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Abstract

The reconfiguration graph of the k-colourings of a graph G, denoted Rk(G), is
the graph whose vertices are the k-colourings of G and two vertices of Rk(G) are
joined by an edge if the colourings of G they correspond to differ in colour on exactly
one vertex. A k-colouring of a graph G is called frozen if for every vertex v ∈ V (G),
v is adjacent to a vertex of every colour different from its colour.

A clique partition is a partition of the vertices of a graph into cliques. A clique
partition is called a k-clique-partition if it contains at most k cliques. Clearly, a
k-colouring of a graph G corresponds precisely to a k-clique-partition of its comple-
ment, G. A k-clique-partition Q of a graph H is called frozen if for every vertex
v ∈ V (H), v has a non-neighbour in each of the cliques of Q other than the one
containing v.

The complement of the cycle on four vertices, C4, is called 2K2. We give several
infinite classes of 2K2-free graphs with frozen colourings. We give an operation
that transforms a k-chromatic graph with a frozen (k + 1)-colouring into a (k +
1)-chromatic graph with a frozen (k + 2)-colouring. The operation requires some
restrictions on the graph, the colouring, and the frozen colouring. The operation
preserves being 2K2-free. Using this we prove that for all k > 4, there is a k-
chromatic 2K2-free graph with a frozen (k + 1)-colouring. We prove these results
by studying frozen clique partitions in C4-free graphs.

We say a graph G is recolourable if R`(G) is connected for all ` greater than
the chromatic number of G. We prove that every 3-chromatic 2K2-free graph G is
recolourable and that for all ` greater than the chromatic number of G, the diameter
of R`(G) is at most 14n where n is the number of vertices of G.

Mathematics Subject Classifications: 0C15

1 Introduction

All graphs in this paper are finite and simple. For a simple graph G, the complement G
of G is the simple graph with vertex-set V (G) and where uv is an edge of G if and only
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if uv is not an edge of G. Let G be a graph with vertex-set V (G) and edge-set E(G).
We use n = |V (G)| to denote the number of vertices of G when the context is clear. An
independent set in a graph G is a set of vertices no two of which are joined by an edge; a
clique is a set of vertices every pair of which are joined by an edge. For a positive integer
k, a k-colouring of G is a partition C of the vertices into at most k independent sets,
called colour classes. A k-clique-partition is a partition Q of the vertices into at most k
cliques. Clearly, C is a k-colouring of G if and only if C is a k-clique-partition of G.

We say that G is k-colourable if it admits a k-colouring and is q-clique-partitionable if
it admits a q-clique-partition. The chromatic number of G, denoted χ(G), is the smallest
integer k such that G is k-colourable and the clique partition number of G, denoted θ(G),
is the smallest integer q such that G is q-clique-partitionable. Clearly, χ(G) = θ(G). A
graph G whose chromatic number is k is called k-chromatic.

The reconfiguration graph of the k-colourings, denoted Rk(G), is the graph whose
vertices are the k-colourings of G and two vertices are joined by an edge in Rk(G) if the
colourings they correspond to differ in colour on exactly one vertex. Equivalently, two
k-colourings are adjacent in Rk(G) if some vertex v can be moved from the part of the
partition it is in (that is, from the colour class it is in) to another part, say U , of the
partition so that the new partition is a colouring. This can be done exactly when v is not
adjacent to any vertex of U . We say that G is k-mixing if Rk(G) is connected, and that
G is recolourable if G is k-mixing for all k > χ(G).

We can also consider the reconfiguration graph of the q-clique-partitions of a graph G.
The vertices of the reconfiguration graph are the q-clique-partitions of G and two vertices
are joined by an edge in the reconfiguration graph if some vertex v can be moved from
the part of the partition it is in (that is, from the clique it is in) to another part, say U ,
of the partition so that the new partition is a clique partition. This can be done exactly
when v is adjacent to every vertex of U .

Considering colourings and clique partitions as partitions of the vertex-set of a graph,
the reconfiguration graph of the k-clique-partitions of G is preciselyRk(G). (We comment
that normally in mathematics, a partition is thought of as a set of non-empty sets. In
reconfiguration of graph colourings, two colourings of a graph are considered different
if some vertex has a different colour in the two colourings. So the sets in the partition
are really ordered: interchanging the colours of the vertices in two colour classes gives
a different colouring. The same concept of order applies to reconfiguration of clique
partitions. Also, some of the sets of a colouring or a clique partition can be empty.)

A k-colouring of a graph G is called frozen if it is an isolated vertex in Rk(G); in
other words, for every vertex v ∈ V (G), each of the k colours appears in the closed
neighbourhood of v, or equivalently, if v has a neighbour in each of the colour classes
different from the colour class it is in. One way to show that a graph G is not k-mixing is
to exhibit a frozen k-colouring of G. Since every k-colouring of Kk is frozen, it is common
to study Rk+1(G) for a k-colourable graph G.

A q-clique-partition of a graph G is called frozen if for every vertex v ∈ V (G), v has
a non-neighbour in each clique of the partition different from the clique it is in. Note
that when considering colourings and clique partitions as partitions of the same set V of
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vertices, a partition corresponding to a colouring of G is frozen if and only if the same
partition, considered as a clique partition of G, is frozen.

Dunbar et al. [8] used the term fall colouring for frozen colouring, and proved that for
each k > 3, the problem of deciding whether an input graph admits a frozen k-colouring is
NP-complete. Cockayne and Hedetniemi [7] used the term indominable graph for a graph
which admits a frozen colouring.

The cycle on six vertices, C6, admits a frozen 3-colouring, and has the smallest number
of vertices of a graph G which admits a frozen k-colouring where k > χ(G). In fact, a
cycle Cn admits a frozen 3-colouring if and only if n ≡ 0(mod 3).

2 Preliminaries

For a vertex v ∈ V (G), the open neighbourhood, N(v), of v is the set of vertices adjacent
to v in G. The closed neighbourhood, N [v], of v is the set of vertices adjacent to v in G
together with v.

As usual, let Pn, Cn, and Kn denote the path, cycle, and complete graph on n vertices,
respectively. We sometimes refer to K3 as a triangle and C4 as a square.

