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Abstract

We introduce the random graph P(n, q) which results from taking the union
of two paths of length n > 1, where the vertices of one of the paths have been
relabelled according to a Mallows permutation with parameter 0 < q(n) 6 1. This
random graph model, the tangled path, goes through an evolution: if q is close to 0
the graph bears resemblance to a path, and as q tends to 1 it becomes an expander.
In an effort to understand the evolution of P(n, q) we determine the treewidth and
cutwidth of P(n, q) up to log factors for all q. We also show that the property of
having a separator of size one has a sharp threshold. In addition, we prove bounds
on the diameter, and vertex isoperimetric number for specific values of q.

Mathematics Subject Classifications: 05C80, 05A05, 68Q87, 05C78

1 Introduction

Given two graphs G,H on a common vertex set [n] = {1, . . . , n}, and a permutation σ
on [n], it is natural to consider the following graph

layer(G, σ(H)) = ([n], E(G) ∪ {σ(x)σ(y) : xy ∈ E(H)}) ,

which is the union of two graphs where the second graph has been relabelled by a per-
mutation σ. Constructions of graphs via unions are very natural, and have appeared in
several contexts, see Section 1.2. Let Pn be the path on [n] that connects i to i + 1,
for i ∈ [n − 1], and let Sn be the set of all permutations on [n]. Consider the following
scenario: one must choose a permutation σ ∈ Sn with the goal of making layer(Pn, σ(Pn))
as different from a path as possible. There are many parameters one may use to measure
the difference between a connected graph G and a path; for example one may look at
the diameter diam(G) or the vertex isoperimetric number ϕ(G), as the path is extremal
for these parameters. The treewidth tw(G) which, broadly speaking, measures how far
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(globally) the graph is from being a tree [33], is another natural candidate. Given two
or more paths one can build a grid-like graph (see [18, Lemma 8] for more details) which
would have treewidth and diameter Θ(

√
n). If we choose a permutation uniformly at

random, then as a consequence of a result of Kim & Wormald [31, Theorem 1], with high
probability the resulting graph is a bounded degree expander. Thus, in this case, the
graph layer(Pn, σ(Pn)) has treewidth Θ(n) and diameter Θ(log n), so by these parameters
it is essentially as far from a path as a sparse graph can be.

The example above shows that even restricting the input graphs to paths can produce
rich classes of graphs. Having seen what happens for a uniformly random permutation,
one may ask about the structure of layer(Pn, σ(Pn)) when σ is drawn from a distribution
on Sn that is not uniform. One of the most well known non-uniform distributions on Sn
is the Mallows distribution, introduced by Mallows [37] in the late 1950s in the context
of statistical ranking theory. Recently it has been the subject of renewed interest for
other applications, and as an interesting and natural model to study in its own right, see
Section 1.2. The distribution has a parameter q which, roughly speaking, controls the
amount of disorder in the permutation.

For real q > 0 and integer n > 1, the (n, q)-Mallows measure µn,q on Sn is given by

µn,q(σ) =
qInv(σ)

Zn,q
for any σ ∈ Sn, (1)

where Inv(σ) = |{(i, j) : i < j and σ(i) > σ(j)}| is the number of inversions in the
permutation σ and Zn,q is given explicitly by the following formula [5, Equation (2)]:

Zn,q =
n∏
i=1

(
1 + q + · · ·+ qi−1

)
=

n∏
i=1

1− qi

1− q
.

When q → 0, the distribution µn,q converges weakly to the degenerate distribution on
the identity permutation. We extend µn,q to q = 0 by setting µn,0 to be the probability
measure assigning 1 to the identity permutation. On the other hand if q = 1 then µn,1
is the uniform measure on Sn. One can see that σ ∼ µn,q has distribution µn,1/q when
reversed.

We study the random graph given by layer(Pn, σ(Pn)), where σ ∼ µn,q and 0 6 q :=
q(n) 6 1. From now on we call this random graph the tangled path model and denote
it by P(n, q). Thus a random graph P(n, q) has vertex set [n] and (random) edge set
E(Pn)∪ {σ(i)σ(i+ 1) : i ∈ [n− 1]}, where σ ∼ µn,q. We restrict to q ∈ [0, 1] as reversing
the permutation does not affect our construction (up to a relabelling, see (8)). We also
identify any multi-edges created as one edge, however this detail is not important for any
of our results. This paper will focus on P(n, q); as we have seen already combining paths
can give rise to interesting and varied graphs, and the Mallows permutation gives our
model a parameter q which, roughly speaking, increases the ‘tangled-ness’ of the graph.
Other reasons for using Mallows permutations are that they are well studied (see Section
1.2), and they are mathematically tractable since they can be generated by a sequence
of independent random variables (see Section 3.1).

By the above, P(n, 0) is a path and P(n, 1) is an expander with high probability; the
latter follows from [31, Theorem 1] but we also give a self-contained proof in this paper.
Our ultimate aim is to understand the structure of P(n, q) for intermediate values of q,
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q

0 11− ε 1− (log logn)2

logn
1− π2

6 logn
1− 1

50n

tw, cw = Θ
(√

logn
log(1/q)

)
tw, cw = Θ̃

(
1

1−q

)
tw, cw = Θ(n)

Contains an (1, α)-separator
for any 1/2 < α < 1

Has no (1, α)-separator
for any 1/2 < α < 1

diam = Θ(n) Expander

Figure 1: The diagram above gives a representation of our main results. All results
above hold with high probability, and we say that f(n) = Θ̃(g(n)) if there exist constants
c, C > 0 and n0 such that c · g(n)/ log g(n) 6 fn 6 C · g(n) · log g(n) for all n > n0.

and this paper takes the first steps in this direction. Informally, if q is not tending to 1
too fast, then P(n, q) is ‘path-like’; we show that if q < 1 is fixed the diameter is linear
(Theorem 3), and there is a sharp threshold for having a single cut vertex at qc = 1− π2

6 logn

(Theorem 2). For q → 1 sufficiently fast, it makes more sense to measure the complexity
of the internal structure of P(n, q) by how much it differs from a tree. Here we show that,
up to logarithmic factors, the treewidth [33] of P(n, q) grows at rate (1− q)−1 (Theorem
4) until the graph becomes an expander at around q = 1− 1

n
(Theorem 1), indicating that,

in the sense of treewidth, the complexity of the structure grows smoothly with q. This
behaviour contrasts with the binomial/Erdős-Rényi random graph [21] where treewidth
increases rapidly from being bounded by a constant, to Θ(n) as the average degree rises
from below one to above one [17, 34].

Further motivation for this line of study comes from practical algorithmic applica-
tions. Many real-world systems – including social, biological and transport networks –
involve qualitatively different types of edges, where each type of edge generates a “layer”
with specific structural properties [32, 43]. For example, when modelling the spread of
disease in livestock, one layer of interest arises from physical adjacency of farms, and
so is determined entirely by geography. A second epidemiologically-relevant layer could
describe the pairs of farms which share equipment: this is no longer fully determined by
geography, but will nevertheless be influenced by the location of farms, as those that are
geographically close are more likely to cooperate in this way. It is known that algorithmi-
cally useful structure in individual layers of a graph is typically lost when the layers are
combined adversarially [18]. The present work can be seen as an attempt to understand
the structure of graphs generated from two simple layers which are both influenced to
some extent by a shared underlying “geography”. In this setting the treewidth tw is a
natural parameter as many NP-hard problems become tractable when parametrised by
tw [15, Ch. 7].

1.1 Our Results

In what follows, the integer n > 1 denotes the number of vertices in the graph (or elements
in a permutation) and q := q(n), the parameter of the Mallows permutation (or related
tangled path), is a real-valued function of n taking values in [0, 1]. We say a sequence of
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events En occurs with high probability (w.h.p.) if P( En )→ 1 as n→∞. Throughout log
is base e. See Figure 1 for a summary of our results.

A graph G is a vertex-expander if there exists c > 0 (independent of n) such that any
set S ⊆ V with |S| 6 dn/2e is adjacent to at least c|S| vertices in V \S, see Section 2.1.
As mentioned above, when q = 1 the permutation is uniform, and so the fact that w.h.p.
P(n, 1) is an expander follows from [31, Theorem 1]. We give a self-contained proof of
this fact, which also shows that for q sufficiently close to 1, this still holds.

Theorem 1. If q > 1− 1
50n

, then w.h.p. P(n, q) is a vertex-expander.

For an integer s > 1 and 1/2 6 α < 1 we say that a graph G with vertex set V
has an (s, α)-separator if there is a vertex subset S with |S| 6 s such that V \S can
be partitioned into two disjoint sets of at most α|V | vertices with no crossing edges, see
Section 2. Balanced separators (e.g. α = 2/3) are useful for designing divide and conquer
algorithms, in particular for problems on planar graphs [36], and are connected to other
notions of sparsity [41].

Observe that, for any fixed 1/2 < α < 1, if G is a vertex expander then there exists
a c > 0 such that G has no (cn, α)-separator. At the other extreme, the path has a
(1, α)-separator. We show that for P(n, q) this ‘path-like’ property disappears around
qc = 1− π2

6 logn
.

Theorem 2. For any fixed 1/2 < α < 1 we have

lim
n→∞

P(P(n, q) has a (1, α)-separator ) =

{
0 if π2

6(1−q) − log n+ 5 log logn
2

→∞
1 if π2

6(1−q) − log n+ 9 log logn
2

→ −∞
.

In other words, Theorem 2 shows that if q is sufficiently below the threshold qc =
1− π2

6 logn
then w.h.p. there is a cut vertex which separates the graph into two Θ(n) vertex

subpaths, and if q is sufficiently above it then there does not. We say that q0 is sharp
threshold for a graph property P if for any ε > 0 w.h.p. P(n, p) /∈ P for any p 6 q0(1−ε),
and P(n, r) ∈ P for any r > q0(1+ε), see [20]. Theorem 2 is quite precise as it determines
the second order of the threshold up to a constant, showing that the property of having a

(1, α)-separator has a sharp threshold of width O
(

log logn
(logn)2

)
. Theorem 2 is established by

finding first and second moment thresholds for the property. Positive correlation between
cuts suggests this result cannot be significantly improved using standard methods alone
(see Remark 26).

The diameter diam(G) of a graph G is the length of the longest shortest path between
any pair of vertices. Theorem 1 implies that diam(P(n, q)) = O(log n) when q is suffi-
ciently close to 1. On the other hand diam(P(n, 0)) = n−1 as P(n, 0) is a path; we show
this holds (up to a constant) for any fixed q < 1.

Theorem 3. For any 0 < ε < 1, let 0 < q 6 1 − ε. Then, there exists a constant
c := c(ε) > 0 such that for n > 1/c, we have P( diam(P(n, q)) > cn ) 6 n−1/10.

This result follows from bounds on the number of cut vertices used to prove Theorem 2.
The treewidth tw(G) of a graph G is one less than the minimum size of the largest

vertex subset (i.e. bag) in a tree decomposition of G, minimised over all such decomposi-
tions. The cutwidth cw(G) is the greatest number of edges crossing any real point under
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an injective function f : V → Z, minimised over all f . See Section 2.1 for full definitions
of these quantities. It is known that for any graph G we have tw(G) 6 cw(G), however
there may be a multiplicative discrepancy of order up to n. We show there is at most
only a constant factor discrepancy for G = P(n, q) in certain ranges of q, and give bounds
for all q which are tight up to a log factor.

Theorem 4. For any constant κ > 0, let 0 < q 6 1 − κ · (log logn)2

logn
. Then, there exist

constants c1, c2 > 0 such that w.h.p.

c1 ·

(√
log n

log(1/q)
+ 1

)
6 tw(P(n, q)) 6 cw(P(n, q)) 6 c2 ·

(√
log n

log(1/q)
+ 1

)
.

Furthermore, if 1− (log logn)2

logn
6 q 6 1, then w.h.p.

10−5 ·min

{
1

1− q
, n

}
6 tw(P(n, q)) 6 cw(P(n, q)) 6 5·max

{
1

1− q
· log

(
1

1− q

)
, n

}
.

Observe that if q → 1 then log(1/q) ≈ 1−q and so when q = 1−Θ ((log log n)2/ log n)
we have

√
log(n)/ log(1/q) ≈ − log(1 − q)/(1 − q). Thus, the two upper bounds on the

cutwidth are equal up to constants for this range of q. Hence, for this range of q, the
upper bound for the cutwidth given in the second equation is tight and the lower bound
for treewidth is off by a multiplicative factor of order log log n.

The lower bounds on treewidth in Theorem 4 are proved by relating the treewidth to
the occurrence of certain permutations as consecutive patterns in the underlying Mallows
permutation. The upper bounds on cutwidth are proved by controlling the density of
long edges.

1.2 Further Related Work

Many works have studied properties of a typical permutation sampled from the Mallows
measure, in particular the longest increasing subsequence [5, 40], cycle structure [23],
permutation pattern avoidance [14, 44] and sets of consecutive elements [45]. Mallows
permutations also arise as limit objects from stable matchings [4] and have been studied
in the contexts of statistical physics [47], Markov chains [16], learning theory [11] and
finitely dependent processes [28].

