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Abstract

Let G be a graph on n vertices. The Steiner distance of a collection of k vertices in
G is the fewest number of edges in any connected subgraph containing those vertices.
The order k Steiner distance hypermatrix of G is the n-dimensional array indexed
by vertices, whose entries are the Steiner distances of their corresponding indices. In
this paper, we confirm a conjecture on the Steiner distance hypermatrices proposed
by Cooper and Du [Electron. J. Combin. 31(3):#P3.4, 2024]. Furthermore, we also
compute the hyperdeterminant of the order k Steiner distance hypermatrix of P3.

Mathematics Subject Classifications: 05C12, 15A69

1 Introduction

The distance matrix is an important concept in the field of graph theory and combina-
torial optimization. In 1971, Graham and Pollak [8] showed a beautiful result that the
determinants of the distance matrices of trees depend only on the number of their vertices,
but have nothing to do with the structures of the trees. More precisely, let T be a tree
on n vertices and the distance matrix D(T ) of T is an n× n matrix whose (u, v)-entry is
the distance of u and v, then det(D(T )) = (1− n)(−2)n−2. This impressive result makes
the spectral properties of distance matrices a very interesting research topic. In 1978,
Graham and Lovász [7] investigated the coefficients of the characteristic polynomials of
distance matrices. In 1990, Merris [12] gave the distance spectrum of a tree.

The Steiner distance is a natural extension of the distance between two vertices, which
extends the concept of pairwise distance in a graph to any set of vertices, as proposed
in [1]. Given a graph G and a set S ⊆ V (G), the Steiner distance d(S) is defined as
the fewest number of edges in any connected subgraph of G containing S. For results on
Steiner distance in graphs, we refer the reader to [11] and the references therein.

Recently, Cooper and Tauscheck [3] extended the concept of distance matrices to
Steiner distance hypermatrices. The Steiner distance hypermatrix is related to the Steiner
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distance in the same way as the distance matrix is related to the classical distance. In 2005,
Qi [13] defined the hyperdeterminant of a symmetric hypermatrix (also called tensor),
which provided a new direction in the study of Steiner distance hypermatrices. Cooper
and Tauscheck [3] showed that for a tree T on n > 3 vertices, the hyperdeterminant of the
Steiner distance hypermatrix of T is 0 when k is odd. Subsequently, they [4] also showed
that the hyperdeterminant for even k is always nonzero. Cooper and Du [2] computed
the hyperdeterminant of the Steiner distance hypermatrix of a tree on 2 vertices. They
proved that the hyperdeterminant of the Steiner distance hypermatrix of a tree vanishes
if and only if (a) n > 3 and k is odd, (b) n = 1, or (c) n = 2 and k ≡ 1 (mod 6).

For the Steiner distance hypermatrix of a tree on n vertices, Cooper and Du [2], and
Cooper and Tauscheck [3], proposed the following conjecture:

Conjecture 1. The hyperdeterminant of the order k Steiner distance hypermatrix of a
tree on n vertices only depends on n and k.

In this paper, we confirm the conjecture. Let Pn be the path on n vertices, we also
give the hyperdeterminant of the order k Steiner distance hypermatrix of P3.

2 Preliminaries

In this section, we introduce some notations and basic concepts of hypermatrices. For a
positive integer n, we denote [n] = {1, . . . , n}. Let C be the field of complex numbers and
Cn be the n-dimensional complex space.

For positive integers k and n, an order k dimension n hypermatrix A is a multi-
dimensional array of nk entries in C: A = (ai1···ik), ai1···ik ∈ C, where ij ∈ [n] and j ∈ [k].
A is said to be symmetric if the value of ai1···ik is invariant under any permutation of its
indices i1, . . . , ik. Given a vector x = (x1, . . . , xn)T ∈ Cn, define an n-dimensional vector
Axk−1 whose i-th component is defined as follows:

(Axk−1)i =
n∑

i2,...,ik=1

aii2···ikxi2 · · ·xik , i ∈ [n].

