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Abstract

Let G be a multigraph. A subset F' of F(G) is an edge cover of G if every
vertex of G is incident to an edge of F. The cover index, £(G), is the largest
number of edge covers into which the edges of G can be partitioned. Clearly
£(G) < §(@), the minimum degree of G. For U C V(G), denote by ET(U) the
set of edges incident to a vertex of U. When |U| is odd, to cover all the ver-
tices of U, any edge cover needs to contain at least (|U| + 1)/2 edges from E*(U),
indicating £(G) < |ET(U)|/((JU| +1)/2). Let p.(G), the co-density of G, be de-
fined as the minimum of |[E*(U)|/((|JU| + 1)/2) ranging over all U C V(G), where
|U| > 3 and |U| is odd. Then p.(G) provides another upper bound on &(G). Thus
¢(G) < min{d(G), |p.(G)]}. For a lower bound on &£(G), in 1978, Gupta conjec-
tured that £(G) > min{0(G) — 1, |p.(G)]}. Gupta himself verified the conjecture
for simple graphs, and Cao et al. recently verified this conjecture when p.(G) is not
an integer, assuming the Goldberg-Seymour Conjecture. (Proofs of the Goldberg-
Seymour Conjecture have been announced in three arXiv manuscripts (1901.10316,
2308.15588, and 2407.09403), but have not yet been appeared for publication in
peer-reviewed journals.) In this paper, also assuming the Goldberg-Seymour Con-
jecture, we confirm Gupta’s conjecture when the maximum multiplicity of G is at
most two or min{d(G) — 1, | p.(G)|} < 6. The proof relies on a newly established
result on edge colorings. The result holds independent interest and has the potential
to significantly contribute towards resolving the conjecture entirely.

Mathematics Subject Classifications: 05C38
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1 Introduction

Graphs in this paper have no isolated vertex, may contain multiple edges but contain
no loop. Let G be a graph. Denote by V(G) and E(G) the vertex set and the edge set
of G, respectively. For v € V(G), dg(v), the degree of v, is the number of edges of G
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that are incident with v. For S C V(G), the subgraph of G induced on S is denoted by
G[S], and on V(G) \ S is denoted by G — S. For notational simplicity we write G — x
for G — {z}. For e € E(G), G — e is obtained from G by deleting the edge e. For an
edge e ¢ E(G), G + e is obtained by adding the edge e to G. Let A,B C V(G) be
disjoint. We denote by Eg(A) the set of edges with both endvertices in A, Eg(A, B) the
set of edges with one endvertex in A and the other endvertex in B, and by E/(A) the
set of edges of G incident with a vertex of A. Note that E}(A) is the union of Eg(A)
and Eg(A,V(G)\ A). When A = {z}, we simply write Eg({z}, B) as Eg(z,B). Let
ec(A) = |Eq(A)|, ec(A, B) = |Eg(A, B)|, and ef,(A) = |Ef(A)|. When G is clear from
the context, we skip the subscript G' from the corresponding notation.

Let FF C E(G). The set F saturates v € V(G) if v is incident in G with an edge
from F'; otherwise F' misses v. For S C V(G), we say F saturates S if F' saturates
every vertex of S. We call F' an edge cover of G if F saturates V(G). The cover index,
£(@), is the largest number of edge covers into which the edges of G can be partitioned.
Clearly £(G) < (@), the minimum degree of G. For any U C V(G) such that |U]| is
odd, every edge cover of G contains at least (|U| + 1)/2 edges from E*(U). Therefore,
we have £(G) < e™(U)/((|U] + 1)/2). Let p.(G), the co-density of G, be defined as the
minimum of e™(U)/((|U|+1)/2) ranging over all U C V(G), where |U| > 3 and |U]| is odd.
Then p.(G) provides another upper bound on &(G). Thus £(G) < min{d(G), |p.(G)]}.
For a lower bound on £(G), in 1978, Gupta [6] conjectured that {(G) > min{d(G) —
1, |p(G)]}, and he proved the conjecture when G is simple [5]. This conjecture can
be viewed as a counterpart to the Goldberg-Seymour Conjecture, which concerns edge
coloring of multigraphs. (While proofs of the Goldberg-Seymour Conjecture have been
announced, see, e.g., [2, 7, 3], they are not yet published in peer-reviewed journals.)