Random graphs have been heavily studied since their introduction in the late 1950s
[21]. A random graph arising from the Mallows distribution is introduced in [6]. In this
model each edge corresponds to an inversion in the permutation, so it is different to our
model. To our knowledge the model in [6] and the tangled path introduced here are the
only random graph models based on Mallows permutation. However, some works have
studied relations between random graph models and uniform permutations. In particular,
in [31] it is proven that the union of two uniformly permuted cycles is contiguous to a
random 4-regular graph. Very recently [12] used a union of two paths permuted by a
uniform random permutation to get a lower bound on resolution refutations for SAT
solvers. Also, [22] shows the union of two uniformly random trees on the same vertex set
is an expander with high probability.
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There are also several papers which consider the graphs formed from (permuted)
unions of graphs. In particular independent sets in the union of two Hamiltonian cy-
cles [2], and the treewidth of a union of two graphs glued using a permutation [3] and
[46, Chapter 5]. The clique number of graph unions [1, 42], and unions of cliques have
been studied [9]. Unions of dense graphs with random graphs, namely ‘randomly per-
turbed graphs’, have been studied intensely, see [8] and citing papers. There is also a
connection between graph unions and threshold graphs [27]. From the other direction,
decompositions of graphs have been well studied [24, 39, 48].

1.3 Outline of the Paper

In Section 2 we cover some basic notation, definitions and concentration inequalities.
In Section 3 we state some known facts about the Mallows distribution, in particular
defining the q-Mallows process, before introducing our notions of ‘flushing’ and ‘local’
events that are useful later in the paper. Section 4 establishes properties of the tangled
path in the case where q is close to one. The first result in this section shows that
when q = 1 (i.e. a uniformly random permutation) the tangled path is an expander
with high probability. Then, a bound on the probability of events under the q-Mallows
measure by that of the 1-Mallows measure is shown; this is useful later when bounding
the treewidth. The beginning of Section 5 focuses on bounding the probability of flushing
events. In the remainder of Section 5, these bounds are used to prove a sharp threshold
for (1, α)-separators and a linear bound on the diameter. Arguably the most interesting
techniques and proofs are in Section 6. To prove a lower bound on the treewidth we use
consecutive patterns in the Mallows permutations to find smaller tangled paths with a
higher q parameter as minors in the tangled path. To prove corresponding upper bounds
we control the cutwidth by bounding the number of ‘long’ edges created during the q-
Mallows process. Finally, we conclude with some open problems in Section 7.

2 Notation and Preliminaries

For a random variable X and probability measure µ we use X ∼ µ to say that X has
distribution µ. Let X, Y be random variables, then X stochastically dominates Y if
P(X > x ) > P(Y > x ) for all real x, and we denote this by X � Y . We let Ω denote
the sample space and Ec = Ω\E to denote the complement of an event E . We also let
1E :Ω → {0, 1} denote the indicator random variable where 1E(ω) = 1 if ω ∈ E and
1E(ω) = 0 otherwise.

Throughout log denotes the natural logarithm (base e) we will also use the ln notation
for this natural logarithm sometimes for reader recognition. We note that for any real
x > −1,

x

1 + x
6 log(1 + x) 6 x. (2)

We use standard asymptotic (big-O etc.) notation consistent with [21]. A sequence
of events (En) holds with high probability (w.h.p.) if limn→∞ P( En ) = 1. We use := to
indicate suppressed dependency, e.g. C := C(c) if the constant C depends on c.
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2.1 Expansion, Width Measures and Graph Minors

Let S ⊆ V and define the edge boundary ∂(S) = {uv ∈ E(G) : u ∈ S, v ∈ V (G) \S} of S
to be the set of edges with one endpoint in S and the other outside S. Similarly we let
the outer vertex boundary N(S) = {v ∈ V \S : there exists u ∈ S, uv ∈ E} of S to be
the set of vertices outside S which share an edge with a vertex in S. We then define

φ(G) = min
0<|S|6n/2

|∂(S)|
|S|

and ϕ(G) = min
0<|S|6n/2

|N(S)|
|S|

to be the edge and vertex isoperimetric numbers respectively. For any graph G we have

ϕ(G) 6 φ(G) 6 max
v∈V
|N(v)| · ϕ(G). (3)

We say that a graph sequence Gn is an edge (resp. vertex ) expander sequence if there
exists some fixed α > 0 such that φ(Gn) > α (resp. ϕ(Gn) > α) for all n suitably large,
see [29].

Let 1
2
6 α < 1, s > 0 an integer, and G = (V,E) a graph. A subset S ⊂ V is said to

be an (s, α)-separator of G [10, 33], if there exists subsets A,B ⊂ V such that

• V = A ∪B ∪ S and A,B, S are pairwise disjoint,

• |S| 6 s, |A|, |B| 6 α|V |, and

• {ab ∈ E : a ∈ A, b ∈ B} = ∅.

A tree decomposition of a graph G = (V,E) is a pair ({Xi : i ∈ I}, T = (I, F )) where
{Xi : i ∈ I} is a family of subsets (or ‘bags’) Xi ⊆ V and T = (I, F ) is a tree such that

•
⋃
i∈I Xi = V ,

• for every edge vw ∈ E there exists i ∈ I with {v, w} ⊆ Xi,

• for every i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of ({Xi : i ∈ I}, T = (I, F )) is defined as maxi∈I |Xi|−1. The treewidth tw(G)
of G is the minimum width of any tree decomposition of G. Thus, for any graph G,
tw(G) 6 n− 1.

For an injective function f : V (G)→ Z we define the cutwidth [13] of G by

cw(G) = min
f :V→Z, injective

max
x∈R

|{ij ∈ E(G) : f(i) 6 x < f(j)}| ; (4)

this is the maximum number of edges crossing a real point when the vertices are arranged
in a line according to f , minimised over all injections f : V → Z. By [26, Proposition 1]
and [7],

bϕ(G) · n/4c 6 tw(G) 6 cw(G) 6 |E(G)|. (5)

A graph H is called a minor of the graph G if H can be formed from G by deleting
edges and vertices and by contracting edges.

Lemma 5 (Folklore, see [33]). If H is a minor of G then tw(H) 6 tw(G).
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2.2 Concentration Inequalities

Let Geo(p) denote the geometric distribution with success probability p. That is, if a
random variable X ∼ Geo(p) then P(X = k ) = (1− p)k−1p for any integer k > 1.

Lemma 6 ([30, Theorem 2.3]). For any n > 1 and p1, . . . , pn ∈ (0, 1], let X =
∑n

i=1Xi

where Xi ∼ Geo(pi). Let p∗ = mini∈[n] pi and µ = E [X ] =
∑n

i=1
1
pi

. Then for any λ > 1,

P(X > λµ ) 6 λ−1(1− p∗)µ(λ−1−log λ).

Let Ber(p) denote the Bernoulli distribution with success probability 0 6 p 6 1. If
X ∼ Ber(p) then P(X = 1 ) = p and P(X = 0 ) = 1− p.

Lemma 7 ([38, Theorem 4.4]). Let n > 1 be an integer, X =
∑n

i=1 Xi where Xi are
independent Bernoulli random variables, and µ = E [X ]. Then, for any real δ > 0,

P(X > (1 + δ)µ ) 6

(
eδ

(1 + δ)1+δ

)µ
.

3 The q-Mallows Process & Technical Tools for Tangled Paths

In this section we describe a random process which generates a Mallows permutation. It
is easier to prove results via this process rather than with µn,q directly as the process
is driven by independent random input variables. We also introduce a special class of
events related to the inputs of this process, and prove a concentration result for sums of
indicators of these events.

3.1 The q-Mallows Process

In this section we introduce the q-Mallows process [5], a permutation-valued stochastic
process (rn)n>1, where each rn ∈ Sn. In what follows assume q > 0, and q 6= 1 (unless
specified otherwise). The process is initialized by setting r1 to be the (only) permutation
on one element. The process iteratively constructs rn from rn−1 and an independent
random variable vn ∼ νn,q, where νn,q is the truncated geometric distribution given by

νn,q(j) =
qj−1

1 + q + · · ·+ qn−1
=

(1− q)qj−1

1− qn
(1 6 j 6 n). (6)

For the case q = 1 we define νn,1(j) = 1/n for all 1 6 j 6 n. The random sequence
(rn)n>1 can now be defined inductively by sampling vn ∼ νn,q then setting

rn(i) =


rn−1(i) i < vn

n i = vn

rn−1(i− 1) i > vn

(1 6 i 6 n). (7)

To visualise this process: start with an empty bookshelf and at each time i > 1 insert
the book with label i at position vi − 1 then shift the remaining books one position to
the right.

See Figure 2 for an example of the q-Mallows process (rn) and the resulting tangled
path. There is (at least) one other process which generates Mallows permutations, see
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1 2 3 4 5 6

layer (P6, r6(P6))

n vn rn
1 1 1
2 2 12
3 1 312
4 3 3142
5 2 35142
6 5 351462

Figure 2: The table on the left gives the sequences of permutations (rn) generated by
the sequence (vn) for i = 1, . . . , 6. On the right we have a tangled path generated by r6,
where the edges of r6(P6) are dotted.

[5, Section 2] for more details. We use (rn) as it is convenient for our proof methods, and
often describe events in terms of the random sequence (vn) generating the process (rn).
The following lemma tells us that the reversed output permutations rRn has the Mallows
distribution.

Lemma 8 ([5, Corollary 2.3]). Let q > 0 and (rn) be the q-Mallows process (7). Then
the permutation σ ∈ Sn given by σ(i) = rn(n+1− i), for 1 6 i 6 n, has distribution µn,q.

Recall that P(n, q) is the tangled path on n vertices with parameter q. Any edge in
the tangled path P(n, q) must belong to one of the two paths Pn or σ(Pn), thus

E(P(n, q)) = {i(i+ 1); 1 6 i < n} ∪ {σ(i)σ(i+ 1) : 1 6 i < n}.

However given a permutation σ, for any 1 6 i 6 n − 1 there exists 1 6 j 6 n − 1 such
that {σ(i), σ(i+ 1)} = {σR(j), σR(j + 1)}. It follows that

P(n, q) ∼ layer(Pn, σ(P )) ∼ layer(Pn, σ
R(Pn)). (8)

The equation above shows that it does not matter if we use a (n, q)-Mallows permutation
or its reverse (which is a (n, 1/q)-Mallows permutation). This justifies our use of the
(unreversed) permutation rn to generate P(n, q) and our restriction of q to the range
0 6 q 6 1.

We now give some useful bounds on densities of the distribution νn,q. Observe that if
vk ∼ νk,q then for any integer 1 6 x 6 k, and 0 < q < 1, by (6) we have

P( vk > x ) =
(1− q)

(
qx−1 + · · ·+ qk−1

)
1− qk

=
qx−1 − qk

1− qk
= qx−1 · 1− qk−x+1

1− qk
6 qx−1. (9)

From this we can also obtain

P( vk 6 x ) = 1− P( vk > x ) = 1− qx − qk

1− qk
=

1− qx

1− qk
> 1− qx. (10)

Bhatnagar & Peled [5] proved the following tail bounds on the displacement of an
element in under the action of a Mallows permutation.

Theorem 9 ([5, Theorem 1.1]). Let 1 6 i 6 n and t > 1 be integers, and 0 < q < 1 be
real. Then, if σ ∼ µn,q we have P( |σ(i)− i| > t ) 6 2qt.
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3.2 Local Events and Concentration

As the q-Mallows process (ri) is generated by a sequence (vi) of independent random
variables, it is convenient to describe events in terms of (vi). An example of such an
event is the flush (13) given by Fk = {for each i > k we have vi 6 i− k}. This event
will be introduced formally in Section 3.3 and is closely related to the existence of cut
vertices, see Section 5. In this section we are interested in events defined in terms of
the sequence (vi) which, unlike the flush, become pairwise (asymptotically) independent
when the indices of the events are suitably well spaced. To begin we describe a class of
events satisfying this criterion; we call these local events. We then show in Lemma 10
that sums of indicators of local events concentrate.

For integers n > 1, i ∈ [n], and ` > 1, we say that an event is `-local to i if the event is
completely determined by the values of vj in the range j ∈ [i−`, i+`]. As an example the
event ({vi 6 5}∪ {vi+1 = 2})∩{vi−2 = 3} is 2-local to i. We say a random variable Xi is
`-local to i if it is a weighted indicator random variable of an event Ei which is `-local to
i, that is Xi = ci ·1Ei where ci > 0 are real numbers. We prove several results by showing
that certain small subgraphs are present. Often the number of these subgraphs can be
expressed as sums of local random variables, the following lemma, based on Chebyshev’s
inequality, is then useful.

Lemma 10. Let n > 1, ` > 1 be integers and S ⊆ [n] non-empty. Let X =
∑

i∈S Xi

where each Xi is a non-negative random variable `-local to i and M = maxi∈S E [X2
i ].