In [13], Qi defined the hyperdeterminant and the characteristic polynomial of a hyper-
matrix. To give the definition of the hyperdeterminant and the characteristic polynomial
of a hypermatrix, the resultant theory is needed. For a positive integer n, an n-tuple
α = (α1, . . . , αn) of nonnegative integers, and an n-tuple x = (x1, . . . , xn)T of indeter-
minate variables, denote by xα the monomial

∏n
i=1 x

αi
i . If F (x1, . . . , xn) ∈ C[x1, . . . , xn],

we use F to denote F (x1, . . . , xn) without causing ambiguity. In the following, we intro-
duce the multipolynomial resultant to study hyperdeterminants, which can be found in
[5, 6, 10].

Theorem 2. Fix degrees d1, . . . , dn. For i ∈ [n], consider all monomials xα of total degree
di in x1, . . . , xn. For each such monomial, define a variable ui,α. Then there is a unique
polynomial Res ∈ Z[{ui,α}] with the following three properties:
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(1) If F1, . . . , Fn ∈ C[x1, . . . , xn] are homogeneous polynomials of degrees d1, . . . , dn,
respectively, then the polynomials have a nontrivial common root in Cn exactly when
Res(F1, . . . , Fn) = 0.

(2) Res(xd11 , . . . , x
dn
n ) = 1.

(3) Res is irreducible, even in C[{ui,α}].

Res(F1, . . . , Fn) is called the resultant of F1, . . . , Fn and it is interpreted as substituting
the coefficient of xα in Fi for the variable ui,α in Res. Resultant plays an important role
in algebraic geometry, algebraic combinatorics, spectral hypergraph theory, etc. The
hyperdeterminant of an order k dimension n hypermatrix A is the resultant of Axk−1,
i.e., det(A) = Res(Axk−1). The characteristic polynomial of A, denoted φA(λ), is the
determinant det(λI−A), where the unit hypermatrix I is defined as follows: Ii1···ik = 1 if
i1 = i2 = · · · = ik and Ii1···ik = 0 otherwise. Note that when k = 2, the hyperdeterminant
is exactly the classical determinant.

It is usually difficult to calculate the resultant of a general polynomial system, Hillar
and Lim [9] showed that most hypermatrix problems are NP-hard. However, we can study
it using some of its properties. In the following, suppose F1, . . . , Fn ∈ C[x1, . . . , xn] are
homogeneous polynomials of degrees d1, . . . , dn, respectively. Here we list some useful
properties of resultants that will be used in the subsequent discussion, and readers can
find them in the reference [10].

Theorem 3. Fixing some i ∈ [n], suppose di > dj for all j 6= i and Hi,j ∈ C[x1, . . . , xn]
is a homogeneous polynomial of degree di − dj, then

Res

(
F1, . . . , Fi +

∑
j 6=i

Hi,jFj, . . . , Fn

)
= Res(F1, . . . , Fi, . . . , Fn).

Theorem 3 is called the elementary transformation property of the resultant.

Theorem 4. Let G = (G1, . . . , Gn), where G1, . . . , Gn are homogeneous polynomials of
degree d. For i ∈ [n], denote Fi ◦G = Fi(G1, . . . , Gn). Then

Res(F1 ◦G, . . . , Fn ◦G) = Res(G1, . . . , Gn)d1···dnRes(F1, . . . , Fn)d
n−1

.

Given homogeneous polynomials F1, . . . , Fn ∈ C[x1, . . . , xn] of degrees d1, . . . , dn, let

fi(x1, . . . , xn−1) = Fi(x1, . . . , xn−1, 1),

F i(x1, . . . , xn−1) = Fi(x1, . . . , xn−1, 0).

Note that F 1, . . . , F n−1 are homogeneous in C[x1, . . . , xn−1]. The following Poisson for-
mula in [5, 6] gives a recursive method for calculating resultants.
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Theorem 5. Let F1, . . . , Fn ∈ C[x1, . . . , xn] are homogeneous polynomials of degrees
d1, . . . , dn, respectively. Let V be the affine variety defined by the polynomials f1, . . . , fn−1.
If Res(F 1, . . . , F n−1) 6= 0, then

Res(F1, . . . , Fn) = Res(F 1, . . . , F n−1)
dn
∏
p∈V

fn(p)m(p),

where m(p) is the multiplicity of a point p ∈ V.