A deeper connection exists between these two conjectures. Assuming the Goldberg-
Seymour Conjecture, in 2023, Cao, Chen, Ding, Jing and Zang [1] verified Gupta’s con-
jecture when p.(G) is not an integer. Here, again, assuming the validity of the Goldberg-
Seymour Conjecture, we generalize Gupta’s result from simple graphs to graphs with
maximum multiplicity at most two and confirm the conjecture for graphs G with small
d(G) and p.(G) as stated below.

Theorem 1. Let G be a graph and k = min{d(G) — 1, | p.(G)|}. If the mazimum multi-
plicity of G is at most 2 or k < 6, then G has at least k edge-disjoint edge covers.

As long as there exist k edge-disjoint edge covers, then the rest edges of G not included
in the edge covers can be arbitrarily assigned to the edge covers to get a partition of E(G).
Thus, Theorem 1 implies Gupta’s conjecture for the described classes of graphs. The proof
of Theorem 1 relies on a newly established result on edge colorings, which might be of
independent interest. We introduce some notation in order to state the result.

For two integers p and ¢, let [p,q] = {i € Z : p < i < ¢q}. Let G be a graph and m > 0
be an integer. An edge m-coloring of G is a map ¢: E(G) — [1,m] that assigns to every
edge e of G a color p(e) € [1,m] such that no two adjacent edges receive the same color.
Denote by C™(G) the set of all edge m-colorings of G. The chromatic index x'(G) is the
least integer m > 0 such that C™(G) # (). For a vertex v € V(G) and a coloring ¢ € C™(G)
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for some integer m > 1, define the two color sets p(v) = {@(f) : f is incident to v in G}
and P(v) = [1,m] \ ¢(v). We call p(v) the set of colors presenting at v and p(v) the set
of colors missing at v. For a color a, the edge set E, = {f € E(G)|¢(f) = a} is called
a color class. Clearly, E, is a matching of G (possibly empty). For two distinct colors
a, 3, the subgraph of G induced by E, U Ejg is a union of disjoint paths and even cycles.
Each nontrivial component of E, U Ejg is called an (a, 8)-chain of G with respect to .
For a vertex x and two distinct colors «, 5 such that exactly one of them is missing at z,
we use P,(«, 3, ) to denote the (a, 3)-chain containing the vertex x.

Theorem 2. Let G be a graph and k > 1 be an integer. Suppose A(G) < k+ 1 and
X'(G) < k+2. Let S be the set of vertices of G with degree at most k/2. Then there
exists an edge (k + 2)-coloring of G satisfying the following properties:

(1) The color k + 2 is missing at every vertex of S;
(2) If k+1 € p(x) for some x € S, then P.(k+1,k+2,¢) ends at a vertex of V(G)\ S.

These constraints on the graph GG in Theorem 1 allow us to construct a special edge
coloring, as defined in Theorem 2, for a graph H; derived from the original graph G. If this
special coloring were achievable without the constraints on G, then Gupta’s conjecture
would be proven already. This highlights the potential of Theorem 2 to significantly
advance the resolution of the conjecture.

The remainder of this paper is organized as follows. In the next section, we prove
Theorem 2; in Section 3, we provide further preliminaries that are necessary for proving
Theorem 1; and in the last section, we prove Theorem 1.

2 Proof of Theorem 2

Let G be a graph and ¢ € C™(G) for some integer m > 1. For z,y € V(G), if x and y
are contained in the same («, 3)-chain with respect to ¢, we say = and y are («, 3)-linked.
Otherwise, they are («, 3)-unlinked.

For a vertex v, let C,(a, 5, ¢) denote the unique (a,f)-chain containing v. If
Cy(a, B, ) is a path, we just write it as P,(a, 8,¢). The notation P,(a, 3, ¢) is com-
monly used when we know |@(v) N {«, f}| = 1. If we interchange the colors o and  on
an («, f)-chain C of G, we briefly say that the new coloring is obtained from ¢ by an
(cr, B)-swap on C, and we write it as ¢/C. This operation is called a Kempe-change.

