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Abstract

In the Stanley lattice defined on Dyck paths of size n, cover relations are obtained
by replacing a valley DU by a peak UD. We investigate a greedy version of this
lattice, first introduced by Chenevière, where cover relations replace a factor DUkD
by UkD2. By relating this poset to another poset recently defined by Nadeau and
Tewari, we prove that this still yields a lattice, which we call the ascent lattice Dn.
We then count intervals in Dn. Their generating function is found to be algebraic
of degree 3. The proof is based on a recursive decomposition of intervals involving
two catalytic parameters. The solution of the corresponding functional equation is
inspired by recent work on the enumeration of walks confined to a quadrant. We
also consider the order induced in Dmn on m-Dyck paths, that is, paths in which
all ascent lengths are multiples of m, and on mirrored m-Dyck paths, in which
all descent lengths are multiples of m. The first poset Dm,n is still a lattice for
any m, while the second poset D′m,n is only a join semilattice when m > 1. In both
cases, the enumeration of intervals is still described by an equation in two catalytic
variables. Interesting connections arise with the sylvester congruence of Hivert,
Novelli and Thibon, and again with walks confined to a quadrant. We combine
the latter connection with probabilistic results to give asymptotic estimates of the
number of intervals in both Dm,n and D′m,n. Their form implies that the generating
functions of intervals are no longer algebraic, nor even D-finite, when m > 1.

Mathematics Subject Classifications: 05A19, 06A07, 06A11, 05A15

1 Introduction and main results

In recent years, several orders have been studied on the set of Dyck paths of fixed size n,
with a special attention to the number of their intervals. The most natural of these posets
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is the so-called Stanley lattice (or Dyck lattice [30]), where a Dyck path is smaller than
another one if it lies (weakly) below it [5]. Its cover relations are obtained by replacing a
valley by a peak; in symbols, DU → UD, where U and D stand for up and down steps,
respectively. All other Dyck orders that have been studied are included in this one, in
the sense that if a path is less than another one, it lies below it. Let us cite the Kreweras
lattice [46, 5], the Tamari lattice [40, 44], its greedy version due to Dermenjian [32], the
alt-Tamari lattices of Chenevière [29], or the pyramid lattice introduced by three of the
authors of the present paper [2]. Figure 1 presents the subposet-inclusion structure of
these posets. Interesting connections arise between intervals in these posets and various
families of planar maps [5, 21, 18, 26, 37, 35, 36, 38], and, at least conjecturally, with
certain quotient rings of polynomials [4, 17, 42].

Tamari [40, 44]Pyramid [2]

Greedy Tamari [32]

Kreweras [46]

Stanley [5]

Ascent

Alt-Tamari [29]

Figure 1: Subposet-inclusion structure of some orders on Dyck paths.

In this paper we consider yet another order — in fact, a lattice — on the set of
Dyck paths of size n. This poset was first considered by Chenevière in his thesis [30],
following a suggestion of Nadeau. The enumeration of its intervals reveals connections
with 2-dimensional walks confined to a cone, and, on a more algebraic side, with classes of
the sylvester congruence on words [43, 49].

<·
Figure 2: A cover relation between two Dyck paths of size 6.

The cover relations in this lattice, called the ascent lattice and denoted by Dn, are
easy to describe. They consist in swapping a down step with the ascent that follows
it, where we call ascent a (non-empty) maximal sequence of up steps; see Figure 2. In
symbols, DUkD −→ UkDD for any k > 1. Roughly speaking, one applies at once as
many cover relations of the Stanley lattice as possible, using always the same down step.
This explains why this poset is called greedy Dyck poset in [30, Def. 7.2.5]. Figure 3 shows
the whole lattice for n = 4. After establishing some properties of the lattice Dn, we
exhibit a recursive construction of its intervals, which can be described by a generating
tree with two labels. This tree also describes a family of lattice walks confined to the
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Figure 3: The Hasse diagram of D4 = D1,4 = D′1,4.

quadrant, in which an infinite family of steps is allowed. This construction translates,
for the associated generating function, into a linear equation with two additional (or:
catalytic) variables. An important literature has been devoted, in the past 20 years, to
the solution of similar-looking equations, corresponding to quadrant walks in which only
finitely many steps are allowed [8, 10, 20, 33, 51]. We solve our equation by adapting
the invariant approach of [8], and conclude that the generating function of intervals in
the ascent lattices Dn is an algebraic (cubic) series. The asymptotic behaviour of the
corresponding numbers, in µnn−7/2, is far less common in enumerative combinatorics
than the tree behaviour in µnn−3/2, or the (rooted) map behaviour in µnn−5/2. This puts
ascent intervals in the same universality class as unrooted planar maps [59, 53], or discrete
versions of the Brownian motion confined to a wedge of angle 2π/5 [31, 8].

Theorem 1. Let g(n) be the number of intervals in the ascent lattice Dn. The associated
generating function G :=

∑
n>1 g(n)tn is

G = Z(1− 2Z + 2Z3),

where Z is the only formal power series in t satisfying Z = t(1+Z)(1+2Z)2. In particular,
the series G is algebraic of degree 3 over Q(t).

As n tends to infinity, the number of intervals in Dn is equivalent to

κµnn−7/2,

the electronic journal of combinatorics 32(2) (2025), #P2.36 3



with

µ =
11 + 5

√
5

2
, κ =

3

8

√
275 + 123

√
5

10π
.

After completing this paper, we learnt that this result had been conjectured by Nadeau
and Tewari.

Figure 4: From left to right, a 2-Dyck path of size 3 (element of D2,3), and a mirrored
2-Dyck path of size 3 (element of D′2,3).

Inspired by earlier papers on other Dyck lattices [21, 18, 4, 17], we also consider the
family of m-Dyck paths of size n, in which the n up steps now have height m instead of 1
(Figure 4, left). They can also be seen as Dyck paths of size mn in which the length of each
ascent is a multiple of m. They form an upper ideal, and an interval, in Dmn, and thus a
new lattice that we denote by Dm,n (Figure 5, left). Its cover relations are still described
by DU kD −→ U kDD, where now U , in boldface, stands for a large up step of height
m. We extend to this lattice the construction of intervals found for m = 1, and obtain
again a bijection with certain quadrant walks with infinitely many allowed steps. However,
in contrast with other lattices defined on m-Dyck paths [21, 18], as soon as m > 2 the
associated generating function stops being algebraic, or even D-finite (i.e., solution of a
linear differential equation with polynomial coefficients). We prove this by determining
the asymptotic behaviour of the number of intervals, which, due to deep number theoretic
results [11], rules out the possibility of D-finiteness.

Proposition 2. Let us fix m > 1. The number gm(n) of intervals in the ascent lattice
Dm,n satisfies, as n tends to infinity,

gm(n) ∼ κµnnα,

for some positive constant κ, where

µ =
m
√
m2 + 4 +m2 + 2

2
·

(
2 +
√
m2 + 4

m

)m

and

α = −1− π/ arccos(−c) with c = −

√
m2 + 2−

√
m2 + 4

2m2 + 6
.

For m = 1 we have α = −7/2, but for m > 1 the exponent α is irrational. This implies
that for m > 1 the generating function of intervals in Dm,n is not D-finite.
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Figure 5: On the left, the Hasse diagram of D2,3, and on the right, the Hasse diagram
of D′2,3.