Then, for any x > 0,

P
(
|X − E [X ]| > x ·

√
M · |S| · `

)
6 5/x2.

Proof. We seek to apply the second moment method to X, and thus we must calculate
or bound terms of the form E [Xi ·Xj ]. For any i, j ∈ S the Cauchy-Schwarz inequality
gives

E [Xi ·Xj ] 6
√

E [X2
i ] · E

[
X2
j

]
6M. (11)

Observe, each Xi only depends on (at most) the values va for a ∈ [i− `, i+ `], and so

E [Xi ·Xj ] = E [Xi ] · E [Xj ] for any i, j with |i− j| > 2`, (12)

by independence of the sequence (vi)
n
i=1. Thus, since Xi > 0, by (11) and (12) we have

Var(X) =
∑
i,j∈S

E [Xi ·Xj ]− E [Xi ]E [Xj ]

6
∑
i,j∈S

1{|i−j|62`} ·M

6 |S|(4`+ 1)M 6 5|S|`M.

Thus applying Chebyshev’s inequality [38, Theorem 3.6], for any x > 0, gives

P
(
|X − E [X ]| > (x/

√
5) ·

√
5|S|`M

)
6 P

(
|X − E [X ]| > (x/

√
5) ·

√
Var(X)

)
6 (x/

√
5)−2,

concluding the proof.
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Figure 3: A representation of a flush event F5 (see (13)) holding in the graph
layer(P9, σ(P9)). In this example σ = (7, 9, 6, 8, 4, 2, 5, 3, 1) was generated by the sequence
x = (1, 1, 2, 1, 3, 1, 1, 3, 2) satisfying F5. Observe that only one edge crosses vertex 5.

3.3 Flushing Events

In this section we define two events with respect to the sequence of values (vi)
n
i=1 generat-

ing the Mallows process (7). These events will help us describe certain graph properties
and prove concentration using Lemma 10. First, we will briefly recall how the q-Mallows
process (ri)

n
i=1 evolves: At step i > 1 we have a permutation ri ∈ Si, starting from

r1 = (1). Then, to generate the next permutation ri+1 in the sequence we sample a
random variable vi+1 ∼ νi+1,q and insert the value i+1 at relative position vi+1 ∈ [1, i+1]
from the left-hand side of ri. To insert i+ 1 at vi+1 we shift each of the values in relative
positions vi+1, . . . , i one place to the right.

For an integer k ∈ [n] we define the flush event by

Fk = {for each i > k we have vi 6 i− k} , (13)

and say there is a flush at step k (of the q-Mallows process) if Fk holds (see Figure 3).
If there is a flush at step k then no subsequent element with value greater than k

is inserted into any of the k rightmost positions in the array. Thus, if Fk holds, then
for any n > k the permutation rn = srk will be a concatenation of two strings s and
rk, where s is a permutation of the elements {k + 1, . . . , n} and rk is the state of the
process at step k. This property is very useful if we are trying to find certain structures
in the permutation rn; since if the structure appears in rk and Fk holds (these events are
independent) then the elements inserted after k will not affect the structure in rk. One
simple example of this is that if {vk = 1} ∩ Fk holds then vertex k is a cut vertex of
P(n, q); see Section 5 for details and also precise bounds on P(Fk )). Thus, if we wish to
show that there is a cut vertex w.h.p., then a standard approach would be to let X count
the number of k ∈ [n] such that {vk = 1} ∩ Fk holds, and then bound P(X = 0 ) using
the second moment method. This requires control over the variance of X. Lemma 10
follows this strategy for the special case of local events. However, any event containing
the flush event Fk cannot be `-local for any ` < n − k since it specifies that vi 6 i − k
for all i > k.

Observe that, for q ∈ (0, 1), the position each element is inserted is biased towards
the left-hand end. Suppose we can find a bn := bn(q) such that w.h.p. for all i ∈ [n] we
have vi 6 bn. Then, we can define a new event Lk which only specifies the first bn values
in the flush Fk, and if we condition on Lk then w.h.p. Fk will also hold. To make this
precise let

bn =

⌈
8 log n

log(1/q)

⌉
. (14)
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Then, as P( vk > i ) 6 qi for i < k by (9), for n > 2 the union bound gives

P

 ⋃
k∈[n]

{vk > bn}

 6∑
k∈[n]

P( vk > bn ) =
n∑

k=bn+1

qbn 6 n · qbn 6 n−7. (15)

If we recall that vi is the insert position of i relative to the left-hand end, then (15)
shows that w.h.p. no element is inserted at relative position r > bn. The constant 8
in (14) is fairly arbitrary but works in our analysis. Thus, conditional on the event
{vi 6 bn for all i ∈ [n]}, if an element i′ < i is not within bn places from the left-hand end
of ri−1 then when element i is inserted it will not be adjacent to i′. This is significant
since adjacency of i and i′ in the final permutation rn determines the presence of the edge
ii′ in P(n, q). So, if we want to preserve the subpermutation rk w.h.p. then we do not
necessarily need to condition on all elements i > k not being inserted in the rightmost k
places, we only need to specify this for the next bn elements. We can now define, for any
1 6 k 6 n, the local flush event given by

Lk = { For each k < i 6 k + bn(q) we have vi 6 i− k} . (16)

The local flush event Lk captures the desirable property of preserving rk, provided we
condition on the event E = ∩i∈[n]{vi 6 bn(q)}. As E occurs w.h.p. by (15), we can
essentially use the local flush Lk in the same way as Fk. The advantage of Lk is that it
only fixes the positions of elements k + 1, . . . , k + bn, as opposed to the positions of all
elements i > k in Fk, and thus it is dbn/2e-local with respect to k + dbn/2e. The next
result ‘localises’ events involving flushes.

Lemma 11. Let n, ` > 1 be integers, 0 < q < 1, and (ci)i∈[n] be any non-negative real
sequence. Let Ei = Bi ∩ Fi where Bi is `-local to i. Then, the event Di = Bi ∩ Li is
max{bn, `}-local to i, where bn := bn(q) is given by (14). Furthermore, if X =

∑
i ci · 1Ei

and Y =
∑

i ci · 1Di, then

P(X 6= Y ) 6 n−7, and E [X ] 6 E [Y ] 6 E [X ] + n−7 ·
∑
i

ci.

Proof. The event Di is max{bn, `}-local to i as Bi is `-local to i and Li, given by (16),
is bn-local to i. Recall vi ∼ νi,q for i ∈ [n] and E = ∩i∈[n]{vi 6 bn(q)}. Note that
P( Ec ) 6 n−7 by (15), and although (15) only holds for n > 2 we can assume this or else
P( Ec ) = 0 trivially.

Observe that Ei ⊆ Di for any i ∈ [n]. Furthermore, the events Ei and Di impose
the same restrictions on the random variables (vj)j6i+bn(q). In particular, (vj)i<j6i+bn(q)

satisfy both the flush Fi and local flush Li event. However, conditional on E no random
variable vi is larger than bn(q) and so the remaining values (vj)j>i+bn also satisfy Fi. It
follows that E ∩ Di ⊆ Ei for any i ∈ [n] and hence P(X 6= Y ) 6 P( Ec ).

For the upper bound in the last part of the claim note Y =
∑

i ci · 1Ei 6
∑

i ci, thus

E [Y ] = E
[
X · 1{Y=X}

]
+ E [Y | Y 6= X ] · P(Y 6= X ) 6 E [X ] +

(∑
i

ci

)
· n−7.

The lower bound E [Y ] > E [X ] holds since Di ⊇ Ei and ci > 0 for any i ∈ [n].
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4 Expansion and Relations Between q-Mallows Measures

This section concerns P(n, q) with q sufficiently close to 1. In Lemma 13 we will prove
that P(n, 1) is an expander with probability 1 − e−Ω(n). We then establish Lemma 14
which allows us to relate properties of P(n, q) to those of P(n, 1). This is then used to
extend Lemma 13 to Lemma 16, which shows that, if q is sufficiently close to 1, then
w.h.p. P(n, q) is an expander.

As mentioned in the introduction, it is possible to show that P(n, 1) is an expander
with probability 1−o(1) by adapting a result of Kim & Wormald [31, Theorem 1], however
it is the fact that Lemma 13 holds with probability 1 − e−Ω(n) which allows us to relate
this to a smaller q in Lemma 16. This combination of Lemmas 13 and 14 is also used
to prove lower bounds on the treewidth in Section 6 by finding a subdivided expander
on roughly 1/(1− q) vertices as a subgraph in P(n, q). Again, if we knew only that the
P(n, 1) was an expander with probability 1− o(1), then we would not be able to get such
good bounds later in Section 6.

4.1 Expansion in the case q = 1

Recall the definition of ∂(S) = {uv ∈ E(G) : u ∈ S, v ∈ V (G) \ S}, the edge boundary
of S ⊆ V , from Section 2.1. The following bound is quite crude but (crucially) it is
independent of |S|.

Lemma 12. For any integer 1 6 k 6 n − 1 there are at most 2 ·
(
n−1
k

)
distinct vertex

subsets S of an n-vertex path such that |∂(S)| = k.

Proof. Observe that there are
(
n−1
k

)
ways to choose the k edges of the boundary set ∂(S).

Each set ∂(S) of boundary edges gives two possible sets S depending on whether the first
vertex of the path is in S or not.

Recall the definitions of the edge and vertex isoperimetric numbers φ and ϕ from Sec-
tion 2.1. We now prove that w.h.p. a tangled path generated from a uniform permutation
is an expander.

Lemma 13. For any integer n > 100, we have

P
(
ϕ(P(n, 1)) 6

1

40

)
6 1000 · n7/2 ·

(
3

4

)n
.

Proof. Observe that ϕ(P(n, 1)) > φ(P(n, 1))/4 by (3) since P(n, 1) has degree at most
4. Thus, to prove this Lemma it suffices to bound P(φ(P(n, 1)) 6 1/10 ) from above.

Let P = layer(Pn, σ(Pn)) where σ ∼ µn,1. Now, if the edge isoperimetric number of
P is at most α then for any set S ⊂ [n] there can be at most α|S| edges of either the
permuted or un-permuted path in ∂(S). That is, for any α > 0 we have

{φ(P) 6 α} ⊆
bn/2c⋃
s=1

bαsc⋃
k=1

⋃
S⊆V :|S|=s,|∂(S)∩E(Pn)|=k

{|∂(S) ∩ E(σ(Pn))| 6 bαsc − k}. (17)
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By Lemma 12 there are at most 2·
(
n−1
k

)
sets S (of any size) such that |∂(S) ∩ E(Pn)| = k.

So by applying this bound, the union bound, and rewriting (17), where we ignore the
−k, we have

P(φ(P) 6 α ) 6 2

bn/2c∑
s=1

bαsc∑
k=1

(
n− 1

k

)
max

S⊆V :|S|=s
P( |∂(S) ∩ E(σ(Pn))| 6 bαsc ) . (18)

We will now bound the probability on the right-hand side, note that since σ is a uniform
permutation this is the same for all S with |S| = s.

To begin we will view the action of the uniform random permutation σ on Pn as a
relabelling of V (Pn) = [n]. Under this relabelling a given set S ⊆ V (Pn), with |S| = s,
is equally likely to be mapped to any other S ′ ⊆ V (Pn) with |S ′| = s. The number of
S ′ ⊆ V (Pn) with an edge boundary of size k > 0 is at most 2 ·

(
n−1
k

)
by Lemma 12. Since

|S ′| = s there are s! ways to order the elements of S within S ′ and (n−s)! ways to organise
the remaining elements within the path. Thus, if we restrict to a fixed 0 < α 6 1/10,
then for any S ⊆ V with |S| = s we have

P( |∂(S) ∩ E(σ(Pn))| 6 bαsc ) 6 2

bαsc∑
k=1

(
n− 1

k

)
s!(n− s)!

n!
6 2n

(
n− 1

bαsc

)
s!(n− s)!

n!
, (19)

where the last bound holds since αs 6 n/20 and
(
x
y

)
is increasing in y provided y < bx/2c.

Recall that for any integers 1 6 k 6 n and any real number x such that |x| 6 n,(
n

k

)
6
(ne

k

)k
,
√

2πn
(n

e

)n
6 n! 6 e

√
n
(n

e

)n
, and

(
1 +

x

n

)n
6 ex. (20)

Thus, as s 6 bn/2c and 0 < α 6 1/10 are fixed, by (20) and monotonicity of
(
x
y

)
we have(

n− 1

bαsc

)
6

(
ne

bαbn
2
cc

)bαbn
2
cc

6

(
2e

α
(
1− 4

αn

))αn
2

6
(

e−
4
α

)−α
2

(
2e

α

)αn
2

= e2

(
2e

α

)αn
2

, (21)

provided that n > 4/α. Observe that s = n/2 maximises ss (n− s)n−s, thus (20) gives

s! · (n− s)! 6 e
√
s
(s

e

)s
· e
√
n− s

(
n− s

e

)n−s
6

e2n

en
· ss (n− s)n−s 6 e2n

en
·
(n

2

)n
. (22)

For n > 4α, inserting the bounds from (20), (21) and (22) into (18) and (19) gives

P(φ(P) 6 α ) 6 2

bn/2c∑
s=1

bαsc∑
k=1

(
n− 1

k

)
· 2n
(
n− 1

bαsc

)
s!(n− s)!

n!
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6 2n2e2

(
2e

α

)αn
2

· 2ne2

(
2e

α

)αn
2 e2n

en
·
(
n
2

)n
√

2πn
(
n
e

)n
=

4e6

√
2π
· n7/2 ·

(
2e

α

)αn
2−n.