Proof of Theorem 2. For any ¢ € Ck2(G), we define

s, = {xeS:k+2€p(x)}, and
o = {Pk+1,k+2,0): Po(k+1,k+2,0)=P(k+1,k+2 )
for distinct z,y € S},

to be respectively the number of vertices of S at which the color k£ + 2 presents and the
number of (k+1, k+2)-chains (path-chain) with both endvertices in S under ¢. We choose
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¢ € CF2(@) with s, minimum and subject to this, with ¢, minimum. If s, = ¢, = 0,
then we are done. Thus we assume s, + ¢, > 0. We consider two cases in finishing the
proof.

Case 1: s, > 0.

Let z € S such that k 4+ 2 € (). Since d(z) < k/2, there exists a € [1, k] such
that a € @(z). We consider P,(a, k + 2,¢). If P.(a,k + 2,¢) ends at a vertex not in S
or ends at a vertex from S that presents k + 2, then ¢ := ¢/P.(a, k + 2,¢) is an edge
(k + 2)-coloring of G with s, < s,. Thus we assume that P, (o, k + 2, ¢) ends at a vertex
y € S\ {z} such that o € p(y) and k + 2 € P(y). Let

Pm(Oé, k + 2, (,0) = VU1 ...0V2t_1V2¢,

for some integer ¢ > 1, where vy := x and vy := y.

Since |p(x)Up(y)| < d(x)+d(y) < k, we have D(2)NP(y) = [L, k+2]\(p(z)Up(y)) # 0.
Let i € [1,2t] be the smallest index such that B(v;)) N P(x) # 0. As k+2 € ¢(z),
k+2 ¢ ®(v;) N@(x). Among all the edge (k + 2)-colorings & with s = s, ce = ¢, and
P.(a,k 4+ 2,§) = Pu(a,k + 2,9), we may assume ¢ is the one such that the index i is
smallest.

If i = 1, then simply recoloring xv; by a color from B(v;) NP(x) gives a new coloring
Y with sy < s,. Thus ¢ > 2. Let 8 € ®(v;) N@(x) C [1,k + 1]. By the minimality
of i, we have 8 € p(v;—1). As d(v;i—1) < k+ 1 and a, B,k + 2 € p(v;—1), there exists
Y € @(Uz‘fl) g [1, k + 2] \ {Oé,ﬁ, k + 2}

If v; and v;_; are not ((,~)-linked with respect to ¢, then let 1) be obtained by doing
a Kemple-change on P,,(53,7, ) and then recoloring the edge v;—1v; on P.(a, k + 2,¢)
by 7. Note that s, < s,, and we have that a € ¥(v;_1) or k + 2 € ¥(v;_y), and
P.(a,k+2,9) = P, (a,k +2,9). If a € ¥(v;_1), then we can do a Kempe-change on
Py(a, k+2,1) to decrease s and so to decrease s,,. Thus we assume that k+2 € 1¥(v;_;).
If v;_y € S, then we have s, < s, already. Thus we assume v;_; ¢ S. Then we can do a
Kempe-change on P, (o, k + 2,) to decrease sy, and so to decrease s,.

Thus we assume now that v; and v;_; are (f3,7)-linked with respect to ¢. Then let
Y = /P, (B,7,¢). We have sy, = s,, ¢y = ¢y, and Py(a,k + 2,¢) = Py(a,k + 2,¢).
However, we have 3 € 9 (v;_1) N (x) # 0, contradicting the choice of ¢.

Case 2: s, =0 and c, > 0.

Then there exist distinct x,y € S such that P,(k + 1,k +2,¢0) = P(k+ 1,k + 2, ).
Note that k& + 2 € @(x) N®(y), and P.(k + 1,k + 2,¢) is internally disjoint from S as
s, = 0. Let

P.(k+1,k+2,0) = vv1 ... U041,

for some integer t > 0, where vy := x and vgy1 = y. Since d(x) + d(y) < k and
E+ 1€ p(z) N (y), we have (@(z) NB(y)) N [1, 5 £ 0.

Let i € [1,2t+ 1] be the smallest index such that (@(v;) N@(x))N[1, k] # 0. Among all
the edge (k+2)-colorings £ with s¢ =0, ¢e = ¢, and Py(k+1,k+2,§) = P.(k+1,k+2, p),
we may assume ¢ is the one such that the index ¢ is smallest.

