
Edge Cover Through Edge Coloring

Guantao Chena Songling Shanb

Submitted: Jun 29, 2024; Accepted: Feb 19, 2025; Published: May 13, 2025

©The authors. Released under the CC BY license (International 4.0).

Abstract

Let G be a multigraph. A subset F of E(G) is an edge cover of G if every
vertex of G is incident to an edge of F . The cover index, ξ(G), is the largest
number of edge covers into which the edges of G can be partitioned. Clearly
ξ(G) ⩽ δ(G), the minimum degree of G. For U ⊆ V (G), denote by E+(U) the
set of edges incident to a vertex of U . When |U | is odd, to cover all the ver-
tices of U , any edge cover needs to contain at least (|U |+ 1)/2 edges from E+(U),
indicating ξ(G) ⩽ |E+(U)|/((|U | + 1)/2). Let ρc(G), the co-density of G, be de-
fined as the minimum of |E+(U)|/((|U | + 1)/2) ranging over all U ⊆ V (G), where
|U | ⩾ 3 and |U | is odd. Then ρc(G) provides another upper bound on ξ(G). Thus
ξ(G) ⩽ min{δ(G), ⌊ρc(G)⌋}. For a lower bound on ξ(G), in 1978, Gupta conjec-
tured that ξ(G) ⩾ min{δ(G) − 1, ⌊ρc(G)⌋}. Gupta himself verified the conjecture
for simple graphs, and Cao et al. recently verified this conjecture when ρc(G) is not
an integer, assuming the Goldberg-Seymour Conjecture. (Proofs of the Goldberg-
Seymour Conjecture have been announced in three arXiv manuscripts (1901.10316,
2308.15588, and 2407.09403), but have not yet been appeared for publication in
peer-reviewed journals.) In this paper, also assuming the Goldberg-Seymour Con-
jecture, we confirm Gupta’s conjecture when the maximum multiplicity of G is at
most two or min{δ(G) − 1, ⌊ρc(G)⌋} ⩽ 6. The proof relies on a newly established
result on edge colorings. The result holds independent interest and has the potential
to significantly contribute towards resolving the conjecture entirely.

Mathematics Subject Classifications: 05C38
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1 Introduction

Graphs in this paper have no isolated vertex, may contain multiple edges but contain
no loop. Let G be a graph. Denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. For v ∈ V (G), dG(v), the degree of v, is the number of edges of G
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that are incident with v. For S ⊆ V (G), the subgraph of G induced on S is denoted by
G[S], and on V (G) \ S is denoted by G − S. For notational simplicity we write G − x
for G − {x}. For e ∈ E(G), G − e is obtained from G by deleting the edge e. For an
edge e ̸∈ E(G), G + e is obtained by adding the edge e to G. Let A,B ⊆ V (G) be
disjoint. We denote by EG(A) the set of edges with both endvertices in A, EG(A,B) the
set of edges with one endvertex in A and the other endvertex in B, and by E+

G(A) the
set of edges of G incident with a vertex of A. Note that E+

G(A) is the union of EG(A)
and EG(A, V (G) \ A). When A = {x}, we simply write EG({x}, B) as EG(x,B). Let
eG(A) = |EG(A)|, eG(A,B) = |EG(A,B)|, and e+G(A) = |E+

G(A)|. When G is clear from
the context, we skip the subscript G from the corresponding notation.

Let F ⊆ E(G). The set F saturates v ∈ V (G) if v is incident in G with an edge
from F ; otherwise F misses v. For S ⊆ V (G), we say F saturates S if F saturates
every vertex of S. We call F an edge cover of G if F saturates V (G). The cover index,
ξ(G), is the largest number of edge covers into which the edges of G can be partitioned.
Clearly ξ(G) ⩽ δ(G), the minimum degree of G. For any U ⊆ V (G) such that |U | is
odd, every edge cover of G contains at least (|U | + 1)/2 edges from E+(U). Therefore,
we have ξ(G) ⩽ e+(U)/((|U | + 1)/2). Let ρc(G), the co-density of G, be defined as the
minimum of e+(U)/((|U |+1)/2) ranging over all U ⊆ V (G), where |U | ⩾ 3 and |U | is odd.
Then ρc(G) provides another upper bound on ξ(G). Thus ξ(G) ⩽ min{δ(G), ⌊ρc(G)⌋}.
For a lower bound on ξ(G), in 1978, Gupta [6] conjectured that ξ(G) ⩾ min{δ(G) −
1, ⌊ρc(G)⌋}, and he proved the conjecture when G is simple [5]. This conjecture can
be viewed as a counterpart to the Goldberg-Seymour Conjecture, which concerns edge
coloring of multigraphs. (While proofs of the Goldberg-Seymour Conjecture have been
announced, see, e.g., [2, 7, 3], they are not yet published in peer-reviewed journals.)