One can check that if we fix α = 1/10 then
(

2e
α

)α ≈ 1.4912 < 3/2. Thus taking α = 1/10

gives P(φ(P) 6 1/10 ) 6 1000n7/2(3/4)n for n > 100 as 4e6/
√

2π < 1000.

4.2 Relating Different q-Mallows Measures

The aim of this section is to prove the following result which allows us to relate properties
satisfied by the non-uniform tangled path (q 6= 1) to those satisfied in the uniform case.

Let 2(n2) denote the set of all (labelled) n-vertex graphs.

Lemma 14. Let n > 1 be an integer, and 0 < q < 1. Then, the following holds:

(i) For any A ⊆ Sn, we have µn,q(A) 6 e9n2(1−q) · µn,1(A).

(ii) For any B ⊆ 2(n2), we have P(P(n, q) ∈ B ) 6 e9n2(1−q) · P(P(n, 1) ∈ B ) .

(iii) If q = 1−o(n−2), then for any B ⊆ 2(n2), P(P(n, q) ∈ B ) = P(P(n, 1) ∈ B )+o(1) .

In order to prove this result we must first prove a lemma which bounds the ratio
between densities of the truncated geometric and uniform distributions.

Lemma 15. For any integers 1 6 i 6 k, and 0 < q < 1, we have

νk,q(i)

νk,1(i)
6 1 + 9k(1− q) 6 e9k(1−q).

Proof. For ease of notation we will sometimes use the parametrisation q = 1− x. By the
definition (6) of νk,q, for any i 6 k we have

νk,q(i) =
(1− q)qi

1− qk
=

x(1− x)i

1− (1− x)k
. (23)

We need a ‘reverse Bernoulli inequality’: for any integer r > 1 and real y satisfying
|y| 6 1/(2r), we have

(1+y)r =
r∑
i=0

(
r

i

)
yi 6 1+ry+

r∑
i=2

(ry)i 6 1+ry+(ry)2

r−2∑
i=0

2−i 6 1+ry+2(ry)2. (24)

We will now begin with the case 1 − 1/(4k) 6 q < 1. Applying (24) to (23), for |x| 6
1/(4k) and i 6 k, gives

νk,q(i) 6
x(1− ix+ 2(ix)2)

1− (1− kx+ 2(kx)2)
=

1

k
· 1− ix+ 2(ix)2

1− 2kx
=

1

k
·
(

1 +
2kx− ix+ 2(ix)2

1− 2kx

)
.

Recall that νk,1(i) = 1/k for all 1 6 i 6 k. Thus, by the above and |x| 6 1/(4k), we have

νk,q(i)

νk,1(i)
6 1 +

2kx+ 2(kx) · (1/4)

1− 2/4
= 1 + 5kx = 1 + 5k(1− q). (25)
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We now deal with the remaining case 0 < q < p where p := 1− 1/(4k). By (23),

νk,q(i)

νk,p(i)
=

(1− q)qi

1− qk
· 1− pk

(1− p)pi
=

1− q
1− p

·
(
q

p

)i
· 1− pk

1− qk
6

1− q
1− p

= 4k(1− q). (26)

Thus by (25) and (26), for any 0 < q 6 1− 1/(4k) we have

νk,q(i)

νk,1(i)
=
νk,q(i)

νk,p(i)
· νk,p(i)
νk,1(i)

= 4k(1− q) · (1 + 5k · 1/(4k)) = 9k(1− q). (27)

The first inequality in the statement follows as 1 + 9k(1− q) is an upper bound for (25)
and (27). Then the second follows since 1 + y 6 ey for all y.

Using this lemma we can now prove the main result in this section.

Proof of Lemma 14. By the description of the q-Mallows process we see that for every
integer n > 1, 0 < q 6 1, and A ⊂ Sn, there exists a set {(xik)nk=1 : i ∈ I} of inputs to
the q-Mallows process such that

µn,q(A) =
∑
i∈I

∏
k∈[n]

νk,q(x
i
k).

Furthermore, since the q-Mallows is a deterministic function of random inputs, the set
{(xik)nk=1 : i ∈ I} does not depend on q. Thus, by Lemma 15, for any event A ⊆ Sn,

µn,q(A) =
∑
i∈I

∏
k∈[n]

νk,q(x
j
i ) 6

∑
i∈I

∏
k∈[n]

e9k(1−q) · νk,1(xji ).

Then, using the bound k 6 n, we can deduce Item (i) since

µn,q(A) 6 e9n2(1−q) ·
∑
i∈I

∏
k∈[n]

νk,1(xji ) = e9n2(1−q) · µn,1(A).

Item (ii): Recall that the tangled path P(n, q) is generated deterministically from a
Mallows permutation σ ∼ µn,q by the construction layer (σ(Pn), Pn). Thus for any B ⊆
2(n2) there is a corresponding set of permutations A ⊆ Sn such that layer (σ(Pn), Pn) ∈ B
if and only if σ ∈ A. The result now follows from Item (i).

Item (iii): Since 1− q = o(n−2), for any B ⊆ 2(n2) we have

P(P(n, q) ∈ B ) 6 e9n2(1−q) · P(P(n, 1) ∈ B )

= eo(1) · P(P(n, 1) ∈ B )

= P(P(n, 1) ∈ B ) + o(1),

by Item (ii) and as eo(1) = 1 + o(1) by the Taylor expansion.
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4.3 Proof of Theorem 1

We can now apply Lemmas 13 and 14 to prove Lemma 16. Theorem 1 is simply a less
explicit restatement of Lemma 16, so it follows directly from this.

Lemma 16. If q > 1− 1
50n

, then P
(
ϕ(P(n, q)) 6 1

40

)
= o(1).

Proof. Let B = {G : ϕ(G) 6 1/40} ⊆ 2(n2). Then Lemmas 14(ii) and 13 give

P(P(n, q) ∈ B ) 6 e9n2(1−q) · P(P(n, 1) ∈ B ) 6 en/5 · 1000n7/2

(
3

4

)n
= o(1),

since ln(3/4) < −1/4.

We note that the constant 1/50 in the assumption on q in Lemma 16 has not been
optimised. However, we believe that q = 1−Θ(1/n) should be the threshold for P(n, q)
being an expander.

5 Cut Vertices and Diameter

The main aim of this section is to prove Theorem 2 which shows that q = 1 − π2

6 logn
is

a sharp threshold for the existence of a cut vertex. This is achieved by equating the
existence of a cut vertex to a combination of flush events, then bounding the number of
cut vertices. We then use bounds on the number of cut vertices obtained while proving
Theorem 2 to establish Theorem 3, which shows that the diameter is linear when 0 <
q < 1 is fixed.

5.1 Relating Unit Separators to Flush Events

Given a graph G = (V,E) we say that a vertex v is a cut vertex in G if its removal
separates the graph into two or more disjoint components. The aim of this section is to
prove Lemma 17 which shows that cut vertices are determined by flush events.

Let 1 6 k 6 n be integers and vi ∼ νi,q for all i ∈ [n]. Recall the flush event given
by (13):

Fk = {For each i > k we have vi 6 i− k} .

For an integer k ∈ [n] we define also define the reverse flush event by

Rk = {for each i > k we have vi > k} .

The name we give to this event is quite fitting: Suppose the flush event Fk holds in a
permutation σ and let σR be the reverse of σ. Then, the reverse flush event Rk holds
for σR.

We define two events CFk and CRk which stipulate that k separates all elements i > k
from all elements i < k in σ. In CFk the elements i > k are to the left of k in σ, and in
CRk they are to the right of k in σ (see Figure 4). These events are disjoint for n > 1, and
are given by

CFk = Fk ∩ {vk = 1} and CRk = Rk ∩ {vk = k}. (28)

Our next result shows that together these two events characterise cut vertices in P(n, q).
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1 2 3 4 5 6 7 8 9

Figure 4: A representation of the event CF5 from (28) holding in the graph layer(P9, σ(P9)).
In this example σ = (7, 9, 6, 8, 5, 2, 4, 1, 3) was generated by the sequence x =
(1, 1, 3, 2, 1, 1, 1, 3, 2) satisfying CF5 . Observe that vertex 5 is a cut vertex.

Lemma 17. Let n > 3 be an integer. Then, a vertex k ∈ {2, . . . , n − 1} is a cut vertex
in P(n, q), if and only if one of the disjoint events CFk or CRk holds.

Proof. We consider the tangled path layer(Pn, rn(Pn)) with rn ∼ µn,q generated from the
random sequence (vi)

n
i=1, where vi ∼ νi,q, via the q-Mallows process. Recall from (7) that

given (vi)
n
i=1 we generate the sequence (ri)

n
i=1 inductively by the rule

ri(j) =


ri−1(j) j < vi

i j = vi

ri−1(j − 1) i > vj

(1 6 j 6 i).

First assume that CFk holds for some k ∈ {2, . . . , n− 1}. Conditional on {vk = 1} we
have rk(1) = k and rk(i) < k for all i > 1. Once k is inserted then, conditional on Fk,
each i > k the element i is inserted to the left of k in the permutation (ri−1). It follows
that, conditional on CFk , the final permutation rn satisfies rk(i) > k for all i 6 n − k,
rn(n − k + 1) = k, and rn(j) < k for all j > n − k + 1. Thus, since no element i > k
is adjacent to any element j < k in rn and thus k is a cut vertex of P . See Figure 4 for
an example. We now assume CRk holds. Conditional on {vk = k} we have rk(k) = k and
rk(i) < k for all i < k. Then, conditioning on Rk, each element i > k is inserted to the
right of k. So, conditional on CRk , we have rk(i) < k for all i < k, rn(k) = k and rn(j) > k
for all j > k. Thus, as before, k is a cut vertex of P .

For the other direction suppose k ∈ {2, . . . , n − 1} is a cut vertex. Then, since P
contains a path on [n] as a subgraph, k’s removal must separate the graph into vertex
sets {1, . . . , k− 1} and {k+ 1, . . . , n} and there can be no element j > k adjacent to any
i < k in rn. By the definition of (ri)

n
i=1, at the time k is inserted all elements i < k have

been inserted. If k is a cut then either {vk = 1} or {vk = k} holds, since otherwise when
k + 1 is inserted it will be adjacent to at least one element j < k. Now if {vk = 1} holds
then all elements i > k must be inserted to the left of k, this is precisely the event Fk.
Otherwise if {vk = k} holds then all i > k must be inserted right of k, this gives Rk.
Hence, if k is a cut then either CFk or CRk holds.

5.2 Bounds on the Probability of Flush Events

Our first result in this section gives algebraic expressions for P(Fk ) and P(Rk ).

Lemma 18. For integers 1 6 k 6 n, and 0 < q < 1, we have

P(Fk ) =
k∏
i=1

1− qi

1− qn−k+i
and P(Rk ) = qk(n−k) · P(Fk ) .
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Proof. Observe that for each i > k we have P( vi 6 i− k ) = 1−qi−k
1−qi by (10), thus

P(Fk ) =
n∏

i=k+1

P( vi 6 i− k )

=
n∏

i=k+1

1− qi−k

1− qi
(29)

=

(
n∏

i=k+1

(1− qi)

)−1

·
n∏

i=k+1

(
1− qi−k

)
,

where the first equality holds since (vi) are independent. Shifting some indices gives

P(Fk ) =

(
k∏
i=1

(1− qn−k+i) ·
n−k∏
i=k+1

(1− qi)

)−1

·
n−k∏
i=1

(
1− qi

)
=

k∏
i=1

1− qi

1− qn−k+i
,

as claimed. Now, again by (9), we have P( vi > k ) = qk−qi
1−qi for any i > k and thus

P(Rk ) =
n∏

i=k+1

P( vi > k ) =
n∏

i=k+1

qk − qi

1− qi
= qk(n−k)

n∏
i=k+1

1− qi−k

1− qi
= qk(n−k) · P(Fk ) ,

where the last equality follows from (29).

The following technical lemma is used for obtaining tight bounds on P(Fk ).

Lemma 19. For any 0 < q < 1, we have

q log q

6(1− q)
6

∞∑
i=1

log(1− qi)− π2

6 log q
− 3 log(1− q)

2
6 − 1− q

q log q
.