If i = 1, then recoloring xzv; by a color from (p(vy) N @(x)) N [1, k] gives a new
coloring ¢ with ¢, < ¢,. Furthermore, we still have s, = s, = 0 as the new color is
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from [1,%]. This gives a contradiction to the choice of ¢. Thus we assume i > 2. Let
B e (@(v;)N@(z))N[1, k]. By the minimality of ¢, we have 8 € p(v;—1). Asd(v;—1) < k+1
and B,k + 1,k +2 € p(v;_1), there exists v € B(v;_1) C [1, k] \ {5}

If v; and v;_; are not ([, ~)-linked with respect to ¢, then let 1) be obtained by doing
a Kemple-change on P,,(f3,7, ¢) and then recoloring the edge v;_1v; on P.(k+1,k+2, )
by 7. Then ¢y < ¢,. Furthermore, we still have s, = s, = 0 as 8,7 € [1,k]. This
gives a contradiction to the choice of ¢. Thus we assume that v; and v;—; are (3,7)-
linked with respect to . Let v = ¢/P,,(8,7,¢). We have sy = s, = 0, ¢, = ¢, and
Po(k+1,k+2,9) = Py(k+1,k+2,¢). However, we have 8 € (¥ (vi_1) N (x))N[1, k] # 0,
contradicting the choice of . m

3 Further Preliminaries

For an integer s > 1, a graph G is s-dense if |V(G)| > 3 is odd and |E(G)| = s(|[V(G)| —

1)/2. As a maximum matching in G can have size at most (|V(G)| —1)/2, the lemma
below is a consequence of GG being s-dense, where a matching is near perfect in G if it
misses only one vertex of G.

Lemma 3. Let G be an s-dense graph with x'(G) = s for some integer s > 1, and let
€ C3(G). Then for any two distinct u,v € V(G), we have p(u)Np(v) = 0. In particular,
each color class of ¢ is a near perfect matching of G, and each vertex v € V(G) is missed
by exactly s — d(v) of the color classes of .

Let p(G), the density of G, be defined as the maximum of e(U)/((|U| — 1)/2) ranging
over all U C V(G), where |[U| > 3 and |U] is odd. In the 1970s, Goldberg [4] and
Seymour [8] independently conjectured that every graph G satisfies x'(G) < max{A(G)+
1, [p(G)]}. Over the past four decades this conjecture has been a subject of extensive
research. In 2019, Chen, Jing, and Zang [2] announced a proof of the Conjecture. An
edge e of G is critical if X'(G —e) < X'(G). As every graph G contains a connected
subgraph H with x'(H) = x/(G) such that every edge of H is critical, the lemma below
is a consequence of Theorem 2.2(ii) from [2].

Lemma 4. Let G be a graph with X'(G) = s+ 1> A(G) +2. Then G has a subgraph H
and an edge e € E(H) such that H — e is s-dense .

Let G be a graph and k£ = min{dé(G) — 1, |p.(G)]}. A subset U of V(G) is odd if
|U| = 3 and |U] is odd. An odd set U of G is optimal (with respect to k) if e™(U) =
k(|U|+1)/2. For an optimal set U of G, since 2™ (U) = >, ., d(v) +e(U,V(G)\ U), we
get k(U +1) = cpdw) +e(U,V(G)\U) = (E+1)|U| +e(U,V(G) \ U) with equality
holds if ., d(v) = (k+ 1)|U|. Thus

k > |U+eU,V(G)\U) and
(1)
U] +e(UV(G)\U) i > dv) = (k+1)|U].

velU

ot
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We have the following property for optimal sets of G.

Lemma 5. Let G be a graph with k = min{d(G) — 1, |p.(G)|}. Suppose that U is a
minimal optimal set of G. Then for any optimal set U of G with U € U’, we have
unu' =9.

Proof. Suppose to the contrary that U N U’ # (). Let
L=U\U, M=UnU, R=U\U and W=V(G)\UUU.

