
Fusions of the Tensor Square of

a Strongly Regular Graph

Allen Hermana Neha Joshib

Submitted: Sep 7, 2024; Accepted: Mar 9, 2025; Published: Apr 11, 2025

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

In this article, we determine all fusions of the association scheme A⊗A, where
A is the symmetric rank 3 association scheme corresponding to a strongly regular
graph. This includes both guaranteed fusions, which are fusions for all symmet-
ric rank 3 association schemes A, and specific case fusions, which exist only under
restrictions on the parameters of the association scheme. In doing so, we will de-
termine the fusions of wreath products of strongly regular graphs and the fusions
of the tensor square of a symmetric rank 3 table algebra. This is an extension of
the recent work of the authors and Meagher, where we solved the same problem for
the generalized Hamming scheme H(2,A) of the association scheme obtained from
a strongly regular graph. The main results of this article prove that the families of
strongly regular graphs for which A⊗A has a special case fusion are the same fam-
ilies for which H(2,A) has a special case fusion; and that the imprimitive strongly
regular graphs are the only family of strongly regular graphs for which the wreath
product A ≀ A has a special case fusion.

Mathematics Subject Classifications: 05E30, 05C25

1 Introduction

In [12], the authors and Karen Meagher determined all fusions of the generalized Hamming
scheme H(2,A), where A is the symmetric rank 3 association scheme corresponding to a
strongly regular graph. In contrast with earlier work of [18] (see [19]) that worked directly
with the intersection numbers, the approach in [12] was to use the Bannai-Muzychuk
criteria on the character table to establish the existence of each fusion. As noted in [12],
the adjacency algebra ofH(2,A) is isomorphic to the rank 6 symmetric 2 tensor subalgebra
Sym2(A) of A⊗A, so the authors asked if the fusions of other subalgebras of A⊗A could
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be classified in a similar fashion, most importantly for the wreath product A ≀ A and for
the full tensor product A⊗A. The main results of this article classify these fusions. As
the wreath product has rank 5, the problem is a bit easier than for the full tensor product
and does not require the assistance of a computer. For the tensor product, each of the
4140 partitions of the set of 8 nonidentity elements must be considered compared to the
set of 52 partitions that had to be considered in [12]. To manage the extra partitions, the
authors have implemented a sieve that eliminates partitions whose corresponding fusion
would not be consistent with the parameters of a symmetric rank 3 table algebra. For
those that are consistent, the Bannai-Muzychuk criterion is applied to verify the partition
gives a fusion under the conditions on parameters it imposes.

Our technique applies more generally in the setting where A is the standard basis of
a symmetric rank 3 table algebra, so the main results can be interpreted in that setting.
For those unfamiliar with table algebras, the connection between the tensor products of
association schemes and table algebras is explained by Xu in [22]. The fact that the
wreath product of two association schemes is a fusion of their tensor product was noted
by Song in [21]. Our results on rank 3 fusions overlap earlier results of Sankey [8].

We would like to thank the referee for their valuable suggestions, particularly for
prompting us to include interesting details about the strongly regular graphs that appear
in our fusions. Furthermore, feedback from the referees encouraged us to provide further
clarification of the sieving process, which enabled us to discover additional fusions in small
cases that had been overlooked in our earlier version.

2 Preliminaries

2.1 Parameters of strongly regular graphs

Let Γ be a strongly regular graph on a set of n vertices. One of the many equivalent
definitions of a strongly regular graph is that the set of n×n 01-matrices A = {A0, A1, A2}
is a basis for the adjacency algebra of an association scheme, where A0 = the n×n identity
matrix, A1 = the adjacency matrix of Γ, andA2 = the adjacency matrix of the complement
Γ̄of Γ. In particular, if Γ is a strongly regular graph with parameters (n, k, λ, µ), then
these matrices satisfy

A2
1 = kA0 + λA1 + µA2, A1A2 = (k − 1− λ)A1 + (k − µ)A2,

and
A2

2 = (n− 1− k)A0 + (n− 2k + λ)A1 + (n− 2k + µ− 2)A2.

The algebra spanned by A = {A0, A1, A2} is thus exactly isomorphic to a symmetric
rank 3 standard integral table algebra spanned by the set B = {b0, b1, b2} of left regular
matrices b0 = I3,

b1 =

0 k 0
1 λ k − 1− λ
0 µ k − µ

 , and b2 =

0 0 n− k − 1
0 k − 1− λ n− 2k + λ
1 k − µ n− 2k − 2 + µ
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via the linear extension of the map Ai 7→ bi for i = 0, 1, 2. Of course, k is the valency of a
regular graph on n vertices, so k and ℓ := n− k− 1 is a positive integer. The parameters
λ and µ count walks of length 2 in Γ of different types, so they are also nonnegative
integers. Furthermore, the eigenvalues of A1 and A2 give the entries of the character table
(a.k.a. first eigenmatrix) of the association scheme A:

P(A) =

[ ]1 k ℓ 1
1 r −1− r f
1 s −1− s g

.

Each row of P corresponds to one eigenspace of A1, with the entries in that row being the
eigenvalues taken by A0, A1, and A2, respectively, on that eigenspace. The number on
the right is the dimension of this eigenspace, which gives the multiplicity of the eigenvalue
of A1. The first common eigenspace for A1 and A2 is spanned by the all 1’s vector, so it
has multiplicity 1 and the eigenvalues of A1 and A2 on its eigenvectors are the valencies
k and ℓ, respectively. The row orthogonality relations tell us that the following sum is 0

1 +
rs

k
+

(−1− r)(−1− s)

ℓ
= 0,

and also give us formulas for the multiplicities f and g:

1 +
r2

k
+

(−1− r)2

ℓ
=

n

f
, and 1 +

s2

k
+

(−1− s)2

ℓ
=

n

g
.