Finally, we also consider the class of mirrored m-Dyck paths of size n: now, the up
steps have height 1 and the n down steps have height m (Figure 4, right). Alternatively,
these paths can be seen as Dyck paths of size mn in which the length of each descent
is a multiple of m. For m > 1 the order induced by Dmn on these paths is no longer a
lattice, and in particular it has several minimal elements. But it is still a join semilattice,
which we denote by D′m,n (Figure 5, right). Its cover relations are still described by
DUkD −→ UkDD, where D, in boldface, stands for a large down step. Working with
these mirrored m-Dyck paths is less standard than working with m-Dyck paths, but turns
out to be rewarding: when investigating the number of intervals in D′m,n, we found them
in the On-line Encyclopedia of Integer Sequences [55], as the number of sylvester classes
of m-parking functions [43, 49]. We first establish a bijection between these classes and
intervals in D′m,n. Then, we describe a recursive construction of intervals of D′m,n, which,
when m = 1, is not the same as the earlier one. It gives again a bijection with quadrant
walks with infinitely many allowed steps, and a linear equation in two catalytic variables
for the generating function. This time we also have an alternative interpretation in terms of
quadrant walks with finitely many (weighted) allowed steps. We determine the asymptotic
behaviour of the number of intervals, which again rules out the possibility of D-finiteness
for m > 2.
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Proposition 3. Let us fix m > 1. The number g′m(n) of intervals in the ascent poset D′m,n
satisfies, as n tends to infinity,

g′m(n) ∼ κµnnα,

for some positive constant κ, where

µ =
(

2m+
√

1 + 4m2
)(1 +

√
1 + 4m2

2m

)2m

and

α = −1− π/ arccos(−c) with c = −

√
1 + 2m2 −m

√
1 + 4m2

2(3m2 + 1)
.

For m = 1 we have α = −7/2, but for m > 1 the exponent α is irrational. This implies
that for m > 1 the generating function of ascent intervals in D′m,n is not D-finite.

Outline of the paper. We begin in Section 2 with various definitions, in particular of the
ascent posets Dm,n and D′m,n. We give a characterization of the ascent order that reveals a
connection with another poset defined on nonincreasing sequences, recently introduced
by Nadeau and Tewari [48]. We rely on their results to conclude that Dm,n is a lattice,
and D′m,n a join semilattice. In Section 3, we show how to transform bijectively intervals
of the Nadeau-Tewari poset into words on the alphabet Z that avoid two patterns, and
are representatives for classes of the sylvester congruence introduced by Hivert et al. [43].
In particular, we exhibit sylvester classes that are in bijection with intervals of Dm,n and
D′m,n. In Section 4, we describe recursive constructions of these intervals, and convert
them into functional equations for the associated generating functions. To write these
equations, one needs to record two additional (or: catalytic) variables. In Section 5 we
solve the two equations obtained for m = 1, and establish Theorem 1 and refinements of
it. Section 6 is devoted to the asymptotic estimates of Theorems 2 and 3. We conclude
with a few remarks.

2 Ascent posets

2.1 Definitions

We begin with precise definitions of the objects and notions discussed more informally in
the introduction.

Dyck paths. Let us first recall that a Dyck path P is a 2-dimensional path starting at
the origin (0, 0), consisting of up steps U = (1, 1) and down steps D = (1,−1), that ends
on the x-axis and never goes strictly below the x-axis. The size of P is the number n of
up steps. We denote by Dn the set of such paths. An ascent of a path P is a maximal,
non-empty sequence of consecutive up steps. A descent is defined similarly using down
steps. A factor of P is a non-empty sequence of consecutive steps. A peak is a factor UD,
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while a valley is a factor DU . The ascent composition of a Dyck path P is the composition
c(P ) = (c1, . . . , ck), where the part ci > 0 is the length of the ith ascent of P . Clearly, the
ci’s sum to n, so that c(P ) is a composition of the integer n if P ∈ Dn.

For m > 1, we call m-Dyck path of size n any path of Dmn in which all ascent lengths
are multiples of m, and denote the corresponding set by Dm,n. Analogously, we call
mirrored m-Dyck path of size n any path of Dmn in which all descent lengths are multiples
of m, and denote the corresponding set by D′m,n. We sometimes consider m-Dyck paths of
size n as sequences of large up steps U = (m,m) and (unit) down steps D, and analogously
for mirrored m-Dyck paths, which have large down steps D = (m,−m) and unit up steps.
The number of m-Dyck paths of size n is the Fuss-Catalan number (see A355262 in the
OEIS [55]):

Cm(n) =
1

mn+ 1

(
(m+ 1)n

n

)
. (1)

Orders on Dyck paths. There exists on Dn a classical order, called the Stanley order
(or lattice, in fact), for which P is less than or equal to Q if it lies (weakly) below Q. By
this, we mean that for any `, the prefix of P of length ` contains at most as many up steps
as the prefix of length ` of Q. A path Q covers a path P in this order if and only if Q is
obtained by replacing a valley DU of P into a peak UD.

In this paper we consider a greedy version of this order, which we call the ascent order.
It is described by its cover relations: we say that Q covers P (denoted P <· Q) if there
exists in P a factor DUkD such that Q is obtained from P by replacing this factor by
UkDD. Observe that in this case P lies below Q. In particular, this relation is irreflexive
and anti-symmetric. Its transitive closure is thus an order relation on Dn, denoted 6, and
one easily checks that the cover relations of this order are indeed those described above.
We denote by Dn the corresponding poset. Since Dm,n and D′m,n are subsets of Dmn, we
can consider the orders induced by 6 on these subsets. We denote by Dm,n and D′m,n the
corresponding posets.

Formal power series. For a ring R, we denote by R[t] (resp. R[[t]]) the ring of polyno-
mials (resp. formal power series) in t with coefficients in R. If R is a field, then R(t) stands
for the field of rational functions in t. This notation is generalized to several variables.
For instance, in Section 4 we consider the generating function Gm(t;x, y) of intervals in
the ascent lattices Dm,n, n > 1, where t records the size (the number n of up steps), and
x (resp. y) the length of the final descent of the smaller (resp. larger) path; this series
belongs to Q[x, y][[t]]. We often omit in our notation the dependency in t of our series,
writing for instance Gm(x, y) instead of Gm(t;x, y).

2.2 A characterisation of the ascent order

Let us first recall that a composition c refines another composition c′ if we can write c =
(c1,1, c1,2, . . . , c1,j1 , . . . , ci,1, ci,2, . . . , ci,ji) and c′ = (c′1, . . . , c

′
i) where c′k = ck,1+ck,2+· · ·+ck,jk ,

for 1 6 k 6 i. For instance, the paths of Figure 2 have ascent compositions c(P ) = (2, 2, 2)
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and c(Q) = (2, 4), and we observe that c(P ) refines c(Q). Note that refinement is an order
relation on compositions of n, for each integer n. It is isomorphic to the Boolean lattice
on (n− 1) elements. The cover relations are obtained by merging two consecutive parts.

Proposition 4. In the ascent poset Dn, we have P 6 Q if and only if P lies (weakly)
below Q and the ascent composition c(P ) refines c(Q).

Graphically, the second condition means that for every descent of Q, there is a descent
of P lying on the same line (of slope −1).

Proof. Let us first prove that if P 6 Q in Dn, the other two conditions hold. By transitivity,
it suffices to prove them if P <· Q. By definition, this means that one obtains Q from P
by replacing a factor DUkD by UkDD. This shows at once that Q is above P . Moreover,
c(Q) is either c(P ), or is obtained from c(P ) by merging two consecutive parts. It follows
that c(P ) is a refinement of c(Q).

cj

cjcj−1

dj

dj−1

P1 = Q1 P3, Q3

P3, Q3P1 = Q1

P

Q

Q

P

3 = cj 6 dj = 4

2 + 3 = cj−1 + cj 6 dj−1 = 6

Figure 6: Applying the transformation DUkD → UkDD at the first valley of P that is
not a valley of Q. Top: P1 ends with D. Bottom: P1 ends with U .

