1(v) = 0, ŝ ̸= t̂. We must have dG(v) > dH(v), since the equality dG(v) = dH(v)
would imply that f1(v) > 0, by the definition of G′. In particular, there exists an edge
vw from E(G)\E(H) incident with v. The graph Gℓ+1 is obtained from the graph Gℓ

by extending (H, s, t) to some two-rooted graph (H ′, s′, t′). We claim that s′ ∈ V (G).
Suppose that this is not the case. Consider the two-rooted graph (H ′′, w, t′) such
that H ′′ is the subgraph of Gℓ+1 induced by (V (H ′) \ {s′}) ∪ {w}. We claim that
(H ′′, w, t′) is an extension of (H, s, t) in Gℓ+1. First, note that sw = vw is an edge in
Gℓ+1. Furthermore, the copy H of Ĥ contains all cycles of Gℓ+1 due to Lemma 3.4
(No New Cycle Property). In particular, since H is connected, this implies that
NGℓ+1

(w) ∩ (V (H) ∪ {t′}) = {v}. Thus, (H ′′, w, t′) is indeed an extension of (H, s, t)
in Gℓ+1, as claimed. However, this contradicts the minimality requirement from the
definition of a PE-sequence (with respect to computing Gℓ+1 from Gℓ). This shows
that s′ ∈ V (G). Consequently, dGℓ+1

(v) = dGℓ
(v), which contradicts the inequality

dGℓ+1
(v) > dGℓ

(v) + f1(v).

(D) f1(v) = 1, ŝ = t̂. This implies that dH(v) = dG(v)− 1 and the argument is similar to
that of case (C).

(E) f1(v) = 0, ŝ = t̂. This implies that dH(v) = dG(v) and the argument is similar to
that of case (C).

Thus Lemma 3.16 is proved, and we are now ready to prove Theorem 3.13.

Proof of Theorem 3.13. Fix a two-rooted graph (Ĥ, ŝ, t̂). Any stage sequence S∗ of
(Ĥ, ŝ, t̂) is proper by Lemma 3.15.

Consider an arbitrary PE-sequence S = (G0, G1, . . .) of (Ĥ, ŝ, t̂). We show how to
construct a stage sequence S∗ = (G∗

0, G
∗
1, . . .) of (Ĥ, ŝ, t̂) such that for all i ⩾ 0 there

exists a smallest integer j(i) ⩾ 0 such that Gi is a subgraph of the stage j(i) graph of
S∗; note that since for all i ⩾ 0, the graph Gi is a subgraph of Gi+1, such a function
i 7→ j(i) will be nondecreasing. The construction is by induction on i. For i = 0, we set
j(0) = 0, since the initial graph of any PE-sequence of (Ĥ, ŝ, t̂) is G∗

0 = Ĥ by definition,
and starting S∗ with G∗

0 will assure that G0 is the stage 0 graph of S∗. Let now i ⩾ 1
and assume that the function i′ 7→ j(i′) is defined for the range i′ ∈ {0, . . . , i− 1} and is
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nondecreasing. In particular, at this point, the sequence S∗ has already been constructed
up to stage q = max{j(i′) : 0 ⩽ i′ ⩽ i − 1}; note that q = j(i − 1) since the function
i′ 7→ j(i′) is nondecreasing. Consider the graph Gi. By the definition of a PE-sequence,
Gi−1 contains a simplicial copy (H, s, t) of (Ĥ, ŝ, t̂) that is not simplicial in G∗

i . If Gi is a
subgraph of the stage q graph of S∗, then we set j(i) = q. Otherwise, a copy (H, s, t) is
simplicial in the stage q graph of S∗, and we continue the sequence S∗ by considering any
stage that begins by extending the simplicial copy (H, s, t) in Gi−1, which is a subgraph
of the stage q graph of S∗. This defines stage q + 1 of S∗. We set j(i) = q + 1, as by
construction Gi is a subgraph of the stage q + 1 graph of S∗. This shows the existence of
a stage sequence S∗ of (Ĥ, ŝ, t̂) such that each Gi is a subgraph of the limit graph G(S∗);
equivalently, the limit graph G(S) is a subgraph of G(S∗).

Assume now that Ĥ is connected. Note that (Ĥ, ŝ, t̂) may have several stage sequences,
as they may depend on the order in which the simplicial copies of (Ĥ, ŝ, t̂) in G∗

kj
are

processed within stage j + 1. Nevertheless, Lemma 3.16 shows that any stage sequence
S∗ is ‘stage-wise’ unique, i.e., for each j ⩾ 0, the stage j graph of S∗ is unique up to
isomorphism: it is isomorphic to the (Ĥ, ŝ, t̂)-extension of the stage j − 1 graph of S∗.

This implies that the limit graph G(S∗) is unique up to isomorphism. Indeed, since the
stage sequences are ‘stage-wise’ unique, either they are all finite, with the same number
of stages, or they are all infinite. In the former case, there exists a unique positive integer
j such that the limit graph of any stage sequence S∗ is isomorphic to the stage j graph
of S∗. In the latter case, clearly G(S∗) is the limit graph of the subsequence consisting
only of the stage graphs. Thus, in both cases the limit graph G(S∗) is unique up to
isomorphism.

Remark 3.21. We do not know whether the uniqueness holds for non-connected two-
rooted graphs. The difficulty is to extend Lemma 3.16. In particular, the analogue
of Lemma 3.20, that the stage j graph is the (Ĥ, ŝ, t̂)-extension of the stage j − 1 graph
is not correct anymore. For example, let (Ĥ, ŝ, t̂) be the two-rooted graph such that Ĥ
is the 4-vertex graph consisting of two isolated edges {ŝ, u} and {t̂, v}. In this case, the
stage 1 graph is the (Ĥ, ŝ, t̂)-extension of the stage 0 graph, and consists of two disjoint
copies of P4. The stage 2 graph is also the (Ĥ, ŝ, t̂)-extension of the stage 1 graph, and
consists of two disjoint copies of P6. However, the stage 3 graph consists of two copies of
the graph obtained from P6 by adding a pendant edge to every vertex. This graph differs
from the (Ĥ, ŝ, t̂)-extension of the stage 2 graph, which consists of two disjoint copies
of P8.

By Theorem 3.13, every connected two-rooted graph (Ĥ, ŝ, t̂) admits a proper PE-
sequence, and limit graphs of all such sequences are isomorphic to the same graph. We
will call it the limit graph of (Ĥ, ŝ, t̂) and denote it by G(Ĥ, ŝ, t̂).

Corollary 3.22. No connected two-rooted graph can have both a finite and an infinite
PE-sequence.

Proof. Suppose for a contradiction that a two-rooted graph (Ĥ, ŝ, t̂) has both a finite
PE-sequence S, as well as an infinite one, say S ′. Since S is finite, it is proper. By Theo-
rem 3.13, the limit graph of S ′ is a subgraph of the limit graph of some proper PE-sequence
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S ′′ of (Ĥ, ŝ, t̂). Since Ĥ is connected, the same theorem also implies that the limit graphs
of S and S ′′ are isomorphic. Hence, the infinite graph G(S ′) is a subgraph of the limit
graph of S, which is finite, a contradiction.

Corollary 3.22 implies the following.

Corollary 3.23. Let (Ĥ, ŝ, t̂) be a connected two-rooted graph that has an infinite PE-
sequence. Then (Ĥ, ŝ, t̂) is PE-inherent.

Proposition 3.9 and Corollary 3.22 also imply the following statement.

Observation 3.24. A connected two-rooted graph (Ĥ, ŝ, t̂) is PE-inherent if and only if
its limit graph is infinite. Hence, (Ĥ, ŝ, t̂) is non-inherent if its limit graph is finite.

Informally, PE-sequences provide necessary steps to confine a two-rooted graph
(Ĥ, ŝ, t̂). Nevertheless, it is possible that some confining graph for (Ĥ, ŝ, t̂) does not
contain an induced subgraph isomorphic to the limit graph of (Ĥ, ŝ, t̂); see Figure 3.6.
We suggest the following weaker conjecture.

Conjecture 3.25. Any graph that confines (Ĥ, ŝ, t̂) contains a not necessarily induced
subgraph isomorphic to the limit graph of (Ĥ, ŝ, t̂) provided that the latter is finite.

