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Abstract

In the past decades, many scholars have been concerned with the question of
which edge-extremal problems have spectral analogues. Recently, Wang, Kang, and
Xue established an interesting result on F -free graphs [J. Combin. Theory Ser.
B 159 (2023) 20–41]. In this paper, we investigate this problem in the context of
critical graphs. Let P be a property defined on a family G of graphs. A graph
G ∈ G is said to be P -critical if it satisfies P but G − e does not satisfy P for
any edge e ∈ E(G). Specifically, a graph is minimally k-(edge)-connected if it is
k-connected (respectively, k-edge-connected) and the deletion of any edge results in
a graph that is not k-connected (respectively, k-edge-connected). A natural max-
min problem is to determine the maximum spectral radius of minimally k-(edge)-
connected graphs with n vertice. In 2019, Chen and Guo [Discrete Math. 342 (2019)
2092–2099] resolved the case k = 2. In 2021, Fan, Goryainov, and Lin [Discrete Appl.
Math. 305 (2021) 154–163] determined the extremal spectral radius for minimally
3-connected graphs. In this paper, we establish structural properties of minimally
k-(edge)-connected graphs. Furthermore, we solve the max-min problem for the case
k > 3, demonstrating that any minimally k-(edge)-connected graph attaining the
maximum spectral radius simultaneously achieves the maximum number of edges.

Mathematics Subject Classifications: 05C50, 05C75

1 Introduction

Perhaps the most basic property a graph may blue posses is that of being connected.
At a more refined level, there are various functions that may be said to measure the
connectedness of a connected graph [2]. A graph is said to be connected if for every
pair of vertices there is a path joining them. Otherwise the graph is disconnected. The
connectivity (or vertex-connectivity) κ(G) of a graph G is the minimum number of vertices
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whose removal results in a disconnected graph or in a trivial graph. The edge-connectivity
κ′(G) is defined analogously, only instead of vertices we remove edges. A graph is k-
connected if its connectivity is at least k and k-edge-connected if its edge-connectivity
is at least k. It is almost as simple to check that the minimal degree δ(G), the edge-
connectivity and vertex-connectivity satisfy the following inequality:

δ(G) > κ′(G) > κ(G).

A number of extremal problems related to graph connectivity have been studied in recent
years. One of the most important tasks for characterization of k-connected graphs is to
give a certain operation such that they can be produced from simple k-connected graphs
by repeatedly applying this operation [2]. This goal has been accomplished by Tutte [27]
for 3-connected graphs, by Dirac [12] and Plummer [25] for 2-connected graphs, and by
Slater [26] for 4-connected graphs.

A graph is said to be minimally k-(edge)-connected if it is k-(edge)-connected but
omitting any of edges the resulting graph is no longer k-(edge)-connected. Clearly, a
k-(edge)-connected graph whose every edge is incident with one vertex of degree k is
minimally k-(edge)-connected. Especially, a k-regular and k-(edge)-connected graph is
minimally k-(edge)-connected.

One of the central problems in this area is to determine the number of vertices of degree
k in a minimally k-edge-connected graph. In 1972, Lick [16] showed that every minimally
k-edge-connected finite graph has at least two vertices of degree k (see also Lemma 13 in
[20]), which is clearly best possible. But for simple graphs, this was improved in [17] as
follows: every minimally k-edge-connected finite simple graph has at least k + 1 vertices
of degree k. It was proved in [19] that for every k /∈ {1, 3} there exists a ck > 0 such
that every minimally k-edge-connected finite simple graph G has at least ck|G| vertices
of degree k. The value of the constant ck was improved in [3] and [5], and a rather good
estimate for ck was given by Cai [6]. In 1995, Mader [21] further improved the value ck
and gave the best possible linear bound for k ≡ 3( mod 4).

Another interesting problem is to determine the maximum number of edges in a min-
imally k-(edge)-connected graph. Mader [18] proved that e(G) 6 kn −

(
k+1
2

)
for every

minimally k-connected graph G of order n, and if n > 3k − 2 then e(G) 6 k(n − k),
where the equality is uniquely attained by the complete bipartite graph Kk,n−k provided

that k > 2 and n > 3k − 1. Cai [4] proved that e(G) 6 b (n+k)
2

8
c for every minimally

k-connected graph G of order n < 3k − 2. Mader [18] also proved that every minimally
k-edge-connected graph on n vertices has at most k(n−k) edges provided n > 3k−2. The
complete bipartite graph Kk,n−k shows that this bound is tight. Dalmazzo [11] proved
that every minimally k-edge-connected multidigraph on n vertices has at most 2k(n− 1)
edges. In 2005, Berg and Jordán [1] showed that if multiple edges are not allowed then
Dalmazzo’s bound can be improved to 2k(n − k) for n sufficiently large. In this paper,
we first obtain an extremal result for every subgraph of a minimally k-(edge)-connected
graph.
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Theorem 1. Let G be a minimally k-(edge)-connected graph and let H be a subgraph of
G. Then e(H) 6 k(|H| − 1). Moreover, if |H| > 1

2
k(k + 5), then e(H) 6 k(|H| − k),

where the equality holds if and only if H ∼= Kk,|H|−k.