Conversely, let us take a pair (P,Q) in Dn such that P lies below Q and c(P ) refines
c(Q). We will argue by induction on the area lying between P and Q. If this area
is zero, P = Q and there is nothing to prove. Otherwise, let us write P = P1P2 and
Q = Q1Q2 where P1 = Q1 is the longest common prefix of P and Q. Then P2 = DP3 and
Q2 = UQ3, because P is below Q (Figure 6). Note that P3 contains at least one U step.
Let c = (c1, . . . , ck) be the ascent composition of P , and say that the first ascent of P3 is
the jth ascent of P , of length cj. If P1 = Q1 ends with a D step (Figure 6, top), then the
first up step of Q2 is the start of the jth ascent of Q, which has length dj if d = (d1, . . . , d`)
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is the ascent composition of Q. Since c refines d and the first (j − 1) parts of c and d
coincide, we have cj 6 dj. If P1 = Q1 ends with a U step (Figure 6, bottom), then this
step belongs to the (j − 1)th ascents of P and Q, which have lengths cj−1 in P and dj−1
in Q. Moreover, dj−1 > cj−1 because this ascent of Q also includes the first step of Q2

(but definitely not the first step of P2, which is D). In this case the first (j − 2) parts of c
and d coincide, and we have dj−1 > cj−1 + cj since c refines d. In both cases, let P ′ be
obtained by applying the cover relation at the first valley of P that follows P1. The above
observations imply that P ′ lies below Q, and that its composition refines c(Q): in the
first case, c(P ′) = c(P ), and in the second case, either c(P ′) = c(P ) or c(P ′) is obtained
by merging the parts cj−1 and cj of c(P ). Also, the area between P ′ and Q is less than
the area between P and Q. By the induction hypothesis, we thus have P ′ 6 Q. But P ′

covers P , hence P 6 Q.
The second statement of the proposition is a simple observation.

It will be worth keeping in mind the following result, established in the second part of
the above proof.

Corollary 5. Let P � Q. Applying the cover relation at the first valley of P that is not a
valley of Q gives a path P ′ that covers P and satisfies P ′ 6 Q.

Remark 6. The characterization of Proposition 4 implies that if Q covers P in the Tamari
lattice, then Q is larger than P in the ascent lattice. This inclusion appears in Figure 1.

2.3 The posets Dm,n and D′
m,n

We now fix m > 1. We consider the ascent order on Dmn, and the induced orders on the
set Dm,n of m-Dyck paths of size n, on the first hand, and on the set D′m,n of mirrored
m-Dyck paths of size n, on the other hand. Recall that we sometimes consider these paths
as having large up (resp. down) steps, of height m, and that these large steps are denoted
by U and D, respectively.

Proposition 7. The poset Dm,n is the interval of Dmn with minimum element (UmDm)n

and maximum element UmnDmn. Its cover relations are still given by the transformation
DU `D → U `DD (where ` = mk is necessarily a multiple of m), or equivalently by
DU kD → U kDD.

The poset D′m,n has maximum element UmnDmn, but several minimal elements if m > 2.
Their number is the Fuss-Catalan number Cm−1(n) (see (1)). The cover relations are still
given by the transformation DUkD → UkDD.

Proof. Recall that the cover relations in Dmn either merge two consecutive parts of the
ascent composition, or leave it unchanged. Hence, if P 6 Q in Dmn and P ∈ Dm,n ⊂ Dmn,
then Q ∈ Dm,n as well. Thus Dm,n forms an upper ideal in Dmn. Moreover, Proposition 4
implies that the m-Dyck path (UmDm)n is smaller than (or equal to) any other m-Dyck
path. This proves the first statement. The second then follows, because Q covers P in
Dm,n if and only if Q covers P in Dmn.
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Let us now consider the subset D′m,n of Dmn. It contains UmnDmn, so this path remains
the (unique) maximal element in D′m,n. Let us skip for the moment the results on minimal
elements, and focus on cover relations. If a path Q is obtained from another path P ∈ D′m,n
by a transformation DUkD → UkDD, then Q ∈ D′m,n and P 6 Q by Proposition 4.
Moreover, any mirrored m-Dyck path that lies above P and below Q is obtained from
P by replacing the same factor DUkD by U `DUk−`D. By Proposition 4, it is larger
than or equal to P in Dmn only if ` = 0 or ` = k. Hence Q covers P . Conversely, if Q
covers P in D′m,n, then in particular P 6 Q in Dmn, and Proposition 4 implies that P lies
below Q and c(P ) refines c(Q). We then apply m times the construction of Corollary 5:
that is, we perform, in the first valley of P that is not a valley of Q, a transformation
DUkD → UkDD that gives a path P ′ lying in [P,Q]. Since P ′ 6= P and P ′ still belongs
to D′m,n, the fact that Q covers P in D′m,n implies that P ′ = Q. Hence Q is indeed obtained
via the claimed cover relation.

Now that we have described the cover relations in D′m,n, let us finally return to its
minimal elements. We assume that m > 2. If Q covers some path P , then Q contains a
factor DD. Conversely, if Q = Q1UDDQ2, then Q covers P := Q1DUDQ2. Thus the
minimal elements of D′m,n are those that contain no factor DD. We claim that these paths
are in bijection with mirrored (m− 1)-Dyck paths of the same size. The bijection simply
consists in replacing every factor UD = UDm by Dm−1. This concludes the proof.

2.4 Lattice properties

The characterization of the ascent order in Proposition 4 reveals a connection with another
order, defined on nonincreasing sequences of integers, recently introduced by Nadeau and
Tewari [48]. This connection, already observed by Chenevière [30, p. 147], will imply our
main structural result.

Definition 8. [48, Def. 5.4] Let n > 1, and u = (u1, . . . , un), v = (v1, . . . , vn) be two
nonincreasing sequences of integers. Then u is smaller than or equal to v in the Nadeau-
Tewari poset Pn, denoted u E v, if u is smaller than or equal to v componentwise, and
every descent of v is a descent of u. In symbols:

• ui 6 vi for all i,

• if vi > vi+1 then ui > ui+1.

Proposition 9. [48, Prop. 5.5] The poset Pn is a lattice, called (here) the NT lattice.

In particular, the join of two sequences u and v is the (componentwise) smallest
sequence w whose descent set is contained in the intersection of the descents sets of u
and v. For instance, if u = (4, 4, 2, 2) and v = (4, 4, 3, 1) then w = (4, 4, 3, 3).

We can encode an m-Dyck path of Dm,n by a nonincreasing sequence (u1, . . . , un) of
integers, where ui is the number of D steps that occur after the ith large up step U . For
instance, the encoding of the leftmost path of Figure 4 is (u1, u2, u3) = (6, 5, 3). The
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encoding sends bijectively Dm,n on the set of nonincreasing sequences u of length n such
that for all i,

m(n− i+ 1) 6 ui 6 mn. (2)

Analogously, we encode a mirrored m-Dyck path of D′m,n by the nonincreasing sequence
(u1, . . . , umn) such that ui is the number of D steps that occur after the ith up step U . For
instance, the encoding of the rightmost path of Figure 4 is (u1, . . . , u6) = (3, 3, 3, 2, 1, 1).
This encoding sends bijectively D′m,n on the set of nonincreasing sequences u of length mn
such that for all i,

n− i− 1

m
6 ui 6 n. (3)

Proposition 10. Let m,n > 1. The poset Dm,n is a lattice, isomorphic to the order
induced by the Nadeau-Tewari order on sequences of Pn satisfying (2).

The poset D′m,n is a join-semilattice, isomorphic to the order induced by the Nadeau-
Tewari order on sequences of Pmn satisfying (3).

Proof. The descriptions of Dm,n and D′m,n as induced posets of Pn and Pmn come directly
from the characterization of the ascent order given in Proposition 4, and the definitions of
Dm,n and D′m,n as subposets of Dmn. Let us now address the lattice properties.

In Pn, any sequence u satisfying (2) satisfies, for the NT order:

umin := (mn,m(n− 1), . . . ,m) E u E umax := (mn, . . . ,mn).

This is because umin has a descent at each place, while umax has no descent at all. Conversely,
any sequence u such that umin E u E umax satisfies (2). This means that our encoding
sends Dm,n on the interval [umin, umax] of Pn, and thus on a lattice.