A deeper connection exists between these two conjectures. Assuming the Goldberg-
Seymour Conjecture, in 2023, Cao, Chen, Ding, Jing and Zang [1] verified Gupta’s con-
jecture when ρc(G) is not an integer. Here, again, assuming the validity of the Goldberg-
Seymour Conjecture, we generalize Gupta’s result from simple graphs to graphs with
maximum multiplicity at most two and confirm the conjecture for graphs G with small
δ(G) and ρc(G) as stated below.

Theorem 1. Let G be a graph and k = min{δ(G)− 1, ⌊ρc(G)⌋}. If the maximum multi-
plicity of G is at most 2 or k ⩽ 6, then G has at least k edge-disjoint edge covers.

As long as there exist k edge-disjoint edge covers, then the rest edges of G not included
in the edge covers can be arbitrarily assigned to the edge covers to get a partition of E(G).
Thus, Theorem 1 implies Gupta’s conjecture for the described classes of graphs. The proof
of Theorem 1 relies on a newly established result on edge colorings, which might be of
independent interest. We introduce some notation in order to state the result.

For two integers p and q, let [p, q] = {i ∈ Z : p ⩽ i ⩽ q}. Let G be a graph and m ⩾ 0
be an integer. An edge m-coloring of G is a map φ: E(G) → [1,m] that assigns to every
edge e of G a color φ(e) ∈ [1,m] such that no two adjacent edges receive the same color.
Denote by Cm(G) the set of all edge m-colorings of G. The chromatic index χ′(G) is the
least integerm ⩾ 0 such that Cm(G) ̸= ∅. For a vertex v ∈ V (G) and a coloring φ ∈ Cm(G)
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for some integer m ⩾ 1, define the two color sets φ(v) = {φ(f) : f is incident to v in G}
and φ(v) = [1,m] \ φ(v). We call φ(v) the set of colors presenting at v and φ(v) the set
of colors missing at v. For a color α, the edge set Eα = {f ∈ E(G) |φ(f) = α} is called
a color class. Clearly, Eα is a matching of G (possibly empty). For two distinct colors
α, β, the subgraph of G induced by Eα ∪ Eβ is a union of disjoint paths and even cycles.
Each nontrivial component of Eα ∪ Eβ is called an (α, β)-chain of G with respect to φ.
For a vertex x and two distinct colors α, β such that exactly one of them is missing at x,
we use Px(α, β, φ) to denote the (α, β)-chain containing the vertex x.

Theorem 2. Let G be a graph and k ⩾ 1 be an integer. Suppose ∆(G) ⩽ k + 1 and
χ′(G) ⩽ k + 2. Let S be the set of vertices of G with degree at most k/2. Then there
exists an edge (k + 2)-coloring of G satisfying the following properties:

(1) The color k + 2 is missing at every vertex of S;

(2) If k+1 ∈ φ(x) for some x ∈ S, then Px(k+1, k+2, φ) ends at a vertex of V (G)\S.

These constraints on the graph G in Theorem 1 allow us to construct a special edge
coloring, as defined in Theorem 2, for a graphH1 derived from the original graph G. If this
special coloring were achievable without the constraints on G, then Gupta’s conjecture
would be proven already. This highlights the potential of Theorem 2 to significantly
advance the resolution of the conjecture.

The remainder of this paper is organized as follows. In the next section, we prove
Theorem 2; in Section 3, we provide further preliminaries that are necessary for proving
Theorem 1; and in the last section, we prove Theorem 1.

2 Proof of Theorem 2

Let G be a graph and φ ∈ Cm(G) for some integer m ⩾ 1. For x, y ∈ V (G), if x and y
are contained in the same (α, β)-chain with respect to φ, we say x and y are (α, β)-linked.
Otherwise, they are (α, β)-unlinked.

For a vertex v, let Cv(α, β, φ) denote the unique (α, β)-chain containing v. If
Cv(α, β, φ) is a path, we just write it as Pv(α, β, φ). The notation Pv(α, β, φ) is com-
monly used when we know |φ(v) ∩ {α, β}| = 1. If we interchange the colors α and β on
an (α, β)-chain C of G, we briefly say that the new coloring is obtained from φ by an
(α, β)-swap on C, and we write it as φ/C. This operation is called a Kempe-change.