Let A(G) be the adjacency matrix of a graph G. The largest eigenvalue of A(G) is
called the spectral radius of G, and denoted by ρ(G). In classical theory of graph spectra,
many scholars are interested in an extremal problem, that is, what is the maximal spectral
radius of a family G of graphs, where graphs in G have a common property P . A graph is
said to be P -saturated, if it has the property P but adding an edge between an arbitrary
pair of non-adjacent vertices results in a graph which does not have the property. It is
known that A(G) is a non-negative matrix, and adding an edge in G always increases the
spectral radius provided that G is connected. Therefore, most of the spectral extremal
problems have saturated extremal graphs (see for example, [8, 9, 23, 15, 28, 22, 30, 31, 32]).
Particularly, we have the following problem.

Problem 2. What is the maximal spectral radius among all n-vertex saturated graphs
with fixed vertex-connectivity or edge-connectivity?

Ye, Fan and Wang [29] showed that among all graphs of order n with vertex (edge)-
connectivity k, K(n−1, k) has the maximal spectral radius, where K(n−1, k) is obtained
from the complete graph Kn−1 by adding a new vertex of degree k. Clearly, K(n−1, k) has
the same vertex-connectivity, edge-connectivity and minimum degree. Ning, Lu and Wang
[24] proved that for all graphs of order n with minimum degree δ and edge connectivity
κ′ < δ, the maximal spectral radius is attained by joining κ′ edges between two disjoint
complete graphs Kδ+1 and Kn−δ−1, and they also determined the unique extremal graph
with minimum degree δ and edge-connectivity κ′ ∈ {0, 1, 2, 3}. Very recently, Fan, Gu
and Lin [14] determined the unique spectral extremal graph over all n-vertex graphs with
minimum degree δ and edge connectivity κ′ ∈ {4, . . . , δ − 1}.

A graph G is said to be P -critical, if it admits a property P but G − e does not
have it for any edge e ∈ E(G). Clearly, every minimally k-(edge)-connected graph is
a connectivity-critical graph. Comparing with Problem 2, the following problem also
attracts interest of scholars.

Problem 3. What is the maximal spectral radius among all n-vertex critical graphs with
fixed vertex-connectivity or edge-connectivity?

Obviously, every minimally 1-(edge)-connected graph is a tree. Furthermore, it is
known that the maximal spectral radius of a tree is attained uniquely by a star (see [10]).
In 2019, Chen and Guo [7] showed that K2,n−2 attains the maximal spectral radius among
all minimally 2-connected graphs and minimally 2-edge-connected graphs, respectively.
Subsequently, Fan, Goryainov and Lin [13] proved that K3,n−3 attains the largest spectral
radius over all minimally 3-connected graphs.

Now let k > 3 be a fixed integer and α = 1
24k(k+1)

. Let X = (x1, x2, . . . , xn)T be a

non-negative eigenvector with respect to ρ(G). We may assume that xu∗ = max16i6n xi
for some u∗ ∈ V (G). In this paper, we prove the following result, which implies that every
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minimally k-(edge)-connected graph with large spectral radius contains a certain number
of vertices of high degrees.

Theorem 4. Let G be an n-vertex minimally k-(edge)-connected graph, where n > 18k
α2 .

If ρ2(G) > k(n− k), then G contains a k-vertex subset L such that xv > (1− 1
2k

)xu∗ and
dG(v) > (1− 2

3k
)n for each vertex v ∈ L.

The main result of the paper is the following Max-Min theorem, which implies that
every minimally k-(edge)-connected graph with maximal spectral radius also has maximal
number of edges.

Theorem 5. For n > 18k
α2 , the maximal spectral radius of an n-vertex minimally k-(edge)-

connected graph is attained uniquely by the complete bipartite graph Kk,n−k.

Finally, we present the following problem.

Problem 6. Consider a given property P . Does an edge-extremal problem on P -critical
graphs possess a spectral analogue?

The rest of the paper is organized as follows. In Section 2, we give some structural
properties of a minimally k-(edge)-connected graph as well as the proof of Theorem 1. In
Section 3, we use Theorem 1 to show Theorems 4 and 5.

2 Structural properties

Let G be a graph with vertex set V (G) and edge set E(G). We write |G| for the number
of vertices and e(G) the number of edges in G. For a vertex v ∈ V (G), let NG(v) be the
neighborhood of v. For S ⊆ V (G), we denote NS(v) = N(v)∩S and dS(v) = |NS(v)|. The
subgraph of G induced by S and V (G) \ S are denoted by G[S] and G− S, respectively.
Let eG(S) be the number of edges within S, and let eG(S, V (G) \ S) be the number of
edges between S and V (G) \ S. All the subscripts defined here will be omitted if it is
clear from the context. We start with the following lemma.

Lemma 7. Every k-(edge)-connected subgraph of a minimally k-(edge)-connected graph
is minimally k-(edge)-connected.

Proof. We first prove that for every subgraph of a minimally k-edge-connected graph,
if it is k-edge-connected then it is minimally k-edge-connected. Let G be a minimally
k-edge-connected graph. Suppose to the contrary that H is a k-edge-connected subgraph
of G but it is not minimally k-edge-connected. Then there exists an edge, say u1u2, of H
such that H − u1u2 is also k-edge-connected.