For two vertex-disjoint graphs G and H, the disjoint union of G and H, denoted by
G + H, is the graph with vertex-set V (G) ∪ V (H) and edge-set E(G) ∪ E(H). For a
positive integer t, we use tG to denote the disjoint union of t copies of G. In particular,
the graph 2K2 consists of the disjoint union of two copies of K2. The complement of 2K2

is C4. The paw is the graph on four vertices consisting of a K3 together with another
vertex adjacent to exactly one vertex of the K3. The diamond is K4 with one edge deleted
(often referred to as K4 − e). The edge of the diamond whose end-vertices are of degree
3 is called the middle edge.

The subgraph of a graph G induced by a subset S ⊆ V (G) is the graph whose vertex-
set is S and whose edge-set is all edges of G with both ends in S. For a fixed graph H,
graph G is H-free if no induced subgraph of G is isomorphic to H. For a set H of graphs,
G is H-free if G is H-free for every H ∈ H.

A universal vertex in a graph G is a vertex which is adjacent to every other vertex of
G. An isolated vertex in a graph G is a vertex which is not adjacent to any vertex of G.
The join of two vertex-disjoint graphs G and H is obtained by adding all edges between
a vertex of G and a vertex of H. In particular, adding a universal vertex v to a graph
G is the same as taking the join of G and a graph consisting of one vertex. Two sets of
vertices are called anticomplete (to eachother) if there is no edge with one end in one set
and the other end in the other set. Two sets of vertices are called complete (to each other)
if there are all possible edges with one end in one set and the other end in the other set.

It is quite easy to see and is used in several papers (see, for example, [9]) that:

Proposition 1. If G is a k-chromatic graph which admits a frozen `-colouring and if H
is an r-chromatic graph which admits a frozen s-colouring, then the join of G and H is
a (k + r)-chromatic graph which admits a frozen (` + s)-colouring. In particular, adding
a universal vertex to k-chromatic graph which admits a frozen `-colouring results in a
(k + 1)-chromatic graph which admits a frozen (`+1)-colouring.
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Further, note that if G and H are 2K2-free, then so is their join.
A perfect matching M in a graph G is a set of edges such that each vertex of G is

incident to exactly one edge of M . For an integer s > 2, let Ks,s denote the complete
bipartite graph with s vertices in each part, and let Bs denote Ks,s with a perfect matching
removed. In [8] and [6], it was proved that Bs has a frozen s-colouring: give each vertex
in one paritite set and its non-neigbhour in the other partite set the same colour. Note
that Bs is P6-free.

3 Our contributions

A question that has received some attention (see for example, [3], [12] and [9]) is:

Question 2. Given positive integers k and t, does there exist a k-colourable Pt-free graph
which admits a frozen (k + 1)-colouring?

Several authors have contributed to the solution of this problem, resulting in the
following theorem.

Theorem 3. ([3, 4, 6, 8, 9, 11], Theorem 4, Theorem 5) There exists a k-colourable
Pt-free graph with a frozen (k + 1)-colouring if and only if (t > 6 and k > 2) or (t = 5
and k > 4).

The graphs Bs show that for all t > 6 and k > 2, the answer to the question is yes
[6, 8].

Recall that a graph G is recolourable if R`(G) is connected for all ` > χ(G)+1. Bonamy
and Bousquet [3] proved that every P4-free graph G is recolourable, thus for t 6 4, the
answer to the question is no.

Bonamy et al. [4] proved that every 2-colourable P5-free graph is recolourable, so for
t = 5 and k = 2, the answer to the question is no.

Feghali and Merkel [9] gave a 7-chromatic 2K2-free graph on 16 vertices which admits
a frozen 8-colouring. By adding universal vertices, it follows that the answer to Question
2 is yes for t = 5 and k > 7.

Feghali and Merkel [9] asked about the remaining cases. We answer this in the positive
for k ∈ {4, 5, 6} with the following theorem.

Theorem 4. For every k > 4, there is a k-chromatic 2K2-free graph with a frozen (k+1)-
colouring.

In Section 4, we prove:

Theorem 5. Every 3-chromatic 2K2-free graph G is recolourable with `-recolouring di-
ameter at most 14n, for all ` > χ(G)+1.

Thus the only remaining case of Question 2 is when t = 5 and k = 3, and the graph
contains a 2K2. Recently, Lei et al. [11] proved that every 3-chromatic P5-free graph is
recolourable, thus for t = 5 and k = 3, the answer to the question is no.
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It follows that Theorem 3 holds.

In [1], it was proved that for a fixed graph H, every H-free graph is recolourable if
and only if H is an induced subgraph of P4 or of K3 + K1. Where H1 and H2 are two
fixed graphs on four vertices, it was determined in [2] whether or not all (H1, H2)-free
graphs were recolourable except for (2K2, K4)-free graphs. This class of graphs is known
to be 4-colourable [10]. Further in [2], it was proved that every (2K2, K3)-free graph is
recolourable. Thus Theorem 5 brings us close to a dichotomy theorem for recolourability
when two graphs on four vertices are forbidden as induced subgraphs. The only open case
remaining is whether all 4-chromatic (2K2, K4)-free graphs are recolourable.

The first and third authors did a computer search on all graphs with at most ten
vertices to find k-colourable 2K2-free graphs which admit a frozen (k + 1)-colouring.
Only two graphs were found. One was the graph we call D2. See Figure 1 for the
complementary graph, D2. Note that what is shown in Figure 1 is actually a 4-clique-
partition and a frozen 5-clique-partition of D2; numbers are used to indicate which clique
a vertex is in. The other graph they found is one we call F2, which is D2 with one
edge added (the edge we will later call u1u2). See Figure 3 for F2. Both graphs are
4-chromatic and admit a frozen 5-colouring. We believe that these two graphs are the
smallest k-colourable 2K2-free graphs which admit a frozen (k + 1)-colouring.

In Section 5, we give four infinite classes of k-colourable 2K2-free graphs which admit
frozen (k + p)-colourings for various values of k and p. These graphs are connected and
not decomposable by the join operation. The graphs we construct are dense, so we study
clique-partitions in their complements.

