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Abstract

We show that every graph G of maximum degree ∆ and sufficiently large order
has a vertex cutset S of order at most ∆ that induces a subgraph G[S] of maximum
degree at most ∆− 3. For ∆ ∈ {4, 5}, we refine this result by considering also the
average degree of G[S]. If G has no Kr,r subgraph, then we show the existence of a

vertex cutset that induces a subgraph of maximum degree at most
(

1− 1

(r2)

)
∆+O(1).

Mathematics Subject Classifications: 05C40, 05C69

1 Introduction

Answering a question posed by Caro, Chen and Yu [6] proved the following result.

Theorem 1 (Chen and Yu [6]). Every graph with n vertices and at most 2n − 4 edges
has an independent (vertex) cutset.

Chen, Faudree, and Jacobson [5] showed that the smallest independent cutsets may be
arbitrarily large as the number of edges approaches 2n but imposing a slightly stronger
bound on the number of edges, one can guarantee the existence of small independent
cutsets. Le and Pfender [12] characterized the graphs with n vertices and 2n − 3 edges
that do not have an independent cutset. The algorithmic problem of deciding the existence
of independent cutsets in a given graph was considered [10, 11] with a particular focus
on line graphs because independent cutsets in the line graph of some graph G correspond
to matching (edge) cutsets in G [2, 4, 7, 8]. For subcubic graphs of order at least 8,
Theorem 1 implies the existence of an independent cutset, while the complete graph K4

and the triangular prism are cubic graphs of orders 4 and 6 with no such cutsets. In other
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words, a sufficiently large graph of maximum degree at most 3 has an independent cutset.
Motivated by this observation, we consider the existence of sparse cutsets in sufficiently
large graphs of bounded maximum degree.

We consider only finite, simple, and undirected graphs, and use standard terminology.
Let G be a graph and let S be a set of vertices of G. Let G[S] denote the subgraph of
G induced by S and let G − S = G[V (G) \ S]. The set S is a cutset of G if G − S is
disconnected. Let ∆G(S) and d̄G(S) denote the maximum degree and the average degree
of G[S], respectively. If S is a minimal cutset in a graph G, then every vertex in S has at
least one neighbor in every component of G− S. Provided that G has maximum degree
at most ∆, this implies the trivial bound

∆G(S) 6 ∆− 2. (1)

We believe that this can be improved and pose the following.

Question 2. Are there two functions f : N → N and g : N → N with lim
∆→∞

f(∆) = ∞
such that every connected graph G of order at least g(∆) and maximum degree at most
∆ has a cutset S with ∆G(S) 6 ∆− f(∆)?

Our first result shows that f(∆) = O
(√

∆ log(∆)
)

; all proofs are given in Section 2.

Proposition 3. There is a positive constant c such that, for integers ∆ and n0 at least
9, there is a graph G of maximum degree at most ∆ and order at least n0 such that

∆G(S) > ∆− (c+ 3)
√

∆ log(∆)

for every cutset S of G.

Instead of ∆G(S), one may alternatively consider d̄G(S). Nevertheless, in the setting
of Question 2, this only makes sense for cutsets S that are small or minimal. In fact, if G
is a graph of order n and maximum degree ∆, and u is some vertex in G, then G has an
independent set I of order at least n−∆2−1

∆+1
that does not contain any vertex at distance

at most two from u, and S = NG(u) ∪ I is a cutset of G with d̄G(S)→ 0 for n→∞ and
fixed ∆.

Our next result improves the trivial bound (1).

Theorem 4. Let ∆ be an integer at least 3. If G is a connected graph of order at least
2∆ + 3 and maximum degree at most ∆, then G has a cutset S of order at most ∆ with

∆G(S) 6 ∆− 3. (2)

For ∆ = 3, the bound (2) is trivially best possible. The results of [12] allow us to
construct arbitrarily large connected 4-regular graphs without independent cutsets, that
is, the bound (2) is also best possible for ∆ = 4.