Notice that G is a minimally k-edge-connected graph. Hence, G − u1u2 is (k − 1)-
edge-connected. Thus, there exists a partition V (G) = V1 ∪ V2 such that u1 ∈ V1, u2 ∈ V2
and e(V1, V2) = k. Now, let Vi(H) = V (H) ∩ Vi for i ∈ {1, 2}. Clearly,

e
(
V1(H), V2(H)

)
6 e
(
V1, V2

)
= k,
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and thus e
(
V1(H), V2(H)

)
6 k− 1 in H − u1u2, which contradicts the fact that H − u1u2

is k-edge-connected. Therefore, the result follows.
The vertex-connected case of the lemma is an exercise of Chapter one in [2]. Hence,

we omit its proof here.

Next, we give the maximal number of edges in every subgraph of a minimally k-edge-
connected graph. Before proceeding, we need two more lemmas due to Mader [17].

Lemma 8 ([17]). Let G be a graph of order n > k. If G does not contain any (k + 1)-
edge-connected subgraph, then

e(G) 6 k(n− k) +
(
k
2

)
.

Furthermore, this bound is best possible.

Lemma 9 ([17]). Let G be a minimally k-edge-connected graph of order n > 3k. Then

e(G) 6 k(n− k),

with equality if and only if G ∼= Kk,n−k.

Theorem 10. Let G be a minimally k-edge-connected graph and let H be a subgraph of
G. Then e(H) 6 k(|H| − 1). Moreover, if |H| > 1

2
k(k + 5), then e(H) 6 k(|H| − k),

where the equality holds if and only if H ∼= Kk,|H|−k.

Proof. Firstly, we will show that e(H) 6 k(|H| − 1). If |H| < k, then e(H) 6 1
2
|H|(|H| −

1) 6 k(|H| − 1), as desired. Now assume that |H| > k. It suffices to show e(H) 6
k(|H| − k+1

2
). By Lemma 7, every k-edge-connected subgraph of G is minimally k-edge-

connected, and thus has edge-connectivity k. Hence, G contains no (k+1)-edge-connected
subgraphs. By Lemma 8, we have e(H) 6 k(|H| − k) +

(
k
2

)
= k(|H| − k+1

2
), as required.

In the following, we prove that e(H) 6 k(|H| − k) for |H| > 1
2
k(k + 5). The proof

should be distinguished into two cases.
Case 1: H contains no k-edge-connected subgraphs. By Lemma 8, we know

that e(H) 6 (k − 1)(|H| − k
2
). Note that |H| > 1

2
k(k + 5). It is easy to see that

(k − 1)(|H| − k
2
) < k(|H| − k), and the result follows.

Case 2: H contains k-edge-connected subgraphs. Let H0 be a maximal k-edge-
connected subgraph of H. Then H0 is a vertex-induced subgraph with |H0| > k + 1. If
H = H0, then by Lemma 7, H is minimally k-edge-connected. Since |H| > 1

2
k(k+5) > 3k,

by Lemma 9 we have e(H) 6 k(|H| − k), with equality if and only if H ∼= Kk,|H|−k.
Now we may assume that H0 is a proper induced subgraph of H. Then κ′(H) 6 k−1,

and thus we can find a partition V (H) = V0∪V1 such that e(H) 6 e(V0)+e(V1)+(k−1).
One can observe that H0 is a subgraph of H[V0] or H[V1] (otherwise, write Ui = V (H0)∩Vi
for i ∈ {0, 1}, then e(U0, U1) > k as H0 is k-edge-connected, consequently, e(V0, V1) > k,
a contradiction). For i ∈ {0, 1}, if κ′(H[Vi]) 6 k − 1 and |Vi| > 2, then we can find
a partition Vi = V ′i ∪ V ′′i such that e(Vi) 6 e(V ′i ) + e(V ′′i ) + (k − 1). Similarly, every
k-edge-connected subgraph of H[Vi] can only be a subgraph of H[V ′i ] or H[V ′′i ].
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By a series of above iterative operations (say s steps), we can obtain a partition
V (H) = ∪si=0Vi satisfying that

e(H) 6
s∑
i=0

e(Vi) + (k − 1)s (1)

and every H[Vi] is either k-edge-connected or a single vertex. Recall that G contains no
(k + 1)-edge-connected subgraphs. If H[Vi] is k-edge-connected, then |Vi| > k + 1 and
e(H[Vi]) 6 k(|Vi| − k+1

2
) by Lemma 8. Let S1 = {i | |Vi| = 1} and S2 = {0, . . . , s} \ S1.

Then s = |S1|+ |S2| − 1 and |H| =
∑

i∈S2
|Vi|+ |S1|. In view of (1), we have

e(H) 6
∑
i∈S2

k(|Vi| − k+1
2

) + (k − 1)(|S1|+ |S2| − 1)

= k|H| − 1
2
(k2 − k + 2)|S2| − |S1| − (k − 1).