In Section 6, we give an operation which transforms a k-chromatic graph with a
frozen (k + 1)-colouring into a (k + 1)-chromatic graph with a frozen (k + 2)-colouring.
The operation consists of carefully choosing an edge in the complement and subdividing
it twice. Note that the operation requires some restrictions on the graph, the colouring,
and the frozen colouring, and an appropriate edge may not exist. See Figure 7. Further,
the operation preserves being 2K2-free and does not add universal vertices or use the join
operation. Again, our approach is to study clique partitions.

In Section 7, we combine the results of Sections 5 and 6 to prove Theorem 4.
Section 8 has some concluding remarks.

4 2K2-free graphs with chromatic number 3 are recolourable

We use the following result of Bonamy and Bousquet [3].

Lemma 6 (Renaming Lemma [3]). Let β′ and γ′ be two k-colourings of G that induce the
same partition of vertices into colour classes and let ` > k+ 1. Then β′ can be recoloured
into γ′ in R`(G) by recolouring each vertex at most 2 times.

For graph G and a positive integer k, we can think of a k-colouring of G as a function
β : V (G)→ {1, 2, . . . , k} such that for each edge uv ∈ E(G), β(u) 6= β(v). We use [k] to
denote {1, 2, . . . , k}.
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Figure 1: A square-free graph D2 with a 4-clique-partition (left) and a frozen 5-clique-
partition (right). The numbers indicate which clique a vertex is in. Equivalently, the
numbers indicate a 4-colouring of the complement D2 of the graph shown (left) and a
frozen 5-colouring of D2 (right).
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Figure 2: A square-free graph D3 with a 6-clique-partition (left) and a frozen 7-clique-
partition (right). The numbers indicate which clique a vertex is in. Equivalently, the
numbers indicate a 6-colouring of the complement D3 of the graph shown (left) and a
frozen 7-colouring of D3 (right).
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The diameter of a graph is the length of a longest shortest path between any two
distinct vertices of the graph. The k-recolouring diameter of G is the diameter of Rk(G).

A bipartite graph G is chordal bipartite if it does not contain an induced cycle of
length more than four. Note that every 2K2-free bipartite graph G is a chordal bipartite
graph and hence recolourable with `-recolouring diameter at most 2n2, for all ` > χ(G)+1
[4]. This also follows from the fact that every (2K2, triangle)-free graph G is recolourable
with `-recolouring diameter at most 2n2, for all ` > χ(G)+1 [2]. Here we improve the
upper bound on the `-recolouring diameter of 2K2-free bipartite graphs.

Lemma 7. Let G be a 2K2-free graph. Suppose V (G) can be partitioned into independent
sets A1, A2, . . . , Ai such that A1 is (inclusion-wise) maximal. Then for each j ∈ {2, . . . , i},
A1 contains a vertex complete to Aj.

Proof. Let G be a 2K2-free graph. Partition V (G) into independent sets A1, A2, . . . , Ai

such that A1 is (inclusion-wise) maximal. For each j ∈ {2, . . . , i}, choose a vertex in A1,
say xj, such that N(xj) ∩ Aj is maximized. If xj is not complete to Aj, there is a vertex
y in Aj non-adjacent to xj. By the maximality of A1, y has a neighbour u in A1. By
the choice of xj, there is a vertex v in Aj adjacent to xj but non-adjacent to u. Then
{xj, v, y, u} induces a 2K2, a contradiction. Thus xj is complete to Aj.

Theorem 8. Every 2K2-free bipartite graph G is recolourable with `-recolouring diameter
at most 4n, for all ` > χ(G)+1.

Proof. Let G be a 2K2-free bipartite graph. Let ` > 3. Partition V (G) into independent
sets A1 and A2 such that A1 is (inclusion-wise) maximal. Given any `-colouring of G
we prove that we can reach a 2-colouring of G that partitions the vertex-set into A1 and
A2 by recolouring each vertex at most once. By the Renaming Lemma, there is a path
between any two 2-colourings of G that partition the vertex-set into A1 and A2, where
each vertex is recoloured at most twice. Starting from any two `-colourings of G, β and γ,
we can reach 2-colourings β′ and γ′ in R`(G), respectively, which partition the vertex-set
into A1 and A2. Then we can obtain γ from β by recolouring vertices starting from β to
β′ to γ′ to γ. Each vertex will be recoloured at most 4 times to go from β to γ in R`(G).

By Lemma 7, A1 contains a vertex, say x, complete to A2. Let β be any `-colouring
of G. There is no vertex in A2 coloured β(x). Recolour each vertex in A1 with the colour
β(x) and recolour each vertex in A2 with a colour c 6= β(x). Starting from β, we have
reached a colouring which partitions the vertex-set into A1 and A2, by recolouring each
vertex at most once.

We now prove:
Theorem 5. Every 3-chromatic 2K2-free graph G is recolourable with `-recolouring di-
ameter at most 14n, for all ` > χ(G)+1.

Proof. Let G be a 3-chromatic 2K2-free graph. Let ` > 4 and let [`] be the set of available
colours. Partition V (G) into independent sets A1, A2, and A3 such that A1 is (inclusion-
wise) maximal. We need some χ(G)-colourings of G to act as anchor points. We say a
χ(G)-colouring of G is canonical if it partitions the vertex-set into A1, A2, and A3. By the
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Renaming Lemma, for all ` > 4, there is a path between any two canonical colourings in
R`(G) where each vertex is recoloured at most twice. Starting from any two `-colourings
of G, β and γ, we prove that we can reach canonical colourings β′ and γ′ in R`(G),
respectively, by recolouring each vertex at most 6 times. Then we can obtain γ from β
by recolouring vertices starting from β to β′ to γ′ to γ. Each vertex will be recoloured at
most 14 (= 6+2+6) times to go from β to γ in R`(G).

Claim 9. Any `-colouring of G which assigns only one colour to some part Ai, i ∈ [3],
can be recoloured to a canonical colouring by recolouring each vertex in V (G) \Ai at most
4 times and without recolouring any vertex of Ai.