ŝ t̂(Ĥ, ŝ, t̂) G(Ĥ, ŝ, t̂) G∗

Figure 3.6: A two-rooted graph (Ĥ, ŝ, t̂), its limit graph G(Ĥ, ŝ, t̂), and a confining graph
G∗ of (Ĥ, ŝ, t̂) that does not contain any induced subgraph isomorphic to G(Ĥ, ŝ, t̂).

We prove this conjecture for the case of trees. Note that in this case, the subgraph
and the induced subgraph relations coincide.

Proposition 3.26. Let (Ĥ, ŝ, t̂) be a connected two-rooted graph such that Ĥ is a tree
and the limit graph G(Ĥ, ŝ, t̂) is finite. Then any confining tree of (Ĥ, ŝ, t̂) contains a
subgraph isomorphic to G(Ĥ, ŝ, t̂).

Proof. Towards a contradiction let G∗ be a confining tree of (Ĥ, ŝ, t̂) that does not contain
G(Ĥ, ŝ, t̂) as a subgraph. Fix an arbitrary proper PE-sequence S = (G0, G1, . . . , Gk) of
(Ĥ, ŝ, t̂). Then G(Ĥ, ŝ, t̂) is isomorphic to Gk.

Note that Ĥ = G0 is a subgraph of G∗. Let i ∈ {0, 1, . . . , k} be the maximum integer
such that Gi is isomorphic to a subgraph of G∗. By our assumptions we have i < k.
Furthermore, let (H, s, t) be a simplicial copy of (Ĥ, ŝ, t̂) in Gi such that Gi+1 is a PE
of Gi with respect to (H, s, t). Since H is a subgraph of Gi and Gi is isomorphic to a
subgraph of G∗, we obtain that H is also isomorphic to a subgraph of G∗. Note that the
copy (H, s, t) of (Ĥ, ŝ, t̂) in G∗ is not simplicial, as that would contradict the fact that G∗

confines (Ĥ, ŝ, t̂). Fix an extension (H ′, s′, t′) of (H, s, t) in G∗ such that H ′ is a subgraph
of G∗ obtained from H by adding to it two pendant edges ss′ and tt′. By the definition
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of Gi+1, a graph isomorphic to Gi+1 can be obtained from Gi by adding to it at least one
of the pendant edges ss′ and tt′. Since G∗ is a tree and Gi is connected, neither s

′ nor t′

belongs to a copy of Gi, since otherwise a cycle in G∗ would appear. Thus we conclude
that Gi+1 is isomorphic to a subgraph of G∗. But this contradicts the maximality of i.

3.2 Proof of Theorem 1.8

Recall that every inherent two-rooted graph is PE-inherent (Corollary 3.11). Thus, in
order to prove Theorem 1.8, it suffices to prove the following.

Lemma 3.27. Let (Ĥ, ŝ, t̂) be a PE-inherent connected two-rooted graph such that dĤ(ŝ) ⩽
dĤ(t̂). Then Ĥ is a subcubic two-rooted tree.

Before proving Lemma 3.27, let us point out that the given condition is only a necessary
condition for PE-inherence, but not a sufficient one.

Example 3.28. Figure 3.7 presents an example of a two-rooted subcubic tree T that is
not PE-inherent. The stage 1 graph of T contains no simplicial copies of T .

s = t

T stage 1 graph of T

Figure 3.7: An example of a two-rooted subcubic tree T that is not PE-inherent

In fact, it does not seem to be easy to characterize PE-inherent subcubic two-rooted
trees (see Section 3.4 for more details).

Proof of Lemma 3.27. Let (Ĥ, ŝ, t̂) be a connected PE-inherent two-rooted graph and let
S = (G0, G1, . . .) be an arbitrary but fixed stage sequence of (Ĥ, ŝ, t̂). Then S is infinite.
Let G be the limit graph of S (or, equivalently, the limit graph of (Ĥ, ŝ, t̂)).

Suppose that dĤ(ŝ) ⩾ 2. Then every vertex of G is either in G0 or has a neighbor in

G0. Indeed, to obtain G one should add pendant edges to G0 = Ĥ. But pendant vertices
of these edges cannot be mapped to either ŝ or t̂ in a copy of (Ĥ, ŝ, t̂) since the degree
of pendant vertices is 1 in the extended graph. Thus, the stage 1 graph of S is the last
element of S. This implies that S is finite, a contradiction. Hence dĤ(ŝ) ⩽ 1.

If dĤ(ŝ) = 0, then Ĥ is a path (of length zero) where endpoints ŝ and t̂ coincide. From
now on, we assume that dĤ(ŝ) = 1.

Claim 1. For every vertex v of the limit graph G, we have dG(v) ⩽ ∆(Ĥ) + 2.
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Proof. Suppose by contradiction that dG(v) > ∆(Ĥ) + 2 for some v ∈ V (G), and let i
be the smallest integer such that v is a vertex of the stage i graph of S and the degree
of v in this graph is more than ∆(Ĥ) + 2. Then i ⩾ 1 and v is a vertex of the stage
i− 1 graph of S (since otherwise it would have degree one in the stage i graph of S). By
Lemma 3.20, the stage i graph of S is the (Ĥ, ŝ, t̂)-extension of the stage i − 1 graph of
S. From Definition 3.18 it follows that the degree of v in the stage i graph of S is at most
max{dĤ(ŝ), dĤ(t̂)}+ 2 ⩽ ∆(Ĥ) + 2, a contradiction.

We next show that Ĥ is a tree. We will make use of a rooted forest F called the
pendant forest and defined as the graph with vertex set V (G) and edge set E(G) \E(Ĥ),
whose components are trees rooted at vertices in H. Suppose for a contradiction that
Ĥ contains a cycle. Then the set B̄(Ĥ) of non-bridges of Ĥ is non-empty. Due to the
No New Cycle Property, B̄(H) = B̄(Ĥ) for any copy H of Ĥ in an extended graph. For
v ∈ V (Ĥ), let ℓv be the distance in Ĥ from v to the set of vertices incident with edges
of B̄(Ĥ). Then the depth of F is at most ℓ = max{ℓŝ, ℓt̂}. Indeed, any vertex at larger
distance from the initial two-rooted graph cannot be mapped to either ŝ or t̂ in a copy of
(Ĥ, ŝ, t̂) in an extended graph. Together with the fact that the limit graph G has vertex
degrees bounded by ∆(Ĥ) + 2 by Claim 1, this implies that G is finite, a contradiction
with Observation 3.24. Thus, Ĥ is a tree, as claimed.

By Claim 1 we get the following.

Claim 2. There exists an integer i0 such that for all i ⩾ i0 no simplicial copy of (Ĥ, ŝ, t̂)
in Gi intersects G0.

Proof. Using Claim 1 we conclude that there are finitely many copies of Ĥ in the limit
graph G that intersect G0. Let us denote by W the set of all vertices contained in some
copy of Ĥ in G that intersects G0. This set W is a subset of the vertex set of the stage j
graph of S, for some j. Then, starting from the stage j + 1 graph of S, the assertion of
the observation is true.

Suppose for a contradiction that dĤ(t) ⩾ 3. We show that the pendant forest F is a
disjoint union of paths. Let v ∈ V (G) \ V (G0) be an arbitrary vertex of a pendant forest
in G. Clearly, at the time v is added, its degree is one. Furthermore, if dG(v) ̸= 1, then
there exists a minimal integer i such that dGi

(v) = 2, and v is the s-vertex in some copy
of (Ĥ, ŝ, t̂) in Gi−1. Now observe that, since dĤ(t) ⩾ 3, the vertex v is not the t-vertex

of any copy of (Ĥ, ŝ, t̂) in subsequent graphs Gj for j > i, which implies dG(v) = 2. This
shows that F is a disjoint union of paths, as claimed. In particular, this implies that in
every copy of (Ĥ, ŝ, t̂) in each graph from S the t-vertex belongs to G0, which contradicts
Claim 2. Thus, dĤ(t) ⩽ 2 is proven.

Note that for any i > 0, we have dGi
(v) ⩽ 3 for any v ∈ V (Gi) \ V (G0). In other

words, all vertices in Gi of degree at least 4 belong to G0. Together with Claim 2 this
implies that Ĥ does not admit any vertex of degree at least 4.