The column orthogonality relation on the first two columns tells us

k + fr + gs = 0.

In fact, our approach does not require the integral table algebra B to come from a
symmetric association scheme of rank 3. If we start with B = {b0, b1, b2} being the basis
of any symmetric standard integral table algebra of rank 3, we have that the entries of b1
and b2 are nonnegative integers, the degrees k and ℓ := n− k− 1 of b1 and b2 are positive
integers, and the character table P of the algebra generated by B satisfies the same row
and column orthogonality relations as those presented above, with r, s real and f and g
positive real numbers satisfying n = 1 + f + g. Our first lemma gives bounds on our
parameters that can be established in the general table algebra setting.

Lemma 1. Suppose that the last two rows of the character table are ordered so that r ⩾ s.
Then the character table values k, ℓ(= n− k − 1), r, and s satisfy

1. ℓ = −k(1+r+s+rs)
(k+rs)

;

2. k, ℓ ⩾ 1 and k ⩾ r ⩾ 0 > −1 ⩾ s = −(k+kr+kℓ)
(k+kr+rℓ)

;

3. ℓ ⩾ −1− s ⩾ 0 > −1 ⩾ −1− r;
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4. (k + rs) ⩾ 0 ⩾ (1 + r + s+ rs); and

5. ℓ+ (1 + r + s+ rs) ⩾ 0 and ℓ− 1 + rs ⩾ 0.

Proof. First, the identities ℓ = −k(1+r+s+rs)
(k+rs)

and s = −(k+kr+kℓ)
(k+kr+rℓ)

are consequences of the
orthogonality relations of the rows applied to the last two rows of P .

For the other properties, we use the fact that the columns of P form the basis of an
algebra under entry-wise multiplication that has the same structure constants as the basis
B = {b0, b1, b2} (which also matches that of the basis A). This allows us to determine
that the regular matrix of b1 in the basis B to be0 k 0

1 k + r + s+ rs −(1 + r + s+ rs)
0 k + rs −rs

 .

Since B is the basis of a table algebra, the entries of this regular matrix are nonnegative
real, which implies 1 + r + s + rs ⩽ 0 and k + rs ⩾ 0. In addition, k is the Perron-
Frobenius eigenvalue of A1, so k ⩾ r, s ⩾ −|k|. Since r > s, −rs ⩾ 0 implies r ⩾ 0 > s
or r > 0 ⩾ s. But r ⩾ 0 and 1 + r + s + rs ⩽ 0, so we must have s < 0. Since
k+r+s+rs ⩾ 0 ⩾ 1+r+s+rs, we must have k ⩾ 1. Since we can interchange columns
of P at the beginning, we can also conclude ℓ ⩾ 1. From the formula for s = −(k+kr+kℓ)

(k+kr+rℓ)
,

we can now see that having 0 > s > −1 would imply r > k, which is false, so −1 ⩾ s.

We can also find the regular matrix of b2 with respect to the basis B, it is0 0 ℓ
0 −(1 + r + s+ rs) ℓ+ (1 + r + s+ rs)
1 −rs ℓ− 1 + rs

 .

Since this is a nonnegative matrix when B is a table algebra, we can conclude
ℓ+ (1 + r + s+ rs), ℓ− 1 + rs ⩾ 0.

The case k = r (which is equivalent to that of s = −1) occurs in the case where the
strongly regular graph Γ is disconnected and its complement is a complete multipartite
graph. When the roles of A1 and A2 are interchanged, this is the case for ℓ = −1− s and
r = 0. We will refer to these cases as imprimitive, and to the cases k > r and −1 > s as
primitive. In the imprimitive case, if the graph Γ is the disjoint union of m+ 1 copies of
the complete graph on k + 1 vertices, then the character table of the association scheme
is

P =

[ ]1 k m(1 + k) 1
1 k −1− k m
1 −1 0 k(1 +m)

.

As we will see, the imprimitive case will be the one where A ⊗ A has the most special
case fusions.

the electronic journal of combinatorics 32(2) (2025), #P2.3 4



2.2 The tensor square association scheme

The tensor product scheme, or Kronecker product, of any two association schemes with
sets of adjacency matrices A = {A0 = In, A1, . . . , Ad} and B = {B0 = In′ , B1, . . . , Bd′} is
the association scheme of order nn′ and rank (d+1)(d′+1) whose adjacency matrices are
A ⊗ B = {Ai ⊗ Bj : 0 ⩽ i ⩽ d, 0 ⩽ j ⩽ d′}. We will be interested in the tensor square
A⊗A when A = {A0, A1, A2}, so this association scheme has rank 9.

We will use some convenient shorthand notation for elements and subsets of
A⊗A. For i, j ∈ {0, 1, 2}, we write Aij for the element Ai ⊗Aj. We will write A⊗ 1 and
1 ⊗A to identify and distinguish the subsets {A00, A10, A20} and {A00, A01, A02}. Later,
we will make use of a single-index notation, which is convenient to identify partitions of
A ⊗ A − {A00}. If we identify Aij with C3j+i+1, for i, j ∈ {0, 1, 2}, then we can identify
partitions of A ⊗ A − {A00} with partitions of {2, . . . , 9}, which we will also write in
shorthand notation. For example, if TA = {A0, A1 + A2} is the basis of the trivial fusion
of A, then the tensor-product subalgebras with basis TA ⊗ TA, TA ⊗A, and A⊗ TA can
be identified with partitions 23|47|5689, 23|4|56|7|89, and 2|3|47|58|69.

What makes such a collection correspond to a fusion of A ⊗ A is that this subset of
elements is a basis for the unital subalgebra of C[A⊗A] that it generates. This is a special
situation, as in most cases a collection of disjoint sums of basis elements will generate a
subalgebra of larger dimension than the size of the collection.