Proof. Let ψ be any `-colouring of G which, for some i ∈ [3], assigns only one colour, say
ci, to the part Ai. Let A ⊆ V (G) be the set of all vertices coloured ci under ψ. Clearly
Ai ⊆ A. Let j and k be distinct integers in [3] \ {i}. Since G-A is a 2K2-free bipartite
graph, as in the proof of Theorem 8, we can recolour each vertex of V (G) \ A at most
4 times to obtain a colouring of G where every vertex of Aj \ A is coloured some colour
cj 6= ci and every vertex of Ak \ A is coloured some colour ck /∈ {ci, cj} without using
the colour ci. Recolour each vertex in Aj ∩A with the colour cj and recolour each vertex
in Ak ∩ A with the colour ck to obtain a canonical colouring of G. Thus there is a path
from ψ to a canonical colouring of G in R`(G), for all ` > χ(G)+1, where each vertex of
Aj ∪ Ak is recoloured at most 4 times. �

Claim 10. If there is a vertex in some Ai, i ∈ [3], adjacent to every vertex not in Ai,
then any `-colouring of G can be recoloured to a canonical colouring by recolouring each
vertex at most 4 times.

Proof. For some i ∈ [3], let x in Ai be adjacent to every vertex outside Ai. Let ψ be any
`-colouring of G. Recolour each vertex in Ai with the colour ψ(x). Now, by Claim 9,
we can reach a canonical colouring of G by recolouring each vertex in V (G) \Ai at most
4 times and without recolouring any vertex in Ai. Therefore, we can reach a canonical
colouring of G by recolouring each vertex at most 4 times. �

By Lemma 7, there are vertices x2 and x3 in A1 complete to A2 and A3, respectively.
By Claim 10, we may assume that x2 and x3 are distinct. Let β be any `-colouring of G.

Suppose β(x2) = β(x3) = c1, then there is no vertex outside A1 coloured c1. Recolour
each vertex in A1 with colour c1. Now, by Claim 9, we can reach a canonical colouring
of G by recolouring each vertex in A2 ∪ A3 at most 4 times and without recolouring any
vertex in A1. Therefore, we can reach a canonical colouring of G by recolouring each
vertex at most 4 times.

Suppose β(x2) 6= β(x3). Let β(x2) = 1 and let β(x3) = 2. Note that no vertex of
A2 received colour 1 and no vertex of A3 received colour 2. Recolour as many vertices
as possible in A2 with colour 2; that is, recolour with colour 2 every vertex of A2 which
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does not have a neighbour of colour 2 in A1. Recolour as many vertices as possible in
A3 with colour 1; that is, recolour with colour 1 every vertex of A3 which does not have
a neighbour of colour 1 in A1. Recolour as many vertices as possible in A1 with either
colour 1 or 2; that is, for vertex v of A1 which is non-adjacent to a vertex coloured 1 or
2, recolour v with colour 1 if v is non-adjacent to a vertex coloured 1 in A3 or recolour v
with colour 2 if v is non-adjacent to a vertex coloured 2 in A2. This new colouring, say
ζ, is obtained from β by recolouring each vertex at most once.

Now a vertex in A1 is coloured neither colour 1 nor colour 2 if and only if it is adjacent
to a vertex coloured 1 in A3 and adjacent to a vertex coloured 2 in A2.

Claim 11. If there is a vertex in A1 coloured c ∈ {3, 4} under ζ, then there are no vertices
outside A1 coloured c under ζ.

Proof. We prove the claim for c = 3. Let x ∈ A1 and y ∈ A2 ∪ A3 be coloured 3 under
ζ. The vertex x was not recoloured with colour either 1 or 2, because it is adjacent to a
vertex u coloured 2 in A2 and adjacent to a vertex v coloured 1 in A3. If y ∈ A2, then by
the choice of ζ, it is adjacent to a vertex w coloured 2 in A1. Then {y, w, x, u} induces a
2K2, a contradiction. The proof is similar if y is in A3. �

We have two cases.
Case 1: A1 contains a vertex coloured either 3 or 4 under ζ.
Let there be a vertex x coloured either 3 or 4 in A1. Then by Claim 11 there are no
vertices coloured ζ(x) outside A1. Recolour each vertex in A1 with the colour ζ(x). Now,
by Claim 9, we can reach a canonical colouring of G by recolouring each vertex in A2∪A3

at most 4 times and without recolouring any vertex in A1. Therefore, starting from β we
recoloured each vertex at most once to reach ζ and then recoloured each vertex at most
4 times to reach a canonical colouring of G. This completes the proof for Case 1.

Case 2: A1 does not contain any vertex coloured 3 and does not contain any vertex coloured
4, under ζ.

Case 2 (a): For some j ∈ {2, 3}, Aj does not contain any vertex coloured 3 or does not
contain any vertex coloured 4, under ζ.

Let i ∈ {2, 3} \ {j}. If colour 3 does not appear on Aj, then recolour each vertex
in Ai with colour 3. Otherwise, colour 4 does not appear on Aj, then recolour each
vertex in Ai with colour 4. Now, by Claim 9, we can reach a canonical colouring of G by
recolouring each vertex in V (G) \Ai at most 4 times and without recolouring any vertex
in Ai. Therefore, starting from β we recoloured each vertex at most once to reach ζ and
then recoloured each vertex at most 4 times to reach a canonical colouring of G. This
completes the proof for Case 2(a).

Case 2 (b): Colours 3 and 4 appear on both A2 and A3 under ζ.
Suppose there are two vertices u and v in A2 coloured 3 and 4, respectively, such that

u has a neighbour u′ coloured 4 and v has a neighbour v′ coloured 3. Then u′ and v′

must be in A3. This implies that {u, u′, v, v′} induces a 2K2, a contradiction. Therefore
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there are no two vertices u and v coloured 3 and 4, respectively, in A2 such that u has
a neighbour coloured 4 and v has a neighbour coloured 3. Without loss of generality,
assume that there is no vertex in A2 coloured 4 which is a adjacent to a vertex coloured
3.

Recolour each vertex coloured 4 in A2 with colour 3. Now there is no vertex in A1∪A2

coloured 4. Recolour each vertex in A3 with colour 4. Now, by Claim 9, we can reach
a canonical colouring of G by recolouring each vertex in A1 ∪ A2 at most 4 times and
without recolouring any vertex in A3. Therefore, starting from β we recoloured each
vertex at most once to reach ζ and then recoloured each vertex at most 5 times to reach
a canonical colouring of G. This completes the proof for Case 2(b). �

In a recent paper that appeared on arXiv [5], Cambie, Cames van Batenburg and
Cranston gave an improved version of the Renaming Lemma, which they call the Optimal
Renaming Lemma. We can use their Optimal Renaming Lemma, instead of the Renaming
Lemma, and reduce the upper bound on the `-recolouring diameter by 0.5n each time the
lemma is used. Thus, in Theorems 8 and 5, we can reduce the upper bound on the
`-recolouring diameter by 0.5n.