Next, we introduce the concepts of the Steiner distance and the Steiner distance hy-
permatrix. Given a graph G and a subset S = {v1, . . . , vk} of the vertices, the Steiner
distance of S, denoted dG(S) or dG(v1, . . . , vk), is the number of edges in the smallest
connected subgraph of G containing S.

Definition 6. Let G be a graph on n vertices, the order k Steiner distance hypermatrix of
G is an order k dimension n hypermatrix Sk(G), whose (v1, . . . , vk) entry is dG(v1, . . . , vk).

Given a graph G on n vertices and the vertex set V is labelled as [n] = {1, 2 . . . , n}.
According to the definition, we have

(Sk(G)xk−1)i =
n∑

i2,...,ik=1

dG(i, i2, . . . , ik)xi2 · · ·xik , i ∈ [n]. (1)

We can see that for an order k Steiner distance hypermatrix Sk(G) of a graph G, the
hyperdeterminant of Sk(G), det(Sk(G)) = Res(Sk(G)xk−1).

3 Hyperdeterminants of Steiner distance hypermatrices of trees
on n vertices

In this section, we confirm Conjecture 1 by utilizing the properties of resultants.

Theorem 7. Let T be a tree on n vertices and k > 2, then det(Sk(T )) only depends on
n and k.

Proof. Let T be a tree on n vertices with vertex set V (T ) = [n], and denote Sk(T )xk−1 =
(F1, F2, . . . , Fn). Since we have det(Sk(T )) = 0 when k is odd, let us assume that k is
even. In [4, Proposition 2.2], Cooper and Tauscheck proved the following properties for
Sk(T )xk−1. Let v be a leaf vertex of T and u be its unique neighbour, then

Fv − Fu =

(
n∑
i=1

xi − xv

)k−1

− xk−1v . (2)

Suppose that {u1, u2} is an edge of T . Let T1 and T2 are the trees obtained by adding
edges {u1, n + 1} and {u2, n + 1} to T at vertices u1 and u2, respectively. Then we have
Sk(T1)xk−1 = (G1, G2, . . . , Gn+1) and Sk(T2)xk−1 = (H1, H2, . . . , Hn+1).
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Considering the equation (2), we obtain that

Gn+1 −Gu1 = Hn+1 −Hu2 =

(
n∑
i=1

xi

)k−1

− xk−1n+1. (3)

Let L = (x1, . . . , xu1 − xn+1, . . . , xu2 + xn+1, . . . , xn+1), in the following, we show that

Gi ◦ L = Hi, for i ∈ [n].

Note that for any t ∈ [k − 1] and α ∈ Sk−1−t, we have dT (i, α, u1, u2) = dT (i, α, u1) or
dT (i, α, u1, u2) = dT (i, α, u2). Let

δt(i, α, u1) = dT (i, α, u1, u2)− dT (i, α, u1)

and
δt(i, α, u2) = dT (i, α, u1, u2)− dT (i, α, u2),

then we can see that δt(i, α, u1) and δt(i, α, u2) are equal to 1 or 0 for every α ∈ Sk−1−t.
For any path P in T1, we classify it according to whether P contains vertices u1, u2

and n+ 1. Note that {u1, n+ 1} is a pendant edge, then we have the following six cases:

(1) u1, u2, n+ 1 /∈ V (P );

(2) u1 ∈ V (P ), u2, n+ 1 /∈ V (P );

(3) u2 ∈ V (P ), u1, n+ 1 /∈ V (P );

(4) u1, u2 ∈ V (P ), n+ 1 /∈ V (P );

(5) n+ 1 ∈ V (P ), u2 /∈ V (p);

(6) u2, n+ 1 ∈ V (P ).