Finally, assume that dĤ(t̂) = 1, ŝ ̸= t̂, and Ĥ is not a path. Then, for any i > 0, the

degree of any vertex v ∈ V (Gi) \ V (G0) cannot exceed 2. Since Ĥ is not a path, it has a
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vertex of degree 3, and any vertex of degree 3 in Gi belongs to G0, in contradiction with
Claim 2. This completes the proof of Lemma 3.27.

3.3 Automorphisms and preserving PE-inherence

Consider a PE-inherent two-rooted graph (Ĥ, ŝ1, t̂1). For which pairs of roots ŝ2, t̂2 ∈
V (H) is the corresponding two-rooted graph (Ĥ, ŝ2, t̂2) also PE-inherent? In this subsec-
tion we provide a sufficient condition, which will be used in Section 3.4 to give examples
of PE-inherent two-rooted graphs.

Fix a graph Ĥ. For a vertex v ∈ V (Ĥ), we define the orbit of v, denoted by Orb(v),
as the set of vertices w ∈ V (Ĥ) such that there exists an automorphism of Ĥ mapping
v to w. We call a pair of two-rooted graphs (Ĥ, ŝ1, t̂1) and (Ĥ, ŝ2, t̂2) equivalent (to each
other) if ŝ2 ∈ Orb(ŝ1) and t̂2 ∈ Orb(t̂1). Using this notation one can easily obtain the
following claim.

Observation 3.29. Let ŝ and t̂ be two distinct vertices of Ĥ and let S be any stage
sequence of (Ĥ, ŝ, t̂). Then the stage 1 graph of S is the graph obtained from Ĥ by adding
one pendant edge to each vertex in Orb(ŝ) ∪Orb(t̂).

This observation is illustrated in Figure 3.9, for the extended claw graph, which is the
graph depicted in Figure 3.8.

s

t

Figure 3.8: The extended claw graph.
The orbits of s and t are the sets of ver-
tices of degree 1 and 2, respectively.

0

0

0 0

0

0 0

1

1 1

1

1

1

Figure 3.9: The stage 1 graph of the ex-
tended claw. Each vertex is labeled by
the minimal i such that the stage i graph
contains this vertex.

Proposition 3.30. Let (Ĥ, ŝ1, t̂1) and (Ĥ, ŝ2, t̂2) be two equivalent two-rooted graphs, and
let G be a graph. Then the (Ĥ, ŝ1, t̂1)- and (Ĥ, ŝ2, t̂2)-extensions of G are isomorphic.

Although the claim seems intuitively clear due to the fact that (Ĥ, ŝ1, t̂1) and (Ĥ, ŝ2, t̂2)
are equivalent, we prefer to give a formal proof.
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Proof. If ŝ1 = t̂1, then the two-rooted graphs (Ĥ, ŝ1, t̂1) and (Ĥ, ŝ2, t̂2) are isomorphic.
This implies that the (Ĥ, ŝ1, t̂1)- and (Ĥ, ŝ2, t̂2)-extensions of G are isomorphic.

Assume now that ŝ1 ̸= t̂1. By Definition 3.18 it is enough to show that for all vertices
v ∈ V (G), the following conditions are equivalent:

• there exists a simplicial copy (H, s1, t1) of (Ĥ, ŝ1, t̂1) in G such that v ∈ {s1, t1} and
dG(v) = dH(v),

• there exists a simplicial copy (H, s2, t2) of (Ĥ, ŝ2, t̂2) in G such that v ∈ {s2, t2} and
dG(v) = dH(v).

Indeed, this implies that the sets of vertices of G to which pendant edges are added to
obtain the (Ĥ, ŝ1, t̂1)- and (Ĥ, ŝ2, t̂2)-extensions of G, respectively, are the same.

Suppose that the condition of the first item is satisfied. We present the proof for the
case v = s1; the arguments for the case v = t1 are the same. Let τ̂ be an automorphism
of Ĥ mapping ŝ2 to ŝ1. (Such an automorphism exists due to the fact that (Ĥ, ŝ1, t̂1)
and (Ĥ, ŝ2, t̂2) are equivalent.) Fix an arbitrary isomorphism ψ from Ĥ to H such that
ψ(ŝ1) = s1 and ψ(t̂1) = t1. Then φ = ψ ◦ τ̂ is an isomorphism from Ĥ to H. We construct
the desired two-rooted graph (H, s2, t2) by setting

s2 = φ(ŝ2)

t2 = φ(t̂2).

Note that s2 = φ(ŝ2) = ψ(τ̂(ŝ2)) = ψ(ŝ1) = s1 = v. Since s2 = s1 = v and dG(v) = dH(v),
we have dG(s2) = dH(s2). In particular, this implies that (H, s2, t2) is a simplicial copy of
(Ĥ, ŝ2, t̂2) in G.

The proof of the other direction is similar.

The following statement also holds.

Theorem 3.31. Let (Ĥ, ŝ1, t̂1) and (Ĥ, ŝ2, t̂2) be two connected equivalent two-rooted
graphs. Then their limit graphs are isomorphic. In particular, (Ĥ, ŝ1, t̂1) is PE-inherent
if and only if (Ĥ, ŝ2, t̂2) is.

Proof. For i ∈ {1, 2}, let Si be a stage sequence of (Ĥ, ŝi, t̂i). By Lemma 3.20, for
any j ⩾ 1, the stage j graph of Si coincides with the (Ĥ, ŝi, t̂i)-extension of the stage
j − 1 graph of Si. Since the stage 0 graph is in both cases Ĥ, an induction on j along
with Proposition 3.30 implies that for any j ⩾ 1, the stage j graphs of S1 and S2 are
isomorphic. Thus, the limit graphs of (Ĥ, ŝ1, t̂1) and (Ĥ, ŝ2, t̂2) are isomorphic.

Finally, we show that (Ĥ, ŝ1, t̂1) is PE-inherent if and only if (Ĥ, ŝ2, t̂2) is. By sym-
metry, it suffices to show that if (Ĥ, ŝ1, t̂1) is PE-inherent, then so is (Ĥ, ŝ2, t̂2). Assume
that (Ĥ, ŝ1, t̂1) is PE-inherent. Then the limit graph of (Ĥ, ŝ1, t̂1) is infinite. Hence, so is
the limit graph of (Ĥ, ŝ2, t̂2), which means the sequence S2 is infinite. By Corollary 3.22,
all PE-sequences of (Ĥ, ŝ2, t̂2) are infinite. Thus, due to Corollary 3.23, (Ĥ, ŝ2, t̂2) is
PE-inherent.
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3.4 On the PE-inherent graphs

Lemma 3.27 gives necessary conditions for a connected two-rooted graph H to be PE-
inherent. Although these conditions are rather strong, there are many PE-inherent two-
rooted graphs. It seems difficult to characterize them; however, we provide six infinite
families of examples. Three of them consist of two-rooted combs, which are defined as
follows.

Definition 3.32. For integers p, q, r ⩾ 0 with p + q + r > 0 we denote by F (p, q, r) the
graph consisting of a path Pp+q+r = (a1, . . . , ap+q+r) and q pendant edges added to vertices
ap+1, . . . , ap+q, with the other endpoints bp+1, . . . , bp+q, respectively (see Figure 3.10 for
an example); in particular, if q = 0, then no pendant edges are added. Any graph of this
type will be referred to as a comb. Furthermore, any subcubic two-rooted tree (H, s, t)
such that H is a comb will be referred to as a two-rooted comb.

a1a2

a3

a4

b3

Figure 3.10: F (2, 1, 1), also known as the fork graph.

Special cases of two-rooted combs can be obtained when the underlying graph is a
path. An endpoint-rooted path is a two-rooted graph (Ĥ, ŝ, t̂) such that Ĥ is a path and
ŝ and t̂ are its endpoints. A one-endpoint-rooted path is a two-rooted graph (Ĥ, ŝ, t̂) such
that Ĥ is a path and at least one of ŝ and t̂ is an endpoint of this path. Recall that we
always assume dĤ(ŝ) ⩽ dĤ(t̂), hence ŝ is always an endpoint of the path.

Obviously, every endpoint-rooted path is also a one-endpoint-rooted path. Note that
every one-endpoint-rooted path is a two-rooted comb (Ĥ, ŝ, t̂) where Ĥ = F (ℓ, 0, ℓ′) for
some ℓ and ℓ′.