A⊗A has three types of fusion subalgebras that are guaranteed to exist for all rank 3
table algebra bases A. The first type is the tensor product subalgebra type, which includes
A⊗A and the three tensor products involving TA previously introduced. The second is
the symmetric tensor square subalgebra Sym2(A), which is known as the generalized
Hamming scheme H(2,A) when A corresponds to a strongly regular graph. Its basis is
equal to the set of the elementary symmetric 2-tensors

Sym2(A) = {A00, A10 + A01, A20 + A02, A11, A21 + A12, A22}.

Using the indices obtained from C3j+i+1 = Aij, we identify this fusion of A ⊗ A with
the partition 24|37|5|68|9. The third type consists of wreath products. The full wreath
product A ≀ A occurs in two different ways, as

(A⊗ 1) ≀ (1⊗A) = {A00, A10, A20, A01 + A11 + A21, A02 + A12 + A22}

and
(1⊗A) ≀ (A⊗ 1) = {A00, A01, A02, A10 + A11 + A12, A20 + A21 + A22}.

These are associated with the partitions 2|3|456|789 and 258|369|4|7, respectively. These
wreath products have several proper wreath product fusions, all of which involve
TA: (TA⊗1)≀(1⊗TA), (TA⊗1)≀(1⊗A), (A⊗1)≀(1⊗TA), (1⊗TA)≀(TA⊗1), (1⊗TA)≀(A⊗1),
and (1⊗A) ≀ (TA ⊗ 1). These can be identified, in order, with the six partitions

23|456789, 23|456|789, 2|3|456789, 235689|47, 258|369|47, and 235689|4|7.

In Section 4 we will verify that the 15 fusions of A⊗A listed so far are the only fusions
that are guaranteed, as any other fusion imposes conditions on the parameters on the
symmetric rank 3 table algebra.
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2.3 The Bannai-Muzychuk criterion

Given a basis A = {A0, A1, . . . , Ad} of a table algebra (or adjacency algebra) of rank d,
and a partition τ = {T0 = {0}, T1, . . . , Td′} of {0, 1, . . . , d}, we let ATj

=
∑

t∈Tj
At for all

j ∈ {0, 1, . . . , d′}. The partition τ corresponds to a fusion of the table algebra when
Aτ = {ATj

} is also the basis of a table algebra.
Let P be the (d+1)× (d+1)-character table of the table algebra corresponding to A.

Given a partition τ of {0, 1, . . . , d}, we define Pτ to be the order |τ| × (d+1) matrix with
the columns indexed by the classes T ∈ τ. The column corresponding to a class T ∈ τ

is the sum of columns in P indexed by t for all t ∈ T . Since P is a non-singular matrix,
the rank of Pτ is equal to |τ|. Hence, the number of distinct rows in Pτ is at least |τ|.
The next lemma, known as the Bannai-Muzychuk criterion (see Muzychuk [7]), states a
necessary and sufficient condition for a partition τ of the rows of P to produce a fusion.

Lemma 2. A partition τ = {T0 = {0}, . . . , Td′} of the index set {0, . . . , d} determines a
fusion subalgebra with basis Aτ = {A0, AT1 , . . . , ATd′

} if and only if the number of different
rows in Pτ equals |τ|.

3 Fusions of the wreath product

If P(A) is the character table of A, the character table of A⊗A is the Krönecker product
P ◦P . When A is the basis of adjacency matrices of the association scheme corresponding
to a strongly regular graph and the elements ofA⊗A are labeled as in the previous section,
the wreath product (A⊗1) ≀(1⊗A) corresponds to the partition 2|3|456|789 of {2, . . . , 9}.
When we apply the Bannai-Muzychuk criterion for this partition to the 9 × 9 character
table P ◦P , we do indeed get exactly 5 distinct rows, and these rows give us the character
table of (A⊗ 1) ≀ (1⊗A):

A00 A10 A20 A01 + A11 + A21 A02 + A12 + A22


χ00 1 k ℓ kn ℓn 1
χ01 1 k ℓ rn n(−1− r) mr

χ02 1 k ℓ sn n(−1− s) ms

χ11 1 r −1− r 0 0 nmr

χ21 1 s −1− s 0 0 nms

Our strategy to find all fusions of A ≀ A (with the above orientation) is to then apply
the Bannai-Muzychuk criterion again to the 15 partitions of 2|3|456|789, and use it to
determine the conditions on parameters for a partition to correspond to a special case
fusion. (As there are so few partitions, it is straightforward to work through all the
possibilities by hand. Nevertheless, we will provide the details here to illustrate what our
computer implementation accomplishes for the full tensor product in the next section.)

Theorem 3. Let A be the basis of a symmetric rank 3 table algebra (i.e, the set of
adjacency matrices for the association scheme corresponding to a strongly regular graph).
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Consider the wreath product (A⊗ 1) ≀ (1⊗A) as the fusion of A⊗A corresponding to the
partition 2|3|456|789 as described in §2.2. Then

1. (A⊗ 1) ≀ (1⊗A) has guaranteed fusions corresponding to the partitions 2|3|456789,
23|456|789, and 23|456789. These correspond to wreath product subalgebras of
(A⊗1) ≀ (1⊗A) where either or both of the A s are replaced by the trivial fusion TA.
Furthermore, these are the only nontrivial guaranteed fusions of (A⊗ 1) ≀ (1⊗A).

2. (1⊗A) ≀ (A⊗ 1) has guaranteed fusions corresponding to the partitions 258|369|47,
235689|4|7, and 235689|47, which correspond to wreath product subalgebras of
(1⊗A) ≀ (A⊗1) where either or both of the A’s are replaced by the trivial fusion TA.
Furthermore, these are the only nontrivial guaranteed fusions of (1⊗A) ≀ (A⊗ 1).