Let i ∈ [n]\{u1, u2} and S = [n]\{u1, u2}. Corresponding to these classification cases
and equation (1), we have

Gi =
∑

α∈Sk−1

dT1(i, α)xα +
k−1∑
a=1

(
k − 1

a

)
xau1

∑
α∈Sk−1−a

dT1(i, α, u1)x
α

+
k−1∑
b=1

(
k − 1

b

)
xbu2

∑
α∈Sk−1−b

dT1(i, α, u2)x
α

+
k−1∑
a+b=1
a,b>0

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

dT1(i, α, u1, u2)x
α

+
k−1∑
a+c=1
c>0

(
k − 1

a, c, k − 1− a− c

)
xau1x

c
n+1

∑
α∈Sk−1−a−c

(dT1(i, α, u1) + 1)xα

+
k−1∑

a+b+c=1
b,c>0

(
k − 1

a, b, c, k − 1− a− b− c

)
xau1x

b
u2
xcn+1

∑
α∈Sk−1−a−b−c

(dT1(i, α, u1, u2) + 1)xα.
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Consider the cases (4) and (6), we can see that

k−1∑
a+b+c=1
b,c>0

(
k − 1

a, b, c, k − 1− a− b− c

)
xau1x

b
u2
xcn+1

∑
α∈Sk−1−a−b−c

(dT1(i, α, u1, u2) + 1)xα

=
k−1∑

a+b+c=1

(
k − 1

a, b, c, k − 1− a− b− c

)
xau1x

b
u2
xcn+1

∑
α∈Sk−1−a−b−c

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
a+c=1
c>0

(
k − 1

a, c, k − 1− a− c

)
xau1x

c
n+1

∑
α∈Sk−1−a−c

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
a+b=1
b>0

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
a=1

(
k − 1

a

)
xau1

∑
α∈Sk−1−a

(dT1(i, α, u1, u2) + 1)xα

and
k−1∑
a+b=1
a,b>0

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

dT1(i, α, u1, u2)x
α

=
k−1∑
a+b=1

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

dT1(i, α, u1, u2)x
α

−
k−1∑
a=1

(
k − 1

a

)
xau1

∑
α∈Sk−1−a

dT1(i, α, u1, u2)x
α

−
k−1∑
b=1

(
k − 1

a

)
xbu2

∑
α∈Sk−1−b

dT1(i, α, u1, u2)x
α.

Similarly, we have

k−1∑
a+b=1
b>0

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

dT1(i, α, u1, u2)x
α

=
k−1∑
a+b=1

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

dT1(i, α, u1, u2)x
α

−
k−1∑
a=1

(
k − 1

a

)
xau1

∑
α∈Sk−1−a

dT1(i, α, u1, u2)x
α.
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Substituting the above equations into Gi, then we can get that

Gi =
∑

α∈Sk−1

dT1(i, α)xα +
k−1∑

a+b+c=1

(
k − 1

a, b, c, k − 1− a− b− c

)
xau1x

b
u2
xcn+1

×
∑

α∈Sk−1−a−b−c

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
a+c=1

(
k − 1

a, c, k − 1− a− c

)
xau1x

c
n+1

∑
α∈Sk−1−a−c

δa+c(i, α, u1)x
α

−
k−1∑
a+b=1

(
k − 1

a, c, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

xα

−
k−1∑
b=1

(
k − 1

b

)
xbu2

∑
α∈Sk−1−b

δb(i, α, u2)x
α

=
∑

α∈Sk−1

dT1(i, α)xα +
k−1∑
t=1

(
k − 1

t

) t∑
a+b=0

(
t

a, b, t− a− b

)
xau1x

b
u2
xt−a−bn+1

×
∑

α∈Sk−1−t

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

) t∑
a=0

(
t

a

)
xau1x

t−a
n+1

∑
α∈Sk−1−t

δt(i, α, u1)x
α

−
k−1∑
t=1

(
k − 1

t

) t∑
a=0

(
t

a

)
xau1x

t−a
u2

∑
α∈Sk−1−t

xα

−
k−1∑
t=1

(
k − 1

t

)
xtu2

∑
α∈Sk−1−t

δt(i, α, u2)x
α

=
∑

α∈Sk−1

dT1(i, α)xα +
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2 + xn+1)

t

×
∑

α∈Sk−1−t

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xn+1)

t
∑

α∈Sk−1−t

δt(i, α, u1)x
α

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2)

t
∑

α∈Sk−1−t

xα

−
k−1∑
t=1

(
k − 1

t

)
xtu2

∑
α∈Sk−1−t

δt(i, α, u2)x
α

(4)
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Then we consider the vertices u1 and u2, and obtain that