Two-rooted combs of type I: For integers p ⩾ 1 and q, r ⩾ 0, we denote by T1(p, q, r)
the two-rooted graph (F (p, q, r), a1, ap). Any such two-rooted graph will be referred to as
a two-rooted comb of type I. See Figure 3.11 for an example.

a1 ap

Figure 3.11: T1(4, 3, 3), a two-rooted comb of type I.

Proposition 3.33. All two-rooted combs of type I are PE-inherent.
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Proof. Let p ⩾ 1 and q, r ⩾ 0 and consider the corresponding two-rooted comb of type
I. By Corollary 3.23, it is enough to provide an infinite PE-sequence of T1(p, q, r). If
q = r = 0 then T1(p, q, r) is isomorphic to an endpoint-rooted path, which is PE-inherent
due to Theorem 1.1 and Corollary 3.11. So assume q+r > 0 and observe that the sequence
of graphs Gi = F (p, q + i, r), i ⩾ 0, is an infinite PE-sequence of T1(p, q, r).

Since every one-endpoint-rooted path is isomorphic to a two-rooted comb of type I,
namely, T1(p, 0, r) for some p and r, the above proposition implies the following.

Corollary 3.34. All one-endpoint-rooted paths are PE-inherent.

Two-rooted combs of type II: For integers p, q ⩾ 1 we denote by T2(p, q) the two-
rooted graph (F (p, q, p), a1, ap+q+1). Any such two-rooted graph will be referred to as a
two-rooted comb of type II. See Figure 3.12 for an example.

a1 ap+q+1

Figure 3.12: T2(3, 3), a two-rooted comb of type II

Theorem 3.31 and Proposition 3.33 imply the following.

Proposition 3.35. All two-rooted combs of type II are PE-inherent.

Proof. Let p, q ⩾ 1 and consider the corresponding two-rooted comb of type II. Note that
ap ∈ Orb(ap+q+1) in the underlying graph F (p, q, p). Therefore, the two-rooted graphs
T1(p, q, p) = (F (p, q, p), a1, ap) and T2(p, q) = (F (p, q, p), a1, ap+q+1) are equivalent. By
Theorem 3.31 and Proposition 3.33, the two-rooted graph T2(p, q) is PE-inherent.

Two-rooted combs of type III: For integers p ⩾ 1 and q ⩾ 0 we denote by T3(p, q) the
two-rooted graph (F (p, q, p + 1), a1, ap+q+1). Any such two-rooted graph will be referred
to as a two-rooted comb of type III.

Proposition 3.36. All two-rooted combs of type III are PE-inherent.

Proof. Let p ⩾ 1 and q ⩾ 0 and consider the corresponding two-rooted comb T3(p, q). We
provide an infinite PE-sequence of T3(p, q) by setting

G0 = F (p, q, p+ 1) ,

G2i−1 = F (p+ 1, q + i, p) for all i ⩾ 1 ,

G2i = F (p+ 1, q + i, p+ 1) for all i ⩾ 1 .

Indeed:

• we obtain a graph isomorphic to G1 from G0 by adding a pendant edge to both
roots in the unique copy of T3(p, q) in G0;
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• for all i ⩾ 1, we obtain G2i from G2i−1 by adding a new vertex a2p+q+i+2 and making
it adjacent to the s-vertex of a particular simplicial copy of T3(p, q) in G2i−1;

• for all i ⩾ 1, we obtain a graph isomorphic to G2i+1 from G2i by adding a pendant
edge to the t-vertex of a particular simplicial copy of T3(p, q) in G2i.

As shown above, all two-rooted combs of types I, II, or III are PE-inherent. It turns
out that these are the only PE-inherent two-rooted combs. To verify this, one can use
the following exhaustive list of conditions that classify all two-rooted combs (Ĥ, ŝ, t̂) up
to isomorphism:

1. Ĥ is a one-endpoint-rooted path (in which case Ĥ is PE-inherent by Corollary 3.34).

2. Ĥ = F (p, q, r) with positive p, q, r, and the two roots ŝ and t̂ satisfy at least one of
the following conditions:

a) ŝ = a1 and t̂ = ai for some i ∈ {1, . . . , p} (in which case H is PE-inherent if
i = p by Proposition 3.33),

b) ŝ = a1 and t̂ = ap+q+i for some i ∈ {1, . . . , r−1} (in which case Ĥ is PE-inherent
if i = 1 and r ∈ {p, p+ 1} by Propositions 3.35 and 3.36),

c) ŝ = t̂ = bp+i for some i ∈ {1, . . . , q} (in which case H is PE-inherent if p = i = 1
or (r, i) = (1, q) by Proposition 3.33),

d) ŝ = bp+i for some i ∈ {1, . . . , q} and t̂ = aj for some j ∈ {2, . . . , p}.

In fact, for any two-rooted comb which is not of type I, II, or III, the limit graph is
isomorphic to the stage 1 graph (cf. Example 3.28). We leave the details to the reader.

Now we provide three more families of PE-inherent two-rooted graphs. PE-inherence
of these families can be established using arguments similar to those used in the proofs
of Propositions 3.35 and 3.36. Since these results are not important for the rest of the
paper, we again leave the details to the careful reader.

Two-rooted leaf-extended full trees. For an integer d ⩾ 2, a full depth-d tree is a tree
with radius d in which every vertex has degree 1 or 3, and there are exactly 3d pendant
vertices. A two-rooted leaf-extended full tree is any two-rooted graph obtained from the
full depth-d tree (for some d ⩾ 2) by extending every leaf with a pendant edge and
choosing s and t as arbitrary vertices of degree one and two, respectively. See Figure 3.13
for an example.

Two-rooted rakes. For an integer q ⩾ 2 we denote by T4(q) the two-rooted graph
obtained from the two-rooted comb T2(2, q) of type II by subdividing each edge of the
form aibi, i = 3, . . . , q + 2. Any two-rooted graph equivalent to T4(q), for some q, will be
referred to as a two-rooted rake.5 See Figure 3.14 for an example.

5Note that the construction works for q = 1, but in this case we get a two-rooted leaf-extended full tree
of depth one.
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Figure 3.13: A two-rooted leaf-extended full tree, d = 2

a1 aq+3

Figure 3.14: T4(3), a two-rooted rake with 3 teeth

Two-rooted split rakes. For an integer q ⩾ 3 we denote by T5(q) the two-rooted graph
obtained from the two-rooted comb T2(2, q) of type II by subdividing each edge of the
form aibi, i = 3, . . . , q+2, and adding a pendant edge to each vertex of degree two joining
ai and bi for all i ∈ {4, . . . , q + 1}. Any two-rooted graph equivalent to T5(q), for some q,
will be referred to as a two-rooted split rake. See Figure 3.15 for an example.

Figure 3.15: T5(4), a two-rooted split rake

Other examples of PE-inherent two-rooted graphs. In Figure 3.16 we give two
further examples of PE-inherent two-rooted graphs, which we call T6 and T7. Note that
further examples of PE-inherent two-rooted graphs can be obtained using Theorem 3.31,
by considering two-rooted graphs equivalent to T6 or T7.

Figure 3.16: The two-rooted graphs T6 (left) and T7 (right)
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Remark 3.37. In a PE-inherent two-rooted graph the vertices of degree 3 do not necessarily
form a subtree (see Figure 3.16).

Question 3.38. Which subcubic forests can be realized as subgraphs of PE-inherent two-
rooted graphs induced by vertices of degree 3?

4 PE-inherent two-rooted graphs that are not inherent

In order to prove that a certain PE-inherent two-rooted graph is not inherent, we will use
confining graphs defined in Section 1.3. Note that any confining graph for a two-rooted
graph (Ĥ, ŝ, t̂) is a witness of non-inherence of (H, s, t). In fact, (Ĥ, ŝ, t̂) is inherent if and
only if no graph confines it.

Recall that for two integers k ⩾ 2 and g ⩾ 3, a (k, g)-cage is a k-regular graph that
has as few vertices as possible given its girth g.

Lemma 4.1. Let (Ĥ, ŝ, t̂) be a subcubic two-rooted tree such that

(i) ŝ ̸= t̂ and t̂ is adjacent to a leaf ℓ̂ distinct from ŝ, and

(ii) ŝ does not admit a false twin.

Then (Ĥ, ŝ, t̂) is non-inherent.