Proof. Recall the Euler-Maclaurin summation formula [25, Section 9.5]: for any real
function f(x) with derivative f ′(x) and any integers −∞ < a < b <∞ we have∑

a6i<b

f(i)−
∫ b

a

f(x) dx+
1

2
f(x)

∣∣∣b
a

=
1

12
f ′(x)

∣∣∣b
a

+R2, (30)

where f(x)
∣∣b
a

= f(b)− f(a) and R2 is real and satisfies |R2| 6 1
12

∣∣∣f ′(x)
∣∣b
a

∣∣∣.
In our case we set f(x) = log(1− qx), thus

1

2
f(x)

∣∣∣b
a

= −1

2
log

(
1− qa

1− qb

)
.

The derivative of f is

f ′(x) = −qx log(q)/(1− qx) = log(1/q) (1/(1− qx)− 1) > 0.

Notice that f ′(x) is decreasing in x, thus as f ′(a) > f ′(b) since b > a, we have

0 >
1

12
f ′(x)

∣∣∣b
a

+R2 >
1

6
f ′(x)

∣∣∣b
a

=
qa log q

6(1− qa)
− qb log q

6(1− qb)
.
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So by (30) and setting a = 1, for any b > 1 we have

q log q

6(1− q)
− qb log q

6(1− qb)
6
∑

16i<b

log(1− qi)−
∫ b

1

log(1− qx) dx− 1

2
log

(
1− q
1− qb

)
6 0.

Now if we take b→∞ then the integral and sum converge since q < 1. Thus, we have

q log q

6(1− q)
6

∞∑
i=1

log(1− qi)−
∫ ∞

1

log(1− qx) dx− log(1− q)
2

6 0. (31)

Observe that the substitution y = qx yields∫ ∞
1

log(1− qx) dx =
1

log q

∫ q

0

log(1− y)

y
dy. (32)

The right-hand side of (32) contains the Dilogarithm function Li2(q) given by

Li2(q) :=

∫ q

0

log(1− y)

y
dy =

∞∑
j=1

qj

j2
, for 0 6 q 6 1, (33)

where the second equality is by [35, (1.3)], thus Li2(1) = π2/6. Integration by parts gives∫ q

0

log(1− y)

y
dy = ln(y) ln(1− y)

∣∣q
0

+

∫ q

0

log(y)

1− y
dy

= ln(q) ln(1− q) +

∫ 1

1−q

log(1− x)

x
dx,

where we used the substitution x = 1− y. By (33) and the above we have∫ q

0

log(1− y)

y
dy = ln(q) ln(1− q) + Li2(1)− Li2(1− q)

= ln(q) ln(1− q) +
π2

6
−
∞∑
j=1

(1− q)j

j2
.

Note that 0 6
∑∞

j=1
(1−q)j
j2
6
∑∞

j=1(1− q)j = 1−q
q

. The result then follows from (31).

We can now apply this approximation to prove bounds on P(Fk ).

Lemma 20. For any integers 1 6 k 6 n, and 0 < q < 1, we have

q log q

6(1− q)
6 logP(Fk )− π2

6 log q
− 3 log(1− q)

2
6

2qmin{n−k,k}

(1− q)(1− qmin{n−k,k})
− 1− q
q log q

.

Proof. By Lemma 18 we have P(Fk ) =
∏k

i=1
1−qi

1−qn−k+i for any 1 6 k 6 n. Thus

logP(Fk ) =
k∑
i=1

log
(
1− qi

)
−

k∑
i=1

log
(
1− qn−k+i

)
=
∞∑
i=1

log
(
1− qi

)
−
∞∑
i=1

log
(
1− qk+i

)
−

k∑
i=1

log
(
1− qn−k+i

)
.

(34)
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Observe that −
∑k

i=1 log
(
1− qn−k+i

)
> 0. As log(1− x) > −x/(1− x) for all x < 1,

−
k∑
i=1

log
(
1− qn−k+i

)
6

k∑
i=1

qn−k+i

1− qn−k+i
6

1

1− qn−k+1

k∑
i=1

qn−k+i 6
qn−k+1

(1− q)(1− qn−k+1)
.

Similarly, we have 0 6 −
∑∞

i=1 log
(
1− qk+i

)
6 qk+1

(1−q)(1−qk+1)
. Thus

0 6 −
k∑
i=1

log
(
1− qn−k+i

)
−
∞∑
i=1

log
(
1− qk+i

)
6

2qmin{n−k,k}

(1− q)(1− qmin{n−k,k})
.

The result now follows by inserting these bounds into (34) and then using Lemma 19 to
bound the remaining sum in (34).

The next lemma gives a better bound on P(Fk ) than Lemma 20 when q is close to 1.

Lemma 21. For any integers 1 6 k 6 n, and 0 < q < 1, we have

P(Fk ) 6 exp

(
−
q
(
1− qmin{k,n−k})

2(1− q)

)
.

Proof. By (10), P( vi 6 i− k ) = 1 − qi−k−qi
1−qi . Independence of the random variables vi

yields

P(Fk ) =
n∏

i=k+1

P( vi 6 i− k ) =
n−k∏
i=1

(
1− qi − qk+i

1− qk+i

)
6

n−k∏
i=1

exp

(
−q

i − qk+i

1− qk+i

)
,

where the last inequality follows since 1 + x 6 ex for all real x. This gives the following,
where in the last step we apply the expression for the sum of a geometric series:

P(Fk ) 6 exp

(
−

n−k∑
i=1

qi − qk+i

1− qk+i

)

6 exp

(
−1− qk

1− qn
n−k∑
i=1

qi

)
= exp

(
−q(1− q

k)(1− qn−k)
(1− q)(1− qn)

)
.

Observe that 1− qn = (1 + qn/2)(1− qn/2) and max{k, n− k} > n/2, thus

P(Fk ) 6 exp

(
− q

1− q
· (1− qk)(1− qn−k)

(1 + qn/2)(1− qn/2)

)
6 exp

(
− q

1− q
· 1− qmin{n−k,k}

1 + qn/2

)
,

and finally P(Fk ) 6 exp
(
− q(1−qmin{n−k,k})

2(1−q)

)
since 1 + qn/2 6 2.

5.3 Bounds on the Number of Cuts

For 1/2 < α < 1 we let the random variable Xn(α) denote the number of vertices
k ∈ [d(1 − α)ne, bαnc] which are cut vertices in P(n, q). We have the following by
Lemma 17.
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Corollary 22. Let n > 1 be an integer, 1/2 < α < 1, and 0 6 q 6 1. Then

Xn(α) =

bαnc∑
k=d(1−α)ne

(
1CFk + 1CRk

)
.

Restricting the ranges of q and k in Lemma 20 gives the following result.

Lemma 23. Let 1/2 < α < 1, n > ( 100
1−α)5 be an integer, and 0 < q 6 1 − n4/5. Then,

for any integer k ∈ [d(1− α)ne, bαnc], we have

e−1/6 · (1− q)5/2 · exp

(
− π2

6(1− q)

)
6 P

(
CFk
)
6 e6 · (1− q)5/2 · exp

(
− π2

6(1− q)

)
.

Proof. Recall P( vk = 1 ) = 1−q
1−qk > 1− q from (6). Since k ∈

[
d(1− α)ne, bαnc

]
, we have

qk 6 qmin{k,n−k} 6 (1− 1/n4/5)(1−α)n 6 (e−1/n4/5

)(1−α)n 6 e−(1−α)n1/5

6 e−100, (35)

where the last step uses n > ( 100
1−α)5. By independence P

(
CFk
)

= P(Fk ) ·P( vk = 1 ), thus

(1− q) · P(Fk ) 6 P
(
CFk
)

=
1− q
1− qk

· P(Fk ) 6 e · (1− q) · P(Fk ) . (36)

By (36) it suffices to bound P(Fk ). Taking x = q − 1 > −1, the bounds on log from (2)
give

1

log q
> − 1

1− q
, log q > −1− q

q
, and

1

log q
6 1− 1

1− q
. (37)

Thus, applying (37) to the bound on P(Fk ) in Lemma 20 gives

logP(Fk ) >
π2

6 log q
+

3 log(1− q)
2

+
q log q

6(1− q)
> − π2

6(1− q)
+

3 log(1− q)
2

− 1

6
. (38)

Inserting (38) into (36) gives the lower bound in the statement.
For the upper bound applying (37) and (35) to Lemma 20 gives

logP(Fk ) +
π2

6(1− q)
− 3 log(1− q)

2
6
π2

6
+

2qmin{k,n−k}

(1− q)(1− qmin{k,n−k})
− 1− q
q log q

6
π2

6
+ 3n4/5e−n

1/5/4 +
1

q

6 2 +
1

q
. (39)

Let f(q) = e3+1/q · (1 − q)5/2 · e−
π2

6(1−q) and observe that applying (39) to (36) gives the
bound P

(
CFk
)
6 f(q). Now, as f(q) is monotone decreasing in q, for any q 6 1/3,

f(q) > f(1/3) = e6e−
π2

4 (2/3)5/2 > 1.

Thus since P
(
CFk
)
6 max{f(q), 1} holds and e3+1/q is monotone decreasing in q we can

simplify the bound to P
(
CFk
)
6 e6 · (1− q)5/2 · e−

π2

6(1−q) , as claimed.
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The next lemma shows CRk is ‘rarer’ than CFk , except if q = 1 where they are equiprob-
able.

Lemma 24. For integers 1 6 k 6 n, and 0 < q < 1, we have

P
(
CRk
)

= qk(n−k+1)−1P
(
CFk
)
.

Proof. Recall that P( vk = j ) = (1−q)qj−1

1−qk by (6), and so P( vk = k ) = qk−1P( vk = 1 ). The

result follows from independence and since P(Rk ) = qk(n−k) · P(Fk ) by Lemma 18.

Lemma 25 below shows that for a certain range of q there are many cut vertices. This
proves one side of Theorem 2 and will also be key to the proof of Theorem 3.

Lemma 25. Let 1/2 < α < 1, n >
(

100
min{1−α, 2α−1}

)5
be an integer, and 0 6 q 6 1−n−4/5.

Then, for any x > 0,

P

Xn(α) <
2α− 1

10
· n(1− q)5/2e−

π2

6(1−q)

1− 1000x√
2α− 1

·

√√√√e
π2

6(1−q) log n

n(1− q)7/2


 6 5

x2
+

1

n7
.

Proof. To begin, by Corollary 22 and Lemma 23,

bαnc∑
k=d(1−α)ne

P
(
CFk
)
> ((2α− 1)n− 2) · e−1/6(1− q)5/2e−

π2

6(1−q) .

Since n satisfies n >
(

100
min{1−α, 2α−1}

)5
, we have

E [Xn(α) ] >
2α− 1

10
· n · (1− q)5/2 · e−

π2

6(1−q) . (40)

We want to show that Xn(α) concentrates around E [Xn(α) ], but we cannot ap-
ply Lemma 10 directly as CFk is not `-local for any reasonable `. Recalling Lk =

{vi 6 i− k for all k < i 6 k + bn} from (16), where bn =
⌈

8 logn
log(1/q)

⌉
by (14), define the

event CLk = Lk ∩ {vk = 1}, and let

Yn(α) =

bαnc∑
k=d(1−α)ne

1CLk .

We note two facts that follow from the first part of the statement in Lemma 11, the

bound log(1/q) > 1 − q, and the assumption n >
(

100
min{1−α, 2α−1}

)5
. Firstly, CLk is `-local

to k+ d b
2
e, where ` = d1+bn

2
e 6 5 logn

1−q . Secondly, P
(
CFk
)
6 P

(
CLk
)
6 (1 + n−7)P

(
CFk
)
. It

follows that Y (α) is the ‘localisation’ of X(α) according to Lemma 11, where ci = 1 for
all i ∈ [n], also

E [Xn(α) ] =

bαnc∑
k=d(1−α)ne

P
(
CFk
)
6 E [Yn(α) ] 6 (1+n−7)·E [Xn(α) ] 6 2·E [Xn(α) ] . (41)
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Recall S andM from Lemma 10. In this setting S =
[
d(1−α)ne, bαnc

]
and, by Lemma 23,

M = max
k∈S

P
(
CLk
)
6 (1 + n−7) ·max

k∈S
P
(
CFk
)
6 2 · e6(1− q)5/2e−

π2

6(1−q) .

Since 102e6
(

1− 2
(2α−1)n

)−1

6 2502, we have the following by comparison with (40):

M · |S| · ` 6 2e6(1− q)5/2e−
π2

6(1−q) · (2α− 1)n · 5 log n

1− q
6

2502 log n

1− q
· E [Xn(α) ] . (42)

Finally, for any x > 0, by Lemma 10, (41), and (42)

P

(
Yn(α) <

E [Xn(α) ]

2
−

√
(250x)2 log n

1− q
· E [Xn(α) ]

)
6 P

(
Yn(α) < E [Yn(α) ]− x ·

√
M · |S| · `

)
6 5/x2. (43)

Now, by (40), we have

(250x)2 · log n

E [Xn(α) ] · (1− q)
6

(250x)2 · log n

2α−1
10
· n · (1− q)5/2e−

π2

6(1−q) · (1− q)
6

(1000x)2

2α− 1
· e

π2

6(1−q) log n

n · (1− q)7/2
.