Proof of Theorem 2. For any φ ∈ Ck+2(G), we define

sφ = |{x ∈ S : k + 2 ∈ φ(x)}|, and

cφ = |{Px(k + 1, k + 2, φ) : Px(k + 1, k + 2, φ) = Py(k + 1, k + 2, φ)

for distinct x, y ∈ S}|,

to be respectively the number of vertices of S at which the color k + 2 presents and the
number of (k+1, k+2)-chains (path-chain) with both endvertices in S under φ. We choose
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φ ∈ Ck+2(G) with sφ minimum and subject to this, with cφ minimum. If sφ = cφ = 0,
then we are done. Thus we assume sφ + cφ > 0. We consider two cases in finishing the
proof.
Case 1: sφ > 0.

Let x ∈ S such that k + 2 ∈ φ(x). Since d(x) ⩽ k/2, there exists α ∈ [1, k] such
that α ∈ φ(x). We consider Px(α, k + 2, φ). If Px(α, k + 2, φ) ends at a vertex not in S
or ends at a vertex from S that presents k + 2, then ψ := φ/Px(α, k + 2, φ) is an edge
(k+2)-coloring of G with sψ < sφ. Thus we assume that Px(α, k+2, φ) ends at a vertex
y ∈ S \ {x} such that α ∈ φ(y) and k + 2 ∈ φ(y). Let

Px(α, k + 2, φ) = v0v1 . . . v2t−1v2t,

for some integer t ⩾ 1, where v0 := x and v2t := y.
Since |φ(x)∪φ(y)| ⩽ d(x)+d(y) ⩽ k, we have φ(x)∩φ(y) = [1, k+2]\(φ(x)∪φ(y)) ̸= ∅.

Let i ∈ [1, 2t] be the smallest index such that φ(vi) ∩ φ(x) ̸= ∅. As k + 2 ∈ φ(x),
k + 2 ̸∈ φ(vi) ∩ φ(x). Among all the edge (k + 2)-colorings ξ with sξ = sφ, cξ = cφ, and
Px(α, k + 2, ξ) = Px(α, k + 2, φ), we may assume φ is the one such that the index i is
smallest.

If i = 1, then simply recoloring xv1 by a color from φ(v1) ∩ φ(x) gives a new coloring
ψ with sψ < sφ. Thus i ⩾ 2. Let β ∈ φ(vi) ∩ φ(x) ⊆ [1, k + 1]. By the minimality
of i, we have β ∈ φ(vi−1). As d(vi−1) ⩽ k + 1 and α, β, k + 2 ∈ φ(vi−1), there exists
γ ∈ φ(vi−1) ⊆ [1, k + 2] \ {α, β, k + 2}.

If vi and vi−1 are not (β, γ)-linked with respect to φ, then let ψ be obtained by doing
a Kemple-change on Pvi(β, γ, φ) and then recoloring the edge vi−1vi on Px(α, k + 2, φ)
by γ. Note that sψ ⩽ sφ, and we have that α ∈ ψ(vi−1) or k + 2 ∈ ψ(vi−1), and
Px(α, k + 2, ψ) = Pvi−1

(α, k + 2, ψ). If α ∈ ψ(vi−1), then we can do a Kempe-change on

Px(α, k+2, ψ) to decrease sψ and so to decrease sφ. Thus we assume that k+2 ∈ ψ(vi−1).
If vi−1 ∈ S, then we have sψ < sφ already. Thus we assume vi−1 /∈ S. Then we can do a
Kempe-change on Px(α, k + 2, ψ) to decrease sψ and so to decrease sφ.

Thus we assume now that vi and vi−1 are (β, γ)-linked with respect to φ. Then let
ψ = φ/Pvi(β, γ, φ). We have sψ = sφ, cψ = cφ, and Px(α, k + 2, ψ) = Py(α, k + 2, φ).
However, we have β ∈ ψ(vi−1) ∩ ψ(x) ̸= ∅, contradicting the choice of φ.
Case 2: sφ = 0 and cφ > 0.

Then there exist distinct x, y ∈ S such that Px(k + 1, k + 2, φ) = Py(k + 1, k + 2, φ).
Note that k + 2 ∈ φ(x) ∩ φ(y), and Px(k + 1, k + 2, φ) is internally disjoint from S as
sφ = 0. Let

Px(k + 1, k + 2, φ) = v0v1 . . . v2tv2t+1,

for some integer t ⩾ 0, where v0 := x and v2t+1 := y. Since d(x) + d(y) ⩽ k and
k + 1 ∈ φ(x) ∩ φ(y), we have (φ(x) ∩ φ(y)) ∩ [1, k] ̸= ∅.

Let i ∈ [1, 2t+1] be the smallest index such that (φ(vi)∩φ(x))∩ [1, k] ̸= ∅. Among all
the edge (k+2)-colorings ξ with sξ = 0, cξ = cφ and Px(k+1, k+2, ξ) = Px(k+1, k+2, φ),
we may assume φ is the one such that the index i is smallest.