Analogously, any sequence u of Pmn satisfying (3) satisfies, for the NT order:

u E umax := (n, . . . , n),

because there is no descent in umax. Moreover, any v such that u E v E umax also
satisfies (3). Hence our encoding sends D′m,n on a union of intervals with maximal element
umax, and thus on a join semilattice.

Examples. Let us first take m = 1 and n = 4, and construct the join in Dn of the
paths P = UUDDUUDD and Q = UUDUDDUD, encoded by u = (4, 4, 2, 2) and
v = (4, 4, 3, 1). The join of u and v has already be seen to be w = (4, 4, 3, 3), and thus the
join of P and Q is UUDUUDDD.

Next let us takem = 2 and n = 3, and construct the join in D′m,n of P = UUDUUUDUD
and Q = UUUUDDUUD. The encodings of P and Q are, respectively, u = (3, 3, 2, 2, 2, 1)
and v = (3, 3, 3, 3, 1, 1), whose join in Pn is w = (3, 3, 3, 3, 3, 3). Hence the join of P and
Q in D′m,n is U6D3. 2
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3 Intervals in the Nadeau-Tewari poset and classes of the sylvester
congruence

In this section, we exhibit a bijection between (some) intervals of the Nadeau-Tewari
lattices Pn and (some) words on the alphabet N∗ = {1, 2, . . .} that avoid the patterns
aba and acb (precise definitions will be given below). These words are known to encode
classes of the sylvester congruence on words, introduced by Hivert et al. [43]. We then
specialize our bijection to intervals of Dm,n and D′m,n. In particular, intervals of D′m,n are
sent bijectively to sylvester classes of m-parking functions, considered in [49].

Let us begin with some definitions. Given a word w = w1 · · ·wn on the alphabet N∗,
we denote its length n by |w|. We denote by {w} the set of letters occurring in w, and
by {{w}} the multiset of letters of w. We define NInc(w) (resp. NDec(w)) as the word
obtained by reordering the letters of w in nonincreasing (resp. nondecreasing) order. For
two words w and w′ of the same length, we say that w 6 w′ if wi 6 w′i for all i. We define
Low(w) as the only nonincreasing word of length n that has the same left-to-right minima
as w, at the same positions. In other words, Low(w) is the largest nonincreasing word
(for the above componentwise order) that is smaller than or equal to w. For instance, if
u = 6 8 7 4 5 2 3 1 9 then Low(u) = 6 6 6 4 4 2 2 1 1.

The sylvester congruence on words is generated by the commutation relations

ac · · · b ≡ ca · · · b, a 6 b < c.

It is known that the words w = w1 · · ·wn avoiding the patterns aba and acb form a set of
representatives of sylvester classes [49, Sec. 2.7]: every class contains such a word, and
two distinct words of this type are never congruent. By pattern avoidance, we mean that
we cannot find 1 6 i < j < k 6 n such that either wi = wk < wj or wi < wk < wj. This
congruence arose in connection with binary search trees [43], and the name sylvester refers
to the forest, silva in Latin, rather than to the mathematician James Joseph Sylvester.

Lemma 11. Let w avoid the patterns aba and acb. Then w can be uniquely reconstructed
from the words w(1) = NInc(w) and w(2) = Low(w).

Proof. By construction, the left-to-right minima of w have the same positions and values
as those of w(2). Hence, let us write

w = w
(2)
i1
z1w

(2)
i2
z2 · · ·w(2)

ik
zk = wi1z1wi2z2 · · ·wikzk,

where 1 = i1 < i2 · · · < ik are the indices of the left-to-right minima of w, and |zj| =
ij+1 − ij − 1 for all j. Starting from w(2) and w(1), we thus need to decide how to arrange

the letters of {{w(1)}} \ {w(2)
i1
, . . . , w

(2)
ij
} in the words zj. Obviously, all letters of zj must

be greater than or equal to w
(2)
ij

.
We claim that each zj is nondecreasing: indeed, any descent of zj would give rise to a

pattern aba or acb, with first letter a = w
(2)
ij

at position ij, and the other two in zj. So it

suffices to determine, inductively on j, which letters of {{w(1)}} \ {{w(2)
i1
z1 · · · zj−1w(2)

ij
}}
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go into zj. We claim that they are the |zj| smallest, among those that are larger than or

equal to w
(2)
ij

. Indeed, imagine that we leave out one of them, say m. Then the final letter

M of zj is larger than m, and m occurs later in w. But then the subword w
(2)
ij
Mm of w

has shape aba or acb.

Example 12. Take w = 3 2 2 2 2 5 1 1 1 5, which avoids aba and acb. Then w(1) :=
NInc(w) = 5 5 3 2 2 2 2 1 1 1 and w(2) := Low(w) = 3 2 2 2 2 2 1 1 1 1. To reconstruct w
from these two words, we first collect the left-to-right minima of w(2) and leave them in
place:

w = 3 2 1 .

The multiset of letters of w(1) that need to fill the gaps is {{5, 5, 2, 2, 2, 1, 1}}. We fill the
first gap z1, in nondecreasing order, with the 4 smallest of these letters that equal at least
2, namely 2, 2, 2 and 5:

w = 3 2 2 2 2 5 1 .

We finally fill the second gap z2 with the remaining letters, 1, 1 and 5:

w = 3 2 2 2 2 5 1 1 1 5.

We have recovered w.

Remark 13. This construction is reminiscent of, but distinct from, the bijection between
permutations avoiding the pattern abc and those avoiding acb found in [54, Prop. 19].

We now consider positive nonincreasing sequences u = (u1, . . . , un) of the Nadeau-
Tewari poset Pn (Definition 8), with n fixed. These sequences can be encoded bijectively
by nonincreasing words w on the alphabet {1, . . . , n} that contain at least one occurrence
of the letter 1 (Figure 7): the word w = W (u) has ui − ui+1 occurrences of the letter
n + 1 − i, for 1 6 i 6 n, where we take un+1 = 0. Graphically, if we represent u by a
path with East steps at heights u1, . . . , un, un+1 = 0, joined by South steps, then wi is the
number of East steps after the ith South step. It can also be seen as the abscissa of the
ith South step, if abscissas are numbered from right to left (Figure 7). Note that W (u)
has length u1. We call it the vertical encoding of u. Note also that for two sequences
u and v in Pn such that u1 = v1, we have ui 6 vi for all i if and only if W (v) 6 W (u)
componentwise (so the order is reversed). Of course the sequence u and the word w play
essentially symmetric roles. We choose to represent u by a sequence and w by a word to
keep them distinct. We denote by Wn the set of words on the alphabet {1, . . . , n} that
contain at least one occurrence of the letter 1. Nonincreasing words of Wn are in bijection
with positive sequences of Pn.

Proposition 14. Fix n > 1 and let w ∈ Wn. Then NInc(w) and Low(w) are nonincreasing
words of the same length in Wn. Let u (resp. v) be the positive sequence of Pn such
that W (u) = NInc(w) (resp. W (v) = Low(w)). Then u1 = v1 = |w| and u E v in the
Nadeau-Tewari poset Pn. Define Φn(w) to be the interval [u, v].

The restriction of Φn to words of Wn avoiding the patterns aba and acb is a bijection
between these words and intervals [u, v] of positive words such that u1 = v1 in the Nadeau-
Tewari poset Pn.
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Figure 7: The positive sequence u = (6, 6, 5, 3, 3) ∈ P5 is encoded by the word w =
4 3 3 1 1 1 ∈ W5, of length u1 = 6.

Proof. Let us first observe that, for two positive sequences u and v in Pn such that u1 = v1,
the condition u E v translates in terms of the words w(1) := W (u) and w(2) := W (v) as
follows: w(2) 6 w(1) (componentwise), and the set {w(2)} of letters of w(2) is included in
{w(1)}.