Since U € U’ and U NU’ # 0, we have L, M # (). As U is a minimal optimal set with
U ¢ U, it follows that U' € U. Thus R # () as well. By counting the edges within

distinct parts, we have

e (UUU) = e(L)+e(M)+e(R)+e(L,M)+e(M,R)+e(L,R)+ e(L,W) +
e(M, W)+ e(R,W),

(
et (U) = e(L)+e(M)+e(L,M)+e(M,R)+e(L,R)+ e(L,W) +e(M,W),
et (U) = e(R)+e(M)+e(L,M)+e(M,R)+e(L,R)+e(R,W)+e(M,W),
et (M) = e(M)+e(L,M)+e(M,R)+e(M,W),
e (L) = e(L)+e(L,M)+e(L,R)+e(L,W),
e"(R) = e(R)+e(M,R)+e(L,R)+e(R,W).
Therefore,

e"(UuU)=et(U)+e"(U)—e" (M) —e(L,R).
If |[M| =1, then et (M) 2 0(G) 2 k+1=k(|M|+1)/24 1. If |M| > 3 and |M]| is odd,
then since |M| < |U| and ) # M C U, we know that M is not optimal by the choice of
U. Thus e (M) > k(|]M|+1)/2 + 1.
Suppose first that |M| is odd and so |U U U’| is odd. Then
et (UUU") = e"(U)+e"(U)—et(M)—e"(L,R)
< k(U +10D)/2+ k(U +1)/2 = (E(|M|+1)/2+1) —e" (L, R)

E(UUU'|+1)/2—-1—€e"(L,R) < k(|UUU'| +1)/2,

a contradiction to the assumption that |p.(G)]| > k.

Thus we assume that |M| is even. Then |L| and |R| are odd. Again we have et (L) >
k(|L|+1)/2 and e*(R) > k(|R|+1)/2 by the assumption that ¥ = min{o(G)—1, | p.(G)]}.
As 2e(M) +e(L, M) +e(M,R) +e(M,W) = > .\ d(x) = (k+1)| M|, we get

et(U)+e"(U) = e (L)+et(R)+2e(M)+e(L, M)+ e(M,R) + 2e(M,W)
E(|L|+1)/2+k(|R|+1)/24 (k+ 1)| M|+ e(M, W)
E(|[L|+1)/2+ k(|R|+1)/24+ k|M|/2+ k|M|/2 + | M|
(
(

VoV

E(U|+1)/2+ k(U |+1)/2+ | M|
k(U] + ) k(U +1)
2 2

a contradiction to the assumption that both U and U’ are optimal. O]

WV

+ 1,
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Let G be a graph and k£ = min{0(G) — 1, | p.(G)]}. We will show that when we are
working with edge covers, in some sense, we can assume A(G) = k + 1. For this, we
introduce an operation called edge-splitting. Let xy € E(G). An edge-splitting at x with
respect to xy gives a new graph G’, which is obtained from G by deleting zy, adding a new
vertex 2’, and adding the edge z'y. It is clear that dg (z) = dg(x) — 1 and dg (v) = dg(v)
for all v € V(G) with v # x.

Lemma 6. Let G be a graph, k = min{d(G) — 1, [p.(G)]}. and x € V(G) with dg(z) >
k+ 2. Let H be obtained through the following operation:

o [f x is not contained in any optimal set of G, then we apply an edge-splitting at x
with respect to an arbitrary edge incident with x, say xy;

o [fx is contained in an optimal set of G, we let U be a minimal optimal set containing
x. Lety € U with xy € E(G), and then we apply an edge-splitting at x with respect
to xy. (Such a verter y exists as eq(x,V(G)\U) < k —|U| by Equation (1).)

Then e (U) = k(|U| +1)/2 for any odd set U C V(G).

Proof. Suppose to the contrary that there exists U’ C V(@) such that e}, (U’) < k(|U'| +
1)/2 — 1. As we only applied one edge-splitting at x with respect to zy in getting H, it
follows that 2 € U" and y € U’, e;(U") = k(JU'| +1)/2 — 1, and e (U") = k(|U'| + 1)/2.
Thus U’ is optimal in G.