The result follows by (43) as P(Yn(α) 6= Xn(α) ) 6 n−7 by Lemma 11.

5.4 Proof of Theorem 2

We now use our bounds on P
(
CFk
)

and Xn(α) to establish Theorem 2, which shows that

q = 1− π2

6 logn
is a sharp threshold for having a vertex cut separating the graph into two

macroscopic pieces.

Proof of Theorem 2. As we are proving a statement concerning a limit in n we can assume

n >
(

100
min{1−α, 2α−1}

)5
. We break the proof into three cases depending on the value of q;

in the first two cover the 0-statement, and the last case deals with the 1-statement.
Recall thatXn(α) is the number of cut vertices in [d(1−α)ne, bαnc] and thus {Xn(α) >

1} = {∃ an (1, α)-separator}. Markov’s inequality, Corollary 22, and Lemma 24 give

P(Xn(α) > 1 ) 6 E [Xn(α) ] 6 2n · max
k∈[d(1−α)ne,bαnc]

P
(
CFk
)
6 2n · max

k∈[d(1−α)ne,bαnc]
P(Fk ) .

To prove the 0-statement it suffices to show P
(
CFk
)

or P(Fk ) is o
(

1
n

)
whenever

k ∈ [d(1− α)ne, bαnc].

Case (i)
[
(1− q)−1 > n4/5

]
: If q = 1 then the result follows from Lemma 16, so we can

assume q 6= 1. In this case we have q > 1− n−4/5 and min{k, n− k} − 1 > 5
√
n, so

1− qmin{k,n−k}

1− q
=

(1− q)(1 + q + q2 + · · ·+ qmin{k,n−k}−1)

1− q
>

5
√
n∑

i=0

(1− n−4/5)i. (44)
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Now, by Bernoulli’s inequality, we have

1− qmin{k,n−k}

1− q
>

5
√
n∑

i=0

(1− i · n−4/5) > 4
√
n. (45)

Using this bound in combination with Lemma 21 and the fact q > 1−n−4/5 > 1/2 yields

P(Fk ) 6 exp

(
−q

2
·
(
1− qmin{k,n−k})

1− q

)
6 exp

(
−1

4
· 4
√
n

)
6 e−

√
n.

Case (ii) [(1− q)−1 < n4/5, and π2

6(1−q) − log n+ 5 log logn
2

→∞]: By Lemma 23 we have

P
(
CFk
)
6 e6 · exp

(
− π2

6(1− q)

)
· (1− q)5/2 = exp

(
6− π2

6(1− q)
+

5 log(1− q)
2

)
, (46)

for k ∈ [d(1 − α)ne, bαnc] as n >
(

100
min{1−α, 2α−1}

)5
. Differentiating the exponent of (46)

gives

d

d q

(
6− π2

6(1− q)
+

5 log(1− q)
2

)
= − π2

6(1− q)2
− 5

2(1− q)
=

15q − π2 − 15

6(1− q)2
. (47)

From (47) we see that the exponent of the bound on P
(
CFk
)

from (46) is monotone
decreasing in q provided q ∈ [0, 1). Hence to bound P

(
CFk
)

it suffices to evaluate (46) for

the smallest q in the scope of this case. Thus, if we let w(n) = π2

6(1−q)−log n+ 5 log logn
2

then

it suffices to bound P( Ek ) in the case w(n)→∞ arbitrary slowly and we will assume, for
convenience, that w(n) 6

√
log log n. As q > 1−2/ log n we have log(1−q) 6 2−log log n.

Thus by (46)

P
(
CFk
)
6 exp

(
6− π2

6(1− q)
+

5 log(1− q)
2

)
6 exp (7− log n− w(n)) =

e7 · e−w(n)

n
= o

(
1

n

)
.

Case (iii)
[
q > 0, and π2

6(1−q) − log n+ 9 log logn
2

→ −∞
]
: In this final case we will show

that P(Xn(α) > 1 ) = 1− o(1) by applying Lemma 25 which bounds Xn(α) from below.
If we let w(n) = − π2

6(1−q) + log n− 9 log logn
2

then for this case we have w(n)→∞ and

exp

(
− π2

6(1− q)

)
= exp

(
− log n+

9 log log n

2
+ w(n)

)
=

ew(n) · log9/2 n

n
. (48)

For this case the (loose) bound q 6 1− 1/ log n holds, thus (1− q)5/2 > 1/ log5/2 n, hence

n · (1− q)5/2 · e−
π2

6(1−q) > n · 1

log5/2 n
· ew(n) · log9/2 n

n
= ew(n) log2 n, (49)

by (48). The bound q 6 1− 1/ log n also implies 1/(1− q)7/2 6 log7/2 n, so (48) gives

log n

n(1− q)7/2
· e

π2

6(1−q) 6
log9/2 n

n
· n

ew(n) · log9/2 n
= e−w(n). (50)
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Inserting the bounds (49) and (50) into Lemma 25 and choosing x = w(n) gives

P
(
Xn(α) <

(2α− 1) log2 n

10
· ew(n)

(
1− 1000√

2α− 1
· w(n) · e−w(n)/2

))
6

5

w(n)2
+

1

n7
.

The result follows since α > 1/2 is fixed and w(n)→∞.

Remark 26. The events Fk are positively correlated, i.e. P(Fk ∩ Fk+j ) > P(Fk )P(Fk+j ).
This inequality also holds for F replaced by L for j not too large. This is an obstruc-
tion to proving a (significantly) improved lower threshold in Case (iii) using the second
moment method.

5.5 Proof of Theorem 3

We now prove Theorem 3, which shows the diameter is linear when q is bounded away
from 1. Theorem 3 follows from the next lemma and an earlier bound on the number of
cut vertices.

Lemma 27. Let G be an n-vertex graph containing a Hamiltonian path. Then if there
exists a set C ⊆ V such that each vertex in C is a cut vertex of G, then diam(G) > |C|+1.

Proof. Label the vertices from 1 to n along the Hamiltonian path P . Denote the cut
vertices by c1 < · · · < ck, where k = |C|, ordered with respect to the vertex labelling
of P .

Claim 28. Any path from vertex 1 to vertex n must include every vertex of C.

Proof of Claim. Since the graph contains an n-vertex path as a subgraph (i.e. a Hamilto-
nian path), we must have that for 1 6 i 6 |C| the removal of the cut vertex ci separates
the graph into exactly two connected graphs, one containing the subpath [1, . . . , ci − 1]
and the other containing the subpath [ci + 1, . . . , n], with no edges between them. Now
assume, for a contradiction, that there exists a path Q from 1 to n in G and a vertex
ci ∈ C which is not contained in Q. Since the path does not go through ci it must use an
edge xy where x ∈ [1, . . . , ci − 1] and y ∈ [ci + 1, n] however this contradicts our earlier
observation about the cut vertex ci. ♦

By the claim, the shortest path connecting 1 to n has length at least |C| + 1. This
follows as 1 and n cannot be in C, since removing them does not disconnect the graph
due to the existence of the path P on [n] as a subgraph.

We note that one cannot completely remove the assumption of a subpath of length n
in Lemma 27. To see this consider the binary tree. We are now ready to prove Theorem 3.

Proof of Theorem 3. Let α = 2/3 and recall that Xn(α) denotes the number of cut ver-

tices in [d(1− α)ne, bαnc] = [dn/3e, b2n/3c]. Since 0 < q 6 1− ε we have e
π2

6(1−q) 6 e
π2

6ε .

Assume that n > 3005 · eπ
2

6ε >
(

100
max{1−α,2α−1}

)5

. We will now apply Lemma 25 to bound

Xn(α). First observe that, by the restrictions on n above and 0 < q 6 1− ε,

200√
2 · (2/3)− 1

√√√√e
π2

6(1−q) log n

n(1− q)7/2
6 n−1/3,
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and

2 · (2/3)− 1

10
· n(1− q)5/2e−

π2

6(1−q) >
ε5/2e−

π2

6ε

30
n.

Thus, is we set c := c(ε) = ε5/2e−
π2

6ε · 300−5, then our earlier assumption on n is implied
by n > 1/c. Furthermore, if we set x = n1/6 and α = 2/3 in Lemma 25, then this yields
P(Xn(α) < cn ) 6 3n−1/6 6 n−1/10. The result follows as there are at least Xn(α) cut
vertices and {diam(P(n, q)) 6 d + 1} ⊆ {Xn(α) 6 d} holds for any integer d > 0 by
Lemma 27.

6 The Treewidth and Cutwidth, Proof of Theorem 4

The aim of this section is to prove Theorem 4, which gives lower and upper bounds on
the treewith and cutwidth in the tangled path, respectively. This is an amalgamation
of several bounds proved in this section. In particular, the lower bounds on treewidth
follow from Lemmas 33, 34, and the bound tw(G) > bϕ(G) ·n/4c from (5) in combination
with Theorem 1. Then the upper bounds on cutwidth follow from Lemma 35, and as
cw(G) 6 |E(G)| 6 2n− 2 by (5).

6.1 Lower Bound on Treewidth

The main results in this section are Lemmas 33 and 34, which give two separate bounds
on treewidth. The first bound is tight, but it only holds for small values of q. Whereas the
second holds for any q 6 1− 1/n, however it is only known to be tight up to a log factor.
Both bounds follow from finding a minor with good expansion properties, however the
probability of finding such a minor is calculated slightly differently in the two different
cases.

Before we begin in earnest, we must introduce consecutive patterns in permutations.
Given a list of k distinct integers w = w1, . . . , wk, the standardization of w, written st(w),
is the unique permutation of [k] that is order-isomorphic to w. That is, we obtain st(w)
by replacing the smallest element among {w1, . . . , wk} with 1, the second smallest with
2, and so on. We say that π ∈ Sn contains σ ∈ Sk consecutively if there exists an index
i ∈ [n − k + 1] such that st(π(i), . . . , π(i+ k − 1)) = σ; otherwise, we say that π avoids
σ consecutively.

We now give a lemma relating consecutive patterns in permutations to minors in the
related tangled paths. Figure 5 illustrates this Lemma.

Lemma 29. Let 1 6 k 6 n be integers and let π ∈ Sn contain σ ∈ Sk consecutively.
Then, layer(π(Pn), Pn) contains layer(σ(Pk), Pk) as a minor.

Proof. Let π(i), . . . , π(i + k − 1) be such that st(π(i), . . . , π(i+ k − 1)) = σ and s1 <
· · · < sk be the elements of {π(i), . . . , π(i + k − 1)} ordered increasingly. Define P ′

to be the path of length sk − s1 + 1 on {s1, s1 + 1, . . . , sk}. Finally, let the graph H
be the union of P ′ and the set of edges {π(i + j)π(i + j + 1)}k−2

j=0 . Observe that H is
isomorphic to a copy of layer(σ(Pk), Pk) where the edges of Pk have been subdivided.
Now, as H ⊆ layer(π(Pn), Pn) the result follows.

We now recall two results from [5], the first is a restricted form of independence for
patterns in a q-Mallows permutation.
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1 2 3 4 5 6 7 8 9

Figure 5: An example of Lemma 29. Let σ = (3, 4, 2, 1, 5) and π = (1, 3, 5, 7, 4, 2, 9, 6, 8),
thus st(5, 7, 4, 2, 9) = σ. The graph induced by the crossed and dotted edges is isomor-
phic to layer(σ(P5), P5). The graph induced by the dashed, solid and dotted edges is
layer(π(P9), P9). The crossed edges can be subdivided to give a path on {2, . . . , 9}.

Lemma 30 ([5, Lemma 2.5]). Let (i1, . . . , ik) and (i′1, . . . , i
′
`) be two increasing sequences

with ik < i′1. Let π ∼ µn,q for n > i′`. Then, st (π(i1), . . . , π(ik)) and st (π(i′1), . . . , π(i′k))
are independent.

The second follows by translation invariance of Mallows permutations [5, Lemma 2.6].

Lemma 31 ([5, Corollary 2.7]). Let (i, i + 1, . . . , i + k − 1) ⊆ [n] be a sequence of
consecutive elements. If π ∼ µn,q then st (π(i), . . . , π(i+ k − 1)) ∼ µk,q.

Given σ ∈ Sk, we let Forbn(σ) ⊆ Sn denote the set of permutations in Sn that avoid
σ consecutively. Similarly, given S ⊆ Sk we let Forbn(S) =

⋂
σ∈S Forbn(σ). Recall the

(n, q)-Mallows measure µn,q(σ) of σ ∈ Sn from (1). Thus µn,q(S) =
∑

σ∈S µn,q(σ) for
any S ⊆ Sn.

Lemma 32. Let 1 6 k 6 n be integers, and 0 6 q 6 1. Then, for any S ⊆ Sk we have

µn,q (Forbn(S)) 6 µk,q (Forbk(S))bn/kc .