3. The only special case fusions of (A ⊗ 1) ≀ (1 ⊗ A) occur when A corresponds to an
imprimitive strongly regular graph. The special case fusions in the case k = r and
s = −1 correspond to the partitions 2|3456789, 23456|789, and 2|3456|789. The
special case fusions in the case ℓ = −1 − s and r = 0 correspond to the partitions
2456789|3, 23789|456, and 2789|3|456.

4. The only special case fusions of (1 ⊗ A) ≀ (A ⊗ 1) occur when A corresponds to an
imprimitive strongly regular graph. The special case fusions in the case k = r and
s = −1 correspond to the partitions 2345689|7, 258|34679, and 258|3469|7. The
special case fusions in the case ℓ = −1 − s and r = 0 correspond to the partitions
2356789|4, 24578|369, and 2578|369|4.

Proof. First, note that since each of the three wreath products does give a table algebra,
these do correspond to fusions of (A ⊗ 1) ≀ (1 ⊗ A) that are guaranteed to exist for all
symmetric rank 3 table algebras A.

Now suppose τ′ is a partition other than these three for which (A⊗ 1) ≀ (1⊗A) has a
nontrivial fusion corresponding to τ′ for some symmetric rank 3 table algebra A. There
are ten possibilities for τ′, which we will consider one at a time.

τ′ = 2|3456789: Since χ21(A10) = s is the only negative character value in its column,
χ21 will be isolated. By the Bannai-Muzychuk criterion, we must have χ01 = χ02 = χ11.
This implies k = r, which implies s = −1. For this to be a rank 3 fusion, we also need
χ00 ̸= χ01. Since ℓ+ n(n− 1) > ℓ− n, this is the case. So this gives a fusion only in the
imprimitive case k = r and s = −1.

τ′ = 3|2456789: In this case χ11 will be isolated, so we must have
χ01 = χ02 = χ21. Equating the values on A20 we get ℓ = −1− s, which implies r = 0. So
this will be a fusion in the other imprimitive case when ℓ = −1− s and r = 0.

τ′ = 23789|456: In this case χ02 will be isolated, and we will have χ11 = χ21. Since
the values of χ00 and χ01 on A10 + A20 + A02 + A12 + A22 are
k + ℓ+ nℓ > k + ℓ+ n(−1− r), we can only have a rank 3 fusion when χ01 = χ11 = χ21,
which implies rn = 0 and k+ℓ+n(−1−r) = −1. This implies r = 0 and hence ℓ = −1−s.
So this is a fusion in this imprimitive case.
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τ′ = 23456|789: This time χ01 will be isolated and we will have χ11 = χ21. Since the
values of χ00 and χ02 on A10 + A20 + A01 + A11 + A21 satisfy
k + ℓ+ kn > k + ℓ+ sn, the only way we can have a rank 3 fusion is for χ02 = χ11. This
requires k + ℓ + sn = −1 and n(−1 − s) = 0, which holds when s = −1 and k = r. So
this gives a fusion when k = r and s = −1.

τ′ = 2|3456|789: Again we will have χ21 isolated. Similarly χ01 takes only one negative
value, n(−1−r), on A02+A12+A22, so it is also isolated. So we must have that χ02 = χ11,
and that these are not equal to χ00. Comparing the values of these characters on A01 gives
k = r, and on A02 + A12 + A22 gives n(−1− s) = 0. So k = r and s = −1. Under these
conditions, χ11 and χ00 agree on A10 and A02 + A12 + A22, but they take values ℓ + kn
and ℓ − n on A20 + A01 + A11 + A21, which are not equal. So this does give a fusion in
the case k = r and s = −1.

τ′ = 2|3789|456: Again χ21 and χ02 must be isolated. This implies the values of χ01

and χ11 will agree. This gives k = r and kr = 0. But then r = 0 = k, and this is a
contradiction.

τ′ = 2456|3|789: In this case, χ01 and χ11 will be isolated, so in order for this partition
to produce a fusion we must have χ02 = χ21. Equating their values on A20 gives ℓ = −1−s,
and equating their values on A02+A12+A22 we get n(−1− s) = 0. But this would imply
ℓ = 0, a contradiction.

τ′ = 2789|3|456: This time χ02 and χ11 will be isolated, so in order for this partition to
produce a fusion we must have χ01 = χ21. Equating their values on A20 we get ℓ = −1−s,
and equating their values on A01 + A11 + A21 gives rn = 0, so r = 0. So this partition
gives a fusion in the imprimitive case where ℓ = −1− s and r = 0.

τ′ = 2456|3789: The values of χ11, χ21, and χ10 on A10 + A01 + A11 + A21 satisfy
k + rn > r > s, and hence we have at least four distinct rows χ00, χ01, χ11 and χ21 in
the modified character table. By the Bannai-Muzychuk criterion, this partition will not
produce a fusion of rank 3.

τ′ = 2789|3456: This time we see that the values of χ20, χ11, and χ21 on
A10 +A02 +A12 +A22 satisfy k + n(−1− s) > r > s, so as shown above we have at least
four distinct rows in the modified character table. Hence,this partition will not result in
a rank 3 fusion.

This completes the characterization of fusions of (A ⊗ 1) ≀ (1 ⊗ A). For the fusions
of (1 ⊗ A) ≀ (A ⊗ 1), we need only apply the permutation (24)(37)(68) to each partition
giving a fusion of (A⊗ 1) ≀ (1⊗A).