5 Four infinite classes of 2K2-free graphs which admit frozen
colourings

A Hamiltonian cycle in a graph G is a cycle which contains all the vertices of G.

For an integer q > 2, Dq is the graph with 4q + 2 vertices
{ui : i = 0, 1, . . . , q + 1} ∪ {∪{vi1, vi2, vi3} : i = 1, 2, . . . , q}
whose edges are:

• the edges of a Hamiltonian cycle C: u0, u1, . . . , uq+1, v11, v12, v13, v21, v22, v33,. . .,
vq1, vq2, vq3, u0

• edges uivi2 for i = 1, 2, . . . , q

• edges vi1vi3 for i = 1, 2, . . . , q

See Figure 1 for D2 and Figure 2 for D3.
We refer to {vi1, vi2, vi3} as triangle i. Note that Dq consists of a Hamiltonian cycle

C together with q edges which induce q vertex-disjoint triangles with consecutive pairs of
edges of C, and q more edges uivi2 each of which induces a paw with triangle i. Also note
that the only neighbours of vertices u0 and uq+1 are their neighbours on C. The number
of edges of Dq is (4q + 2) + 2q = 6q + 2.

Lemma 12. For q > 2, Dq is C4-free.

Proof. Consider the graph Dq where q > 2. Edge vi1vi3 cannot be part of an induced 4-
cycle in Dq because clearly vi2 can’t be part of such a cycle and vi1’s only other neighbour
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is either vi−1 3 if i > 2 or uq+1 if i = 1, and vi3’s only other neighbour is either vi+11 if
i 6 q − 1 or u0 if i = q, and these neighbours are not adjacent.

Edge uivi2 makes two cycles with C. The two cycles are generally not induced cycles; a
shorter cycle can be obtained by replacing any occurrence of vj1, vj2, vj3 by vj1, vj3. We first
consider cycles containing only one edge of the type uivi2. The shortest such cycles occur
when i = 1 or i = q, and are v12, u1, u2, . . . , uq+1, v11, v12 and vq2, vq3, u0, u1, . . . , uq, vq2,
respectively, and each has length q + 3 > 5.

A shortest cycle containing two edges uivi2 and ujvj2 is when j = i + 1, and is the
6-cycle:
ui, vi2, vi3, vi+11, vi+12, ui+1, ui.

Thus Dq is C4-free.

Corollary 13. For q > 2, Dq is 2K2-free.

For a graph G, α(G) denotes the size of a largest independent set in G and ω(G)
denotes the size of a largest clique in G.

Theorem 14. For q > 2,

θ(Dq) = α(Dq) =

{
(3q+2)/2 if q is even

(3q+3)/2 if q is odd

Proof. Let q > 2 be even. Create a clique partition of Dq consisting of the following
cliques:

• For i = 1, 2, . . . , q, let the vertices of triangle i be a clique in the clique partition

• Divide the vertices of the path u0, u1, . . . , uq+1 into (q + 2)/2 cliques as follows:
{u0, u1}, {u2, u3}, . . . , {uq, uq+1} and put these cliques into the clique partition

Vertices u0, u2, . . . , uq, v11, v21, v31, . . . , vq1 form an independent set of size (q+2)/2+q
in Dq.

Since we have a clique partition and an independent set of the same size, we know
they are a minimum clique partition and a maximum independent set.

Now let q > 3 be odd. The proof is similar to the even case, except that the path
u0, u1, . . . , uq+1 in Dq has an odd number of vertices. Create a clique partition of Dq

consisting of the following cliques:

• For i = 1, 2, . . . , q, let the vertices of triangle i be a clique in the clique partition

• Divide the vertices of the path u0, u1, . . . , uq+1 into (q + 3)/2 cliques as follows:
{u0, u1}, {u2, u3}, . . . , {uq−1, uq}, {uq+1} and put these cliques into the clique parti-
tion

the electronic journal of combinatorics 32(2) (2025), #P2.29 11



Vertices u0, u2, . . . , uq+1, v12, v21, v31, . . . , vq1 form an independent set of size (q+1)/2+
1 + q in Dq.

Again, since we have a clique partition and an independent set of the same size, we
know they are a minimum clique partition and a maximum independent set.

Corollary 15. For q > 2,

χ(Dq) = ω(Dq) =

{
(3q+2)/2 if q is even,

(3q+3)/2 if q is odd.

Lemma 16. Let Q be a partition of the vertex-set V (G) of graph G into cliques of size
2. Then Q is a frozen clique partition if and only if every triangle of G intersects three
distinct cliques of Q.

Proof. Let Q be a partition of the vertex-set V (G) of graph G into cliques of size 2. Then
every triangle of G intersects at least two cliques of Q.

By definition, Q is not a frozen clique partition if and only if there is some clique
Q = {q1, q2} ∈ Q and some vertex v /∈ Q such that v is adjacent to both q1 and q2,
which means that triangle {v, q1, q2} intersects exactly two cliques of Q, namely Q and
the clique containing v.

Theorem 17. For q > 2, Dq has a frozen (2q + 1)-clique-partition.

Proof. Create a clique partition Q∗ of Dq consisting of the following cliques:

• For i = 1, 2, . . . , q, let {ui, vi2} be a clique of the clique partition.

• For i = 1, 2, . . . , q − 1, let {vi3, vi+11} be a clique of the clique partition.

• Let {vq3, u0} and {uq+1, v11} be cliques of the clique partition.

In Dq, the only triangles are triangles 1 to q. It is easily seen that each triangle i
intersects three different cliques of Q∗. Thus the result follows from Lemma 16.

Corollary 18. For q > 2, Dq has a frozen (2q + 1)-colouring.

As noted in Section 3, the graph D2 was found by a computer search as was the graph
we will call F2 which is D2 with edge u1u2 added.

We now define a second class of graphs, D∗q where q > 2. We obtain D∗q from Dq by

deleting the edge u0uq+1. Equivalently, we obtain D∗q from Dq by adding the edge u0uq+1.