Now let w = w1 · · ·wM be a word of length M in Wn, and take w(1) = NInc(w) and

w(2) = Low(w). Write w(k) = w
(k)
1 · · ·w

(k)
M for k = 1, 2. Given that the letters of w(2) are

the values of the left-to-right minima of w, while w(1) is just a reordering of w, we have
{w(2)} ⊂ {w(1)}. Let us now prove that w(2) 6 w(1) componentwise (note that for the
moment we do not assume that w avoids any pattern). For any letter a ∈ N, we have, by
definition of w(1) = NInc(w):

w
(1)
i > a⇔ ]{j : wj > a} > i.

Hence w
(2)
i 6 w

(1)
i if and only if at least i letters of w are larger than or equal to w

(2)
i .

Assume that m 6 i < m′, where m and m′ are the positions of two consecutive left-
to-right minima of w. Then w

(2)
i = wm, and by definition of w(2) = Low(w), the letters

w1, . . . , wm′−1 are larger than or equal to wm. Since there are m′−1 of them, and i 6 m′−1,

this proves that w
(2)
i 6 w

(1)
i . We conclude that the positive sequences u and v of Pn

given by W (u) = w(1) and W (v) = w(2) form an interval for the NT order. They also
satisfy u1 = v1 = M . These properties hold in particular when w avoids the two forbidden
patterns. Moreover, the map Φn is injective on those words, by Lemma 11.

Let us now prove surjectivity. Let u E v in Pn, with u and v positive and u1 = v1 := M .
Let w(1) = W (u) and w(2) = W (v). As already observed, u E v means that w(2) 6 w(1)

(componentwise) and {w(2)} ⊂ {w(1)}. The proof of Lemma 11 tells us how to reconstruct
a word w that avoids the two patterns and satisfies Φ(w) = (u, v) — if such a word exists!
So let us try to apply this construction to w(1) and w(2): we keep the left-to-right minima
of w(2), denoted w

(2)
ij

, in place, and fill the gaps zj with the remaining letters of w(1). Let
us first explain that the construction succeeds, that is, produces a word w. We will then
explain why w does not contain the forbidden patterns. The only thing that could go
wrong in the construction of w is that we could run out of letters when filling, with letters
of {{w(1)}} \ {{w(2)

i1
z1 · · · zj−1w(2)

ij
}}, the gap following the jth left-to-right minimum of w.

This only happens if the number of letters of w(1) that are larger than or equal to w
(2)
ij

is less
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than ij+1 − 1 (with ij+1 = M + 1 if w
(2)
ij

is the rightmost left-to-right minimum). However,

the number of such letters in w(2) is precisely ij+1 − 1, and w(2) 6 w(1) componentwise:

hence there are at least ij+1 − 1 letters larger than or equal to w
(2)
ij

in w(1), and one is
never stuck in the construction of w. Finally, w avoids aba and acb: indeed, if there was
one of these patterns in w, there would be one where the first a is occurs at a left-to-right
minimum, hence a = w

(2)
ij

: but the construction has been designed to guarantee that there
is no wk > w` > a with ij < k < `. Hence the map Φn is surjective, and the proposition is
proved.

Example 15. Take n = 6, and choose w = 3 2 2 2 2 5 1 1 1 5 as in Example 12. Then
w(1) := NInc(w) = 5 5 3 2 2 2 2 1 1 1 and w(2) := Low(w) = 3 2 2 2 2 2 1 1 1 1. The
positive nonincreasing sequences u and v of Pn such that W (u) = w(1) and W (v) = w(2)

are u = (10, 10, 8, 8, 7, 3) and v = (10, 10, 10, 10, 9, 4), and they form an interval in Pn
(Figure 8).

012345
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Figure 8: The sequences u = (10, 10, 8, 8, 7, 3) and v = (10, 10, 10, 10, 9, 4) form an interval
in P6 such that u1 = v1. Their vertical encodings are w(1) = 5 5 3 2 2 2 2 1 1 1 and
w(2) = 3 2 2 2 2 2 1 1 1 1, respectively, and the associated pattern avoiding word is
w = 3 2 2 2 2 5 1 1 1 5 (Example 15).

It follows from the above proposition that, given a positive sequence u(0) of Pn, the map
Ψn := Φ−1n sends bijectively intervals [u, v] of Pn such that u1 = v1 = u

(0)
1 and ui > u

(0)
i

for all i 6 n onto

• words w of Wn avoiding aba and acb and satisfying NInc(w) 6 W (u(0)), component-
wise,

• or equivalently sylvester classes of words w of Wn such that NInc(w) 6 W (u(0)).

Returning to Proposition 10, we can use this to exhibit families of words (or sylvester
classes) in bijection with intervals of Dm,n and D′m,n.

Corollary 16. Upon encoding m-Dyck paths and mirrored m-Dyck paths by nonincreasing
sequences (see Section 2.4), the maps Ψn and Ψmn induce respectively bijections between
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• intervals of Dm,n and sylvester classes of words w of Wn of length mn such that
NInc(w) 6 nm(n− 1)m · · · 1m, where im represents a sequence of m copies of i;

• intervals of D′m,n and sylvester classes of words w of Wmn of length n such that
NInc(w) 6 ((n− 1)m+ 1) · · · (2m+ 1)(m+ 1)1.

Note that the two statements coincide when m = 1. The second one explains why we
found the sequences (g′m(n))n>0 counting intervals of D′m,n, for 1 6 m 6 5, in the OEIS:
they appear at the very end of [49] in Table 21, as counting sylvester classes of m-parking
functions (of size n). These functions are defined in [49, Sec. 6.1] as positive words w of
length n such that NDec(w) 6 1(m+ 1) · · · ((n− 1)m+ 1), which is equivalent to saying
that NInc(w) 6 ((n− 1)m+ 1) · · · (m+ 1)1 as above. The sylvester classes involved in the
first part of the corollary do not seem to have been considered so far.

Example 17. Let us take m = 1 and n = 4, and the interval [P,Q] given by P =
UDUUDDUD and Q = UUUDDUDD. We encode P and Q by nonincreasing sequences
u and v as described in Section 2.4, with u = (4, 3, 3, 1) and v = (4, 4, 4, 2). Note that
u E v for the NT order, as used in the proof of Proposition 10. The vertical encodings of
u and v are W (u) = 4 2 2 1 and W (v) = 2 2 1 1. The unique word w avoiding aba and
acb such that NInc(w) = W (u) and Low(w) = W (v) is w = 2 2 1 4 and is the canonical
representative of the sylvester class associated with [P,Q].

Remark 18. Words avoiding the patterns aba and acb have recently been considered for
their own sake. See [56, Sec. 4.7], where a formula is given for the number of such words
of length n on a k letter alphabet. However, the underlying recursive construction does
not seem compatible with the conditions of Corollary 16.

4 Recursive construction of intervals in Dm,n and D′
m,n

In this section, we describe recursive constructions of the intervals of the posets Dm,n and
D′m,n, and convert them into functional equations for the associated generating functions.

4.1 Intervals in Dm,n

Lemma 19. Let m,n > 1, and let [P ′, Q′] be an interval of Dm,n. Delete in P ′ and Q′

the final (large) peak UDm, to obtain two paths P and Q of Dm,n−1. Then they form an
interval, that is, P 6 Q.

Conversely, start from an interval [P,Q] in Dm,n−1. Let a 6 b be the lengths of the final
descents of P and Q, respectively. Inserting final large peaks UDm in the final descents of
P and Q, starting at respective heights a′ ∈ J0, aK and b′ ∈ J0, bK, yields an interval [P ′, Q′]
if and only if a′ 6 b′ and b′ is maximal as soon as a′ is maximal. That is, a′ = a implies
b′ = b.