(2)

If |S2| > 2, then 1
2
(k2 − k + 2)|S2| + (k − 1) > k2, and so e(H) < k(|H| − k), as

desired. Now assume that |S2| = 1 (say S2 = {0} and H[V0] = H0). Then S1 6= ∅ as H0

is a proper induced subgraph of H. By Lemma 7, H0 is minimally k-edge-connected. If
|H0| > 3k, then by Lemma 9, we have e(H0) 6 k(|V0| − k). Combining (1), we obtain
e(H) 6 k(|V0| − k) + (k − 1)|S1| = k(|H| − k) − |S1|. The result follows. If |H0| < 3k,
then |S1| = |H| − |H0| > 1

2
k(k − 1), and by (2) we have e(H) 6 k|H| − 1

2
(k2 − k + 2) −

|S1| − (k − 1) < k(|H| − k). This completes the proof.

Now we give a vertex-connected version of Theorem 10, which will be proved by a
different approach.

Lemma 11 ([2]). Let G be a minimally k-connected graph and let S be the set of vertices
of degree k in G. Then G− S is empty or a forest.

Recall that e(G) 6 k(n− k) for n > 3k− 2 and every n-vertex minimally k-connected
graph G. We also want to know the maximal number of edges in every subgraph of a
minimally k-connected graph.

Theorem 12. Let G be a minimally k-connected graph and let H be a subgraph of G.
Then e(H) 6 k(|H| − 1). Moreover, if |H| > 5k − 4, then e(H) 6 k(|H| − k), where the
equality holds if and only if H ∼= Kk,|H|−k.

Proof. Firstly, we show e(H) 6 k(|H| − 1). We partition V (H) into two parts: V (H) =

V1 ∪ V2, where V1 is the set of vertices of degree k in G. If |V2| = 0, then e(H) 6 k|H|
2

6
k(|H| − 1), as desired. If |V2| > 1, from Lemma 11 we know that G[V2] is a forest, and so
e(V2) 6 |V2| − 1. Thus, we can get an upper bound of e(H) as below:

e(H) = e(V1) + e(V1, V2) + e(V2) 6 k|V1|+ (|V2| − 1), (3)

where the equality holds if and only if G[V2] is a tree and NG(v) ⊆ V2 for each v ∈ V1. It
is clear that k|V1|+ |V2| − 1 6 k(|V1|+ |V2| − 1), and hence e(H) 6 k(|H| − 1).
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Next, we shall distinguish three cases to show e(H) 6 k(|H| − k) for |H| > 5k − 4. If
k = 1, then G is a tree. Clearly, the result holds. In the following, we may assume k > 2.

Case 1: |V2| > k + 1. From (3) we have

e(H) 6 k|V1|+ |V2| − 1 < k(|V1|+ |V2| − k) = k(|H| − k).

The result follows.
Case 2: |V2| = k. Then |V1| > 4(k − 1). If e(V2) = 0, then by (3), we have

e(H) 6 k|V1| = k(|V1|+ |V2| − k) = k(|H| − k), with equality if and only if H ∼= Kk,|H|−k.
Now, assume that e(V2) > 1, and let V ′1 = {v ∈ V1 | NG(v) = V2}. Then K|V ′1 |,|V2| ⊆

G[V ′1 ∪ V2]. We will see that |V ′1 | 6 k − 1. Otherwise, if |V ′1 | > k, then G[V ′1 ∪ V2]
is k-connected. By Lemma 7, G[V ′1 ∪ V2] is minimally k-connected, which implies that
G[V ′1 ∪ V2] ∼= K|V ′1 |,|V2| and so e(V2) = 0, a contradiction. Hence, |V ′1 | 6 k − 1.

On the other hand, let V ′′1 = V1 \ V ′1 , then

e
(
V ′′1
)

+ e
(
V ′′1 , V2

)
6
(
|V2| − 1

)
|V ′′1 |+ 1

2
|V ′′1 | =

(
k − 1

2

)
|V ′′1 |.

Since |V ′1 | 6 k − 1 and |V ′1 |+ |V ′′1 | = |V1|, we further obtain

e
(
V1
)

+ e
(
V1, V2

)
6 k|V ′1 |+ e

(
V ′′1
)

+ e
(
V ′′1 , V2

)
6
(
k − 1

2

)
|V1|+ 1

2

(
k − 1

)
.

Recall that |V1| > 4(k − 1) and e(V2) 6 k − 1. Thus we also have

e
(
H
)
6
(
k − 1

2

)
|V1|+ 3

2

(
k − 1

)
< k|V1| = k

(
|H| − k

)
.

Case 3: |V2| 6 k − 1. Then |V1| > 4k − 3. Let |V1| = x and |V2| = y. Then

e(H) = e(V1, V2) + e(V1) + e(V2)

6 |V1||V2|+ 1
2
|V1|(k − |V2|) + (|V2| − 1)

= 1
2
xy + 1

2
kx+ (y − 1),

Notice that k(|H| − k) = k(x+ y − k). Let

f(x, y) = 1
2
xy + 1

2
kx+ (y − 1)− k(x+ y − k).

It suffices to show f(x, y) < 0 for x > 4k−3 and y 6 k−1. Note that ∂f(x,y)
∂x

= 1
2
(y−k) < 0

and ∂f(x,y)
∂y

= 1
2
x+1−k > 0. Hence, f(x, y) is decreasing with respect to x and increasing

with respect to y. Therefore, f(x, y) |max= f(4k − 3, k − 1) = −1
2
, as desired.