Gu1 =
∑

α∈Sk−1

dT1(u1, α)xα +
k−1∑
a=1

(
k − 1

a

)
xau1

∑
α∈Sk−1−a

dT1(u1, α)xα

+
k−1∑
a+b=1
b>0

(
k − 1

a, b, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

dT1(u1, α, u2)x
α

+
k−1∑
a+c=1
c>0

(
k − 1

a, c, k − 1− a− c

)
xau1x

c
n+1

∑
α∈Sk−1−a−c

(dT1(u1, α) + 1)xα

+
k−1∑

a+b+c=1
b,c>0

(
k − 1

a, b, c, k − 1− a− b− c

)
xau1x

b
u2
xcn+1

×
∑

α∈Sk−1−a−b−c

(dT1(u1, α, u2) + 1)xα

=
∑

α∈Sk−1

dT1(u1, α)xα +
k−1∑

a+b+c=1

(
k − 1

a, b, c, k − 1− a− b− c

)
xau1x

b
u2
xcn+1

×
∑

α∈Sk−1−a−b−c

(dT1(u1, α, u2) + 1)xα

−
k−1∑
a+c=1

(
k − 1

a, c, k − 1− a− c

)
xau1x

c
n+1

∑
α∈Sk−1−a−c

δa+c(u1, α, u1)x
α

−
k−1∑
a+b=1

(
k − 1

a, c, k − 1− a− b

)
xau1x

b
u2

∑
α∈Sk−1−a−b

xα

−
k−1∑
a=1

(
k − 1

a

)
xau1

∑
α∈Sk−1−a

δa(u1, α, u2)x
α

=
∑

α∈Sk−1

dT1(u1, α)xα +
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2 + xn+1)

t

×
∑

α∈Sk−1−t

(dT1(u1, α, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xn+1)

t
∑

α∈Sk−1−t

δt(u1, α, u1)x
α

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2)

t
∑

α∈Sk−1−t

xα

(5)
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similarly, we have

Gu2 =
∑

α∈Sk−1

dT1(u2, α)xα +
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2 + xn+1)

t

×
∑

α∈Sk−1−t

(dT1(u1, α, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

)
xtu2

∑
α∈Sk−1−t

δt(u2, α, u2)x
α

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2)

t
∑

α∈Sk−1−t

xα

(6)

Since for t ∈ [k−1] and α ∈ [n]k−1−t, we have dT1(α) = dT2(α). Then if i ∈ [n]\{u1, u2},
according to the last equality in equation (4), we have

Hi =
∑

α∈Sk−1

dT1(i, α)xα +
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2 + xn+1)

t
∑

α∈Sk−1−t

(dT1(i, α, u1, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

)
(xu2 + xn+1)

t
∑

α∈Sk−1−t

δt(i, α, u2)x
α

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2)

t
∑

α∈Sk−1−t

xα

−
k−1∑
t=1

(
k − 1

t

)
xtu1

∑
α∈Sk−1−t

δt(i, α, u1)x
α

Note that linear transformation L transforms the variables xu1 and xu2 into xu1 − xn+1

and xu2 + xn+1 respectively, while leaving other variables unchanged, and combining it
with the last equality in equation (4), we can conclude that Hi = Gi ◦ L.