Proof. To begin, observe that if a permutation π ∈ Sn avoids a set of permutations
S ⊆ Sk consecutively then st(π(ik + 1), . . . , π(ik + k)) /∈ S for any 0 6 i 6 bn/kc − 1.

The permutations (st(π(ik + 1), . . . , π(ik + k)))bn/kc−1
i=0 are independent by Lemma 30 and

by Lemma 31 each permutation st(π(ik + 1), . . . , π(ik + k)) has distribution µk,q. Thus,
for any S ⊆ Sk, we have

µn,q (Forbn(S)) 6
bn/kc−1∏
i=0

P( st(π(ik + 1), . . . , π(ik + k)) /∈ S ) = µk,q (Forbk(S))bn/kc ,

as claimed.

We now have what we need to prove our fist lower bound on treewidth.

Lemma 33. Let n > 1 be an integer, κ > 0 be any constant, and 0 < q 6 1 −
κ(log log n)2/ log n. Then, there exists a constant c > 0 such that for any n > 1/c
we have

P

(
tw(P(n, q)) < c

(√
log n

log(1/q)
+ 1

))
6 exp(−

√
n).
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Proof. By (4) and Lemma 16, for any k, the bound tw(P(k, 1)) > k/200 holds with
probability 1 − f(k) where f(k) → 0 as k → ∞. Thus, there exist fixed constants
C > 0 such that for any k > C there is at least one permutation σk ∈ Sk satisfying
tw (layer (σk(Pk), Pk)) > k/200. We wish to show that, for some k := k(n, q) defined
later, a permutation π ∼ µn,q contains a given σk ∼ µk,q as a consecutive pattern. We
will do this by appealing to Lemmas 30 and 31. The result will then follow from Lemmas
32 and 5. To begin, by (1) we have

µk,q(σk) = qInv(σk) · (Zk,q)−1 = q(
k
2) ·

k∏
i=1

(1− q)
1− qi

> qk
2 · (1− q)k. (51)

Recall that 0 < q 6 1− κ(log log n)2/ log n, for some κ > 0 and let

k =

√
α log n

log(1/q)
where α = min

{
1

100
,
κ

25

}
. (52)

As log q 6 q − 1 by (2) we have 1/ log(1/q) 6 1/(1− q) 6 log(n)/(κ(log log n)2). Thus,

k 6

√
α log2 n

κ(log log n)2
=

√
α

κ
· log n

log log n
6

log n

5 log log n
. (53)

Returning to the bound on µk,q(σk), by (51) and (53), for any large enough n we have

µk,q(σk) > qk
2 · (1− q)k

> ek
2 log q ·

(
κ(log log n)2

log n

)k
> e−α logn ·

(
e− log logn

)√α/κ· logn
log logn . (54)

Now by our choice of α in (52) we have

α +
√
α/κ 6 1/100 +

√
κ/(25κ) < 1/4.

Thus by (54):

µk,q (Forbk(σk)) = 1− µk,q(σk) 6 1− n−
(
α+
√
α/κ

)
6 1− n−1/4. (55)

Observe that, for suitably large n, bn/kc > n3/4 by (53). Thus, by Lemma 32 and (55),

µn,q (Forbn(σk)) 6 µk,q (Forbk(σk))
bn/kc 6

(
1− n−1/4

)n3/4

6 e−
√
n. (56)

It follows from (52) that there is a constant C ′ such that if n > C ′, then k > C. Thus if
we take c 6 min{

√
α/200, 1/C ′} so that n > 1/c is sufficiently large, then

P

(
tw (P(n, q)) < c ·

√
log n

log(1/q)

)
6 µn,q(Forbn(σk)) 6 e−

√
n,

by Lemmas 32 and 5, (56), and the expression for k given by (58).
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The proof of the following lower bound is similar in its use of Lemma 29, but to
calculate the probability it uses Lemma 14 to relate the q-Mallows measure to the 1-
Mallows measure.

Lemma 34. Let n > 1 be an integer, and q 6 1 − 1
n

satisfy limn→∞ q = 1. Then, for
sufficiently large n,

P
(
tw (P(n, q)) < (1− q)−1/105

)
6 exp (−n/100) .

Proof. For an integer k > 1, we define the set

Tk = {σ ∈ Sk : tw(layer(σ(Pk), Pk)) > k/50} ⊆ Sk.

By Lemma 13 P
(
ϕ(P(n, 1)) 6 1

40

)
6 1000 · k7/2 ·

(
3
4

)k
holds for any k > 100. By (5) for

any k-vertex graph G we have tw(G) > bϕ(G) · kc − 1. Thus, for k > 100, we have

µk,1(Forbk(Tk)) 6 1000 · k7/2 ·
(

3

4

)k
6 e−k/20. (57)

We now fix

k =

⌊
1

1000
· 1

1− q

⌋
. (58)

Since limn→∞ q = 1, we can assume that k satisfies k > 100 by taking a suitably large n.
By Lemma 14, (57) and (58), we have

µk,q(Forbk(Tk)) 6 e9k2(1−q) · µk,q(Forbk(Tk)) 6 e
9

1000
·k · e−k/20 6 e−4k/100.

Note that k 6 bn/10c by (58) and q 6 1− 1
n
. Thus, by Lemma 32, for sufficiently large

n,
µn,q (Forbn(Tk)) 6 µk,q (Forbk(Tk))

bn/kc 6 e−(4k/100)·bn/kc 6 e−n/100. (59)

Recall that µn,q(Forbk(Tk)) is the probability π ∼ µn,q avoids all permutations σ ∈ Tk
consecutively. Thus, for any π ∈ Sn such that π /∈ Forbn(Tk), Lemmas 5 and 29 yield

tw (layer(π(Pn), Pn)) > min
σ∈Tk

tw (layer(σ(Pk), Pk)) > k/50.

Recall also that layer(π(Pn), Pn) ∼ P(n, q) as π ∼ µn,q. Thus by (59), for large n,

P( tw (P(n, q)) < k/50 ) 6 µn,q(Forbn(Tk)) 6 e−n/100.

The result now follows from the expression for k given by (58).

6.2 Upper Bound on Cutwidth

Recall the definition of the cutwidth of a graph G given by (4):

cw(G) = min
f :V→Z, injective

max
x∈R

|{ij ∈ E(G) : f(i) 6 x < f(j)}| . (60)

In this section we prove Lemma 35, which gives the upper bounds on cutwidth in Theo-
rem 4.
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Lemma 35. Let n > 1 be an integer, c > 0 be any constant, and 0 6 q 6 1 −
c(log log n)2/ log n. Then there exists a constant C such that

P

(
cw(P(n, q)) > C

(√
log n

log(1/q)
+ 1

))
= O

(
1

n3

)
.

Additionally, if q > 1− (log log n)2/ log n, then

P
(
cw(P(n, q)) >

5

1− q
log

(
1

1− q

))
= O

(
1

n3

)
.

We will begin by outlining a sketch of the proof of Lemma 35.
Proof Sketch: For an upper bound on cw (P(n, q)) we fix f : [n] → [n] in (60) to be

the identity map denoted Id. That is, we order the vertices of P(n, q) using the ordering
of the un-permuted path Pn with edges (i)(i+ 1) for i ∈ [n− 1]. We bound the number
of edges crossing any vertex i by bounding the number of elements with values j > i are
inserted next to elements k < i by the q-Mallows process. To do this we show that, for
bn = d 8 logn

log(1/q)
e given by (14) and some suitable `, L where L > `, the following events

hold with high probability:

(i) no insert position vi has value greater than bn,

(ii) after L steps the leftmost bn places contain only elements added at most L steps
ago,

(iii) within any window of L steps there are at most ` values of vi greater than `.

The events (i) and (iii) control the number of long edges created from new entries
being added far away from the left-hand end of the process. The event (ii) is more subtle,
it ensures that the left-hand end of the permutation grown by the q-Mallows process
cannot retain entries that were inserted long ago, again preventing long edges caused by
new elements lying next to old ones. We show that if (i) - (iii) hold, then the number of
edges crossing any vertex is O(`).

Having concluded the proof sketch we now formalise event described in (ii). To do
this we introduce the sparse flush event, which is a relaxation of the local flush event
Lk given by (16). For positive integers n, k, b where 1 6 k 6 n and b 6 n − k and real
L 6 n − k we say there is a sparse flush S(k, b, L) of b items at step k with length L if
the following event holds:

S(k, b, L) = {there exist k 6 t1 < · · · < tb 6 k + L such that vti 6 i for all 1 6 i 6 b} .
(61)

To give an intuition on the sparse flush, first recall the local flush event (16) given by
Lk = {for each k < i 6 k + bn(q) we have vi 6 i− k}, where bn = d8 log(n)/ log(1/q)e.
Recall also that no insert position is greater than bn w.h.p. by (15). Thus, if the local
flush event Lk holds for some vertex k then w.h.p., no element j > k+ bn is inserted next
to any element i 6 k. If we choose bn = d8 log(n)/ log(1/q)e in (61) then, conditional on
S(k, bn, L), the values (vti)

bn
i=1 form a (non-consecutive) local-flush, that is vt1 6 1, vt2 6

2, . . . , vtbn 6 bn. This sequence of insert positions ensures that w.h.p. no element j > k+L
is inserted next to any element i 6 k, and thus no such edge ij is present in the permuted
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path. If q is very close to 1, the local flush event only occurs with small probability; the
next two lemmas show that if we take L significantly larger than bn, then the sparse flush
holds w.h.p., even for q tending to 1 quite fast.

Lemma 36. Let n, b > 1 be integers, 0 < q < 1, and λ > 1. Let

L = λ

(
b+

q

1− q
+

1

log q
log

1− q
1− qb

)
,

and 1 6 k 6 n− L be an integer. Then,

P(S(k, b, L)c ) 6

(
(1− q)qb

1− qb

)λ−1−log λ

.

Proof. Recall that each element x in the q-Mallows process (rn) is inserted at step x and
relative position vx ∼ νx,q. The sparse flush S(k, b, L) consists of a sequence of b steps
(ti)

b
i=1 where element ti is inserted at relative position at most i. We call these steps good.

Conditional on ti−1, the (i− 1)th good step, we define the random variable τi = ti − ti−1

to be the additional number of steps we must wait for the ith good step (where 1 6 i 6 b
and t0 = k).

Let T =
∑b

i=1 τi be the total number of steps we have to wait to have b good steps
and observe that S(k, b, L) = {T 6 L}. We now aim to bound T . Since (vx)x>0 are
independent and P( vk 6 i ) > 1 − qi by (10), it follows that τi � Xi, for independent
Xi ∼ Geo(pi), where pi = 1 − qi. That is, the time between the i − 1th and ith good
step is stochastically dominated by a geometric random variable with success probability
1− qi. We now set

X =
b∑
i=1

Xi and µ = E [X ] =
b∑
i=1

1

pi
.

Observe that T � X and so P(S(k, b, L)c ) 6 P(X > L ). We bound the latter probability
using Lemma 6. To do this we need bounds on µ = E [X ]. For the upper bound:

µ =
b∑
i=1

1

1− qi
6

1

1− q
+

∫ b

1

1

1− qx
dx =

1

1− q
+

∫ b

1

(
1 +

qx

1− qx

)
dx,

since 1/(1− qx) = 1 + qx/(1− qx) is decreasing in x. Thus, by integrating we have

µ 6
1

1− q
+ b− 1−

[
log (1− qx)

log q

]b
x=1

= b+
q

1− q
+ log

(
1− q
1− qb

)
/ log(q). (62)

Similarly, we can obtain the following lower bound:

µ =
b∑
i=1

1

1− qi
>
∫ b

1

1

1− qx
dx > b+ log

(
1− q
1− qb

)
/ log(q). (63)

We apply Lemma 6 to X where p∗ = mini pi > 1− q, µ = E [X ] and λ > 1:

P(S(k, b, λµ)c ) 6 P(X > λµ ) 6 λ−1(1− p∗)µ(λ−1−log λ) 6 qµ(λ−1−log λ).
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We now insert the lower bound on µ from (63) into the bound in the line above to give

P(S(k, b, λµ)c ) 6 q

(
b+log

(
1−q
1−qb

)
/ log(q)

)
·(λ−1−log λ)

=

(
(1− q)qb

1− qb

)λ−1−log λ

.

To conclude we observe that L > λµ by (62).

We now plug some specific values into Lemma 36 for use in the proof of Lemma 35.

Lemma 37. Let n > 1 be an integer, 0 < q < 1, and bn =
⌈

8 logn
log(1/q)

⌉
> 1. Then for any

L > 100
1−q

(
1

1−q + log n
)

and integer 1 6 k 6 n− L we have P(S(k, bn, L)c ) = o(n−10) .

Proof. Observe that qbn 6 n−8 and S(k, bn, L) ⊇ S(k, bn, D) for any L > D. Now let

D = 10

(
bn +

q

1− q
+ log

(
1− q

1− qbn

)
/ log(q)

)
.