Observe that 1
2
k(k + 5) > 5k − 4 for every positive integer k. Combining Theorems

10 and 12, we immediately obtain Theorem 1.
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3 Spectral extremal results

Let G be a minimally k-(edge)-connected graph of order n. By Perron-Frobenius theorem,
there exists a positive unit eigenvector with respect to ρ(G), which is called the Perron
vector of G. Let X = (x1, x2, . . . , xn)T be the Perron vector with coordinate xu∗ =
max{xi | i ∈ V (G)}. In this section, we first show Theorem 4, that is, if ρ2(G) > k(n−k),
then G contains a k-vertex subset L such that xv > (1− 1

2k
)xu∗ and d(v) > (1− 2

3k
)n for

each vertex v ∈ L. Before proceeding, we define three subsets of V (G).

Lα = {v ∈ V (G) | xv > αxu∗}, where 0 < α 6 1
24k(k+1)

;

Lβ = {v ∈ V (G) | xv > βxu∗}, where 5
3
α 6 β 6 1

6k2
;

Lγ = {v ∈ V (G) | xv > γxu∗}, where 1
2k

6 γ 6 1.

Clearly, Lγ ⊆ Lβ ⊆ Lα. In the following, assume that k > 3 and n > 18k
α2 . We shall prove

some lemmas on these three subsets.

Lemma 13. |Lα| <
√

4kn.

Proof. For every v ∈ Lα, we have ρxv =
∑

u∈N(v) xu, and thus

ρxv =
∑

u∈N(v)∩Lα
xu +

∑
u∈N(v)\Lα

xu 6
(
dLα(v) + α · dV (G)\Lα(v)

)
xu∗ . (4)

Since ρxv >
√
k(n− k)αxu∗ for v ∈ Lα, from (4) we have√

k(n− k)α 6 dLα(v) + α · dV (G)\Lα(v). (5)

Summing (5) over all v ∈ Lα, we have

|Lα|
√
k(n− k)α 6 2e(Lα) + α · e(Lα, V (G) \ Lα). (6)

By Theorem 1, we have e(Lα) 6 k|Lα| and e(Lα, V (G)\Lα) 6 e(G) 6 k(n−k). Combining
(6), we get that

|Lα|
√
k(n− k) 6

2k

α
|Lα|+ k(n− k). (7)

Since n > 18k
α2 , we have n − k > 16k

α2 , and hence 2k
α
< 1

2

√
k(n− k). Combining (7), we

obtain that |Lα| < 2
√
k(n− k), and thus |Lα| <

√
4kn, as desired.

For a vertex v ∈ V (G), let N [v] = N(v) ∪ {v} and N2(v) denote the set of vertices at
distance two from v.

Lemma 14. |Lβ| < 12k
α

.
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Proof. We proceed the proof by contradiction. Suppose that |Lβ| > 12k
α

. Recall that
Lβ ⊆ Lα and α 6 1

24k(k+1)
. Then |Lα| > 12k

α
> max{5k − 4, 1

2
k(k + 5)}. We first prove

that d(v) > α
12
n+ k for each vertex v ∈ Lβ.

By Theorem 1, we get that e(G) 6 kn, e(N [v]) 6 k(|N [v]| − 1) = kd(v) and e(N(v)∪
Lα) 6 k(d(v) + |Lα| − k). Since v ∈ Lβ, we can easily see that v ∈ Lα. Let S =
N(v) ∪ (Lα \ {v}). Then e(S) = e(N(v) ∪ Lα)− d(v) 6 (k − 1)d(v) + k|Lα| − k2, where
|Lα| <

√
4kn < α

2
n by Lemma 13 and the assumption that n > 18k

α2 .
It is easy to see that

d(v)xv +
∑

u∈N(v)

dN(v)(u)xu 6
(
d(v) + 2e(N(v))

)
xu∗ =

(
e(N [v]) + e(N(v))

)
xu∗ .

Note that S = N(v) ∪ (Lα \ {v}). Then e
(
N2(v) ∩ Lα, N(v)

)
6 e(S)− e

(
N(v)

)
and

∑
u∈N2(v)

dN(v)(u)xu =
∑

u∈N2(v)∩Lα

dN(v)(u)xu +
∑

u∈N2(v)\Lα

dN(v)(u)xu

6
(
e(S)− e(N(v)) + α · e(G)

)
xu∗ .

Combining the above two inequalities, we obtain

ρ2xv = d(v)xv +
∑

u∈N(v)

dN(v)(u)xu +
∑

u∈N2(v)

dN(v)(u)xu

6
(
e(N [v]) + e(S) + α · e(G)

)
xu∗ .

6
(

(2k − 1)d(v) + 3α
2
kn− k2

)
xu∗ .

Notice that 5
3
α 6 β < 1 and ρ2xv > k(n−k)βxu∗ > (βkn−k2)xu∗ for each vertex v ∈ Lβ.