4 Classifying fusions of the tensor square in special cases

In the previous section, we classified all possible fusions of the wreath products A ≀ A
of symmetric rank 3 association schemes A with themselves. In this section, aided by
a computer program, we will apply the Bannai-Muzychuk criterion to produce the 13
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guaranteed fusions of the tensor square A⊗A, and all special case fusions of the tensor
square for the six families of strongly regular graphs A where H(2,A) is known from [12]
to admit a special case fusion. In Section 5 we will show that there are no other cases
where A⊗A has a special case fusion. For each special case fusion, we will describe the
graph or association scheme associated with it. Note that these fusions are automatically
realized as association schemes when A is known to be realized by a strongly regular
graph, and this has been settled except for one of the six families.

We continue with the notation of §2, so A = {A0, A1, A2}, where A1 is the adjacency
matrix of a strongly regular graph Γ of order n with eigenvalues
k ⩾ r ⩾ 0 > −1 ⩾ s, and A2 is the adjacency matrix of its complement Γ̄, with valency
ℓ = n−k− 1 and eigenvalues ℓ, −1− s, and −1− r. Let χ0 be the valency character, and
χ1 and χ2 be the other irreducible characters of the adjacency algebra, with χ1(A1) = r
and χ2(A1) = s, so the rows of the character table of CA correspond to χ0, χ1, and χ2.
(We remark that the calculations in this section do not depend on A1 being the adjacency
matrix of a graph and we get the same fusions if A is only assumed to be the basis of a
rank 3 symmetric standard integral table algebra.) With our assumptions on eigenvalues,
the character table of A ⊗ A, with columns indexed by Aij and columns indexed by
χij := χi ⊗ χj, is the following - with the A00 column of all entries equal to 1 is omitted:

A10 A20 A01 A11 A21 A02 A12 A22



χ00 k ℓ k k2 ℓk ℓ kℓ ℓ2 1
χ01 k ℓ r kr ℓr (−1 − r) k(−1 − r) ℓ(−1 − r) mr
χ02 k ℓ s k(−1 − r) ℓs (−1 − s) k(−1 − s) ℓ(−1 − s) ms
χ10 r (−1 − r) k rk (−1 − r)k ℓ rℓ (−1 − r)ℓ mr

χ11 r (−1 − r) r r2 (−1 − r)r (−1 − r) r(−1 − r) (−1 − r)2 m2
r

χ12 r (−1 − r) s r(−1 − r) (−1 − r)s (−1 − s) r(−1 − s) (−1 − r)(−1 − s) mrms
χ20 s (−1 − s) k sk (−1 − s)k ℓ sℓ (−1 − s)ℓ ms
χ21 s (−1 − s) r sr (−1 − s)r (−1 − r) s(−1 − r) (−1 − s)(−1 − r) mrms

χ22 s (−1 − s) s s2 (−1 − s)(−1 − r) (−1 − s) s(−1 − s) (−1 − s)2 m2
s

As defined in §2.2, we relabel Aij as C3j+i+1 so that the columns of the character table
are labeled with the indices 1, . . . , 9. Then each fusion of A ⊗ A is naturally associated
with a partition of {2, . . . , 9}. Using a computer, we check the condition of Lemma 2 to
find all of the partitions that will give a fusion of A ⊗ A for all symmetric rank 3 table
algebras A.

Lemma 4. The 15 partitions of {2, . . . , 9} corresponding to the guaranteed fusions of
A⊗A are:

2|3|4|5|6|7|8|9 Rank 9

2|3|47|58|69 24|37|5|68|9 23|4|56|7|89 Rank 6

2|3|456|789 4|7|258|369 Rank 5

23|456|789 47|258|3692|3|456789 23|47|5689 4|7|235689 Rank 4

2347|568923|456789 47|235689 Rank 3

23456789 Rank 2
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(Here highlighted fusions in the same color at a level indicate a pair of dual fusions
obtained from applying the flip map Aij 7→ Aji to the tensor product, which is obtained
when the permutation (24)(37)(68) is applied to the partition. The underlined partitions
give the generalized Hamming scheme and its guaranteed fusion.)

We remark that, in addition to the duality obtained from the flip map Aij ↔ Aji, each
partition corresponding to a fusion of A⊗A above has a switch partner that corresponds
to switching the order of A1 and A2 in both copies of A. The switch partner is obtained
by applying the permutation (23)(47)(59)(68) to the partition. The above partitions are
all fixed by this operation.

Next, for the other partitions of {2, . . . , 9}, after we sum the columns of the character
table according to the partition, the equality of any pair of rows imposes conditions on
our parameters. For the partition to correspond to a fusion, the number of distinct rows
that result has to match the size of the partition. From our earlier results in [12], we know
some families of A’s where H(2,A) has a special case fusion, so these will also have special
case fusions for their tensor square. It is easier to apply the Bannai-Muzychuk criterion
to find the partitions corresponding to the fusions of their tensor squares directly, so we
will do that first.

The six families of strongly regular graphs whose generalized Hamming scheme has
special case fusions found in [12] are as follows:

(i) imprimitive case: k = r, ℓ = m(r + 1), s = −1 and its switch partner k = m(−s),
r = 0 and ℓ = −1− s;

(ii) conference graphs: k = ℓ = 2(r2 + r), s = −1 − r with r ⩾ 1, possibly irrational,
and satisfying r2 + r ∈ Z+;

(iii) the Cartesian product of two complete graphs and its complement: k = s2, ℓ = −2s,
r = 1 and its switch partner k = 2(r + 1), ℓ = (1 + r)2, s = −2;

(iv) three specific graphs of order 9 satisfying k = 3− s− r, ℓ = 5 + s + r: the disjoint
union of three triangles (k = r = 2, s = −1), its complement (k = 6, r = 0, s = −3),
and the Paley graph of order 9 (k = ℓ = 2, r = 1, s = −2);

(v) a family with k = r(r+3), ℓ = (r+3), s = −2 and its switch partner k = −(s− 2),
ℓ = (s− 2)(s+ 1), and r = 1; and

(vi) a family with k = r(2r + 1), ℓ = (r − 1)(2r + 1), s = −r and its switch partner
k = (2 + 2)(2s+ 1),ℓ = (s+ 1)(2s+ 1), and r = −s− 2.