If i = 1, then recoloring xv1 by a color from (φ(v1) ∩ φ(x)) ∩ [1, k] gives a new
coloring ψ with cψ < cφ. Furthermore, we still have sψ = sφ = 0 as the new color is
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from [1, k]. This gives a contradiction to the choice of φ. Thus we assume i ⩾ 2. Let
β ∈ (φ(vi)∩φ(x))∩ [1, k]. By the minimality of i, we have β ∈ φ(vi−1). As d(vi−1) ⩽ k+1
and β, k + 1, k + 2 ∈ φ(vi−1), there exists γ ∈ φ(vi−1) ⊆ [1, k] \ {β}.

If vi and vi−1 are not (β, γ)-linked with respect to φ, then let ψ be obtained by doing
a Kemple-change on Pvi(β, γ, φ) and then recoloring the edge vi−1vi on Px(k+1, k+2, φ)
by γ. Then cψ < cφ. Furthermore, we still have sψ = sφ = 0 as β, γ ∈ [1, k]. This
gives a contradiction to the choice of φ. Thus we assume that vi and vi−1 are (β, γ)-
linked with respect to φ. Let ψ = φ/Pvi(β, γ, φ). We have sψ = sφ = 0, cψ = cφ, and
Px(k+1, k+2, ψ) = Px(k+1, k+2, φ). However, we have β ∈ (ψ(vi−1)∩ψ(x))∩ [1, k] ̸= ∅,
contradicting the choice of φ.

3 Further Preliminaries

For an integer s ⩾ 1, a graph G is s-dense if |V (G)| ⩾ 3 is odd and |E(G)| = s(|V (G)| −
1)/2. As a maximum matching in G can have size at most (|V (G)| − 1)/2, the lemma
below is a consequence of G being s-dense, where a matching is near perfect in G if it
misses only one vertex of G.

Lemma 3. Let G be an s-dense graph with χ′(G) = s for some integer s ⩾ 1, and let
φ ∈ Cs(G). Then for any two distinct u, v ∈ V (G), we have φ(u)∩φ(v) = ∅. In particular,
each color class of φ is a near perfect matching of G, and each vertex v ∈ V (G) is missed
by exactly s− d(v) of the color classes of φ.

Let ρ(G), the density of G, be defined as the maximum of e(U)/((|U | − 1)/2) ranging
over all U ⊆ V (G), where |U | ⩾ 3 and |U | is odd. In the 1970s, Goldberg [4] and
Seymour [8] independently conjectured that every graph G satisfies χ′(G) ⩽ max{∆(G)+
1, ⌈ρ(G)⌉}. Over the past four decades this conjecture has been a subject of extensive
research. In 2019, Chen, Jing, and Zang [2] announced a proof of the Conjecture. An
edge e of G is critical if χ′(G − e) < χ′(G). As every graph G contains a connected
subgraph H with χ′(H) = χ′(G) such that every edge of H is critical, the lemma below
is a consequence of Theorem 2.2(ii) from [2].

Lemma 4. Let G be a graph with χ′(G) = s+ 1 ⩾ ∆(G) + 2. Then G has a subgraph H
and an edge e ∈ E(H) such that H − e is s-dense .

Let G be a graph and k = min{δ(G) − 1, ⌊ρc(G)⌋}. A subset U of V (G) is odd if
|U | ⩾ 3 and |U | is odd. An odd set U of G is optimal (with respect to k) if e+(U) =
k(|U |+1)/2. For an optimal set U of G, since 2e+(U) =

∑
v∈U d(v) + e(U, V (G) \U), we

get k(|U |+1) =
∑

v∈U d(v) + e(U, V (G) \U) ⩾ (k+1)|U |+ e(U, V (G) \U) with equality
holds if

∑
v∈U d(v) = (k + 1)|U |. Thus

k ⩾ |U |+ e(U, V (G) \ U) and

(1)

k = |U |+ e(U, V (G) \ U) if
∑
v∈U

d(v) = (k + 1)|U |.
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We have the following property for optimal sets of G.

Lemma 5. Let G be a graph with k = min{δ(G) − 1, ⌊ρc(G)⌋}. Suppose that U is a
minimal optimal set of G. Then for any optimal set U ′ of G with U ̸⊆ U ′, we have
U ∩ U ′ = ∅.

Proof. Suppose to the contrary that U ∩ U ′ ̸= ∅. Let

L = U \ U ′, M = U ∩ U ′, R = U ′ \ U, and W = V (G) \ (U ∪ U ′).