In view of the above inequality, we have (β − 3
2
α)kn < (2k − 1)d(v), which yields that

d(v) > k
2k−1(β − 3

2
α)n > α

12
n+ k for each vertex v ∈ Lβ.

By Theorem 1, we also have e(Lβ) 6 k|Lβ|. Observe that
∑

u∈V (G)\Lβ d(u) > e(Lβ, V (G)\
Lβ) =

∑
v∈Lβ d(v)− 2e(Lβ). Therefore,

2e(G) =
∑
v∈Lβ

d(v) +
∑

u∈V (G)\Lβ
d(u) > 2

∑
v∈Lβ

d(v)− 2e(Lβ) > |Lβ|α6n.

Combining e(G) 6 kn, we obtain |Lβ| < 12k
α

. This completes the proof.

Lemma 15. d(v) >
(
γ − 1

6k

)
n for each v ∈ Lγ.

Proof. Suppose to the contrary that there exists a vertex v0 ∈ Lγ with d(v0) 6 (γ− 1
6k

)n.
We may assume that xv0 = γ0xu∗ . By the definition of Lγ, we know that 1

2k
6 γ 6 γ0 6 1,

and thus d(v0) 6 (γ0 − 1
6k

)n.
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Set R = N(v0) ∪N2(v0). Then xv 6 βxu∗ for each v ∈ R \ Lβ. Therefore,

ρ2xv0 = d(v0)xv0 +
∑
v∈R

dN(v0)(v)xv

= d(v0)xv0 +
∑

v∈R\Lβ
dN(v0)(v)xv +

∑
v∈R∩Lβ

dN(v0)(v)xv

6
(
γ0d(v0) + β

∑
v∈R\Lβ

dN(v0)(v) +
∑

v∈R∩Lβ
dN(v0)(v)

)
xu∗ .

(8)

Since N(v0) ⊆ R, we can see that∑
v∈R\Lβ

dN(v0)(v) 6
∑
v∈R

dR(v) = 2e(R) 6 2e(G) 6 2kn. (9)

Observe that R ∩ Lβ ⊆ Lβ \ {v0}. We also have∑
v∈R∩Lβ

dN(v0)(v) 6
∑

v∈Lβ\{v0}
dN(v0)∩Lβ(v) +

∑
v∈Lβ\{v0}

dN(v0)\Lβ(v)

6 2e
(
Lβ
)

+ e
(
Lβ, N(v0) \ Lβ

)
− |N(v0) \ Lβ|.

(10)

Furthermore, e
(
Lβ, N(v0) \Lβ

)
6 e
(
Lβ ∪N(v0)

)
− e
(
Lβ
)
. Notice that e(Lβ) 6 k|Lβ| and

e
(
Lβ ∪N(v0)

)
6 k

(
|Lβ|+ d(v0)

)
. Combining (10), we obtain∑

v∈R∩Lβ
dN(v0)(v) 6 e

(
Lβ ∪N(v0)

)
− |N(v0) \ Lβ|+ e(Lβ)

6 (k − 1)d(v0) + (k + 1)|Lβ|+ e(Lβ)

6 (k − 1)d(v0) + (2k + 1)|Lβ|.

(11)

Substituting (9) and (11) into (8), we get that

ρ2xv0 6
(
γ0d(v0) + 2kβn+ (k − 1)d(v0) + (2k + 1)|Lβ|

)
xu∗

=
(

(γ0 + k − 1)d(v0) + 2kβn+ (2k + 1)|Lβ|
)
xu∗ .

(12)

Since n > 18k
α2 and α < 1

24k2
, we have 12k

α
6 2

3
αn < n

(6k)2
. Moreover, by Lemma 14, we

have |Lβ| < 12k
α

. Thus, we can check that (2k+ 1)|Lβ| < n
6k
− k2 6 n

6k
− k2γ0. Recall that

ρ2xv0 > k(n− k)γ0xu∗ and d(v0) 6 (γ0 − 1
6k

)n. Combining (12), we obtain that

k(n− k)γ0 <
(
γ0 + k − 1

)(
γ0 − 1

6k

)
n+ 2kβn+ n

6k
− k2γ0,

which gives kγ0 < (γ0 + k − 1)(γ0 − 1
6k

) + 2kβ + 1
6k
. Recall that β 6 1

6k2
. It follows that(

γ0 − 1
)(
γ0 − 1

6k

)
> k−1

6k
− 2kβ > k−3

6k
> 0. (13)

Now let f(γ) = (γ − 1
)(
γ − 1

6k
), where 1

2k
6 γ 6 1. Obviously, f(γ)|max = f(1) = 0,

which contradicts (13). The proof is completed.
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Recall that Lγ = {u ∈ V (G) | xu > γxu∗}, where 1
2k

6 γ 6 1. Let γ0 := 1
2k

. Clearly,
L1−γ0 ⊆ Lγ0 . We will see that every vertex u ∈ Lγ0 has a larger value xu.

Lemma 16. Lγ0 = L1−γ0.