See Figure 1 for an illustration.
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Figure 1: The 4-regular graph C2
14 has no independent cutset.

For ∆ = 5, the icosahedron is a 5-regular graph G in which every cutset S satisfies
∆G(S) > 2. In fact, note that the neighborhood of every vertex of the icosahedron
induces a copy of C5, that every vertex u in every minimal cutset S of the icosahedron
has neighbors in different components of G− S, and that the C5 in the neighborhood of
u implies that S contains at least two neighbors of u.

The property of having neighborhoods that induce copies of C5 can be exploited to
construct arbitrarily large connected 5-regular graphs G with no cutset S with ∆G(S) 6 1.
Consider, for instance, a cyclic structure based on the pattern shown in Figure 2; no vertex
from the middle path can be contained in a cutset S with ∆G(S) 6 1, which implies that
no such cutset exists. Hence, the bound (2) is also best possible for ∆ = 5.
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Figure 2: Part of a connected 5-regular G with no cutset S with ∆G(S) 6 1.

While the bound (2) is best possible for ∆ ∈ {3, 4, 5}, we can refine it slightly for
5-regular and 4-regular graphs; next to ∆G(S) we also bound d̄G(S) for a small cutset S.

Theorem 5. If G is a connected 5-regular graph of sufficiently large order n, then there
is a cutset S of order at most 5 with ∆G(S) 6 2 and d̄G(S) < 2.

Theorem 6. If G is a connected 4-regular graph of sufficiently large order n such that
G[NG(x)] is not isomorphic to 2K2 for some vertex x of G, then either G is isomorphic
to C2

n or there is a minimal cutset S of order at most 4 with d̄G(S) < 1.

The 4-regular graphs in which every neighborhood induces a 2K2 form a rich class
of graphs; the Cartesian product of K3 with itself and line graphs of cubic triangle-free
graphs are examples.
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Le, Mosca, and Müller [11] conjectured that every 3-connected planar graph of max-
imum degree at most 4 has an independent cutset whose order is bounded by a fixed
constant, or it has no independent cutset at all. We show two related statements; in
the first one we require 4-regularity instead of maximum degree at most 4 but relax the
planarity condition, and in the second one we consider graphs without Kr,r as a subgraph;
recall that planar graphs do not contain K3,3 as a minor.

Theorem 7. If G is a 4-regular graph with connectivity κ 6 3, then G has an independent
cutset of order at most 3.

Theorem 8. Let ∆ and r be positive integers such that c = 3 +
⌊

2(∆−3r+2)
r(r−1)

⌋
> 3. If G is

a graph of maximum degree ∆ and order more than ∆ + (c− 3)(r − 1) + r that does not
contain Kr,r as a subgraph, then G has a cutset S of order at most ∆ + (c− 3)(r− 2) with

∆G(S) 6 ∆− c.

We conclude with a simple consequence of Theorem 1.

Proposition 9. If G is a connected graph of order n, size m, and maximum degree ∆
with m 6

(
2 + 1

∆2+1

)
n− 4, then G has a cutset S with ∆G(S) 6 1.

2 Proofs

As announced we give the proofs of our results.

Proof of Proposition 3. Axenovich, Sereni, Snyder, and Weber [1] showed the existence
of some positive constant c such that, for every positive integers n′ and ∆′ with n′ > ∆′,
there is a bipartite graph H(n′,∆′) of maximum degree at most ∆′ whose partite sets A
and B both have order n′ with the property that

min
{
|I ∩ A|, |I ∩B|

}
6 c

log(∆′)

∆′
n′ for every independent set I in H(n′,∆′).