Since U ̸⊆ U ′ and U ∩ U ′ ̸= ∅, we have L,M ̸= ∅. As U is a minimal optimal set with
U ̸⊆ U ′, it follows that U ′ ̸⊆ U . Thus R ̸= ∅ as well. By counting the edges within
distinct parts, we have

e+(U ∪ U ′) = e(L) + e(M) + e(R) + e(L,M) + e(M,R) + e(L,R) + e(L,W ) +

e(M,W ) + e(R,W ),

e+(U) = e(L) + e(M) + e(L,M) + e(M,R) + e(L,R) + e(L,W ) + e(M,W ),

e+(U ′) = e(R) + e(M) + e(L,M) + e(M,R) + e(L,R) + e(R,W ) + e(M,W ),

e+(M) = e(M) + e(L,M) + e(M,R) + e(M,W ),

e+(L) = e(L) + e(L,M) + e(L,R) + e(L,W ),

e+(R) = e(R) + e(M,R) + e(L,R) + e(R,W ).

Therefore,
e+(U ∪ U ′) = e+(U) + e+(U ′)− e+(M)− e(L,R).

If |M | = 1, then e+(M) ⩾ δ(G) ⩾ k + 1 = k(|M |+ 1)/2 + 1. If |M | ⩾ 3 and |M | is odd,
then since |M | < |U | and ∅ ̸= M ⊆ U , we know that M is not optimal by the choice of
U . Thus e+(M) ⩾ k(|M |+ 1)/2 + 1.

Suppose first that |M | is odd and so |U ∪ U ′| is odd. Then

e+(U ∪ U ′) = e+(U) + e+(U ′)− e+(M)− e+(L,R)

⩽ k(|U |+ 1)/2 + k(|U ′|+ 1)/2− (k(|M |+ 1)/2 + 1)− e+(L,R)

= k(|U ∪ U ′|+ 1)/2− 1− e+(L,R) < k(|U ∪ U ′|+ 1)/2,

a contradiction to the assumption that ⌊ρc(G)⌋ ⩾ k.
Thus we assume that |M | is even. Then |L| and |R| are odd. Again we have e+(L) ⩾

k(|L|+1)/2 and e+(R) ⩾ k(|R|+1)/2 by the assumption that k = min{δ(G)−1, ⌊ρc(G)⌋}.
As 2e(M) + e(L,M) + e(M,R) + e(M,W ) =

∑
x∈M d(x) ⩾ (k + 1)|M |, we get

e+(U) + e+(U ′) = e+(L) + e+(R) + 2e(M) + e(L,M) + e(M,R) + 2e(M,W )

⩾ k(|L|+ 1)/2 + k(|R|+ 1)/2 + (k + 1)|M |+ e(M,W )

⩾ k(|L|+ 1)/2 + k(|R|+ 1)/2 + k|M |/2 + k|M |/2 + |M |
= k(|U |+ 1)/2 + k(|U ′|+ 1)/2 + |M |

⩾
k(|U |+ 1)

2
+
k(|U ′|+ 1)

2
+ 1,

a contradiction to the assumption that both U and U ′ are optimal.
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Let G be a graph and k = min{δ(G) − 1, ⌊ρc(G)⌋}. We will show that when we are
working with edge covers, in some sense, we can assume ∆(G) = k + 1. For this, we
introduce an operation called edge-splitting. Let xy ∈ E(G). An edge-splitting at x with
respect to xy gives a new graph G′, which is obtained from G by deleting xy, adding a new
vertex x′, and adding the edge x′y. It is clear that dG′(x) = dG(x)− 1 and dG′(v) = dG(v)
for all v ∈ V (G) with v ̸= x.

Lemma 6. Let G be a graph, k = min{δ(G)− 1, ⌊ρc(G)⌋}. and x ∈ V (G) with dG(x) ⩾
k + 2. Let H be obtained through the following operation:

• If x is not contained in any optimal set of G, then we apply an edge-splitting at x
with respect to an arbitrary edge incident with x, say xy;

• If x is contained in an optimal set of G, we let U be a minimal optimal set containing
x. Let y ∈ U with xy ∈ E(G), and then we apply an edge-splitting at x with respect
to xy. (Such a vertex y exists as eG(x, V (G) \ U) ⩽ k − |U | by Equation (1).)

Then e+H(U) ⩾ k(|U |+ 1)/2 for any odd set U ⊆ V (G).

Proof. Suppose to the contrary that there exists U ′ ⊆ V (G) such that e+H(U
′) ⩽ k(|U ′|+

1)/2 − 1. As we only applied one edge-splitting at x with respect to xy in getting H, it
follows that x ∈ U ′ and y ̸∈ U ′, e+H(U

′) = k(|U ′| + 1)/2− 1, and e+G(U
′) = k(|U ′| + 1)/2.