Proof. Suppose to the contrary that there exists a vertex u0 ∈ Lγ0 \ L1−γ0 . Assume that
xu0 = γxu∗ . Then γ0 6 γ < 1− γ0. Set R = N [u∗] ∪N2(u∗). Then we have

ρ2xu∗ =
∑
u∈R

dN(u∗)(u)xu =
∑

u∈R\Lβ
dN(u∗)(u)xu +

∑
u∈R∩Lβ

dN(u∗)(u)xu. (14)

Recall that e(G) 6 kn and xu 6 βxu∗ for each u ∈ R \ Lβ. Then∑
u∈R\Lβ

dN(u∗)(u)xu 6
∑
u∈R

dR(u)βxu∗ 6 2e(G)βxu∗ 6 2βknxu∗ . (15)

On the other hand, since u0 ∈ Lγ0 and Lγ0 ⊆ Lβ, we have u0 ∈ Lβ, and thus∑
u∈R∩Lβ

dN(u∗)(u)xu 6
∑
u∈Lβ

dN(u∗)(u)xu∗ + dN(u∗)(u0)(xu0 − xu∗), (16)

where xu0 − xu∗ = (γ − 1)xu∗ and∑
u∈Lβ

dN(u∗)(u) =
∑
u∈Lβ

dN(u∗)\Lβ(u) +
∑
u∈Lβ

dN(u∗)∩Lβ(u)

6 e(Lβ, N(u∗) \ Lβ) + 2e(Lβ)

6 e(G) + e(Lβ).

Recall that e(G) 6 k(n− k) and e(Lβ) 6 k|Lβ| < 12
α
k2. Consequently,

∑
u∈Lβ dN(u∗)(u) 6

k(n− k) + 12
α
k2. Combining (14)-(16), we obtain

ρ2xu∗ 6
(

2βkn+ k(n− k) + 12
α
k2 + (γ − 1)dN(u∗)(u0)

)
xu∗ . (17)

By Lemma 15, we have d(u∗) > (1− 1
6k

)n and d(u0) > (γ− 1
6k

)n. Thus, |V (G)\N(u∗)| 6 n
6k

and dN(u∗)(u0) > (γ − 1
3k

)n. Notice that ρ2 > k(n− k). It follows from (17) that(
γ − 1

)(
γ − 1

3k

)
n > −

(
2βkn+ 12

α
k2
)
.

Recall that α 6 1
24k(k+1)

, β > 5
3
α and n > 18k

α2 . Then 12
α
k2 6 2

3
αkn. Now choose β = 5

3
α.

Then we have 2βkn + 12
α
k2 6 4αkn, and hence (γ − 1)(γ − 1

3k
) > −4αk > − 1

6(k+1)
. Let

f(γ) = (γ−1)(γ− 1
3k

), where γ0 6 γ 6 1−γ0 and γ0 = 1
2k

. Obviously, f(γ)|max = f(γ0) =
−2k−1

12k2
< − 1

6(k+1)
for k > 3, a contradiction.

With the above lemmas in hand, we now provide the proof of Theorem 4.
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Proof. Choose L = Lγ0 in Theorem 4. Given an arbitrary vertex v ∈ L. By Lemma 16,
we have v ∈ L1−γ0 , and thus xv > (1− γ0)xu∗ = (1− 1

2k
)xu∗ . Furthermore, by Lemma 15

we have d(v) > (1− γ0 − 1
6k

)n = (1− 2
3k

)n.
In the following, it remains to show that |L| = k. Firstly, suppose that |L| > k + 1.

Taking v1, v2, . . . , vk+1 from L, we have

∣∣ k+1⋂
i=1

N(vi)
∣∣ > k+1∑

i=1

∣∣N(vi)
∣∣− k∣∣ k+1⋃

i=1

N(vi)
∣∣ > (k + 1

)(
1− 2

3k

)
n− kn = k−2

3k
n > k + 1.

Thus, G contains a copy of Kk+1,k+1, which is clearly a (k+1)-(edge)-connected subgraph.
However, by Lemma 7, every k-(edge)-connected subgraph of G is minimally k-(edge)-
connected, which implies that G contains no any (k + 1)-(edge)-connected subgraph. We
get a contradiction. Therefore, |L| 6 k.

Finally, suppose that |L| 6 k − 1. Since L = Lγ0 , we have xv < γ0xu∗ = 1
2k
xu∗ for

every v ∈ V (G) \ L. Setting R = N [u∗] ∪N2(u∗), we have

ρ2xu∗ =
∑
u∈R

dN(u∗)(u)xu 6
( ∑
u∈R∩L

dN(u∗)(u) + 1
2k

∑
u∈R\L

dN(u∗)(u)
)
xu∗ , (18)

Let E0 be the set of edges incident to vertices of L. Then, every edge in E0 can not be
counted twice in

∑
u∈R\L dN(u∗)(u). Moreover, it is easy to see that u∗ ∈ L and every edge

incident to u∗ can not be counted in
∑

u∈R\L dN(u∗)(u). Consequently,
∑

u∈R\L dN(u∗)(u) 6
2e(G)− d(u∗)− |E0|. Note that e(G) 6 kn and

d(u∗) + |E0| = d(u∗) +
∑
v∈L

d(v)− e(L) >
(
|L|+ 1

)(
1− 2

3k

)
n− 1

2
k2 > |L|n.