Now, let ∆ and n0 be integers at least 9. Let n′ = ∆ + 1− 2
⌈√

∆
⌉

and ∆′ =
⌈√

∆
⌉
. Let

the graph G arise from a path or cycle G0 of order at least n0 by replacing every vertex
u of G0 with a clique Ku of order n′ and replacing every edge uv of G0 with a copy Huv

of H(n′,∆′). By construction, the graph G has maximum degree at most ∆ and order at
least n0. Furthermore, if S is a cutset of G, then there is some edge uv of G0 such that
(Ku ∪Kv) \ S is an independent set in Huv. By the properties of Huv, this implies that

∆G(S) > max
{
|Ku ∩ S|, |Kv ∩ S|

}
− 1

> ∆− 2
⌈√

∆
⌉
− c log(∆′)

∆′
n′

> ∆− (c+ 3)
√

∆ log(∆).
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We proceed to the proofs of Theorems 4 and 5 that both rely on the following iterative
procedure: Let ∆ be an integer at least 3, let G be a graph of maximum degree at most
∆, and let u be a vertex of G that is of minimum degree δ. Starting with U1 = {u} and
S1 = NG(u), we construct two finite sequences

U1 ⊆ U2 ⊆ U3 ⊆ · · · ⊆ Uk and S1, S2, S3, . . . , Sk

of sets of vertices of G such that, for every i ∈ [k],

(i) |Ui| = i, |Si| 6 δ,

(ii) Ui is the vertex set of a component of G− Si, and

(iii) every vertex in Si has a neighbor in Ui.

Furthermore, either ∆G(Sk) 6 ∆− 3 or V (G) = Uk ∪ Sk.
For i ∈ [k], let ni = |Si| and let mi be the number of edges of G between Si and Ui.
By construction, (i), (ii), and (iii) hold for i = 1.
Now, suppose that Si and Ui have been constructed such that (i), (ii), and (iii) hold

for some i. If ∆G(Si) 6 ∆ − 3 or V (G) = Ui ∪ Si, the procedure terminates and we set
k = i. Otherwise, we construct Si+1 and Ui+1 as follows:

Let v ∈ Si have at least ∆ − 2 neighbors in Si. By (iii), v has at least one
neighbor in Ui. Hence, the set N = NG(v) \ (Si ∪ Ui) contains at most one
vertex. Let Si+1 = (Si \ {v}) ∪N and Ui+1 = Ui ∪ {v}.

By construction, (i), (ii), and (iii) hold for i+ 1, and Ui ⊆ Ui+1.
Since G is finite and |Ui| strictly grows with i, this procedure necessarily terminates.
For the proofs of Theorems 4 and 5, we need to analyze the behavior of ni and mi:

Trivially, n1 = m1 = δ, which implies

m1 − 2n1 = δ − 2δ > −∆. (3)

For i ∈ [k − 1], let v and N be as above. If |N | = 1, then ni+1 = ni, v has exactly one
neighbor in Ui, v has exactly ∆− 1 neighbors in Si+1, and, hence,

mi+1 = mi −mG({v}, Ui) +mG({v}, Si+1) = mi + (∆− 2),

where mG(A,B) denotes the number of edges of G between disjoint sets A and B of
vertices of G.

If |N | = 0, then ni+1 = ni− 1, v has at most two neighbors in Ui, v has at least ∆− 2
neighbors in Si+1, and, hence,

mi+1 = mi −mG({v}, Ui) +mG({v}, Si+1) > mi − 2 + (∆− 2) = mi + (∆− 4).

Regardless of the value of |N |, we obtain

mi+1 − 2ni+1 > (mi − 2ni) + (∆− 2) for every i ∈ [k − 1]. (4)
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Combining (3) and (4), we obtain

mk − 2nk > −∆ + (∆− 2)(k − 1). (5)

Since G[Sk−1] contains at least ∆G(Sk−1) > ∆−2 edges, there are at most ∆nk−1−2(∆−2)
edges between Sk−1 and Uk−1, and we obtain

mk−1 − 2nk−1 6 (∆nk−1 − 2(∆− 2))− 2nk−1

= (∆− 2)(nk−1 − 2)
(i)

6 (∆− 2)(δ − 2)

6 (∆− 2)2. (6)

Combining (5) and (6), we obtain −∆ + (∆− 2)(k − 1) 6 (∆− 2)2, which implies

k 6 ∆ +
2

∆− 2
6 ∆ + 2. (7)

Proof of Theorem 4. By (i) and (7), we have |Uk|+ |Sk| 6 k+ ∆ 6 2∆ + 2, which implies
that V (G) 6= Uk ∪ Sk. Hence, by (ii), Sk is a cutset with ∆G(Sk) 6 ∆− 3.