Proof. Let G0 be a (3, 2|V (Ĥ)|)-cage. By definition, graph G0 contains the full depth-
|V (Ĥ)| tree as a subgraph. Since Ĥ is subcubic, it is a subgraph of any full depth-|V (Ĥ)|
tree. Hence, it is a subgraph of G0. Let the graph G = G0[2K1] be the lexicographic
product of G0 and a non-edge 2K1. Observe that vertices of any copy of Ĥ in G correspond
to distinct vertices of G0, since otherwise the girth restriction would be violated. For the
same reason, G0 does not admit any false twins. Thus, any pair of false twins in G
corresponds to the same vertex in G0.

We show that G is a confining graph for (Ĥ, ŝ, t̂), that is, G contains no avoidable copy
of (Ĥ, ŝ, t̂). Let (H, s, t) be an arbitrary copy of (Ĥ, ŝ, t̂) in G and let ℓ be the vertex of
H corresponding to ℓ̂. Since (Ĥ, ŝ, t̂) is a subcubic two-rooted tree with ŝ ̸= t̂, the degree
of t̂ in Ĥ is equal to 2. If ℓ̂ has a false twin ℓ̂′ in Ĥ, then both of them are neighbors of
t̂. Therefore Ĥ is a path P3. This implies that ŝ = ℓ̂′, which contradicts assumption (ii).
This implies that ℓ̂ does not have a false twin in Ĥ. Note that two vertices in H can be
false twins in G only if they are false twins in H. Since this is not the case for the vertex
s, and due to the definition of G, there exists a neighbor s′ of s in G that does not belong
to H such that s is the only neighbor of s′ in V (H). Now define t′ as the unique false twin
of ℓ in G, and observe that there exists an extension (H ′, s′, t′) of (H, s, t) in G. Clearly
this extension cannot be closed without visiting a vertex from NG(ℓ) (see Figure 4.1).

Since we identified a non-closable extension of an arbitrary copy (H, s, t) of (Ĥ, ŝ, t̂) in
H, we conclude that the graph G is indeed confining. Hence (Ĥ, ŝ, t̂) is non-inherent.

We construct confining graphs for five infinite families of PE-inherent two-rooted
graphs outlined in Section 3.4: certain combs of type I, combs of type II, rakes, split
rakes, and leaf-extended full trees.
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t

t′

`

G0 G

Figure 4.1: There is no way to extend tt′ to close the extension.

Theorem 4.2. The following PE-inherent two-rooted graphs are non-inherent:

1. Two-rooted combs of type II.

2. Two-rooted rakes and split rakes.

3. Two-rooted leaf-extended full trees with non-adjacent roots.

4. Two-rooted graphs T1(ℓ− 1, 0, 1) for ℓ ⩾ 3 and T1(0, 0, ℓ) for ℓ ⩾ 1.

These are two-rooted graphs (P, s, t) such that P = (v0, . . . , vℓ) is a path of length
ℓ ⩾ 1, s = v0, and either t = v0 or (t = vℓ−1 with ℓ ⩾ 3).

5. Certain two-rooted combs of type I, including T1(1, 0, 2), T1(1, 0, 3), T1(1, 1, 1),
T1(1, 1, 2), T1(1, 2, 1), T1(1, 3, 1), T1(1, 4, 1), T1(2, 0, 2), T1(2, 0, 3), T1(2, 1, 1),
T1(2, 1, 2), T1(2, 2, 1), T1(2, 3, 1), T1(2, 4, 1), and T1(3, 0, 3).

To prove Theorem 4.2, we will need other types of confining graphs. Given a PE-
inherent two-rooted graph (H, s, t), its confining graph may be

• a direct modification of the graph H, or

• an appropriate circulant of small degree, or

• an appropriate cage of small degree.

There may be other ways of confining two-rooted graphs.
We describe these various approaches in the following subsections. In particular,

we prove in Section 4.1 the non-inherence of two-rooted graphs listed in items 1–3 of
Theorem 4.2. The non-inherence of all two-rooted graphs listed in item 4 is proved in
Section 4.2, except for the case s = t = v0 and ℓ = 2, for which non-inherence is proved in
Section 4.3, along with the non-inherence of all two-rooted graphs listed in item 5. Note
that for a given two-rooted graph, there might be several confining graphs; however, we
shall not describe all of them.
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4.1 Direct confinement of some families

All combs of type II can be confined by two additional paths of length three (see Fig-
ure 4.2).

a1 ap+q+1

Figure 4.2: Up to automorphism, the graph admits only one copy of T2(3, 3), which is
clearly not avoidable, thus showing that T2(3, 3) is confined.

Two-rooted rakes and split rakes are confined by similar construction, shown on Fig-
ure 4.3.

a1 aq+3

Figure 4.3: Up to automorphism, the graph on the left admits only one copy of T4(3),
while the graph on the right admits only one copy of T5(4), both of which are clearly not
avoidable, thus showing that these graphs are confined.

The leaf-extended full trees are confined as shown on Figure 4.4.

Figure 4.4: Up to automorphism, the graph admits only one copy of the leaf-extended
full tree, which is not avoidable if s and t are not adjacent, thus showing confinement in
this case.

4.2 Confinement by circulants

In the following lemma we prove non-inherence of two-rooted graphs listed in item 4 of
Theorem 4.2, except for s = t = v0 and ℓ = 2.
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A graph on n vertices is a circulant if its vertices can be numbered from 0 to n − 1
in such a way that, if some two vertices numbered x and (x + d) (mod n) are adjacent,
then every two vertices numbered z and (z + d) (mod n) are adjacent. We denote such
a graph by Circ(n;S), where S is the set of all possible values d, corresponding to the
above definition (see [1]).

Lemma 4.3. Let P = (v0, . . . , vℓ) be a path of length ℓ ⩾ 1 and let s and t be two vertices
of P . Then, the two-rooted graph (P, s, t) is not inherent if

(i) s = v0, t = vℓ−1, and ℓ ⩾ 3;

(ii) s = t = v0 and ℓ ̸= 2.

Proof. In all cases the confining graph G is the circulant Circ(2ℓ + 6; {±1,±(ℓ + 2)}),
which is in fact isomorphic to the lexicographic product of cycle Cℓ+3 and a non-edge
2K1. Note that (i) is a special case of Lemma 4.1.

It is not difficult to check that up to an automorphism, there is a unique path of length
ℓ in G for every ℓ, except ℓ = 2; see Figure 4.5 (a), (b).

s

t

s = t

s

t

s = t

(a) (b) (c) (d)

Figure 4.5: Circulant graphs Circ(2ℓ + 6; {±1,±(ℓ + 2)}) for ℓ = 3 (in (a) and (b)) and
ℓ = 2 (in (c) and (d)) with induced copies of the corresponding two-rooted graphs (P, s, t),
when t = vℓ−1 (in (a) and (c)) or t = s = v0 (in (b) and (d)).

Furthermore, if ℓ ⩾ 3 then in both cases, the corresponding two-rooted graph has, up
to an automorphism, a unique extension, which cannot be closed. This shows confinement.

For ℓ = 1 both cases give the same two-rooted graph. In this case, the graph G
is the circulant Circ(8; {±1,±3}), which is isomorphic to the complete bipartite graph
K4,4. Each induced copy of the corresponding two-rooted graph (P, s, t) in G has, up to
symmetry, a unique extension, and this extension cannot be closed. Again, this shows
confinement.

In case ℓ = 2 the above arguments do not work. There is another path (see Figure 4.5
(c), (d)) such that, for both cases (i) and (ii), the two-rooted graph (P, s, t) is simplicial,
and hence avoidable.

Note that in case (i) the cycle Cℓ+3 can be replaced by any longer cycle. In other
words, the circulant Circ(2k + 6; {±1,±(k + 2)}) confines T1(ℓ− 1, 0, 1) for all k ⩾ ℓ.
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For case (ii) with ℓ = 1 in the proof above, instead of Circ(8; {±1,±3}) ∼= K4,4 one
may consider also the circulant Circ(6; {±1,±3}), which is isomorphic to K3,3.

Our computations also show that T1(2, 0, 2), that is, the two-rooted graph (P, s, t)
such that P = (v0, v1, v2, v3) is a path of length 3, s = v0, and t = v1, is confined by the
circulant Circ(20; {±2,±5,±6}) (see Figure 4.6).

Figure 4.6: The circulant Circ(20; {±2,±5,±6})

Remark 4.4. If ℓ = 0 then in case (ii) the corresponding two-rooted graph (K1, s, t) is
inherent (see Theorem 1.1) and case (i) is impossible.