Proof. The first part directly follows from Proposition 4: deleting the final large peak
preserves the relation “lying below”, and subtracts m from the final part of the ascent
composition (parts of size 0 are then discarded), thus preserving refinement.
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Conversely, inserting new large peaks in the final descents of P and Q, at heights
a′ and b′ respectively, preserves the relation “lying below” if and only if a′ 6 b′. This
operation adds to c(P ) a new part equal to m if a′ < a, and adds m to the final part of
c(P ) if a′ = a. An analogous statement holds for Q. Since we need c(P ′) to refine c(Q′),
these observations imply the final condition of the lemma.

Let Gm(t;x, y) be the generating function of intervals [P,Q] in the ascent lattices Dm,n,
counted by the size n > 0 (variable t), the length of the final descent of P (variable x)
and of Q (variable y). Then Gm(t;x, y) are formal power series in t whose coefficients are
polynomials in x and y. For m = 1, 2, they start as follows:

G1(t;x, y) = xyt+ xy (xy + y + 1) t2 + xy
(
x2y2 + 2x y2 + 2xy + 2y2 + 3y + 3

)
t3 +O(t4),

G2(t;x, y) = x2y2t+ x2y2
(
x2y2 + xy2 + xy + y2 + y + 1

)
t2

+ x2y2
(
x4y4 + 2x3y4 + 2x3y3 + 3x2y4 + 4x2y3 + 3xy4 + 4x2y2 + 5xy3 + 3y4

+ 6xy2 + 5y3 + 6xy + 6y2 + 6y + 6
)
t3 +O(t4).

Clearly, the exponent of y is at least equal to the exponent of x in each monomial of
Gm(t;x, y), and in addition all terms in Gm are multiples of txmym. So we define a new
series Qm(t;x, y) by

Gm(t;x, y) = txmymQm(t;xy, y), or equivalently Qm(t;x, y) = Gm(t;x/y, y)/(txm).
(4)

Proposition 20. For m > 1, the generating function Gm(t;x, y) ≡ Gm(x, y) is character-
ized by the following functional equation:

Gm(x, y) = txmym + txmymGm(x, y) + txm ym+1 Gm(x, y)−Gm(1, y)

(x− 1) (y − 1)
− txmym Gm(xy, 1)−Gm(1, 1)

(y − 1) (xy − 1)
.

Equivalently, Qm(t;x, y) ≡ Qm(x, y) is characterized by

Qm(x, y) = 1 + txmQm(x, y) + ty2
xmQm(x, y)− ymQm(y, y)

(x− y) (y − 1)
− t x

mQm(x, 1)−Qm(1, 1)

(x− 1) (y − 1)
.

Proof. We construct intervals of Dm,n recursively on the size n, starting from the only
interval of size 1, namely [UDm,UDm], and inserting a final peak as in Lemma 19. We
use the notation of this lemma. The rule that describes the final descent lengths of paths
P ′ 6 Q′ obtained from [P,Q] ∈ Dm,n−1 in terms of the final descent lengths a and b of P
and Q is

(a, b)→
{

(m+ a′,m+ b′), for 0 6 a′ < a and a′ 6 b′ 6 b,
(m+ a,m+ b).

(5)

In other words, intervals of Dm,n are in bijection with nodes at height (n − 1) in the
generating tree having root (m,m) and the above rewriting rule (see for instance [61, 13]
for the hopefully intuitive notion of generating trees). In terms of generating functions, if
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we write Gm(x, y) =
∑

06a6bGm,a,bx
ayb, so that Gm,a,b is the series (in t) counting intervals

with final descent lengths a and b, the above construction gives:

Gm(x, y) = txmym + t
∑
06a6b

Gm,a,b

(
xm+aym+b +

a−1∑
a′=0

b∑
b′=a′

xm+a′ym+b′

)

= txmym + txmymGm(x, y) + txmym
∑
06a6b

Gm,a,b

a−1∑
a′=0

xa
′ · y

b+1 − ya′

y − 1

= txmym + txmymGm(x, y) + txmym
∑
06a6b

Gm,a,b
xa − 1

x− 1

yb+1

y − 1

− txmym
∑
06a6b

Gm,a,b
xaya − 1

(xy − 1)(y − 1)
,

which is the announced equation for Gm. It is straightforward to convert it into an equation
for Qm, using (4).

The rewriting rule (5) also describes the construction of certain lattice walks confined
to the first quadrant of the plane, which are thus in bijection with ascent intervals. This
will be combined in Section 6 to general probabilistic results on quadrant walks to obtain
the asymptotic result of Proposition 2.

Corollary 21. Let m,n > 1. There is a bijection between intervals in Dm,n and walks
in the quarter plane N2 that start from (0, 0) and consist of n − 1 steps taken from the
following subset of Z2:

Sm = {(m, 0)} ∪ {(δx, δy) : δx < m and δx + δy 6 m} .

More precisely, a walk ending at (i, j) corresponds to an interval [P,Q] where P and Q
have final descent lengths m+ i and m+ i+ j, respectively.

This also yields a bijection between intervals in Dm,n and quadrant walks of length n
starting and ending at (0, 0), still taking their steps in Sm. We call such walks excursions.

Proof. There are two (essentially equivalent) ways of proving this result.
The first one starts from the rewriting rule (5) and rewrites the label (a, b) as (m +

i,m+ i+ j), so that the conditions m 6 a 6 b become i, j > 0. The transformed tree has
root (0, 0) and rewriting rule

(i, j)→
{

(k, `), for 0 6 k < m+ i and 0 6 ` 6 m+ i+ j − k,
(m+ i, j).

(6)

In other words, from the point (i, j) in the nonnegative quadrant N2, we can move to
another point (k, `) of the quadrant by appending a step (δx, δy) = (k − i, `− j) satisfying

(δx, δy) = (m, 0) or (δx < m and δx + δy 6 m) , (7)
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which is indeed the collection of steps Sm. The second statement follows by adding to a
walk of length n− 1 ending at (i, j) the step (−i,−j), which is indeed in Sm.

The second way to prove the corollary is to start from the description of the quadrant
walk and to recover the equation on Qm obtained in Proposition 20. Since handling
quadrant walks with infinitely many steps is uncommon in the quadrant walks literature,
let us do this. Let us denote by Q(t;x, y) ≡ Q(x, y) =

∑
i,j>0Qi,jx

iyj the generating
function of quadrant walks with steps in Sm (starting from (0, 0)), counted by the length
(i.e., the number of steps; variable t), and the coordinates of the endpoint (variables x and
y). We construct walks step-by-step, using the description (6) of the endpoint rather than
the description (7) of the steps:

Q(x, y) = 1 + txmQ(x, y) + t
∑
i,j>0

Qi,j

(
m+i−1∑
k=0

m+i+j−k∑
`=0

xky`

)

= 1 + txmQ(x, y) + t
∑
i,j>0

Qi,j

(
m+i−1∑
k=0

xk · y
m+i+j−k+1 − 1

y − 1

)

= 1 + txmQ(x, y) +
t

y − 1

∑
i,j>0

Qi,j

(
ym+i+j+1 (x/y)m+i − 1

x/y − 1
− xm+i − 1

x− 1

)
,

which gives the equation obtained in Proposition 20 for the series Qm.

4.2 Intervals in D′
m,n

Let us now turn our attention to mirrored m-Dyck paths. First, observe that the final
descent Dh of such a path is not necessarily preceded by at least m up steps, so there is
not always a final (large) peak. It makes sense to consider instead the first (large) peak
UmD, which always exists. We will use a new parameter on intervals: when P 6 Q, with
associated ascent compositions c(P ) = (c1, c2, . . .) and c(Q) = (d1, d2, . . .), we know that
c(P ) refines c(Q). We define r(P,Q) to be the unique integer r such that c1 + · · ·+ cr = d1.

Lemma 22. Let m,n > 1, and let [P ′, Q′] be an interval of D′m,n. Delete in P ′ and Q′

the first (large) peak UmD, to obtain two paths P and Q of D′m,n−1. Then they form an
interval, that is, P 6 Q.