Theorem 19. For q > 3, D∗q is a C4-free graph with the same clique partition number

and frozen clique partition as Dq.
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The proof of Theorem 19 is similar to the proofs for Dq. One needs to check that
adding the edge u0uq+1 does not create a 4-cycle. To see that the clique partition is
minimum when q is odd, note that the vertex-set of D∗q can be partitioned into q triangles
and one induced odd cycle Cq+2; the odd cycle Cq+2 requires at least (q + 3)/2 cliques in
any clique partition. Thus the size of a smallest clique partition of D∗q when q is odd is

q + (q + 3)/2 = (3q + 3)/2. Note that when q is odd, α(D∗q) = θ(D∗q)− 1.

Corollary 20. For q > 3, D∗q is a 2K2-free graph with the same chromatic number and
frozen colouring as Dq.

Remark 21. By deleting the edge u0uq+1 = u0u3 from D2, we will obtain a 2K2 induced
by {u0, u1, u2, u3}. The resulting graph D∗2 is thus not 2K2-free, but is P5-free.

We now define a third class of graphs, Fq where q > 2. We obtain Fq from Dq by
removing the edges of the path u1, u2, . . . , uq. Equivalently, we obtain Fq from Dq by
adding the edges u1u2, u2u3, . . . , uq−1uq to Dq. See Figure 3 for F2 and Figure 4 for F3.

Theorem 22. For q > 2, Fq is a C4-free graph with θ(Fq) = α(Fq) = 2q, which admits
a frozen (2q + 1)-clique-partition.

The proof of Theorem 22 is similar to the proofs for Dq. The clique partition of Fq

consists of the following cliques:

• For i = 1, 2, . . . , q, let the vertices of triangle i be a clique in the clique partition

• Let {u0, u1} and {uq, uq+1} be cliques of the clique partition

• Let {u2}, {u3}, . . . , {uq−1} be cliques of the clique partition.

This clique partition has size q + 2 + (q − 2) = 2q.
Vertices u1, u2, u3, . . . , uq, v11, v21, v31, . . . , vq1 form an independent set of size 2q in Fq.
The frozen clique partition of Dq given in Theorem 17 is a frozen clique partition of

Fq.

Corollary 23. For q > 2, Fq is a 2K2-free graph with χ(Fq) = ω(Fq) = 2q, which admits
a frozen (2q + 1)-colouring.

Remark 24. For any q > 2, one can obtain a (2q + 1)-clique-partitionable graph which
admits a frozen clique-partition by modifying the construction of Dq or Fq as follows.
The edges {uivi2, 1 6 i 6 q} can be replaced by any set of edges which forms a matching
between {ui : 1 6 i 6 1} and {vi2 : 1 6 i 6 q}; to avoid a C4, in Dq, uqv12 and u1vq2
should not be edges.

We now define a fourth class of graphs. For r > 1, Yr is the graph with 6r vertices
{{∪{vi1, vi2, vi3} : i = 1, 2, . . . , 2r}
whose edges are:
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Figure 3: A square-free graph F2 with a 4-clique-partition (left) and a frozen 5-clique-
partition (right). Equivalently, a 4-colouring of the complement F2 of the graph shown
(left) and a frozen 5-colouring of F2 (right).
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Figure 4: A square-free graph F3 with a 6-clique-partition (left) and a frozen 7-clique-
partition (right). Equivalently, a 6-colouring of the complement F3 of the graph shown
(left) and a frozen 7-colouring of F3 (right).
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• the edges of a Hamiltonian cycle C: v11, v12, v13, v21, v22, v33, . . . , v2r 1, v2r 2, v2r 3

• edges vi2vi+r 2 for i = 1, 2, . . . , r

As above, we refer to {vi1, vi2, vi3} as triangle i. Note that Yr consists of a Hamiltonian
cycle C together with 2r edges which induce 2r vertex-disjoint triangles with consecutive
pairs of edges of C, and r more edges pairing the middle vertices vi2 of “opposite” triangles.
The number of edges of Yr is 9r.

See Figure 5 for Y2 and Figure 6 for Y3. Note that Y1 is C6.

Theorem 25. For r > 2, Yr is a C4-free graph with θ(Yr) = α(Yr) = 2r, which admits a
frozen 3r-clique-partition.

To prove Theorem 25 note that triangles 1, 2, . . . , 2r form a clique partition of Yr and
vertices v11, v21, . . . , v2r 1 form an independent set. Note also that the following 3r-clique-
partition is frozen:
Q = {{v12, vr+12}, {v22, vr+22}, . . . , {vr2, v2r 2}, {v13, v21}, {v23, v31}, . . . , {v2r 3, v11}}.

Corollary 26. For r > 2, Yr is a 2K2-free graph with χ(Yq) = ω(Yq) = 2r, which admits
a frozen 3r-colouring.

Remark 27. For any r > 2, one can obtain a 2r-clique-partitionable graph which admits a
frozen 3r-clique-partition by modifying the construction of Yr as follows. Pair the vertices
{vi2 : 1 6 i 6 r} in any way, and then join the members of each pair by an edge (rather
than joining vi2 to vi+r 2 as in the construction). To avoid creating a C4, do not pair vi2
with vi+12 for 1 6 i 6 2r − 1 and do not pair v2r 2 with v12.

6 An operation which preserves being 2K2-free and admitting
a frozen colouring

Operation 1. Given a graph H and adjacent vertices x and y in H, we subdivide the edge
xy to obtain a new graph H ′ by deleting the edge xy, adding two vertices u and v, and
adding edges xu, uv, and vy; that is, the edge xy is replaced by a path on four vertices:
x, u, v, y.

Theorem 28. Let H be a graph with a k-clique-partition Q and with a frozen (k + 1)-
clique-partition F , and let x and y be adjacent vertices of H which are in different cliques
of Q such that either

(1) x and y are in different cliques of F or

(2) {x, y} is a clique of F .