It follows that
∑

u∈R\L dN(u∗)(u) 6 (2k − |L|)n. Observe that
∑

u∈R∩L dN(u∗)(u) 6 |L|n.

Combining (18) and |L| 6 k − 1, we obtain

ρ2 6 |L|n+ 1
2k

(
2k − |L|

)
n 6 (k − 1)n+ (k+1)

2k
n = kn− k−1

2k
n,

which contradicts ρ2 > k(n− k). Therefore, |L| = k. This completes the proof.

At the end of this section, we give the proof of Theorem 5.

Proof. Let G∗ be a graph that has the maximal spectral radius among all minimally k-
(edge)-connected graphs of order n, where n > 18k

α2 and α = 1
24k(k+1)

. Since Kk,n−k is also

minimally k-(edge)-connected, we have ρ2(G∗) > ρ2(Kk,n−k) = k(n− k). Furthermore, by
Theorem 4, G∗ contains a k-vertex subset L such that xv > (1− 1

2k
)xu∗ and d(v) > (1− 2

3k
)n

for each vertex v ∈ L, where L = L 1
2k
.

Denote by V the common neighbourhood of vertices in L, and let U = V (G∗)\(L∪V ).
Since |L| = k and every vertex in L has at most 2

3k
n non-neighbors, we can see that

|L ∪ V | > n− k · 2
3k
n = n

3
> 1

2
k(k + 5).
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The key point is to show that U = ∅. Suppose to the contrary that |U | = t 6= 0. By
Theorem 1, we have e(G∗) 6 k(n− k) = k(|V |+ |U |).

Now, define G0 = G∗ and U0 = U . Moreover, let E0 be the subset of E(G0) in which
every edge is incident to at least one vertex from U0. Then |E0| 6 e(G∗)−e(L, V ) 6 k|U0|,
as e(L, V ) = |L||V | = k|V |. It follows that

∑
u∈U0

dG0(u) 6 2|E0| 6 2k|U0|, which implies
that there exists a vertex u0 ∈ U0 such that dG0(u0) 6 2k.

Then, let G1 = G0−{u0}, U1 = U0\{u0} and E1 be the subset of E(G1) in which every
edge is incident to some vertices from U1. Similarly as above, we have e(G1) 6 k(|V |+|U1|)
and |E1| 6 e(G1) − e(L, V ) 6 k|U1|. Thus, we can find a vertex u1 ∈ U1 such that
dG1(u1) 6 2k. Consequently, we can obtain a vertex ordering u0, u1, . . . , ut−1 such that
Gi = Gi−1 − {ui−1}, Ui = Ui−1 \ {ui−1} and dGi(ui) 6 2k for each i ∈ {1, . . . , t− 1}. For
simplicity, we denote dL(ui) = di and dGi−L(ui) = d′i. Then di 6 k − 1 by the definition
of U , and di + d′i = dGi(ui) 6 2k for i ∈ {0, . . . , t− 1}.

We shall construct a new graph G from G∗ in the following way. For each vertex ui
(0 6 i 6 t − 1), we delete all d′i edges from ui to V (Gi − L), and then add all possible
k − di edges from ui to L. Denote NL(ui) = L \NL(ui). Then, we can see that

ρ(G)− ρ(G∗) >
∑

uv∈E(G)

xuxv −
∑

uv∈E(G∗)

xuxv =
t−1∑
i=0

xui

( ∑
v∈NL(ui)

xv −
∑

v∈NGi−L(ui)
xv

)
. (19)

Recall that xv >
(
1 − 1

2k

)
xu∗ for each v ∈ L. Moreover, since we choose L = L 1

2k
, it is

obvious that xv <
1
2k
xu∗ for each v /∈ L. In view of (19), we obtain

ρ(G)− ρ(G∗) >
t−1∑
i=0

xuixu∗
(

(k − di)(1− 1
2k

)− d′i · 1
2k

)
.

Recall that di + d′i 6 2k and di 6 k − 1 for each i ∈ {0, . . . , t− 1}. Thus,

(k − di)(1− 1
2k

)− d′i · 1
2k

> (k − di)(1− 1
2k

)− (2k − di) 1
2k

> 1− k+2
2k

> 0.

It follows that ρ(G) > ρ(G∗).
Observe that NG(ui) = L for each ui ∈ U . We will further see that G ∼= Kk,n−k.

Indeed, otherwise, G � Kk,n−k, then either eG(L) 6= 0 or eG(V ) 6= 0. However, G∗[L ∪ V ]
contains a spanning subgraph K|L|,|V |, where |L| = k and |L ∪ V | > n

3
. Hence, G∗[L ∪ V ]

is clearly k-(edge)-connected. By Lemma 7, G∗[L ∪ V ] is minimally k-(edge)-connected,
which implies that G∗[L∪V ] ∼= K|L|,|V |. Since G[L∪V ] = G∗[L∪V ], we have G[L∪V ] ∼=
K|L|,|V |, and thus eG(L) = eG(V ) = 0, a contradiction. Hence, G ∼= Kk,n−k. But now, the
inequality ρ(G∗) < ρ(G) contradicts the assumption that G∗ has maximal spectral radius.
Therefore, U = ∅ and G∗ ∼= Kk,n−k. This completes the proof.
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