Conversely, start from an interval [P,Q] in D′m,n−1. Let c(P ) = (c1, c2, . . .) and
c(Q) = (d1, d2, . . .) be the corresponding ascent compositions. The length of the first ascent
in P (resp. Q) is thus c1 (resp. d1). Let r = r(P,Q). Inserting a first large peak UmD in
the first ascents of P and Q, starting at heights a′ ∈ J0, c1K and b′ ∈ J0, d1K respectively,
yields an interval if and only if

• either b′ is one of c1, c1 + c2, . . . , c1 + · · ·+ cr = d1 and a′ is any element of J0, c1K,

• or 0 6 a′ = b′ < c1.

Proof. The first part follows from Proposition 4: when deleting the first peaks, one just
subtracts m from the first part in the ascent compositions of P ′ and Q′.
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Conversely, inserting new large peaks in the first ascents of P and Q at heights a′

and b′ respectively, preserves the relation “lying below” if and only if a′ 6 b′. We want to
choose a′ and b′ so that the resulting paths P ′ and Q′ are such that c(P ′) refines c(Q′).
Recall that this means that every descent of Q′ lies on the same line (of slope −1) as a
descent of P ′. This gives the conditions stated in the lemma; see Figure 9.

First down step of Q

c1 = 3

c1 + c2 = 5

. . .

c1 + · · · + cr = 9

4-th down step of P

Figure 9: An example where r(P,Q) = 4 for an interval [P,Q] in D′2,n−1. A first peak can
be inserted in Q at heights b′ = 0, 1, . . . , c1, c1 + c2, . . . , c1 + · · ·+ cr. If b′ < c1, then the
peak inserted in P must start at height b′ as well.

Let G′m(t;x, y) be the generating function of intervals [P,Q] in the ascent lattice D′m,n,
counted by the size n (variable t), the length of the first ascent of P (variable x) and
the statistic r(P,Q) (variable y). Then G′m(t;x, y) is a formal power series in t whose
coefficients are polynomials in x and y. For m = 1, 2, they start as follows:

G′1(t;x, y) = xyt+ xy (x+ y + 1) t2 + xy
(
x2 + 2xy + y2 + 3x+ 3y + 3

)
t3

+ xy
(
x3 + 3x2y + 3x y2 + y3 + 6x2 + 10xy + 6y2 + 13x+ 13y + 13

)
t4 +O

(
t5
)
,

G′2(t;x, y) = x2yt+ x2y
(
x2 + xy + x+ y + 1

)
t2+

+ x2y
(
x4 + 2x3y + x2y2 + 3x3 + 4x2y + 2xy2

+ 5x2 + 5xy + 2y2 + 5x+ 5y + 5
)
t3 +O(t4).

Note that G′1(t;x, y) does not coincide with G1(t;x, y), except at the point x = y = 1,
since these series record different statistics. We will see below that G′1(t;x, y) is symmetric
in x and y, a result that calls for a direct combinatorial explanation.

Since all monomials are multiples of txmy, we introduce the series Q′m(t;x, y) defined
by

G′m(t;x, y) = txmyQ′m(t;x, y). (8)

Proposition 23. The generating function G′m(t;x, y) ≡ G′m(x, y) is characterized by the
following functional equation:

G′
m(x, y) = txmy+txmy

G′
m(x, y)−G′

m(x, 1)

y − 1
+txm y2 G

′
m(x, y)−G′

m(1, y)

(x− 1) (y − 1)
−txmy G

′
m(x, 1)−G′

m(1, 1)

(x− 1) (y − 1)
.
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Equivalently, Q′m(t;x, y) ≡ Q′m(x, y) is characterized by

Q′
m(x, y) = 1 + txm

yQ′
m(x, y)−Q′

m(x, 1)

y − 1
+ ty2 x

mQ′
m(x, y)−Q′

m(1, y)

(x− 1) (y − 1)
− t x

mQ′
m(x, 1)−Q′

m(1, 1)

(x− 1) (y − 1)
.

Remark 24. When m = 1, the equation for G′1 can be rewritten as

G′1(x, y) = txy + txy
(x+ y − 1)G′1(x, y)− xG′1(x, 1)− yG′1(1, y) +G(1, 1)

(x− 1) (y − 1)
.

It is symmetric in x and y, and characterizes G′1(x, y): we conclude that this series is
symmetric in x and y. Since the equation reflects a (symmetric) recursive construction of
intervals, it can be used to define a recursive involution on ascent intervals that exchanges
the length of the first ascent of the bottom path and the parameter r(·, ·). See Section 7
for details. Note that another symmetry property was discovered in Tamari intervals [18],
and explained in [27, 50].

Proof of Proposition 23. We construct intervals of D′m,n recursively in the size n, starting
from the only interval of size 1, namely [UmD, UmD], and inserting peaks as in Lemma 22.
We use the notation of this lemma. Let us examine the value of the parameter r(P ′, Q′),
for paths P ′ 6 Q′ obtained from [P,Q] ∈ D′m,n−1:

• if b′ = c1 + · · ·+ cs, then r(P ′, Q′) = s if a′ = c1, and r(P ′, Q′) = s+ 1 otherwise,

• if b′ = a′ < c1, then r(P ′, Q′) = 1.

Hence, if we record for each interval [P,Q] the pair (c1(P ), r(P,Q)), we obtain a generating
tree with root labelled (m, 1) and rewriting rule

(a, r)→


(m+ a, s), for 1 6 s 6 r,
(m+ a′, s+ 1), for 0 6 a′ < a and 1 6 s 6 r,
(m+ a′, 1), for 0 6 a′ < a.

(9)

Note that the last two lines can be merged into a single one, by allowing s to be 0.
In terms of generating functions, if we write G′m(x, y) =

∑
a,rG

′
m,a,rx

ayr, the above
construction gives:

G′m(x, y) = txmy + t
∑
a,r

G′m,a,r

(
xm+a

r∑
s=1

ys +
a−1∑
a′=0

r∑
s=0

xm+a′ys+1

)

= txmy + txm
∑
a,r

G′m,a,r

(
xa · y

r+1 − y
y − 1

+
xa − 1

x− 1
· y

r+2 − y
y − 1

)
,

which gives the first equation of Proposition 23. It is straightforward to convert it into an
equation for Q′m, using (8).
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Corollary 25. Let m,n > 1. There is a bijection between intervals in D′m,n and walks in
the quarter plane N2 that start from (0, 0) and consist of n− 1 steps taken from

S ′m =
(
{m} × L−∞, 0K

)
∪
(
L−∞,m− 1K× L−∞, 1K

)
,

where L−∞, aK := Z∩ (−∞, a]. Moreover, a walk ending at (i, j) corresponds to an interval
[P,Q] where P has a first ascent of length m+ i and r(P,Q) = 1 + j.

This also yields a bijection between intervals in D′m,n and quadrant walks of length n
starting and ending at (0, 0), still taking their steps in S ′m.

Proof. Let us start from the rewriting rule (9) and rewrite the label (a, r) as (m+ i, 1 + j),
so that the conditions m 6 a, 1 6 r become i, j > 0. The transformed tree has root (0, 0)
and rewriting rule

(i, j)→
{

(m+ i, `) for 0 6 ` 6 j
(k, `) for 0 6 k < i+m and 0 6 ` 6 1 + j.

(10)

In other words, from the point (i, j) in the quadrant, we can move to another point (k, `)
of the quadrant by appending a step (δx, δy) = (k − i, `− j) satisfying

(δx = m and δy 6 0) or (δx < m and δy 6 1) , (11)

which is indeed the collection of steps S ′m. The second statement follows by adding to a
walk of length n− 1 ending at (i, j) the step (−i,−j), which is indeed in S ′m.

There is an alternative description of the series G′m(1, 1) in terms of quadrant walks
involving finitely many weighted steps, or equivalently steps from a finite multiset.