4.3 Confinement by cages

It turns out that the cages are very useful for confining PE-inherent two-rooted graphs.
In particular, this is true for the Petersen graph, which is a (3, 5)-cage.

Proposition 4.5. The Petersen graph confines T1(1, 0, 2), T1(2, 0, 2), and T1(1, 1, 1).

Proof. First notice that the Petersen graph is 3-arc-transitive (see [18, Chapter 27] or [13,
Section 4.4]). Similarly, since the closed neighborhood of any vertex induces a claw, the
Petersen graph is claw-transitive, i.e., the automorphism group acts transitively on the
set of its claws. Hence it suffices to verify the claim for only one embedding of either
T1(1, 0, 2), T1(2, 0, 2), or T1(1, 1, 1) in the Petersen graph (see Figures 4.7 to 4.9). For
each case there is only one extension of the embedding, which is not closable.

Further confinements by cages are listed in Table 1. The verification for those cases
was assisted by computer. For more details, including the source code of the verification
procedure, we refer the reader to [15].

We are now ready to prove Theorem 1.9.

Proof of Theorem 1.9. Consider a path P = (v0, . . . , vℓ) with s = v0 and t ∈ V (P ).

• Assume first that ℓ ⩾ 1 and t = v0. If ℓ ̸= 2, then the two-rooted path (P, s, t)
is not inherent by item 4 of Theorem 4.2. The same conclusion holds for the case
when ℓ ⩾ 3 and t = vℓ−1. If ℓ = 2 and t = v0, then (P, s, t) is the two-rooted comb
of type I, T1(1, 0, 2), which is not inherent by Proposition 4.5.
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s = t

Figure 4.7: T1(1, 0, 2)

s t

Figure 4.8: T1(2, 0, 2)

s = t

Figure 4.9: T1(1, 1, 1)

Figure 4.10: From left to right: the Petersen, Heawood, McGee, and Tutte–Coxeter graphs

• If ℓ = 3 and t = v1, then (P, s, t) is a two-rooted comb of type I, T1(2, 0, 2), which
is not inherent by Proposition 4.5.

• For the last two cases, if ℓ ∈ {4, 5} and t = vℓ−3, then (P, s, t) is a two-rooted comb
of type I, either T1(2, 0, 3) or T1(3, 0, 3). Both are confined by the Heawood graph
(see Table 1 and [15]) and hence not inherent.

4.4 More confining graphs

Eight possibly inherent graphs travelling to Devon.
By Dodecahedron one confined and then there were seven.

Here we mention additional confining graphs for various PE-inherent two-rooted graphs.

(i) Our computations show that the Dodecahedron graph (see Figure 4.11) confines
T1(3, 1, 1). For this two-rooted graph no other confinements are known.
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Confining graph Confined two-rooted graphs

Petersen graph T1(2, 0, 2), T1(1, 0, 2), T1(1, 1, 1);

Heawood graph T1(1, 0, 3), T1(1, 1, 2), T1(1, 1, 1), T1(1, 2, 1),

T1(2, 0, 3), T1(2, 1, 1), T1(2, 1, 2), T1(3, 0, 3);

McGee graph T1(2, 2, 1);

Tutte–Coxeter graph T1(2, 3, 1), T1(1, 3, 1), T1(1, 4, 1), T1(2, 4, 1).

Table 1: Cages from Figure 4.10 and some two-rooted graphs confined by them

(ii) The lexicographic product of the 6-prism (see Figure 4.11) and 2K1 confines T2(2, 1).
The 6-prism may be replaced by the 6-Möbius strip (see Figure 4.11).

(iii) Furthermore, the lexicographic product of Cq′+4□C3 and 2K1 confines T2(2, q), for
0 ⩽ q ⩽ q′.

Figure 4.11: From left to right: the Dodecahedron graph, the 6-prism, and the 6-Möbius
strip

5 Positive results

Up to now, we know few examples of inherent two-rooted graphs. The first one is an
infinite series consisting of endpoint-rooted paths. Their inherence was proved by Bonamy
et al. [7]. Here we provide a more general approach, illustrate it with a proof of the result
of Bonamy et al. [7] (see Section 5.1), and use it to prove Theorem 1.10.

We believe that there are more connected inherent two-rooted graphs. Our main
candidate is mentioned in Conjecture 1.2. In our notation it is isomorphic to T1(2, 0, 1) =
T3(1, 0) (see also Figure 5.1).

In Section 5.2 we provide a partial result supporting this conjecture (Theorem 1.10).
Let us mention that all two-rooted combs of type III might be inherent. This is open. In
Section 5.3 we list some other open cases. In Section 5.4 we give a sufficient condition for
inherence of disconnected two-rooted graphs.
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a1 a2 a3

Figure 5.1: T3(1, 0)

5.1 The inherence of endpoint-rooted paths

We start with presenting the basic idea of our approach. Given two graphs H and G,
we say that a set U ⊆ V (G) is H-avoiding (or simply avoiding, if H is clear from the
context) if the subgraph of G induced by U is connected and the graph G−N [U ] contains
a copy of H. Now let (Ĥ, ŝ, t̂) be a two-rooted graph and (H, s, t) be its copy in the graph
G − N [U ], where U is Ĥ-avoiding. Then any extension (H ′, s′, t′) with s′, t′ in N [U ] is
closable by a shortest path between s′ and t′ such that all intermediate vertices belong
to U . Of course, there are other extensions of the copy. But if one takes an inclusion-
maximal Ĥ-avoiding set U in G, then the analysis of these extensions becomes tractable.
In the case of endpoint-rooted paths (that is, combs of type I of the form T1(ℓ, 0, 0)), this
approach gives an alternative proof of the result of Bonamy et al.

Theorem 5.1 (Bonamy et al. [7]). Any endpoint-rooted path is inherent.

Proof. Let P̂ be a path of length ℓ with endpoints ŝ, t̂. Suppose for a contradiction that
the statement fails and let G be a minimal counterexample. In other words, G contains
a copy of (P̂ , ŝ, t̂) but no avoidable copy and this does not happen for any graph having
fewer vertices than G. In particular, no copy of (P̂ , ŝ, t̂) in G is simplicial. Let (P, s, t) be
a copy of (P̂ , ŝ, t̂) in G. Since the copy is not simplicial, it has an extension, which is a
path of length ℓ + 2 with the endpoints s′, t′. Note that (V (P ) ∪ {t′}) \ N [s′] induces a
copy of (P̂ , ŝ, t̂) in G−N [s′], and hence the set {s′} is P̂ -avoiding in G. Fix any inclusion-
maximal P̂ -avoiding set U in G and let G′ = G − N [U ]. Since G′ contains a copy of P ,
it also contains, by the minimality of G, an avoidable copy (P̃ , x, y) of (P̂ , ŝ, t̂). We come
to a contradiction by showing that (P̃ , x, y) is avoidable in G. Consider its extension
(P̃ ′, x′, y′) in G. If both x′ and y′ belong to N(U), then the extension can be closed via a
path within the connected graph G[U ]. If both x′ and y′ belong to V (G′), the extension
can be closed via a path within G′, since (P̃ , x, y) is avoidable in this graph.

Suppose now that exactly one of x′ and y′ belongs to N(U). Without loss of generality
we may assume that x′ ∈ N(U) (and then y′ ∈ V (G′)). Set U ′ = U ∪ {x′}. Since x′ has a
neighbor in U , set U ′ induces a connected subgraph of G. Furthermore, (V (P̃ ) ∪ {y′}) \
N [x′] induces a copy of P in G−N [U ′]. This contradicts the maximality of U . Thus, this
case is impossible and we are done.

5.2 Proof of Theorem 1.10

Recall that in our current notation T3(1, 0) stands for the two-edge path P = (s, t, v) with
roots s, t. Theorem 1.10 states that if a graph G contains an induced P3 then there exists
an avoidable copy of T3(1, 0) in G, provided that G is either C5-free or subcubic.

In the proof we use the following definitions.
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Definition 5.2. A sequence B = (B1, B2, . . . , Bm) such that ∅ ̸= Bi ⊆ V (G) for all
i ∈ {1, . . . ,m} is a sequence of avoiding bags in a graph G if

1◦ a subgraph of G induced by Bi is connected for any i > 0;

2◦ Bi ∩NG[Bj] = ∅ for any i ̸= j;

3◦ the core C of B, that is, the subgraph of G induced by V (G) \
⋃

j NG[Bj], contains an
induced P3.