For the vertices u1 and u2, by direct calculation, we have

Hu1 =
∑

α∈Sk−1

dT1(u1, α)xα +
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2 + xn+1)

t

×
∑

α∈Sk−1−t

(dT1(u1, α, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

)
xtu1

∑
α∈Sk−1−t

δt(u1, α, u1)x
α

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2)

t
∑

α∈Sk−1−t

xα
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and

Hu2 =
∑

α∈Sk−1

dT1(u2, α)xα +
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2 + xn+1)

t

×
∑

α∈Sk−1−t

(dT1(u1, α, u2) + 1)xα

−
k−1∑
t=1

(
k − 1

t

)
(xu2 + xn+1)

t
∑

α∈Sk−1−t

δt(u2, α, u2)x
α

−
k−1∑
t=1

(
k − 1

t

)
(xu1 + xu2)

t
∑

α∈Sk−1−t

xα.

Similarly, based on the last equality in equation (5) and equation (6), we can conclude
that Hu1 = Gu1 ◦ L and Hu2 = Gu2 ◦ L.

In summary, for i ∈ [n], we have Gi ◦L = Hi. For i = n+ 1, note by equation (3), we
have (Gn+1 −Gu1) ◦ L = Hn+1 −Hu2 . Then Theorem 4 implies that

Res(H1, H2, . . . , Hn+1 −Hu2) =Res(x1, . . . , xu1 − xn+1, . . . , xu2 + xn+1, . . . , xn+1)
(k−1)n

× Res(G1, G2, . . . , Gn+1 −Gu1).

It is easy to see that Res(x1, . . . , xu1 − xn+1, . . . , xu2 + xn+1, . . . , xn+1) = 1, so

Res(H1, H2, . . . , Hn+1 −Hu2) = Res(G1, G2, . . . , Gn+1 −Gu1).

By Theorem 3, it follows that

det(Sk(T1)) = Res(G1, G2, . . . , Gn+1)

= Res(G1, G2, . . . , Gn+1 −Gu1)

and
det(Sk(T2)) = Res(H1, H2, . . . , Hn+1)

= Res(H1, H2, . . . , Hn+1 −Hu2)

Thus we have det(Sk(T1)) = det(Sk(T2)).
For any two non-isomorphic trees on n vertices, we can always make them isomorphic

by moving the leaf vertices, and we have shown that moving the leaf vertices of an edge
does not change the hyperdeterminant of the order k Steiner distance hypermatrix. In
this way, we prove that the hyperdeterminant of the order k Steiner distance hypermatrix
of any two trees on n vertices is equal, and thus completing the proof.

Example 8. Let T = P3 = ([3], {{1, 2}, {2, 3}), we add an edge to vertex 2 and vertex 3,
respectively. Then T1 = ([4], {{1, 2}, {2, 3}, {2, 4}}) and T2 = ([4], {{1, 2}, {2, 3}, {3, 4}}).
Denote

Sk(T1)xk−1 = (G1, G2, G3, G4) and Sk(T2)xk−1 = (H1, H2, H3, H4).
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It follows from Definition 6 and equation (1) that we have

G1 =3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x3)

k−1 − (x1 + x2 + x4)
k−1 − xk−11

G2 =3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x3)

k−1 − (x1 + x2 + x4)
k−1

− (x2 + x3 + x4)
k−1

G3 =3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x3)

k−1 − (x2 + x3 + x4)
k−1 − xk−13

G4 =3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x4)

k−1 − (x2 + x3 + x4)
k−1 − xk−14

and

H1 = 3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x3)

k−1 − (x1 + x2)
k−1 − xk−11

H2 = 3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x3)

k−1 − (x2 + x3 + x4)
k−1 − (x1 + x2)

k−1

H3 = 3(x1 + x2 + x3 + x4)
k−1 − (x1 + x2 + x3)

k−1 − (x2 + x3 + x4)
k−1 − (x3 + x4)

k−1

H4 = 3(x1 + x2 + x3 + x4)
k−1 − (x2 + x3 + x4)

k−1 − (x3 + x4)
k−1 − xk−14

We can see that G4 −G2 = H4 −H3 = (x1 + x2 + x3)
k−1 − xk−14 .