Then the graph H ′ obtained by subdividing edge xy as in Operation 1 is (k + 1)-clique-
partitionable and admits a frozen (k + 2)-clique-partition.
Furthermore,
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class q/r/s n min max # edges χ (= ω # colours (# colours in
degree degree except for in frozen in frozen

D∗
q , q odd) colouring colouring) - χ

Dq q > 2 4q + 2 4q − 2 4q − 1 8q2 − 1 (3q + 2)/2 n/2 = 2q + 1 q/2
for even q; for even q;

(3q + 3)/2 (q − 1)/2
for odd q for odd q

D∗
q q > 3 4q + 2 4q − 2 4q − 2 8q2 − 2 (3q + 2)/2 n/2 = 2q + 1 q/2

for even q; for even q;
(3q + 3)/2 (q − 1)/2

for odd q for odd q

Fq q > 2 4q + 2 4q − 2 4q 8q2 + q − 2 2q 2q + 1 1
for q > 2;

4q − 1
for q = 2

Yr r > 2 6r 6r − 4 6r − 4 18r2 − 12r 2r 3r r

For
comparison:

r = 2q+1
3 4q + 2 4q − 2 4q − 2 8q2 − 2 (4q + 2)/3 2q + 1 (2q + 1)/3

q ≡ 1(mod 3)

Hs s > 3 4s− 2 3s− 3 4s− 5 7s2 − 12s+ 5 s+ 1 2s− 1 s− 2

For
comparison:

s = q + 1 4q + 2 3q 4q − 1 7q2 + 2q q + 2 2q + 1 q − 1

Table 1: Parameters of 2K2-free graph classes.

the electronic journal of combinatorics 32(2) (2025), #P2.29 16



3

3

2
2

2

1

1

1

4
4

4

3

1

4

4
2

3

3

1

6

6
2

5

5

Figure 5: A C4-free graph Y2 with a 4-clique-partition (left) and a frozen 6-clique-partition
(right). Equivalently, a 4-colouring of the complement Y2 (left) and a frozen 6-colouring
(right).
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Figure 6: A C4-free graph Y3 with a 6-clique-partition (left) and a frozen 9-clique-partition
(right). Equivalently, a 6-colouring of the complement Y3 (left) and a frozen 9-colouring
(right).

(3) if θ(H) = k, then θ(H ′) = k + 1.

(4) if H is C4-free and if in case (1), xy is not the middle edge of a diamond, then H ′

is C4-free.

Proof. Let H be a graph with a k-clique-partition Q and with a frozen (k + 1)-clique-
partition F , and let x and y be adjacent vertices of H which are in different cliques of Q.
Let H ′ be the graph obtained by subdividing edge xy.
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Claim 29. By adding {u, v} to Q we obtain a (k + 1)-clique-partition Q′ of H ′.

Claim 30. We can modify F to be a frozen clique partition F ′ of H ′ as follows.

In Case (1): By adding {u, v} to F we obtain a (k + 1)-clique-partition F ′ of H ′.

In Case (2): Remove {x, y} from F and add {x, u} and {v, y} to obtain a (k + 1)-
clique-partition F ′ of H ′.

Proof. It is easy to see that F ′ is a clique partition of H ′. We now prove that F ′ is frozen.
In Case (1): In H ′, every vertex is nonadjacent to either u or v or both, so every vertex

not in clique {u, v} is nonadjacent to a vertex of {u, v}.
Since F is a frozen clique partition of H, every vertex of H is nonadjacent to some

vertex of every clique of F other than the clique containing it, and this remains true when
the edge xy is deleted.

Thus, for every vertex z of H and every clique Q of F ′ other than the clique containing
z, z is nonadjacent to some vertex of Q.

In any frozen clique partition, if there is a clique consisting of a single vertex, say w,
then w must be an isolated vertex. In H, x and y are adjacent, so neither is an isolated
vertex, and thus there is vertex x′ of H different from x in the clique of F containing x
and a vertex y′ different from y in the clique of F containing y.

Since u is nonadjacent to every vertex of H other than x, and in particular, is non-
adjacent to x′, it follows that u is nonadjacent to some vertex of every clique of F ′ other
than {u, v}. Similarly, v is nonadjacent to some vertex of every clique of F ′ other than
{u, v}.

In Case (2): In H ′, vertex u is nonadjacent to every vertex other than x and v. Thus
u is nonadjacent to some vertex of every clique of F ′ other than {x, u}. Analogously, v is
nonadjacent to some vertex of every clique of F ′ other than {v, y}.

Since F is a frozen clique partition of H, every vertex of H is nonadjacent to some
vertex of every clique of F other than the clique containing it. In particular, every vertex
w in V (H) − {x, y} is nonadjacent to a vertex of each clique of F \ {x, y}. Since w
is nonadjacent to u and v, it follows w is nonadjacent to some vertex of each clique of
F ′ = (F \ {x, y}) ∪ {{x, u}, {v, y}}.

Since F is a frozen clique partition of H, x is nonadjacent to a vertex of every clique
of F other than {x, y}. Vertex x is nonadjacent to v ∈ {v, y} ∈ F ′. Thus vertex x is
nonadjacent to some vertex of every clique of F ′ other than {x, u}. Analogously, vertex
y is nonadjacent to some vertex of every clique of F ′ other than {v, y}. �

Claim 31. If θ(H) = k, then θ(H ′) = k + 1.

Proof. Assume θ(H) = k.
If there were a (k − 2)-clique partition of H − {x, y}, then by adding {x, y} to the

clique partition, we would obtain a (k−1)-clique-partition of H, which is a contradiction.
So θ(H − {x, y}) > k − 1.
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By Claim 29, θ(H ′) 6 k + 1. We need to show that there is no k-clique-partition of
H ′. First, consider a clique partition of H ′ where u and v are in different cliques. Since u
and v are each anticomplete to H − {x, y} and θ(H − {x, y}) > k − 1, a total of at least
k+ 1 cliques would be required. Now consider a clique partition of H ′ where u and v are
in the same clique. This clique must then be {u, v}, and thus the clique partition must
have at least θ(H) + 1 = k + 1 cliques. �

Claim 32. If H is C4-free, then H ′ is C4-free.

Proof. Assume H is C4-free.
In H ′, u and v are adjacent and each have degree 2, so any C4 containing one of them,

must contain the other, and then also contain u’s only other neighbour, which is x, and
v’s only other neighbour, which is y, but xy is not an edge of H ′, so no such C4 exists.