Thus U ′ is optimal in G.
As x is contained in the optimal set U ′ of G, the second operation in Lemma 6 was

applied to get H from G. Thus there exists an optimal set U of G such that x, y ∈ U
and U is a minimal. Now we have U ̸⊆ U ′ (since y ∈ U \ U ′ ) and x ∈ U ′. This shows a
contradiction to Lemma 5.

4 Proof of Theorem 1

In this section we complete the proof of Theorem 1.

Proof of Theorem 1. Let V = V (G) and E = E(G), and k = min{δ(G) − 1, ⌊ρc(G)⌋}.
Then δ(G) ⩾ k + 1 and for any odd U ⊆ V (G), we have e+G(U) ⩾ k(|U | + 1)/2. Recall
that an odd U ⊆ V (G) is optimal if e+G(U) = k(|U | + 1)/2. The general idea is first to
iteratively apply the edge-splitting operations starting from G to produce a graph H with
V ⊆ V (H) such that dH(v) = k+1 for each v ∈ V , and that e+H(U) ⩾ k(|U |+1)/2 for any
odd U ⊆ V (G). The graph H has chromatic index at least k + 3. However, by deleting
one edge from each minimal optimal set U of H with U ⊆ V , the resulting graph H1 is
edge (k+2)-colorable. In particular, we can partition the edges of H1 into (k+2) disjoint
matchingsM1, . . . ,Mk+2 with some good properties. Finally k disjoint edge covers of G is
constructed based the (k+2) matchings by adding edges of Mk+1∪Mk+2 and the deleted
edges in E(H) \ E(H1) to each of M1, . . . ,Mk if necessary to make each of them into an
edge set that saturates V .
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Algorithm 1 Edge-Splitting Algorithm

while there exists x ∈ V with dG(x) ⩾ k + 2 do
Apply an edge-splitting at x using the operation defined in Lemma 6, and set G

to be the resulting graph.
end while

We first apply the operation stated in Lemma 6 iteratively to get a graph H through
the following algorithm.

Denote the graph resulting from Algorithm 1 by H. Now we have dH(v) = k + 1
for any v ∈ V and dH(v) = 1 for any v ∈ V (H) \ V . Furthermore, by Lemma 6, we
have e+H(U) ⩾ k(|U | + 1)/2 for any odd U ⊆ V . As E(H[V ]) ⊆ E and every edge from
eH(V, V (H) \ V ) corresponds to an edge of E, it suffices to show that H has k disjoint
edge sets that each saturate V .

For any odd U ⊆ V of H, we have eH(U) + e+H(U) = 2eH(U) + eH(U, V (H) \ U) =
(k + 1)|U |. Thus

eH(U)


⩽ (k + 1)|U | − k(|U |+ 1)/2− 1 if U is not optimal;

= k(|U | − 1)/2 + |U | − 1 = (k + 2)(|U | − 1)/2

(2)

= k(|U | − 1)/2 + |U | = (k + 2)(|U | − 1)/2 + 1 if U is optimal.

By (2), any odd set U with eH(U) ⩾ (k + 2)(|U | − 1)/2 + 1 must have eH(U) =
(k+2)(|U | − 1)/2+1 and so U is an optimal set in H. By Lemma 5, all minimal optimal
sets contained in V are vertex-disjoint. If exist, let U1, U2, . . . , Ut be all the minimal
optimal sets of H that are contained in V , where t ⩾ 1 is an integer. As each Ui is odd
and e(Ui) = (k + 2)(|Ui| − 1)/2 + 1, if they exist, then we know that χ′(H) ⩾ k + 3.
However, we will show that after deleting one edge within each Ui, the resulting graph
has smaller chromatic index. For each i ∈ [1, t], we delete an edge xiyi from H[Ui]. Denote
the resulting graph by H1.

Claim 7. We have χ′(H1) = k + 2.

Proof. As vertices of V (H1) \ V have degree 1 in H1, it suffices to show that χ′(H1[V ]) =
k+2. Since e(H1[Ui]) = (k+2)(|Ui|−1)/2 and Ui is an odd set, we know that χ′(H1[V ]) ⩾
k + 2. We show that χ′(H1[V ]) ⩽ k + 2. Suppose for a contradiction that χ′(H1[V ]) =
s + 1 ⩾ k + 3 = ∆(H) + 2 for some integer s. Applying Lemma 4, there is a subgraph
J ⊆ H1[V ] and an edge e ∈ E(J) such that J − e is s-dense. Thus |E(J − e)| =
s(|V (J)| − 1)/2 ⩾ (k + 2)(|V (J)| − 1)/2 and so eH1(V (J)) ⩾ (k + 2)(|V (J)| − 1)/2 + 1.