Let L = (x1, x2 − x4, x3 + x4, x4), according to the notations, it is easy to verify that

G1 ◦ L = H1, G2 ◦ L = H2, G3 ◦ L = H3 and (G4 −G2) ◦ L = H4 −H3.

Since Res(x1, x2 − x4, x3 + x4, x4) = 1, by Theorem 4, we obtain that

Res(G1, G2, G3, G4 −G2) = Res(H1, H2, H3, H4 −H3).

According to Theorem 3, we have

Res(G1, G2, G3, G4) = Res(H1, H2, H3, H4),

i.e., det(Sk(T1)) = det(Sk(T2)).

4 Hyperdeterminants of Sk(P3)

Recently, Cooper and Du [2] showed that for the single-edge graph K2 (i.e., P2),

det(Sk(K2)) = (−1)k−1
k−2∏
j=0

((
1 + e

2πj
k−1

i
)k−1

− 1

)
, (7)

where i =
√
−1. They found that det(Sk(K2)) = 0 if and only if k ≡ 1 (mod 6).

In this section, by using the Poisson formula, we compute the hyperdeterminant of the
order k Steiner distance hypermatrix of P3. Note that Cooper and Tauscheck [3] proved
that for a tree T on n vertices, if n > 2 and k is odd, then det(Sk(T )) = 0. Therefore, we
only need to consider the case where k is even.
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Theorem 9. Let P3 be a path on 3 vertices, and let Sk(P3) be the order k Steiner distance
hypermatrix of P3, where k is even. Then

det(Sk(P3)) =
k−2∏
p=0

k−2∏
q=0

g(p, q),

where g(p, q) = 2
(
1 + ζpk−1

)k−1 − 1−
(

1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

)k−1
and

ζk−1 = e
2π
k−1

i.

Proof. Let P3 on vertices set {1, 2, 3} and denote Sk(P3)x
k−1 = (F1, F2, F3), it follows

from Definition 6 and equation (1) that we have
F1 = 2(x1 + x2 + x3)

k−1 − (x1 + x2)
k−1 − xk−11

F2 = 2(x1 + x2 + x3)
k−1 − (x1 + x2)

k−1 − (x2 + x3)
k−1

F3 = 2(x1 + x2 + x3)
k−1 − (x2 + x3)

k−1 − xk−13

.

According to the notations, let x3 = 1, consider the following polynomial system{
f1 = 2(x1 + x2 + 1)k−1 − (x1 + x2)

k−1 − xk−11 = 0

f2 = 2(x1 + x2 + 1)k−1 − (x1 + x2)
k−1 − (x2 + 1)k−1 = 0

,

and f2 − f1 = xk−11 − (x2 + 1)k−1 = 0, so we have

x2 + 1 = ζpk−1x1, p ∈ {0, 1, . . . , k − 2}, (8)

where ζk−1 = e
2π
k−1

i is a primitive (k − 1)-th root of unity.
Substituting equation (8) into f1, we obtain that

2
((

1 + ζpk−1
)
x1
)k−1 − ((1 + ζpk−1

)
x1 − 1

)k−1 − xk−11 = 0,

i.e., (
2
(
1 + ζpk−1

)k−1 − 1
)
xk−11 =

((
1 + ζpk−1

)
x1 − 1

)k−1
.

It follows that(
2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1x1 =
(
1 + ζpk−1

)
x1 − 1, p, q ∈ {0, 1, . . . , k − 2}.

Note that ζjk−1 + ζ−jk−1 is real for all j ∈ Z, which implies that

2
(
1 + ζpk−1

)k−1 − 1 =2
k−1∑
j=0

(
k − 1

j

)
ζpjk−1 − 1

=2

b k−1
2
c∑

j=0

(
k − 1

j

)(
ζpjk−1 + ζ−pjk−1

)
− 1
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is real. Since k is even, we take the value of
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

as a real number.

Furthermore, we have

x1 =
1

1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

, p, q ∈ {0, 1, . . . , k − 2},

and

x2 =

(
2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1 − 1

1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

, p, q ∈ {0, 1, . . . , k − 2}.