In constructing H ′ from H, the edge xy is removed. This could create a C4 if xy was
the middle edge of a diamond in H. This is excluded by hypothesis in Case (1). In Case
(2), {x, y} is a clique in the frozen clique partition F . If there were a vertex w adjacent
to both x and y in H, then F would not be frozen. Thus xy cannot be the middle edge
of a diamond in H. �

Thus, the proof is completed. �

Here is the same operation described directly for colourings.

Operation 2. Given a graph G and nonadjacent vertices x and y in G, we define the
following operation to create a new graph G′. Define G′ to be the graph G together with
two additional vertices u and v and with edges vx, xy and yu; join u and v to all vertices
of G− {x, y}.

Corollary 33. Let G be a k-colourable graph with a k-colouring β and a frozen (k + 1)-
colouring γ, and let x and y be nonadjacent vertices of G such that β(x) 6= β(y) and such
that either

(1) γ(x) 6= γ(y), or

(2) {x, y} is a colour class of γ.

Then the graph G′ of Operation 2 is (k + 1)-colourable and admits a frozen (k + 2)-
colouring.
Furthermore,

(3) if G is k-chromatic, then G′ is (k + 1)-chromatic.

(4) if G is 2K2-free and if in case (1), there is no edge rs such that {r, s} is anticomplete
to {x, y}, then G′ is 2K2-free.

A (k + 1)-colouring of G′ is the colouring β of G extended by making vertices u and
v a new colour class. A new frozen (k + 2)-colouring of G′ is obtained from the frozen
colouring γ of G by
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Figure 7: A C4-free graph with a 4-clique-partition (left) and a frozen 5-clique-partition
(right) with no edge satisfying the conditions of Theorem 28.

• In Case (1), making vertices u and v a new colour class.

• In Case (2), give x a new colour and assign this colour to u as well; give v the colour
γ(y).

Remark 34. Note that a graph with a k-clique-partition and a frozen (k + 1)-clique par-
tition may not have an edge as required by Theorem 28. See Figure 7 for an example.
This graph was obtained by adding a true twin to one vertex from each of the cliques in
our frozen clique partition given of F2. Adding a true twin w of a vertex v means adding
vertex w and joining it to v and all neighbours of v.

7 k-chromatic 2K2-free graphs which admit a frozen (k+1)-
colouring for all k >4

Theorem 35. For every k > 4, there is a C4-free graph with clique partition number k
which admits a frozen (k + 1)-clique partition.

Proof. One way to construct the graphs described in the theorem is to start with D2 which
is a C4-free graph with clique partition number 4 and with a frozen 5-clique-partition and
then apply Operation 1 with x = u1 and y = u2. These two vertices are in different
cliques in both the 4-clique-partition and in the frozen 5-clique-partition, so Case (1) will
be applied. The additional hypothesis holds in this case. The result is a C4-free graph
with clique partition number 5 and with a frozen 6-clique-partition. Note that the two
added vertices are a clique of size 2 in both the 5-clique-partition and the frozen 6-clique-
partition. One can then apply the operation again, with x = u1 and y being the vertex
u of the previous operation to obtain a C4-free graph with clique partition number 6 and
with a frozen 7-clique-partition. One can continue this process, always choosing x = u1
and y being the vertex u of the previous operation. This class of graphs is illustrated in
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Figure 8: A C4-free graph with a 5-clique-partition (left) and a frozen 6-clique-partition
(right). Equivalently, a 5-colouring of the complement (left) and a frozen 6-colouring
(right).
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Figure 9: A C4-free graph with a 7-clique-partition (left) and a frozen 8-clique-partition
(right). Equivalently, a 7-colouring of the complement (left) and a frozen 8-colouring
(right).
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Figures 8 and 9 and can be described as follows: For t > 4, to obtain a C4-free graph
with clique partition number t and with a frozen (t + 1)-clique-partition, start with D2

and subdivide the edge u1u2 by 2(t − 4) vertices (in other words, replace the edge u1u2
by a path u1, w1, w2, . . . , w2t−9, w2t−8, u2).

We now obtain Theorem 2 as a corollary.
Theorem 4. For every k > 4, there is a k-chromatic 2K2-free graph with a frozen
(k + 1)-colouring.

Remark 36. There are many other ways to apply Operation 1 to prove Theorem 35 - it
is not necessary to choose the same vertices as x and y as above.

8 Some curiosities and open problems
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Figure 10: A 4-clique-partition of F2
∼= H3 (left) and a frozen 5-clique-partition (right).
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Figure 11: A 5-clique-partition of H4 (left) and a frozen 7-clique-partition (right).

Subdividing an edge of a C4 gets rid of that C4. The complement C6 of C6 contains
three C4s; each pair of C4s intersect in a distinct edge. By applying Operation 1 to
two of these three edges, we obtain F2 which is C4-free. See Figure 10. Thus besides
preserving 2K2-freeness of a graph, Operation 2 can transform a graph containing 2K2s
into a 2K2-free graph.

Recall that for s > 2, the graph Bs is Ks,s with a perfect matching removed, and is
2-chromatic and admits a frozen s-colouring. The complement of Bs consists of two copies
of Ks with a perfect matching Ms joining each vertex of one copy to a distinct vertex of
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the other copy. Note that Bs contains many 2K2s and (equivalently) Bs contains many
C4s. By applying Operation 1 to all but one edge of Ms in Bs where s > 3, we obtain a
C4-free graph Hs which is (s+ 1)-clique-partitionable and admits a frozen (2s− 1)-clique
partition. Note that H3 is isomorphic to F2. See Figure 10 for H3 and Figure 11 for H4.

In Figure 12 is the complement of the 2K2-free graph given by Feghali and Merkel
in [9] with their 7-colouring (shown as a 7-clique-partition) and their frozen 8-colouring
(shown as a frozen 8-clique-partition). The complement of their graph is very similar to
our F3. In fact, the complement of their graph is F3 with Operation 1 applied once (to
get the vertices in clique 5 of the 7-clique-partition).
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2
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Figure 12: A 7-clique-partition (left) and a frozen 8-clique-partition (right) of a C4-free
graph. Equivalently, a 7-colouring (left) and a frozen 8-colouring (right) of the complement
[9].

We conclude with an open problem, the remaining case for a dichotomy theorem for
recolourability of graphs where two 4-vertex graphs are forbidden as induced subgraphs:
Is the class of 4-chromatic (2K2, K4)-free graphs recolourable?
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