Proof of Theorem 5. Let G be as in the statement. The hypothesis that G is of sufficiently
large order n means that there is some fixed n0 such that the statement holds for n > n0.
A detailed analysis of the following argument shows that n0 = 14 would suffice. For
simplicity, we choose n0 = 27. Below, we construct sequences U1 ⊆ U2 ⊆ U3 ⊆ · · · ⊆ U`
and S1, S2, S3, . . . , S` with the properties (i), (ii), and (iii) as above such that |Si| is non-
increasing with |S1| = 5 and mi = mG(Si, Ui) is strictly increasing with m1 = 5. Since
G is 5-regular, it follows m` 6 5|S`| 6 25, which implies ` 6 21, and, hence, we have
|U` ∪ S`| 6 `+ 5 6 26. It follows that for every such sequence, the set V (G) \ (U` ∪ S`) is
not empty.

Since the only 5-regular connected graph with the property that the neighborhood of
every vertex induces a copy of C5 is the icosahedron [9], which is a graph of order 12, it
follows, using n > 27, that there is a vertex u whose neighborhood does not induce a copy
of C5. If ∆G(NG(u)) 6 2, then this implies d̄G(S) < 2, and S = NG(u) has the desired
properties. Hence, we may assume that ∆G(NG(u)) > 3. Let U1 ⊆ U2 ⊆ U3 ⊆ · · · ⊆ Uk
and S1, S2, S3, . . . , Sk be as above, that is,

• k > 2,

• |Ui| = i for i ∈ [k],

• ni = |Si| satisfies 5 = n1 > n2 > · · · > nk,

• the number mi of edges between Si and Ui satisfies 5 = m1 < m2 < · · · < mk, and

• ∆G(Sk) 6 2.
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As explained above, we have that Rk = V (G) \ (Uk ∪ Sk) is not empty. If G[Sk] is not
2-regular, then S = Sk has the desired properties. Hence, we may assume that G[Sk] is
2-regular, that is, the set Sk induces a cycle. If some vertex x in Sk has no neighbor in Rk,
then Sk \ {x} has the desired properties. Hence, we may assume that every vertex in Sk
has at least one neighbor in Rk, and, hence, at most two neighbors in Uk. Since mk > nk,
some vertex v in Sk has exactly two neighbors in Uk, and, hence, exactly one neighbor
w in Rk. Let Sk+1 = (Sk \ {v}) ∪ {w} and Uk+1 = Uk ∪ {v}. Note that nk+1 = nk and
mk+1 > mk. Repeating the procedure described above, we continue the above sequences
with Uk ⊆ Uk+1 ⊆ · · · ⊆ Uk2 and Sk, Sk+1, . . . , Sk2 such that 5 > nk > nk+1 > · · · > nk2 ,
5 < mk < mk+1 < · · · < mk2 , and ∆G(Sk2) 6 2. Again, it follows that V (G) \ (Uk2 ∪ Sk2)
is not empty and that G[Sk2 ] is 2-regular. Repeating exactly the same arguments, we
obtain Uk2+1 ⊆ · · · ⊆ Uk3 and Sk2+1, . . . , Sk3 . Since mi strictly increases but ni 6 5, this
process can only be repeated a bounded number of times before it returns a cutset with
the desired properties. This completes the proof.

Since Theorem 7 allows a simpler proof of Theorem 6, we prove it first.