The full list of nontrivial fusions corresponding to each of these families is also available
in the TensorProductFusions.txt file in our GitHub repository [23].

The first family corresponds to imprimitive strongly regular graphs. In general these
produce 45 additional fusions, and some small cases when r or m are at most 2 produce
a few extra fusions.
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Theorem 5. (i) In the general imprimitive case, the tensor square has 45 additional
fusions other than the guaranteed fusions in Lemma 4. (The partitions in red corre-
spond to special case fusions of the generalized Hamming scheme. The partitions in
the same color at a level indicate a pair of dual fusions obtained from applying the
flip map Aij 7→ Aji to the tensor product, which is obtained when the permutation
(24)(37)(68) is applied to the partition.)

2|3|4|5|6|78|9 2|36|4|5|7|8|9 rank 8

2|3|4|5|6|789 2|3|45|6|78|9 2|36|4|5|78|9 2|369|4|5|7|825|36|4|7|8|9 rank 7

rank 62|3|45|6|789 2|36|45|78|9 2|3678|4|5|9
2|369|4|5|7824|36|5|78|92|36|4|5|789
25|36|4|78|9 25|369|4|7|8

rank 52|36|45|789 25|369|4|782|36789|4|5
2|3|4578|6923|4|56|789 245|36|78|9 2356|4|7|89 2|369|47|58

2|3678|45|9 2|369|45|78 24|3678|5|9 25|36|4|789 25|36|4|789

24|36|5|789 24|369|5|78

rank 42|3456|789 2|36789|45 24|36789|5 2578|4|369
2356|4|789 245|36|789245|369|78

25|36789|4
245|3678|9 4578|369|2

rank 32|3456789 23456|789 2356789|424578|369245|36789

(ii) In the case k = r = 1 and m = 1 (i.e. the strongly regular graph is the complement
of a 4-cycle), the tensor square has 46 extra fusions, in addition to the 15 guaranteed
and 45 general imprimitive case fusions:
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rank 6

2|39|47|58|6
2|39|48|57|6 23|4|56|79|826|35|4|7|89 24|38|5|67|9 26|35|4|79|8

rank 52|3|459|678

2|345|6|7892|369|48|57

2|378|459|6
2|39|4578|623|46|5|789 2356|4|79|8 249|37|5|68

249|38|5|67

25|3678|4|9257|369|4|8

259|367|4|8 259|368|4|7

26|34|5|789
26|35|4|789

27|369|48|5

28|369|47|5

rank 42|34578|692|3678|45923|48|5679
2346|5|789235679|4|82478|369|5
249|3678|5

257|369|48
259|3678|4

26|345|789
26|3579|48

26|3589|47

rank 3

2346789|5
23479|568 2348|5679

23489|567 235679|48
2459|3678 2467|3589

24679|358 2468|3579
24689|357

26|345789

(iii) When k = r = 1 and m ⩾ 2 (i.e. the graph is a perfect matching of order
2(m+ 1) > 4), there are 5 extra fusions:

rank 523|46|5|78925|3678|4|928|369|47|5

rank 42346|5|7892478|369|5

(iv) In the cases where k = r > 1 and m = 1 (i.e. when the strongly regular graph is the
complement of a bipartite graph), we see 5 extra fusions:

rank 5259|368|4|725|3678|4|9
rank 4259|3678|42|3678|459
rank 32459|3678

(v) When k = r = 2 and m = 2 (i.e. when the graph is the disjoint union of three
triangles), we find 2 extra fusions:

rank 52|3678|45|925|3678|4|9

If Γ is the complete multipartite graph, so A1 and A2 switch roles in the imprimitive
association scheme, then we will have r = 0 and k = −s, and the list of proper nontrivial
fusions will be the switch partners of the fusions listed above. These are obtained by
applying the permutation (23)(47)(59)(68) to the above partitions.
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It turns out that all of the association schemes that occur among the 46 fusions in the
general imprimitive case also produce imprimitive association schemes. In hindsight, the
fusions we see above are all direct consequences of the identities,

(A0 + A1)
2 = (r + 1)(A0 + A1) and A2

2 = m(r + 1)(A0 + A1) + (m− 1)(r + 1)A2

when A1 is the adjacency matrix of the disjoint union of m copies of Kr+1. In the small
special cases the new fusions are equally non-interesting. The rank 3 schemes that appear
are all imprimitive, and those of higher rank are not polynomial.

The second family is the family of conference graphs, which includes the symmetric
Paley graphs and all their cospectral strongly regular graphs.

Theorem 6. (i) In the conference graph case, if r2 + r > 2, we get the following 11
additional fusions other than the guaranteed fusions in Lemma 4:

27|34|59|6|8 rank 6

23|47|59|68 rank 5

23|4579|682359|47|6823|4678|592347|59|68 2368|47|59 rank 4

234678|59 234579|682359|4678 2368|4579 rank 3

(Here highlighted fusions in red indicate the self-dual partitions that give fusions
of the generalized Hamming scheme. The fusions in the same color at a level in-
dicate a pair of dual fusions obtained by applying the flip map Aij 7→ Aji to the
tensor product, which is obtained when the permutation (24)(37)(68) is applied to
the partition.)

When r2 + r = 1 or 2 the tensor square has additional fusions:

(ii) If r2 + r = 1 (the conference graph is a regular 5-gon), the tensor square has two
additional fusions:

26|38|49|57 and its flip partner 29|35|48|67.