If Ui ⊆ V (J) for some i ∈ [1, t], then we have eH(V (J)) ⩾ eH1(V (J)) + 1 ⩾ (k +
2)(|V (J)| − 1)/2 + 2. This gives a contradiction to (2) since V (J) is an odd set. Thus
Ui ̸⊆ V (J) for any i ∈ [1, t]. Again, as V (J) is an odd set and eH(V (J)) ⩾ eH1(V (J)) ⩾
(k + 2)(|V (J)| − 1)/2 + 1, it follows from (2) that V (J) is an optimal set of H. We let
U∗ ⊆ V (J) be a minimal optimal set of H. By Lemma 5, we must have U∗ = Ui for
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some i ∈ [1, t]. However, this contradicts our previous assumption that Ui ̸⊆ V (J) for
any i ∈ [1, t]. Thus we must have χ′(H1) ⩽ k + 2, as desired.

Let H2 be obtained from H1 by contracting each Ui into a single vertex ui for each
i ∈ [1, t].

Claim 8. We have dH2(ui) ⩽ k/2 for each i ∈ [1, t].

Proof. Suppose, without loss of generality, that |U1| ⩽ |U2| ⩽ . . . ⩽ |Ut|. Then by (1), we
have eH(U1, V (H) \ U1) ⩾ eH(U2, V (H) \ U2) ⩾ . . . ⩾ eH(Ut, V (H) \ Ut). Since H1 was
obtained fromH by deleting one edge within each Ui, we have dH2(ui) = eH(Ui, V (H)\Ui).
Thus dH2(u1) ⩾ dH2(u2) ⩾ . . . ⩾ dH2(ut). It then suffices to show that dH2(u1) ⩽ k/2, or
equivalently eH(U1, V (H) \ U1) ⩽ k/2. As (k + 2)(|U1| − 1) + 2 = 2eH(U1) by (2), when
the maximum multiplicity of G is at most 2, we have 2eH(U1) ⩽ 2(|U1| − 1)|U1| and so
k+2 ⩽ 2|U1|. This gives |U1| ⩾ (k+2)/2. Now by (1) that k = |U1|+ eH(U1, V (H)\U1),
we get eH(U1, V (H)\U1) = k−|U1| ⩽ k−(k+2)/2 < k/2. When k ⩽ 6, then as |U1| ⩾ 3,
k = |U1| + eH(U1, V (H) \ U1) from (1) implies that eH(U1, V (H) \ U1) ⩽ k/2. Therefore
dH2(u1) ⩽ k/2 and thus dH2(ui) ⩽ k/2 for each i ∈ [1, t].

For each i ∈ [1, t], as eH1(Ui) = eH(Ui) − 1 = (k + 2)(|Ui| − 1)/2, by Lemma 3, we
know that for any φ ∈ Ck+2(H1), the colors on the edges in EH1(Ui, V (H1) \ Ui) under
φ are all distinct. Thus the graph H2 is edge (k + 2)-colorable. By Theorem 2, H2 has
an edge (k + 2)-coloring φ satisfying the following two properties: (1) the color k + 2 is
missing at every vertex in {u1, . . . , ut}; and (2) if k + 1 ∈ φ(ui) for some i ∈ [1, t], then
Pui(k + 1, k + 2, φ) does not end at any vertex from {u1, . . . , ut} \ {ui}. We extend the
coloring φ of H2 into a coloring ψ of H1 using (k + 2) colors. We claim that such an
extension is possible.

Claim 9. For each i ∈ [1, t], there is an edge (k + 2)-coloring φi of H1[Ui] that satisfies
the following two properties:

(i) The coloring φi coincides with φ: for any uw ∈ EH1(Ui, V (H1) \ Ui) with u ∈ Ui,
the color φ(uiw) is missing at u under φi;

(ii) The color k + 2 is missing at xi.

Proof. By Claim 7, H1[Ui] is edge (k+2)-colorbale. Since e(H1[Ui]) = (k+2)(|Ui| − 1)/2
and Ui is an odd set, it follows that edges of H1[Ui] can be partitioned into k + 2 near
perfect matchings of H1[Ui]. Let F1, . . . , Fk+2 be a partition of edges of H1[Ui] into near
perfect matchings. Since dH1[Ui](u) = k + 1− eH1(u, V (H1) \ Ui) for u ∈ Ui \ {xi, yi} and
dH1[Ui](u) = k−eH1(u, V (H1)\Ui) for u ∈ {xi, yi}, by Lemma 3, we know that each vertex
u ∈ Ui\{xi, yi} is missed by exactly (k+2)−(k+1−eH1(u, V (H1)\Ui)) = 1+eH1(u, V (H1)\
Ui) of those matchings, and each u ∈ {xi, yi} is missed by exactly 2 + eH1(u, V (H1) \ Ui)
of those matchings. For each u ∈ Ui, we let φ(u) = {φ(uiw) : uiw ∈ E(H2), uw ∈ E(H1)}
be the set of colors presenting on edges of H2 incident with ui which are corresponding
to edges incident with u in H1. We now define an edge (k + 2)-coloring φi of H1[Ui] by
assigning appropriate colors to edges of these (k + 2) matchings as followings:
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• For one matching, without loss of generality say Fk+2, that misses xi, we assign color
k+2 to each of its edges: This assignment coincides with φ as we have k+2 ∈ φ(ui).