Proof of Theorem 7. Let G be a 4-regular graph with connectivity κ 6 3.
Let S be a cutset of order κ in G that minimizes the order of a smallest component C

of G−S. If S is independent, then S is the desired cutset. Hence, we may assume that S
is not independent, which implies κ ∈ {2, 3}. Since G is 4-regular, C has order at least 2.
Since S is a minimum cutset in G, every vertex in S has a neighbor in every component of
G−S. If some vertex x in S has exactly one neighbor y in C, then S ′ = (S \{x})∪{y} is
a cutset of order κ in G such that the smallest component of G−S ′ is strictly smaller than
C, which contradicts the choice of S. Hence, every vertex in S has at least two neighbors
in C. If G[S] contains two edges, then |S| 6 3 implies that some vertex x in S has two
neighbors in S as well as at least two neighbors in C, which implies the contradiction
that x has no neighbor in components of G − S that are distinct from C. Hence, G[S]
contains exactly one edge uv. Note that there are at most 2κ − 2 edges between S and
components of G− S that are distinct from C. If G− S has more than two components,
then this implies the existence of a component of G − S that is connected to S by at
most κ− 1 edges, which implies the contradiction that the connectivity is at most κ− 1.
Hence, G− S has exactly one component C ′ that is distinct from C. Since u and v both
have exactly one neighbor in C ′, the order of C ′ is at least 3. If there is a subset X of
S such that the set NX of vertices of C ′ that have a neighbor in X satisfies |X| > |NX |,
then (S \X) ∪NX is a cutset of order less than κ in G, which is a contradiction. Hence,
|X| 6 |NX | for every subset X of S, which, by Hall’s Theorem, implies the existence of
a matching M of size κ between S and C ′. Let uu′ and vv′ be two edges in M . Since
v has two neighbors in C and is adjacent to u and v′, v is not adjacent to u′. Hence, if
κ = 2, then u is the only neighbor of u′ in S. Similarly, if κ = 3 and S = {u, v, w}, then
w has two neighbors in C and one neighbor in C ′ that is distinct from u′ and v′. Since G
is 4-regular, we may assume, by symmetry, that u is the only neighbor of u′ in S. Now,
(S \ {u}) ∪ {u′} is an independent cutset, which completes the proof.
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If G is a graph of minimum degree δ, maximum degree ∆, and connectivity κ strictly
smaller than δ, then the same argument shows the existence of a cutset S with ∆S(G) 6
∆− 3 without a further condition on the order of G.

Proof of Theorem 6. Let G be as in the statement. We call a minimal cutset S of G of
order at most 4 with d̄G(S) < 1 good, and we assume that G has no good cutset. By
Theorem 7, G is 4-connected.

We establish two claims.

Claim 1. G contains P 2
6 as an induced subgraph.

Proof of Claim 1. Let x be a vertex of G such that G[NG(x)] is not isomorphic to 2K2.
Since the cutset NG(x) is not good, and G is 4-connected, some vertex y in NG(x) has
exactly two neighbors b and c in NG(x) and exactly one neighbor d outside of NG[x]. Let
a denote the vertex in NG(x) distinct from y, b, and c. Let S = (NG(x) \ {y}) ∪ {d} =
{a, b, c, d}. Note that there are six edges between the cutset S and the component of
G− S that contains x.

Suppose, for a contradiction, that ∆G(S) > 2. In this case, proceeding as in the proof
of Theorem 4 while using that n is sufficiently large and that G is 4-connected yields a
cutset S ′ of order 4 with ∆G(S ′) 6 1 such that there are at least eight edges between S ′

and the component of G − S ′ that contains x. Since S ′ is not good, the graph G[S ′] is
isomorphic to 2K2. Let S ′ = {a′, b′, c′, d′} and let a′b′ and c′d′ be the two edges within
S ′. Since G is 4-connected, there are exactly two components in G − S ′, and there are
exactly four edges between S ′ and the vertex set C ′ of the component of G−S ′ that does
not contain x. Since n is sufficiently large, we may assume that C ′ contains at least four
vertices. Since G is 4-connected, a simple application of Hall’s Theorem implies that the
four edges between S ′ and C ′ form a matching, say a′a′′, b′b′′, c′c′′, and d′d′′. Now, the set
{a′, b′′, c′, d′′} is a good cutset, which is a contradiction. This contradiction implies that
∆G(S) 6 1. Since S is not good, there are exactly two edges within S. By symmetry,
these two edges are either ad and bc or ab and cd.