(iii) If r2 + r = 2 (the conference graph is the Paley graph on 9 vertices), the tensor
square has 10 extra fusions:
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rank 524|357|68|9249|37|5|68 267|34|59|827|348|59|6
rank 4249|357|68 267|348|59
rank 3249|3576824689|357 25679|348267|34589

The special case fusions we see here are all self-dual. It seems reasonable to expect that
fusions of a tensor power of a self-dual table algebraA will always be self-dual, but we have
yet to consider this question fully. The rank 6 fusion 27|34|59|6|8 and its rank 5 fusion
27|34|59|68 correspond to polynomial association schemes that are not P -polynomial. The
rank 5 fusions in the case r2 + r = 1 are 6-regular pseudocyclic polynomial association
schemes of order 25. All of the rank 4 fusions above turn out to be amorphic association
schemes - all of their relations correspond to strongly regular graphs. The rank 3 fusion
234678|59 corresponds to a self-dual primitive strongly regular graph with parameters
(n, k, λ, µ) =

((4r2+4r+1)2, 8r(r+1)(r2+ r+1), 2r(r+1)(2r2+ r+3)− 1, 2(r2+ r+1)(2r2+ r+1)).

The other rank 3 fusions correspond to imprimitive strongly regular graphs.
In the case of the Paley graph of order 9, the extra rank 5 fusions correspond to

self-dual polynomial association schemes that are not P -polynomial. The rank 4 fusions
are self-dual amorphic association schemes. The extra rank 3 fusions correspond to the
strongly regular graph with parameters (n, k, λ, µ) = (81, 24, 9, 6).

Theorem 7. (i) If Γ is the Cartesian product of two complete graphs with order −s+1
with s < −3, then the tensor square has one rank 5 fusion other than the guaranteed
fusions in Lemma 4:

249|37|5|68.

(ii) If Γ is the complement of the Cartesian product of two complete graphs with order
r + 2 for r > 2, then there is an additional rank 5 fusion of A ⊗ A which is the
switch partner of part one above:

24|375|68|9.

(iii) If Γ is the Cartesian product of two complete graphs of order 2 (i.e. the complement
of the 4-cycle), the tensor square has 46 fusions in addition to the 15 guaranteed
fusions and the 45 special imprimitive case fusions (see Theorem 5 (ii)).

(iv) If Γ is the Cartesian product of two complete graphs of order 3 (i.e. it is isomorphic
to a Paley graph of order 9), then it has the 10 extra fusions in addition to the 15
guaranteed and 11 conference graph fusions (see Theorem 6 (iii)).

(v) If Γ is the Cartesian product of two complete graphs of order 4 (i.e. the comple-
ment of the Shrikhande graph) then it has two extra fusions in addition to the 15
guaranteed fusions:

249|37|5|68 and 2459|3678.
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The fusion in (i) corresponds to a primitive distance-regular graph with intersection
array [−4s,−3s,−2s,−s; 1, 2, 3, 4], so it is isomorphic to the Hamming graph
H(4, 1 − s). The second fusion in (v) corresponds to a strongly regular graph with pa-
rameters (256, 135, 70, 72).

In [12], the next 2-parameter family is given in terms of the parameter restrictions
k = 3 − s − r, ℓ = 5 + s + r. Only two association schemes are realized with these
parameters, both with order 9. The first consists of the disjoint union of three triangles
and its multipartite complement, which is the imprimitive scheme has character table

P(A) =

[ ]1 2 6 1
1 2 −3 2
1 −1 0 6

,

and the Paley graph of order 9, which is the conference graph with character table

P(A) =

[ ]1 4 4 1
1 1 −2 4
1 −2 1 4

.

We have encountered both of these association schemes already, the disjoint union of
three triangles in Theorem 5 (v) and the Paley graph of order 9 in Theorem 6 (iii).

The next family of strongly regular graphs identified in [12] to have special case fusions
for the generalized Hamming scheme H(2,A) are those with parameters k = r(3 + r),
ℓ = (3 + r), and s = −2 and their complement. The Krein condition shows these only
exist for r ⩽ 2, and for r = 1 the table matches that of the Paley graph of order 9. So
we need only consider the case where r = 2, which corresponds to the complement of the
Clebsch graph. The Clebsch graph has parameters (16, 5, 0, 2) and its complement has
parameters (16, 10, 6, 6).

Theorem 8. (i) For the complement of the Clebsch graph, there are two additional
fusions in addition to the guaranteed fusions in Lemma 4.

2468|3579 and 249|35678

(ii) For the Clebsch graph, there are two special case fusions, which are the switch part-
ners of the above:

2459|3678 and 24689|357.

The graphs in the special case fusions above are strongly regular. In the Clebsch
graph case, the 2459|3678 partition produces a strongly regular graph with parameters
(256, 135, 70, 72), and the 357|24689 partition produces a strongly regular graph with
parameters (256, 45, 16, 6).
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The last case identified in [12] is the case where k = r(2r + 1), ℓ = (r − 1)(2r + 1),
s = −r, with r ⩾ 2. The case r = 2 coincides with the complement of the Clebsch graph,
which has the two extra fusions given in Theorem 8 (i). Strongly regular graphs with
these parameters are known to exist for 2 ⩽ r ⩽ 6, but their existence in general for r ⩾ 7
is an open problem.

Theorem 9. (i) In the case k = r(2r+1), ℓ = (r− 1)(2r+1), s = −r with r > 2, the
tensor square has one rank 3 fusion in addition to the guaranteed fusions in Lemma
4:

2468|3579

(ii) The complement of the previous case has parameters k = (s+ 2)(2s+ 1),
ℓ = (s + 1)(2s + 1), and r = −2 − s with s < −3, it gives one extra fusion,
corresponding to the switch partner of the above:

2459|3768

The two fusions above are also fusions of the generalized Hamming scheme. The
strongly regular graph produced by the fusion 2468|3579 in the first case of the Theorem
has parameters

(16r4, 8r4 − 2r2, 4r4 − 2r2, 4r4 − 2r2).