Applying the inequalities −1/ log q 6 1/(1− q) and − log(1− q) 6 1/(1− q) yields

D 6 10

(
−8 log n

log q
+ 1 +

q

1− q
− log (1− q)
− log(q)

)
6

100

1− q

(
1

1− q
+ log n

)
.

Finally, P(S(k, bn, D)c ) 6
(

(1−q)qbn
1−qbn+1

)10−1−log 10

6
(

n−8

1−n−8

)6

= o(n−10) by Lemma 36.

We are now ready to prove Lemma 35, which provides upper bounds on the cutwidth.

Proof of Lemma 35. As mentioned at the start of this section we bound the cutwidth
from above by fixing the injection f : [n]→ [n] in (60) to be the identity Id : [n]→ [n].

Before beginning in earnest, we treat the case 0 6 q 6 1/n2 as this is a straightforward
deduction from an earlier result. Indeed, if q < 1/n2 then by Theorem 9 we have

P( cw(P) > 2 ) 6
∑
i∈[n]

P( |σ(i)− i| > 2 ) 6 n · 2q2 = O
(
n−3
)
. (64)

Thus, from now on we can assume q > 1/n2. The remainder of the proof is as follows.
First, we introduce the event W(`, L), which essentially controls how many long edges
originate from any small set of consecutive vertices. We then prove a claim bounding the
cutwidth conditional on this event. To apply the claim we then bound the probability
that the event fails, breaking into two cases for different values of q. Finally, we conclude
by relating the different cases to the lemma’s statement. We now begin with the formal
definition of the event W(`, L).

Let bn = d8 log(n)/ log(1/q)e and define the event E =
⋂
k∈[n]{vk 6 bn}. For integers

i ∈ [n] and L > ` > 1, we recall the sparse flush event S(i, bn, L) from (61), and also
define the event

B(i, `, L) = {there are at most ` values k ∈ [i,max{i+ L, n}] such that νk > `} .
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The aforementioned event W(`, L) is an intersection of these previous three events

W(`, L) = E ∩

( ⋂
16i6n−L

S(i, bn, L)

)
∩

⋂
i∈[n]

B(i, `, L)

 .

The first two intersected events in W(`, L) imply that for every element i inserted by
the q-Mallows process, at most the L elements following it can potentially create an edge
that crosses the vertex i ∈ [n]. The final event in the intersection states that of these L
elements, all but at most ` will be inserted in the ` closest positions to the left-hand end
of the permutation at the time of insertion. The next claim shows that if this event holds
then the cutwidth is bounded.

Claim 38. For any integers L > ` > 1 we have W(`, L) ⊆ {cw(P) 6 4(`+ 1)}.

Proof of Claim. Recall that we fixed the injection f in the definition of the cutwidth (60)
to be Id. Under f the edges of the un-permuted path Pn ⊆ layer(σ(Pn), Pn) contribute at
most 1 to the cutwidth. We now bound the contribution by the edges of the permuted
path σ(Pn) ⊆ P(n, q).

Given vertices i, j, k ∈ [n] we say that the edge jk ∈ E(σ(Pn)) is bad (with respect to
i) if j < i and k > i. We claim that if W(`, L) holds then, for any i ∈ [n], there are at
most 4` edges which are bad for i. We show this by keeping track of where elements are
inserted during the q-Mallows process (ra)

n
a=1. By definition if an edge is bad for i, then

exactly one of its endpoints must have value greater than i. If i = n then there are no
bad edges for i, so we assume that i < n. Observe for any element k ∈ {i+1, . . . , n} there
are at most 2 bad edges with endpoint k, since k can be adjacent to at most two elements
j < i in the final permutation rn. We now partition the elements k ∈ {i+ 1, . . . , n} into
three disjoint sets Ai, Bi and Ci based on their value k and vk, the insert position of the
element k relative to the left-hand end of rk−1. These sets are given by

Ai = {k ∈ {i+ 1, . . . , i+ L} : vk > `},
Bi = {i+ 1, . . . , i+ L}\Ai,
Ci = {i+ L+ 1, . . . , n},

see Figure 6 for an example. We will count the contribution of each set to the bad edges.
Contribution from (Ai): Conditional on B(i, `, L), we have |Ai| 6 `. Thus, in total

the elements in Ai contribute at most 2` bad edges.
Contribution from (Bi): The left-most ` positions of ri each have value at most i. By

the definition of the q-Mallows process (7), no additional element with value at most i can
ever occupy any of the ` left-most positions. Since each element k ∈ Bi is inserted within
the ` left-most places, there can only be 2` total bad edges for i with an endpoint k ∈ Bi.

Contribution from (Ci): Observe that if i > n − L then Ci is empty. Otherwise, as
S(i, bn, L) holds, we have rk(j) > i for all k > i + L and j 6 bn. That is, after step
i + L of the q-Mallows process the permutation will only have elements with value at
least i in its bn left-most positions. However, conditional on E , no element is inserted
at position greater than bn relative to the left-hand end of the permutation. Thus, the
elements k > i+ L create no bad edges.
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1 2 3 4 95 6 7 8 10 11 12 13 14 15

Figure 6: A visual aid to the claim in proof of Lemma 35. Observe the ‘random’ se-
quence x = (1, 1, 2, 4, 2, 1, 3, 1, 5, 1, 2, 3, 1, 2, 1) satisfies W(`, L) where with ` = 3, L = 8
and b = 5. The permutation generated by the q-Mallows process with input x is
π = (15, 13, 14, 10, 11, 12, 8, 6, 2, 7, 9, 5, 3, 1, 4). We let x = 3.5 be the location of the
cut (as this maximises the cut) and observe that there are 3 bad edges for vertex 3. We
also have the sets A3 = {4, 9}, B3 = {5, 6, 7, 8, 10, 11} and C3 = {12, 13, 14, 15} whose
vertices are represented as squares, diamonds and hexagons respectively.

Collecting these contributions, if we condition on W(`, L) then there are in total at
most 4` bad edges for any i ∈ [n]. For any x ∈ R there exists an i, such that all edges
crossing x are either bad for i or have i as an endpoint. The result follows as there are
at most 4 edges with endpoint i, since P(n, q) has maximum degree 4. ♦

We now bound the failure probability of each of the constituent events in W(`, L).
To begin, we set

L =
100

1− q

(
1

1− q
+ log n

)
.

Recall that q > 1/n2 and so bn = d8 log(n)/ log(1/q)e > d8 log(n)/(2 log n)e > 1.
Thus, by (15), and Lemma 37 (since bn > 1) plus the union bound, respectively, we have

P( Ec ) 6 n−7 and P(∪16i6n−L (Si,bn,L)c ) 6 n · o
(
n−10

)
= o
(
n−9
)
. (65)

We bound P(B(i, `, L)c ) by showing the number of large inputs to the q-Mallows
process is stochastically dominated by a sum of i.i.d. Bernoulli random variables. Observe
that P( vk > ` ) 6 q` for any integers ` 6 k by (9), and P( vk > ` ) = 0 if k < `. Let
{Xj}j∈[L] be a set of independent Bernoulli random variables with success probability q`.
Then, since each vk is independent, for any integers `, L > 1 and i ∈ [n]:

|{k ∈ [i, i+ L] : vk > `}| �
L∑
j=1

Xj.

If ` > Lq` and ` > e, then taking δ = `/(Lq`)− 1 > 0 in Lemma 7 we have

P

(
L∑
j=1

Xj > `

)
6

(
eδ

(1 + δ)1+δ

)Lq`
6

 e
`

Lq`
−1

( `
Lq`

)
`

Lq`

Lq`

6

(
eLq`

`

)`
6 elog(Lq`)·`. (66)

We now break into two cases making different choices for ` depending on the value of q.
These cases roughly correspond to the two bounds in the lemma. First, note that by (2)
we have

1− q 6 log(1/q) 6 (1− q)/q. (67)
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Case (i)
[
1/n2 6 q 6 1− (log logn)2

logn

]
: Set ` = 10 ·

√
log(n)/ log(1/q), and so by (67)

` = 10 ·

√
log n

log(1/q)
6 10 ·

√
log n

1− q
6 10 ·

√
log2 n

(log log n)2
=

10 log n

log log n
. (68)

The lower bound on q in this case ensures that ` > 10 ·
√

logn
log(n2)

> e, and (67) gives

L·q` = L·e−10
√

log(1/q) logn 6 L·e−10
√

(1−q) logn 6 L·e−10

√
(log logn)2

logn
·logn
6 (log n)2 · 1

(log n)10
,

for large n. Thus, for large n, Lq` < ` and so (66) and the bound on ` from (68) give

P

(
L∑
j=1

Xj > `

)
6

(
eLq`

`

)`
6 L` · q`2 6

(
log2 n

) 10 logn
log logn · e−100 logn 6 n−80. ♦

Case (ii)
[
q > 1− (log logn)2

logn

]
: Set ` = 5 log(1− q)/ log q = 5 log

(
1

1−q

)
/ log(1/q). Now,

L · q` =
100

1− q

(
1

1− q
+ log n

)
· (1− q)5

6 100

(
(log log n)2

log n

)3

+ 100(log n)

(
(log log n)2

log n

)4

<
1

log n
,

and thus log(Lq`) < − log log n. Also by (67) we have

` =
5 log 1

1−q

log(1/q)
>
q · 5 log 1

1−q

1− q
>

5q

1− q
· log

log n

(log log n)2
.

Hence, for suitably large n, we have

` > 5

(
1− (log log n)2

log n

)
log n

(log log n)2
· (log log n− 2 log log log n) >

4 log n

log log n
> e.

To conclude this case, by (66) and the above, for suitably large n we have

P

(
L∑
j=1

Xj > `

)
6 elog(Lq`)·` 6 e− log(logn)· 4 logn

log logn = n−4. ♦

It follows from Cases (i) and (ii) that for large n (and the appropriate ` := `(q)) we have

P
(
∪i∈[n]B(i, `, L)c

)
6 n · P

(
L∑
i=1

Xi > `

)
6 n · n−4 = n−3,

by the union bound. Thus, again for suitably large n, combining this with (65) gives

P(W(`, L)c ) 6 n−7 + o
(
n−9
)

+ n−3 = O
(
n−3
)
.
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Thus by the claim and Cases (i) and (ii) we have P( cw(P(n, q)) > 4(`+ 1) ) = O(n−3) if
q > n−2. All that remains is to relate the cases to the statement of the lemma.

For the first statement of this lemma, the range 0 6 q 6 1 − (log log n)2/ log n is
covered by Case (i) and the fact that P( cw(P(n, q)) > 2 ) = O(n−3) if q 6 1/n2 from
(64). We now let q = 1− c(log log n)2/ log n, where 0 < c 6 1 is fixed. Then, for suitably

large n, we have log 1
1−q = log

(
logn

c(log logn)2

)
6 log log n. Thus, by (67), we have√

log n

log(1/q)
=

√
log(1/q) log n

log(1/q)
>

√
(1− q) log n

log(1/q)
=

√
c(log log n)2

log(1/q)
>
√
c ·

log 1
1−q

log(1/q)
,

and so if we set C := C(c) = 5/
√
c then the first statement follows from Case (ii). The

second statement follows from Case (ii) as 5
log q

log(1− q) 6 5
1−q log

(
1

1−q

)
by (67).

7 Conclusion & Open Problems

In this paper we introduced the P(n, q) model, found a sharp threshold for the existence
of cut vertices, determined the treewidth up to a log factor, and proved bounds on the
vertex expansion and diameter for restricted values of q. Roughly speaking, the tangled
path has three regimes: path-like when 0 6 q 6 1 − Θ(1/ log n), intermediate where
1−Θ(1/ log n) 6 q 6 1−Θ(1/n), and expander if 1−Θ(1/n) 6 q 6 1. In the path-like
regime there are no long edges and lots of independence, and in the expander regime one
should be able to couple to the uniform case. The intermediate regime seems to be the
trickiest and most interesting to analyze.

There are a wealth of open problems for P(n, q) as one could study the effect of q on
almost any graph property/index of interest for sparse graphs. One fundamental problem
is to determine the number of edges in P(n, q), recalling that we disregard multi-edges.
This deceptively non-trivial problem is related to clustering of consecutive numbers in
Mallows permutations [45]. It would also be nice to close the gap for treewidth by
obtaining tight bounds for all q.

Theorem 2 proves that q = 1−π2/(6 log n) is a sharp threshold for containing a single
vertex whose removal separates the graph into two macroscopic components. A key open
problem is to determine if there is a notion of monotone property in the setting of tangled
paths which guarantees the existence of a threshold (or even a sharp threshold). One
candidate feature (for a property to be monotone with respect to) is the number of inver-
sions in the permutation generating P(n, q). However, one issue with parameterizing by
the number of inversions is the fact that the tangled paths generated by σ = (σ1, . . . , σn)
and its reverse σR = (σn, . . . , σ1) are isomorphic, but the number of inversions may differ
greatly as Inv(σR) =

(
n
2

)
− Inv(σ).
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