The rank of B = (B1, B2, . . . , Bm) is the integer sequence rk(B) = (|B1|, |B2|, . . . , |Bm|).

Suppose that the theorem is false and let G be a minimal counterexample. That is, G
is C5-free or subcubic and G contains a copy of T3(1, 0) but no avoidable copy, and this
does not happen for any graph with fewer vertices than G. Note that each subgraph of
G is also C5-free or subcubic.

Since G contains no avoidable copy of T3(1, 0), no copy of T3(1, 0) in G is simplicial.
Let (P, s, t) be a copy of T3(1, 0) in G. Since the copy is not simplicial, it has an extension
(P ′, s′, t′). Note that (V (P ) ∪ {t′}) \N [s′] induces a P3 in G−N [s′], and hence ({s′}) is
a non-empty sequence of avoiding bags.

For the rest of the proof we fix a non-empty sequence of avoiding bags B which has
maximal rank w.r.t. the lexicographical order on integer sequences. Furthermore, let C
be the core of B as defined in Definition 5.2.

The following technical lemmas hold for every graph G that is a minimal counterex-
ample to Conjecture 1.2. We do not use in the proofs that G is C5-free or subcubic.

Lemma 5.3. Let x, y ∈ V (C), x′, y′ /∈ V (C), xx′, yy′ ∈ E(G), xy′, yx′, x′y′ /∈ E(G).
Then x′, y′ ∈ N(Bj) for some j ∈ {1, . . . ,m}.

Proof. Note that since x′ ̸∈ V (C), there exists some r ∈ {1, . . . ,m} such that x′ ∈ N(Br),
and similarly for y′. Let i = min{r : x′ ∈ N(Br)} and j = min{r : y′ ∈ N(Br)}. Without
loss of generality we assume that i ⩽ j.

If x′ ∈ N(Bj), then we are done. So we may assume that x′ ̸∈ N(Bj). Furthermore,
y′ ∈ N(Bj) \ N(Bi) and, for some y′′ ∈ Bj, y

′′y′y is an induced P3 in G − N [Bi ∪ {x′}].
Thus, (B1, . . . , Bi−1, Bi ∪ {x′}) is a sequence of avoiding bags, since x′ /∈ N [Br] for r < i.
Its rank is greater than B, and we come to a contradiction with rank-maximality of B.

Lemma 5.4. For any x ∈ V (C), every connected component of the graph C − NC [x] is
complete.

Proof. A graph does not contain an induced P3 if and only if it is a disjoint union of
complete graphs. If C−NC [x] contains an induced P3, then (B1, . . . , Bm, {x}) is a sequence
of avoiding bags having the rank greater than B, a contradiction with rank-maximality
of B.

Lemma 5.5. Let xyz be an induced P3 in C and (P ′, x′, y′) be an extension of the copy
(xyz, x, y) of T3(1, 0) in G such that x′ /∈ V (C). Then y′ /∈ V (C), too.
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Proof. Suppose, for the sake of contradiction, that y′ ∈ V (C). Let i = min{r : x′ ∈
N(Br)}. Note that y′yz is an induced P3 in C and, moreover, {y′, y, z} ∩ NG(x

′) = ∅.
Thus, the sequence (B1, . . . , Bi−1, Bi ∪ {x′}) is a sequence of avoiding bags in G having
the rank greater than B, a contradiction.

Lemma 5.6. Let xyz be an induced P3 in C. Then there exists a vertex z′ such that
xyzz′ is an induced P4 in C.

Proof. The copy (zyx, z, y) of T3(1, 0) is not avoidable in G. Let (P ′, z′, y′) be a non-
closable extension of it. Then xyzz′ is an induced P4 in G. To complete the proof we
show that z′ ∈ V (C).

Suppose, for the sake of contradiction, that z′ /∈ V (C). Then, due to Lemma 5.5, y′ /∈
V (C). Lemma 5.3 can be applied to z, y ∈ V (C), z′, y′ /∈ V (C). Thus, z′, y′ ∈ N(Bj) for
some j ∈ {1, . . . ,m}, and the extension can be closed by a path in Bj, a contradiction.

Lemma 5.7. Any induced P3 in C is a part of an induced C5 in C.

Proof. Let abc be an induced P3 in C. Due to Lemma 5.6, there exist two induced P4s in
C of the form a∗abc, abcc∗.

Suppose that for all induced a∗abc, abcc∗ we have a∗ = c∗. This implies that a′ /∈ V (C)
for each extension (P ′, a′, b′) of the copy (abc, a, b) of T3(1, 0) in G. Due to Lemma 5.5,
b′ /∈ V (C) for each extension. Again, applying Lemma 5.3 we see that each extension
is closable and the copy (abc, a, b) of T3(1, 0) is avoidable in G, a contradiction with the
assumption that G has no avoidable copies of T3(1, 0).

If a∗ ̸= c∗ then a∗c∗ ∈ E(G) due to Lemma 5.4, since otherwise there exists an induced
P3 outside NC [a

∗]. Therefore, {a∗, a, b, c, c∗} induces a C5 in C, and we are done.

Proof of Theorem 1.10. Lemma 5.7 implies that the theorem holds under condition (a).
Indeed, if G is a C5-free counterexample to the theorem, we come to a contradiction with
Lemma 5.7.

In fact, since there exists a vertex v ∈ B1 and V (C) ⊆ V (G) \ N [v], a contradiction
would also be obtained under a weaker assumption that G is (C5+K1)-free, where C5+K1

is the graph obtained from C5 by adding to it an isolated vertex. Thus, if a graph G does
not contain induced C5 +K1 and contains an induced P3 then there exists an avoidable
copy of T3(1, 0) in G.

We now focus on the proof of the theorem under condition (b). Let G be a minimal
counterexample. Then G is connected. Furthermore, G does not contain pendant vertices,
since any such vertex is an endpoint of P3 and the corresponding copy of T3(1, 0) is
simplicial. Observe next that G does not contain triangles (that is, cliques of size three).
For the sake of contradiction, assume that v0, v1, v2 are vertices of a triangle. Without loss
of generality, since G is connected, there exists an edge v0v3, v3 ̸= vi, i ∈ {0, 1, 2}. The
degree of v0 is 3, so there are no other edges incident to v0. If v3vi /∈ E(G), i ∈ {1, 2}, then
the copy (v3v0vi, v3, v0) of T3(1, 0) is simplicial. Therefore v0, v1, v2, v3 form a complete
subgraph that is a connected component of G, a contradiction with the fact that G is
connected and contains an induced P3. The absence of triangles implies that G does not
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contain vertices of degree 2: any such vertex would be the middle point of a simplicial
copy of T3(1, 0). We conclude that G is cubic.

Recall that B = (B1, . . . , Bm) is a sequence of avoiding bags with maximal rank, and
C is its core. Take an induced P3 in C (such a P3 exists due to Definition 5.2) and an
induced C5 in C extending P3 (such a C5 exists due to Lemma 5.7). Let u0, u1, u2, u3, u4
be the vertices of this C5 numbered consequently along the cycle. Since G is cubic and
the cycle is induced, the vertex ui, where 0 ⩽ i ⩽ 4, has a unique neighbor wi outside the
cycle.

Next, we prove that wi /∈ V (C) for all 0 ⩽ i ⩽ 4. Assume, for the sake of contradiction,
that w0 ∈ V (C). Since G does not contain triangles, u4w0 /∈ E(G). Then w0u2 ∈
E(G), since otherwise w0 and u4 would form a pair of non-adjacent vertices in the same
component of C − NC [u2], contradicting Lemma 5.4. Since there are no triangles in G,
vertex u3 is not adjacent to any vertex in the set {w0, u0, u1}. We come to a contradiction
with Lemma 5.4 since w0 and u1 are not neighbors.