The smallest such graph, occurring when r = 2, has parameters (256, 120, 56, 56) and is
reported in [4, §10.48]. Since we do know A exists when 2 ⩽ r ⩽ 6, this fusion also implies
the existence of strongly regular graphs with parameters

(1296, 630, 306, 306), (4096, 2016, 992, 992), (10000, 4950, 2450, 2450),

and
(20736, 10296, 5112, 5112).

(The graph resulting from r = 3 was known to exist (see [5]), the others do not appear
on Brouwer’s tables of known strongly regular graph parameters but are classified in [8].)

5 Our main result

Let A = {A0 = I, A1, A2} be the basis of adjacency matrices of a symmetric rank 3
association scheme, or the standard basis of a rank 3 symmetric table algebra. In this
section, we will describe how we have used a computer program to verify that the fusions
listed in Theorems 5–9 are all of the possible fusions of A⊗A.

Theorem 10. If A does not belong to the families of strongly regular graphs listed in
Theorems 5–9, then the only fusions of the tensor square of A are the 15 guaranteed
fusions listed in Lemma 4.
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Proof. We know that the rank of a fusion corresponds to the number of columns in the
character table which are analyzed case by case and are referenced by their category in
the file AllPartitionsDataCategorized.txt on our GitHub repository [23]. The special
case fusions covered in Theorems 5–9 are also verified there using GAP.

All that is left to show is that the only nontrivial special case fusions occur when A
belongs to one of the families in Theorems 5–9. The first 45 non-trivial fusions (these are
the fusions listed in Lines 129-199 of TensorProductFusions.txt in [23]) hold only in
the rank 3 imprimitive case and hence are ruled out for any other strongly regular graphs
or table algebras in our search if we assume that s < −1 and k > r. Also, their switch
partners occur only when r = 0 and ℓ = −1− s, so we can assume r > 0 and ℓ > −1− s.

Focusing on the primitive case, we define a set U (given in lines 14-29 of
TensorProductFusions.txt in [23]) which consists of polynomials that do not meet the
parameters of a primitive strongly regular graph necessary to satisfy a row equality, which
in turn would fulfill the Bannai-Muzychuk Lemma and result in a fusion. This set is used
to sieve out partitions which require one of these polynomial conditions to give a fusion. If
an equality of a pair of irreducible characters of the fusion induced by a partition requires
a polynomial in U to equal 0, this pair of irreducible characters cannot hold in the fusion.
By the Bannai-Muzychuk criterion in Lemma 2, the partition will only induce an actual
fusion when the partition it induces on irreducible characters has the same size. Our
step-by-step sieving process is explained in lines 5-16 of the TensorProductFusions.txt
file on [23].

We will give four typical examples here, two examples of partitions that produce fusions
and two examples of partitions that do not produce fusions. All of the other partitions of
{2, . . . , 9} are dealt with in a similar fashion in [23]. All line numbers are referenced from
the file AllPartitionsDataCategorized.txt in [23].

1. Consider the partition 27|34|59|6|8 given in lines 263-267 that gives a rank 6 fusion.
For this partition to give a nontrivial fusion, the row equalities, χ2 = χ7, χ3 = χ4,
and χ5 = χ9 must be satisfied. On further investigation, we can see that χ5 = χ9

implies r = −1 − s, and χ2 = χ7, χ3 = χ4 implies k = ℓ = 2r + 2r2 = 2s + 2s2.
Hence, it is proved that this rank 6 nontrivial fusion falls under the strongly regular
graph family given in Theorem 6.

2. Consider the partition 249|35678 given in lines 391-413 that gives a rank 3 fusion.
For this partition to give a nontrivial fusion, the row equalities, χ2 = χ6 = χ8 = χ9,
and χ3 = χ4 = χ5 = χ7 must be satisfied. On further investigation, we can see
that the first set of row equalities implies r = 1, s = −2, and the latter set of
row equalities implies k = rℓ, with ℓ = 3 + r. Hence, it is proved that this rank 3
nontrivial fusion falls under the strongly regular graph family given in Theorem 8.

3. Consider the partition 23489|567 given in lines 521-534. Although initial investiga-
tion shows that this partition satisfies the Bannai-Muzychuk criterion and gives a
rank 3 fusion with row equalities,
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χ2 = χ3 = χ5 = χ6 = χ7, and χ4 = χ8 = χ9. On further investigation, we can see
that the first set of row equalities implies kr + ℓr− r + 2s = 0 with k − ℓ = 1− 2r,
and the latter set of row equalities implies ks+ ℓs+ 2r − s = 0. Since, all of these
conditions must be satisfied, we next check for compatibility of the row equalities.
We combine the following two equations

kr + ℓr − r + 2s = 0, and ks+ ℓs+ 2r − s = 0,

to get k + ℓ = 3. Since we also have k − ℓ = 1 + 2r this implies ℓ = 1 − r which
is a contradiction. Hence, we prove that that this rank 3 partition does not give a
nontrivial fusion.

4. Consider the partition 2678|34|59 given in lines 2118-2124. A quick glance at the
row equality conditions does not bring out any obvious contradictions. In this case
we can observe that even if all the row equalities are satisfied and compatible with
each other, this implies χ2 = χ6 = χ7, χ3 = χ4 and χ5 = χ9 we still end up with
at least 5 distinct rows in the modified character table. Hence, using Lemma 2 we
prove that this rank 4 partition does not give a nontrivial fusion.

After running the sieve, we find that all of the remaining partitions corresponding to
special case fusions are either the ones listed for one of the strongly regular graph families
in the previous section, or their switch partners. So this verifies the theorem.
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