• For each vertex u ∈ Ui and |φ(u)| of Fj’s with j ∈ [1, k + 1] such that Fj misses u,
we assign a distinct color from φ(u) to Fj. Since there are 1 + eH1(u, V (H1) \ Ui)
of the matchings missing u and |φ(u)| = eH1(u, V (H1) \ Ui), all the colors in φ(u)
are used. Under this assignment: for any edge uw ∈ EH1(Ui, V (H1) \ Ui), the color
φ(uiw) on the edge uiw of H2 is missing at u.

• After the above two procedures, all colors in φ(ui) ∪ {k + 2} are used on |φ(ui) ∪
{k + 2}| of the matchings in F1, . . . , Fk+2. Thus there are k + 2− |φ(ui) ∪ {k + 2}|
of the matchings that have not assigned a color so far. We assign each color from
[1, k + 2] \ (φ(ui) ∪ {k + 2}) to all the edges of exactly one of the rest uncolored
matchings.

By the construction above, φi is an edge (k+2)-coloring of H1[Ui] that satisfies Properties
(i) and (ii).

By Claim 9, we find an edge (k + 2)-coloring ψ of H1 with the following properties:

(1) The color (k + 2) is missing at each vertex from {x1, . . . , xt};

(2) If the color k + 1 presents on an edge from EH1(Ui, V (H1) \ Ui) for some i ∈ [1, t],
then the corresponding (k + 1, k + 2)-chain including that edge ends has one of its
endvertex from V (H1) \ (

⋃t
i=1 Ui).

We let M1, . . . ,Mk+2 be the color classes of ψ corresponding to the colors 1, . . . , k+2
respectively. We will add edges fromMk+1∪Mk+2∪{x1y1, . . . , xtyt} to each ofM1, . . . ,Mk

if necessary to modify them into k disjoint edge sets of H that each saturate V . To do so,
let D∗ be the subgraph of H1 induced on Mk+1 ∪Mk+2. As ∆(D∗) ⩽ 2, each component
of D∗ is either a cycle or a path. We orient D∗ such that each of its component is either
a directed cycle or a directed path. In particular, if for some i ∈ [1, t], xi is an endvertex
of a path-component of D∗, then the path is oriented towards xi. Note that by Property
(2) of ψ, if a path has xi as one of its endvertex, then its another endvertex is a vertex
from V (H1) \ (

⋃t
i=1 Ui). Let D be the orientation of D∗.

Each vertex w from V \ {xi, yi : i ∈ [1, t]} has degree k + 1 in H1, and so it is missed
by at most one of M1, . . . ,Mk. If w is missed by exactly one of M1, . . . ,Mk, then it has
degree two in D∗ and so has indegree one in D. As the color k + 2 is missing at xi for
each i ∈ [1, t], xi has degree at most one in D∗, and if xi has degree one in D∗, then xi
also has indegree one in D by our orientation of D∗. Vertex yi for i ∈ [1, t] has degree k
in H1 and so can be missed by at most two of M1, . . . ,Mk. If yi is missed by exactly two
of M1, . . . ,Mk, then it has degree two in D∗ and so it has indegree one in D.

Now for each vertex w ∈ V \ {y1, . . . , yt}, if w is missed by exactly one matching Mi

for some i ∈ [1, k], we let zw be the arc of D with w as head. We add to Mi the edge zw.
Now let w ∈ {y1, . . . , yt}, say w = yj for some j ∈ [1, t]. If yj is missed by exactly one
matching Mi for some i ∈ [1, k], we add the edge xjyj to Mi. If yj is missed by exactly
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two matchings from M1, . . . ,Mk, we let zyj be the arc of D with yj as head. Then we
add zyj to one of the matchings from M1, . . . ,Mk that misses yj, and we add xjyj to the
other matching from M1, . . . ,Mk that misses yj. Denote by M

∗
1 , . . . ,M

∗
k is corresponding

modifications of M1, . . . ,Mk, respectively. Now each vertex w ∈ V is saturated by each
of M∗

1 , . . . ,M
∗
k , and so M∗

1 , . . . ,M
∗
k are k disjoint edge sets of H that each saturate V .

The proof of Theorem 1 is now complete.
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