We will show that for p′, q′, p, q ∈ {0, 1, . . . , k − 1}, if (p′, q′) 6= (p, q), then (x′1, x
′
2) 6=

(x1, x2), where (x1, x2), (x
′
1, x
′
2) ∈ V(f1, f2).

Suppose that (x′1, x
′
2) = (x1, x2), then

1 + ζp
′

k−1 −
(

2
(

1 + ζp
′

k−1

)k−1
− 1

) 1
k−1

ζq
′

k−1 = 1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

and (
2
(

1 + ζp
′

k−1

)k−1
− 1

) 1
k−1

ζq
′

k−1 − 1 =
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1 − 1,

so we deduce that
ζp
′

k−1 = ζpk−1 and ζq
′

k−1 = ζqk−1.

Since ζk−1 is a primitive (k− 1)-th root of unity and p′, q′, p, q ∈ {0, 1, . . . , k− 1}, we have
p′ = p and q′ = q.

It implies that we get (k − 1)2 distinct solutions of f1, f2, by Bezout’s Theorem the
polynomial system f1, f2 has at most (k − 1)2 distinct solutions. This means that all of
the multiplicities m(p) in Theorem 5 are equal to 1.

Substituting these solutions into the polynomial f3(x1, x2) = 2(x1 +x2 + 1)k−1− (x2 +
1)k−1 − 1, we get that

f3(x1, x2) =2

 1 + ζpk−1

1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1


k−1

−

 ζpk−1

1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1


k−1

− 1

for all p, q ∈ {0, 1, . . . , k − 2}.
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Next, we simplify the expression for
∏k−2

p=0

∏k−2
q=0 f3(x1, x2). Fixed p ∈ {0, 1, . . . , k− 2},

note that ζk−1 = e
2π
k−1

i is a primitive (k − 1)-th root of unity, then

k−2∏
q=0

(
1 + ζpk−1 −

(
2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

)
=
(
1 + ζpk−1

)k−1 − (2
(
1 + ζpk−1

)k−1 − 1
)

=−
(
1 + ζpk−1

)k−1
+ 1.

So we obtain that

k−2∏
p=0

k−2∏
q=0

(
1 + ζpk−1 −

(
2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

)
= det(Sk(K2)).

Let

g(p, q) = 2
(
1 + ζpk−1

)k−1 − 1−
(

1 + ζpk−1 −
(

2
(
1 + ζpk−1

)k−1 − 1
) 1
k−1

ζqk−1

)k−1
,

then ∏
w∈V(f1,f2)

f3(w)m(w) =

∏k−2
p=0

∏k−2
q=0 g(p, q)

(det(Sk(K2)))
k−1 .

On the other hand, by the result of Cooper and Du [2], when k 6≡ 1 (mod 6),

(−1)k−1
k−2∏
j=0

((
1 + ζjk−1

)k−1 − 1
)
6= 0.

Then for even k, Res(F 1, F 2) 6= 0. By Theorem 5, we have

det(Sk(P3)) =Res(F1, F2, F3)

=
(
Res(F 1, F 2)

)k−1 ∏k−2
p=0

∏k−2
q=0 g(p, q)

(det(Sk(K2)))
k−1

=
k−2∏
p=0

k−2∏
q=0

g(p, q).

This completes the proof.

Remark 10. We can see that g(p, q) = g(k − 1 − p, q) for p ∈ {1, 2, . . . , k − 2}, q ∈
{0, 1, . . . , k − 2}, then

k−2∏
p=0

k−2∏
q=0

g(p, q) =
k−2∏
q=0

g(0, q)
k−2∏
p=0

 k−2
2∏

p=1

g(p, q)

2

, (9)
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which can help us simplify the calculations.
In [4], Cooper and Tauscheck listed the hyperdeterminants for k = 2, 4, 6, 8. Here, let

k = 10 in equation (9), with the help of Maple, we have

det(S10(P3)) = 230 · 54 · 7 · 1916 · 374 · 73 · 2718 · 3074 · 4498 · 7398 · 261198 · 72226943953934.
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