As x is contained in the optimal set U’ of GG, the second operation in Lemma 6 was
applied to get H from G. Thus there exists an optimal set U of GG such that x,y € U
and U is a minimal. Now we have U € U’ (since y € U \ U’ ) and « € U’. This shows a
contradiction to Lemma 5. O]

4 Proof of Theorem 1

In this section we complete the proof of Theorem 1.

Proof of Theorem 1. Let V = V(G) and E = E(G), and k = min{6(G) — 1, | p.(G)]|}.
Then 6(G) = k + 1 and for any odd U C V(G), we have e}(U) > k(|JU| + 1)/2. Recall
that an odd U C V(G) is optimal if e/,(U) = k(|U| + 1)/2. The general idea is first to
iteratively apply the edge-splitting operations starting from G to produce a graph H with
V C V(H) such that dy(v) = k+1 for each v € V, and that e} (U) > k(|U|+1)/2 for any
odd U C V(G). The graph H has chromatic index at least k + 3. However, by deleting
one edge from each minimal optimal set U of H with U C V, the resulting graph H; is
edge (k+2)-colorable. In particular, we can partition the edges of H; into (k+2) disjoint
matchings My, ..., Mo with some good properties. Finally £ disjoint edge covers of GG is
constructed based the (k+ 2) matchings by adding edges of Mj.1 U M} 15 and the deleted
edges in E(H) \ E(H,) to each of M, ..., My if necessary to make each of them into an
edge set that saturates V.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(2) (2025), #P2.28 7



Algorithm 1 Edge-Splitting Algorithm
while there exists x € V with dg(z) > k+ 2 do
Apply an edge-splitting at x using the operation defined in Lemma 6, and set G
to be the resulting graph.
end while

We first apply the operation stated in Lemma 6 iteratively to get a graph H through
the following algorithm.

Denote the graph resulting from Algorithm 1 by H. Now we have dg(v) = k4 1
for any v € V and dy(v) = 1 for any v € V(H) \ V. Furthermore, by Lemma 6, we
have ef;(U) = k(|U| 4+ 1)/2 for any odd U C V. As E(H[V]) C E and every edge from
eg(V,V(H) \ V) corresponds to an edge of E, it suffices to show that H has k disjoint
edge sets that each saturate V.

For any odd U C V of H, we have ex(U) + €5;(U) = 2ex(U) + exg(U,V(H)\U) =
(k+ 1)|U|. Thus

< (B+DUI=k(U+1)/2-1 if U is not optimal;

en (U] = FIUI=D/2+ U] =1 = (k+2)(1U] - 1)/2 2

=k(U|-1)/2+|U|=(E+2)(|JU| —1)/24+1 if U is optimal.

By (2), any odd set U with exg(U) > (k + 2)(|JU|] — 1)/2 + 1 must have ey (U) =
(k+2)(JU|—1)/241 and so U is an optimal set in H. By Lemma 5, all minimal optimal
sets contained in V are vertex-disjoint. If exist, let Uy, Us,...,U; be all the minimal
optimal sets of H that are contained in V', where t > 1 is an integer. As each U; is odd
and e(U;) = (k+ 2)(JU;| — 1)/2 + 1, if they exist, then we know that x'(H) > k + 3.
However, we will show that after deleting one edge within each Uj;, the resulting graph
has smaller chromatic index. For each i € [1,¢], we delete an edge x;y; from H[U;]. Denote
the resulting graph by H;.

Claim 7. We have X'(H,) = k + 2.

Proof. As vertices of V(H;)\ V have degree 1 in Hy, it suffices to show that x'(H;[V]
k+2. Since e(H[U;]) = (k+2)(|U;|—1)/2 and U; is an odd set, we know that x'(H;[V]
k + 2. We show that x'(H;[V]) < k + 2. Suppose for a contradiction that x'(H:[V]
s+1>2k+3=A(H)+ 2 for some integer s. Applying Lemma 4, there is a subgr
J C Hy[V] and an edge e € E(J) such that J — e is s-dense. Thus |E(J — e)
SV = 1)/2> (k+ 2(V()] — 1)/2 and 50 e, (V) > (k+2)([V()| - 1)/2+ 1.
If U; C V(J) for some i € [1,t], then we have ey(V(J)) = ey, V(J))+1 = (k+
2)(JV(J)| —1)/2 + 2. This gives a contradiction to (2) since V(J) is an odd set. Thus
U £ V(J) for any i € [1,t]. Again, as V(J) is an odd set and ey (V(J)) = ey, (V(J)) =
(k+2)(|V(J)] —1)/2 + 1, it follows from (2) that V(J) is an optimal set of H. We let
U* C V(J) be a minimal optimal set of H. By Lemma 5, we must have U* = U; for
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some i € [1,¢]. However, this contradicts our previous assumption that U; Z V(J) for
any i € [1,t]. Thus we must have x'(H;) < k + 2, as desired. O