Suppose, for a contradiction, that ad and bc are the two edges within S. Since G is
4-connected, a simple application of Hall’s Theorem implies the existence of a matching
containing four edges between NG(x) and the component of G − NG(x) that does not
contain x, say aa(3), bb(3), cc(3), and yd. Since a is adjacent to x, a(3), and d, we may
assume, by symmetry, that a is not adjacent to b(3). Now, the set {a, b(3), c, y} is a good
cutset, which is a contradiction. This contradiction implies that ab and cd are the two
edges within S. We obtain that G contains the square of the path abxycd as an induced
subgraph, which completes the proof of the claim.

Claim 2. If G contains P 2
n′ as an induced subgraph for some n′ with 6 6 n′ < n, then

either G contains P 2
n′′ as an induced subgraph for some n′′ with n′ < n′′ < n or G is

isomorphic to C2
n.

Proof of Claim 2. Let P : aba2b2 · · · cd be a path of order n′ such that G contains the
induced subgraph P 2 isomorphic to P 2

n′ . Since every vertex in V (P )\{a, b, c, d} has all its
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four neighbors in P 2 and n′ < n, the set S = {a, b, c, d} is a cutset. Since G is 4-connected,
the graph G− S has exactly two components and there are exactly six edges between S
and the vertex set C of the component of G − S that does not intersect P . Since G is
4-regular, the set C contains more than one vertex.

First, suppose that C contains exactly two vertices u and v, that is, n′ = n− 2. Since
there are six edges between S and C, the vertices u and v are adjacent. Since a and d
both have only two neighbors in P 2, they are both adjacent to u and v. By symmetry, we
may assume that b is adjacent to u and c is adjacent to v. Now, the graph G is isomorphic
to the square of the cycle aba2b2 · · · cdvua. Hence, we may assume that C contains more
than two vertices.

Next, suppose that C contains exactly three vertices u, v and w, that is, n′ = n − 3.
Since there are six edges between S and C, the vertices u, v, and w form a triangle. If a
and d have the same two neighbors in C, say u and v, then w is adjacent to b and c, and
NG(w) is a good cutset, which is a contradiction. Hence, by symmetry, we may assume
that a is adjacent to u and v, and that d is adjacent to v and w. If u is adjacent to c and
w is adjacent to b, then the set {a2, b2, u, d} is a good cutset, which is a contradiction. It
follows that u is adjacent to b and w is adjacent to c. Now, the graph G is isomorphic to
the square of the cycle aba2b2 · · · cdwvua. Hence, we may assume that C contains more
than three vertices.

Since G is 4-connected, Hall’s Theorem implies that there is a matching of size four
between S and C, say aa′, bb′, cc′, and dd′. Since the two cutsets {a, b′, c, d} and {a, b, c′, d}
are not good, it follows that either a is adjacent to c′ and d is adjacent to b′ or a is adjacent
to b′ and d is adjacent to c′. If a is adjacent to c′ and d is adjacent to b′, then {a, b′, c, d′} is
a good cutset, which is a contradiction. It follows that a is adjacent to b′ and d is adjacent
to c′. Since the cutset {a′, b′, c, d} is not good, the vertex a′ is adjacent to b′. Now, the
square of the path P ′ : a′b′aba2b2 · · · cd is an induced subgraph of G and the order of P ′

is n′ + 2 < n, which completes the proof of the claim.

Now, an inductive argument using Claim 1 for the base case and Claim 2 for the
inductive step implies that G is isomorphic to C2

n, which completes the proof.