Let P = (u0, u1, u2). Since the copy (P, u0, u1) of T3(1, 0) is not avoidable in G, it
has a non-closable extension (P ′, a′, b′). Since u1 has degree three in G and b′ ̸∈ {u0, u2},
we infer that b′ = w1. We show next that a′ = u4. Suppose that this is not the case.
Since u0 has degree three in G and a′ ̸∈ {u1, u4}, we must have a′ = w0. However,
applying Lemma 5.3 to (x, y, x′, y′) = (u0, u1, a

′, b′) implies that a′, b′ ∈ N(Bj) for some
j ∈ {1, . . . ,m}, contradicting the assumption that (P ′, a′, b′) is not closable. This shows
that a′ = u4, as claimed. Thus, w1 ̸= w4, since otherwise a

′ would be adjacent to b′ = w1.
Finally, observe that the extension (P ′, a′, b′) is closable. If w1w4 ∈ E(G), then the
extension can be closed using the path (a′ = u4, w4, w1 = b′), since w0 ̸= w4, which holds
since G has no triangles. Otherwise we apply Lemma 5.3. We come to a contradiction
that completes the proof.

5.3 More candidates for inherence

Let us recall that we are not aware of any non-inherent two-rooted combs of type III.
Additionally, the inherence of the following small two-rooted graphs is also open.

• Three two-rooted graphs of order 6, all of which are two-rooted combs of type I (the
first two are paths): T1(2, 0, 4), T1(4, 0, 2), T1(1, 1, 3) (see Figure 5.2).

a1 a2 a1 a4 a1

T1(2, 0, 4) T1(4, 0, 2) T1(1, 1, 3)

Figure 5.2: Open cases of order 6 (except combs of type III)

• The following 7-vertex two-rooted graphs (see Figure 5.3):
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– paths (that is, two-rooted combs of type I with no teeth): T1(5, 0, 2), T1(3, 0, 4),
T1(2, 0, 5),

– two-rooted combs of type I with one tooth: T1(4, 1, 1), T1(3, 1, 2), T1(2, 1, 3),
T1(1, 1, 4),

– a two-rooted comb of type I with two teeth, T1(1, 2, 2),

– the extended claw, and the rake T4(1).

a1 a5 a1 a3 a1 a2

T1(5, 0, 2) T1(3, 0, 4) T1(2, 0, 5)

a1 a4 a1 a3

T1(4, 1, 1) T1(3, 1, 2)

a1 a2 a1

T1(2, 1, 3) T1(1, 1, 4)

a1

T1(1, 2, 2) the extended claw

Figure 5.3: Open cases of order 7 (except combs of type III)

5.4 Inherent disconnected two-rooted graphs

Up to now, we have considered only connected two-rooted graphs. However, inherent
graphs may be disconnected.

Proposition 5.8. Let (H, s, t) be an inherent two-rooted graph. Then for any graph H ′,
the two-rooted graph (H +H ′, s, t) is also inherent.

Proof. Suppose (Ĥ, ŝ, t̂) is inherent, and let Ĥ ′ be an arbitrary graph. Furthermore, let
G be a graph and let (H + H ′, s, t) be a copy of (Ĥ + Ĥ ′, ŝ, t̂) in G. Now set G′ =
G − N [V (H ′)], and observe that G′ admits a copy of (Ĥ, ŝ, t̂). Recall that (Ĥ, ŝ, t̂) is
inherent, so let (H∗, s∗, t∗) be an avoidable copy of (Ĥ, ŝ, t̂) in G′. Finally, observe that
(H∗ ∪H ′, s∗, t∗) is avoidable in G.

Proposition 5.8 provides many new examples of inherent graphs. Also, there might be
more inherent disconnected two-rooted graphs; see Section 6.
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6 Open questions and possible generalizations

We have concentrated on the case of connected two-rooted graphs. This is justified by
the following two conjectures related to the general case.

Conjecture 6.1. A two-rooted graph (Ĥ, ŝ, t̂) is not inherent if ŝ and t̂ are not in the
same component of H.

Conjecture 6.2. If (Ĥ + Ĥ ′, ŝ, t̂) is inherent and ŝ, t̂ are in Ĥ, then (Ĥ, ŝ, t̂) is also
inherent.

Recall that Conjecture 1.2 states that the two-rooted graph T3(1, 0) is inherent. More
generally, we ask the following.

Question 6.3. Which two-rooted combs of type III are inherent?

The following much more general questions are also still open.

Question 6.4. Is the problem of recognizing if a given two-rooted graph is inherent
(resp. PE-inherent) decidable? If so, is it solvable in polynomial time?

In conclusion, we mention some possible generalizations of the considered concepts
from two-rooted graphs to k-rooted graphs, that is, graphs H with ordered k-tuples of
vertices, for any integer k ⩾ 2.

Given a graph G, a k-rooted graph (Ĥ, ŝ1, . . . , ŝk), and a copy (H, s1, . . . , sk) of it in
G, an extension of (H, s1, . . . , sk) in G is any k-rooted graph (H ′, s′1, . . . , s

′
k) such that H ′

is a subgraph of G obtained from H by adding to it k pendant edges s1s
′
1, . . . , sks

′
k. More

precisely, V (H ′) = V (H) ∪ {s′1, . . . , s′k}, vertices s′i and s′j are distinct for all i ̸= j, the
graph obtained from H ′ by deleting {s′1, . . . , s′k} is H, and si is the unique neighbor of s

′
i in

H ′ for all i ∈ {1, . . . , k}. Furthermore, we say that an extension (H ′, s′1, . . . , s
′
k) of a copy

(H, s1, . . . , sk) of a k-rooted graph in a graph G is closable if there exists a component C
of the graph G − N [V (H)] such that each s′i has a neighbor in V (C).6 Finally, having
defined the concepts of extensions and closability in the context of k-rooted graphs, the
concepts of avoidability and inherence can be defined in the same way as in the case of
two-rooted graphs.

The method of pendant extensions and the notion of PE-inherence can also be gener-
alized. Fix k > 0 and a k-rooted graph (H, s1, . . . , sk) (some roots may coincide). Let us
call it amoeba. Amoebas replicate as follows. Initially, add a pendant edge to each root.
In general, we add new pendant edges to the current graph to ensure that every replica
(copy) of the initial amoeba admits an extension. An amoeba is said to be confined (with
respect to the replication process) if the replication process is finite, and PE-inherent,
otherwise.

Research Problem 6.5. Characterize PE-inherent amoebas.

6There are several ways to generalize the concepts of extension and/or closability from two-rooted graphs
to k-rooted graphs; however, the definitions given above seem to be the most natural ones.
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Several results from this paper extend to the setting of amoebas (for arbitrary k). In
particular, all connected PE-inherent amoebas are trees with maximum degree at most
k + 1. The one-rooted case, k = 1, is very simple: all connected one-rooted amoebas are
confined by the replication process, except paths with the root at an end.

Every PE-inherent (k-rooted) amoeba is also PE-inherent for bigger values of k, as
long as we leave the “initial” roots in place. Related to this, it may be interesting to
study minimally PE-inherent amoebas, that is, amoebas that are PE-inherent but are
not PE-inherent with respect to any proper nonempty subset of the roots.

We refer to [16] for some initial results about amoebas.

Acknowledgments

The authors are grateful to the anonymous reviewers for helpful suggestions.
This work is supported in part by the Slovenian Research and Innovation Agency (I0-

0035, research programs P1-0285 and P1-0383 and research projects J1-3001, J1-3002,
J1-3003, J1-4008, J1-4084, J1-60012, J5-4596, and N1-0370) and by the research program
CogniCom (0013103) at the University of Primorska. The work was initiated in the
framework of a bilateral project between Slovenia and Russia, financed by the Slovenian
Research and Innovation Agency (BI-RU/19-20-022). Part of the work for this paper
was done in the framework of bilateral projects between Slovenia and the USA, financed
by the Slovenian Research and Innovation Agency (BI-US/22–24–093, BI-US/22–24–149,
and BI-US/24–26–088). The first and fourth authors were working within the framework
of the HSE University Basic Research Program. The work of the fourth author was also
supported in part by the state assignment topic no. FFNG-2024-0003.

References

[1] B. Alspach. Cayley graphs. In Topics in algebraic graph theory, pages 156–178.
Cambridge: Cambridge University Press, 2004.

[2] J. Beisegel, M. Chudnovsky, V. Gurvich, M. Milanič, and M. Servatius. Avoidable
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[11] P. Erdős and H. Sachs. Reguläre Graphen gegebener Taillenweite mit minimaler
Knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe,
12:251–257, 1963.

[12] G. Exoo and R. Jajcay. Dynamic cage survey. Electron. J. Combin., #DS16, 2008.

[13] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2001.
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