Let H, be obtained from H; by contracting each U; into a single vertex u; for each
i€ [1,t].

Claim 8. We have dg,(u;) < k/2 for each i € [1,t].

Proof. Suppose, without loss of generality, that |U;| < |Uz| < ... < |Uy|. Then by (1), we
have ey (U, V(H)\Uy) 2 eg(Us, V(H)\ Us) > ... 2 eg(U, V(H) \ Uy). Since H; was
obtained from H by deleting one edge within each U;, we have dg, (u;) = ey (U;, V(H)\U;).
Thus dg, (u1) = dg,(ug) > ... = dg,(us). It then suffices to show that dpy,(u;) < k/2, or
equivalently ey (Uy, V(H) \ Uy) < k/2. As (k+2)(|U1| — 1) + 2 = 2ey(U;) by (2), when
the maximum multiplicity of G is at most 2, we have 2ey(U;) < 2(|U;| — 1)|U;| and so
k—+2 < 2|Uy|. This gives |Uy| > (k+2)/2. Now by (1) that k = |Uy|+en(Uy, V(H)\ Uy),
we get ey (U, V(H)\Uy) = k—|Uy| < k—(k+2)/2 < k/2. When k < 6, then as |U;| > 3,
k= |Uy| +eyg(Uy,V(H)\ Up) from (1) implies that ey (U, V(H) \ Uy) < k/2. Therefore
dp,(u1) < k/2 and thus dg,(u;) < k/2 for each i € [1,¢]. O

For each ¢ € [1,t], as eg, (U;) = ex(U;) — 1 = (k+ 2)(|U;| — 1)/2, by Lemma 3, we
know that for any ¢ € C¥*2(H,), the colors on the edges in Ey, (U;, V(H;) \ U;) under
v are all distinct. Thus the graph H, is edge (k + 2)-colorable. By Theorem 2, H, has
an edge (k + 2)-coloring ¢ satisfying the following two properties: (1) the color k + 2 is
missing at every vertex in {uy,...,u}; and (2) if k 4+ 1 € ¢(u;) for some i € [1,¢], then
P, (k+ 1,k + 2,¢) does not end at any vertex from {uy,...,u:} \ {w;}. We extend the
coloring ¢ of Hy into a coloring ¥ of H; using (k + 2) colors. We claim that such an
extension is possible.

Claim 9. For each i € [1,t], there is an edge (k + 2)-coloring @; of H1[U;] that satisfies
the following two properties:

(i) The coloring p; coincides with ¢: for any uww € Eg, (U;, V(Hy) \ U;) with u € U,
the color p(u;w) is missing at u under @;;

(i) The color k + 2 is missing at x;.

Proof. By Claim 7, H[U;] is edge (k4 2)-colorbale. Since e(H;[U;]) = (k+2)(|U;] —1)/2
and U; is an odd set, it follows that edges of H;[U;] can be partitioned into k + 2 near
perfect matchings of H{[U;]. Let Fi,..., Fyi2 be a partition of edges of H;[U;] into near
perfect matchings. Since dp,p,)(u) =k + 1 —en, (v, V(Hy) \ U;) for u € U; \ {z;,y;} and
dm () = k—em, (u, V(Hy)\U;) for u € {z;,y;}, by Lemma 3, we know that each vertex
u € U;\{x;, y;} is missed by exactly (k+2)—(k+1—ep, (u, V(H1)\U;)) = 1+en, (u, V(Hy)\
U;) of those matchings, and each u € {x;,y;} is missed by exactly 2 + ey, (u, V(Hy) \ U;)
of those matchings. For each u € U;, we let o(u) = {p(uw) : uyw € E(Hs),uw € E(Hy)}
be the set of colors presenting on edges of H, incident with u; which are corresponding
to edges incident with v in H;. We now define an edge (k + 2)-coloring ¢; of H,[U;] by
assigning appropriate colors to edges of these (k + 2) matchings as followings:

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(2) (2025), #P2.28 9



e For one matching, without loss of generality say Fj.o, that misses x;, we assign color
k+2 to each of its edges: This assignment coincides with ¢ as we have k+2 € p(u;).

e For each vertex u € U; and |p(u)| of F}’s with j € [1, k + 1] such that F; misses u,
we assign a distinct color from ¢(u) to Fj. Since there are 1+ ey, (u, V(H;y) \ U;)
of the matchings missing u and |¢(u)| = ey, (u, V(Hy) \ U;), all the colors in ¢(u)
are used. Under this assignment: for any edge uw € Ep, (U;, V(H;) \ U;), the color
o(u;w) on the edge u;w of Hy is missing at u.

e After the above two procedures, all colors in ¢(u;) U {k + 2} are used on |p(u;) U
{k + 2}| of the matchings in Fy,..., Fy.2. Thus there are k + 2 — |¢(u;) U {k + 2}|
of the matchings that have not assigned a color so far. We assign each color from
1,k 4+ 2]\ (p(u;) U {k + 2}) to all the edges of exactly one of the rest uncolored
matchings.

By the construction above, ¢; is an edge (k+2)-coloring of H,[U;] that satisfies Properties
(i) and (ii). O

By Claim 9, we find an edge (k + 2)-coloring ¢ of H; with the following properties:
(1) The color (k + 2) is missing at each vertex from {z,...,z:};

(2) If the color k + 1 presents on an edge from Ey, (U;, V(Hy) \ U;) for some i € [1,¢],
then the corresponding (k + 1, k + 2)-chain including that edge ends has one of its
endvertex from V(H;) \ (U._, Us).

We let My, ..., Mo be the color classes of ¢ corresponding to the colors 1,..., k+ 2
respectively. We will add edges from M1 UM oU{x1y1, ..., 2y} to each of My, ..., M,
if necessary to modify them into %k disjoint edge sets of H that each saturate V. To do so,
let D* be the subgraph of H; induced on M1 U Myo. As A(D*) < 2, each component
of D* is either a cycle or a path. We orient D* such that each of its component is either
a directed cycle or a directed path. In particular, if for some i € [1,¢], z; is an endvertex
of a path-component of D*, then the path is oriented towards x;. Note that by Property
(2) of 1, if a path has x; as one of its endvertex, then its another endvertex is a vertex
from V(H,) \ (U'_, Us). Let D be the orientation of D*.

Each vertex w from V' \ {z;,y; : i € [1,¢]} has degree k + 1 in H;, and so it is missed
by at most one of My, ..., M. If w is missed by exactly one of M, ..., M, then it has
degree two in D* and so has indegree one in D. As the color k + 2 is missing at z; for
each i € [1,t], x; has degree at most one in D*, and if x; has degree one in D*, then z;
also has indegree one in D by our orientation of D*. Vertex y; for i € [1,t] has degree k
in H; and so can be missed by at most two of My,..., M. If y; is missed by exactly two
of My, ..., My, then it has degree two in D* and so it has indegree one in D.

Now for each vertex w € V' \ {y1, ...,y }, if w is missed by exactly one matching M;
for some i € [1, k], we let zw be the arc of D with w as head. We add to M; the edge zw.
Now let w € {y1,...,y:}, say w = y; for some j € [1,¢]. If y; is missed by exactly one
matching M; for some i € [1,k], we add the edge z;y; to M;. If y; is missed by exactly
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two matchings from M, ..., M}, we let zy; be the arc of D with y; as head. Then we
add zy; to one of the matchings from M, ..., M}, that misses y;, and we add x;y; to the
other matching from M;, ..., M} that misses y;. Denote by M7, ..., M; is corresponding
modifications of My, ..., My, respectively. Now each vertex w € V is saturated by each
of My,..., My, and so My,..., M} are k disjoint edge sets of H that each saturate V.
The proof of Theorem 1 is now complete. O
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