As explained in the introduction, Theorem 8 relates to the stated conjecture of Le,
Mosca, and Müller [11] concerning planar graphs, which avoid Kr,r as a subgraph for
r = 3. Another reason why Kr,r naturally appears within this context is the iterative
procedure used for the proofs of Theorems 4 and 5. This procedure repeatedly increases
the number of edges in the bipartite subgraph between Ui and Si, which can be exploited
to obtain a copy of Kr,r, unless a good cutset is found.

Proof of Theorem 8. Let ∆, r, c, and G be as in the statement, and call a cutset S as
in the statement good. For a proof by contradiction, we assume that G has no good
cutset, and deduce the contradiction that G contains Kr,r as a subgraph. Therefore, by
an inductive argument, for i ∈ {1, . . . , r}, we show the existence of a cutset Si such that

• Si has order at most ∆ + (c− 3)(i− 1),
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• one component of G− Si with vertex set Ci has order exactly i,

• every vertex in Si has a neighbor in Ci, and

• there is a subset Ti of Si containing at least

∆− (c− 3)

(
i2

2
− i

2

)
− 2(i− 1)

vertices such that every vertex in Ci is adjacent to every vertex in Ti.

Note that |Si|+ |Ci| 6 ∆ + (c− 3)(i− 1) + i 6 ∆ + (c− 3)(r− 1) + r, which is less than
the order of G.

For i = 1, let S1 = T1 be the neighborhood of some vertex u1 of maximum degree,
which forms C1. By construction, S1, T1, and C1 satisfy the desired properties. Now,
suppose that Si−1, Ti−1, and Ci−1 with the desired properties have been constructed for
some i ∈ {2, . . . , r}. Since G has no good cutset, some vertex ui in Si−1 has at least
∆− c+ 1 neighbors in Si−1. Since ui has a neighbor in Ci−1, this implies that the set Ni

of neighbors of ui outside of Si−1 ∪ Ci−1 has order at most c− 2. Let

Si = (Si−1 \ {ui}) ∪Ni, Ci = Ci−1 ∪ {ui}, and Ti = Ti−1 ∩NG(ui).

By construction, |Si| 6 |Si−1|+ (c− 3) 6 ∆ + (c− 3)(i− 1), Ci is the vertex set of some
component of G−Si of order exactly i, and every vertex in Si has a neighbor in Ci. Since
ui has at most |Si−1| − |Ti−1| neighbors in Si−1 \ Ti−1, we obtain

|Ti| >
(

∆− c+ 1
)
−
(
|Si−1| − |Ti−1|

)
>

(
∆− c+ 1

)
−
(

∆ + (c− 3)(i− 2)
)

+

(
∆− (c− 3)

(
(i− 1)2

2
− (i− 1)

2

)
− 2(i− 2)

)
= ∆− (c− 3)

(
i2

2
− i

2

)
− 2(i− 1)

Altogether, we obtain Si, Ti, and Ci with the desired properties. The definition of c
implies that |Tr| > r. Hence, G[Cr ∪Tr] contains Kr,r as a subgraph, which completes the
proof.

Proof of Proposition 9. Let G be as in the statement. The square of G has maximum
degree at most ∆2, which implies that it has an independent set {u1, . . . , uα} of order
α > n

∆2+1
. In view of the desired statement, we may assume that ∆G(NG(ui)) > 2 for

every i ∈ [α]. Hence, for every i ∈ [α], there is a neighbor vi of ui such that ui and vi
have at least two common neighbors. Let the graph G′ with n′ vertices and m′ edges arise
from G by contracting the edges u1v1, . . . , uαvα. Note that

m′ 6 m− 3α 6

(
2 +

1

∆2 + 1

)
n− 4− 3α 6 2n− 2α− 4 = 2n′ − 4.

By Theorem 1, the graph G′ has an independent cutset S ′. Uncontracting the edges
u1v1, . . . , uαvα yields a cutset S with the desired properties.
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