Corollary 26. Let m,n > 1. The number of intervals in the poset D′m,n is the number of
quadrant walks of length n− 1 starting and ending at the origin, for which the multiset
Sm of allowed steps has generating polynomial

Sm(u, v) :=
∑

(a,b)∈Sm

uavb =
(1 + u)m(1 + v)(1 + u+ v)

uv
.

Proof. Let us introduce a new trivariate seriesRm(t;u, v) ≡ Rm(u, v) defined byRm(u, v) :=
Q′m(1 + u, 1 + v). Observe in particular that Rm(0, 0) = Q′m(1, 1) = G′m(1, 1)/t is the
generating function of intervals in the posets D′m,n, where t records the size of the paths,
minus 1. The equation of Proposition 23 gives:

Rm(u, v) = 1 + t
(1 + u)m(1 + v)(1 + u+ v)

uv
Rm(u, v)

− t(1 + v)2

uv
Rm(0, v)− t(1 + u)m+1

uv
Rm(u, 0) + t

R(0, 0)

uv
.

This equation precisely describes (see [9]) the generating function of quadrant walks with
steps in Sm starting from the origin, where t records the length (number of steps), and
(u, v) the final coordinates.
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In particular, for m = 1 the multiset of allowed steps has generating polynomial

S1(u, v) = 3 +
1

uv
+

2

u
+

2

v
+
u

v
+
v

u
+ u+ v,

and, up to the (harmless) constant term 3, coincides with the steps of an already solved
quadrant model [8, Sec. A.7]. In the next section, we take advantage of this earlier result
to prove Theorem 1. We also explain how the principles of [8] can be used to solve, instead
of the equation obtained for R1(u, v) (or equivalently, for G′1(x, y)), the equation obtained
in Proposition 20 for G1(x, y).

5 Exact enumeration of intervals in Dn

In this section we focus on the case m = 1, and drop all indices m in our generating
functions, writing for instance G(x, y) instead of G1(x, y). Our aim is to prove, and actually
refine, Theorem 1 that gives the size generating function of intervals in the lattices Dn.
We can choose between two starting points to address this question. Either we start from
the equation for Q(x, y) = G(x/y, y)/(tx) in Proposition 20:

Q(x, y) = 1 + txQ(x, y) + ty2
xQ(x, y)− yQ(y, y)

(x− y) (y − 1)
− t xQ(x, 1)−Q(1, 1)

(x− 1) (y − 1)
, (12)

or from the equation for Q′(x, y) = G′(x, y)/(txy) in Proposition 23:

Q′(x, y) = 1 + tx
yQ′(x, y)−Q′(x, 1)

y − 1
+ ty2

xQ′(x, y)−Q′(1, y)

(x− 1) (y − 1)
− t xQ

′(x, 1)−Q′(1, 1)

(x− 1) (y − 1)
.

Recall from Corollary 26 that up to the change of variables (x, y) 7→ (1 + x, 1 + y), the
latter equation is equivalent to

R(x, y) = 1 + t
(1 + x)(1 + y)(1 + x+ y)

xy
R(x, y)− t (1 + y)2

xy
R(0, y)− t (1 + x)2

xy
R(x, 0) + t

R(0, 0)

xy
. (13)

Again, note that this equation is symmetric in x and y, and hence the same holds for the
series R(x, y) and G′(x, y).

In all three cases (and in fact also for m > 1) we have a linear equation, relating a
main unknown series F (x, y) to some specializations involving at most one of the two
catalytic variables x and y: for instance F (x, 1), F (1, 1), F (y, y) or F (x, 0). Historically,
the first (non-linear) equations of this type appeared in the seventies in Tutte’s work on
the enumeration of properly coloured planar maps [58, 57]. He devoted ten years and ten
papers to the solution of just one of them (see [60] and references therein). More recently,
similar equations appeared in more contexts, like the enumeration of certain classes of
permutations [13, 24], or of lattice walks confined to a quadrant [8, 10, 11, 20, 33, 51], or of
some classes of maps [1, 6, 7, 23]. The solutions of these equations are not systematically
algebraic (nor even D-finite as will be proved here for m > 1), but our series Q, Q′ and
R will be proved to be algebraic. Several, often ad hoc approaches have been designed
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to prove algebraicity for such equations [10, 14, 15, 13, 12, 20, 47]. The most systematic
one, based on a certain notion of invariants, is based on ideas developed by Tutte in his
enumeration of coloured maps. In particular, the invariant approach has already solved
in [8] an equation that is extremely close to the above equation defining R(x, y), and we
will rely on this to solve (13) and determine G′(x, y) (Proposition 27). Next, we will see
that an invariant approach can also be applied to determine Q(x, y) (Proposition 28), even
if Eq. (12), due to the terms Q(y, y) and the denominator (x− y), looks rather different
from (13).

5.1 The first ascent of P , and the statistics r(P,Q)

Proposition 27. The series G′(t;x, y) that counts intervals [P,Q] in the lattices Dn by the
size, the height of the first ascent of P and the statistics r(P,Q) defined above Lemma 22
is symmetric in x and y. It is algebraic of degree 12 over Q(t, x, y), and can be expressed
as follows.

Let Z be the only series in t with constant term 0 satisfying

Z = t(1 + Z)(1 + 2Z)2.

Then the size generating function of intervals in the ascent lattices Dn is the following
cubic series:

G′(1, 1) = Z(1− 2Z + 2Z3). (14)

More generally the bivariate series G′(x, 1) is

G′(x, 1) = G′(1, x) =
C0(x)− C1(x)

√
∆(x)

2x3(1− x)Z2
,

where

∆(x) = (1 + Z)2 (1 + 2Z)2 − 2Z (Z + 1)
(
2Z2 + 4Z + 1

)
x+ Z2x2,

C1(x) =
(
(1 + 2Z)2 − 2Z2x− Z x2

) (
(1 + Z) (1 + 2Z)− 2 (1 + Z)2 x+ x2

)
,

and

C0(x) = (1 + Z)
2

(1 + 2Z)
4 − (1 + Z) (1 + 2Z)

2 (
8Z3 + 16Z2 + 9Z + 2

)
x− Z (1 + Z) (1 + 2Z)

2
x4

+ Z2x5 + (1 + Z)
(
18Z5 + 46Z4 + 48Z3 + 25Z2 + 7Z + 1

)
x2 − Z

(
2Z5 − 6Z3 − 7Z2 − 3Z − 1

)
x3.

An algebraic expression of G′(x, y) in terms of x, y and Z can then be obtained from the
functional equation of Proposition 23.

Remarks
1. The above expression of G′(1, 1) coincides with the value of

∑
n g(n)tn given in

Theorem 1. Deriving from this the asymptotic behaviour of the numbers g(n) is a routine
task, following the principles of singularity analysis [39, Sec. VII.7]. The series Z is found
to have a unique dominant singularity, of the square root type, located at tc := 1/µ where
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µ is given in Theorem 1. One needs to expand Z around tc up to the order of (1− µt)5/2
to obtain from (14) the singular behaviour of G′(1, 1), in the form

G′(1, 1) = c0 + c1(1− µt) + c2(1− µt)2 + c5/2(1− µt)5/2 +O
(
(1− µt)3

)
.

The constant κ of Theorem 1 is then c5/2/Γ(−5/2).
2. Since any algebraic series is also D-finite, the series G′(1, 1) =

∑
n g(n)tn also satisfies

a linear differential equation. The corresponding linear recurrence relation reads

(n+ 4) (2n+ 7) g(n+ 2) = 2
(
11n2 + 44n+ 42

)
g(n+ 1) + n (2n+ 1) g(n) .

One may wonder whether this can be explained combinatorially directly on intervals.
3. In the same way we have parametrized rationally t and G′(1, 1) by Z, we can write x
and G′(x, 1) as rational functions in Z and the unique series U(x) with constant term 0
satisfying

U(x) = tx(1 + U(x))
(
1 + 3Z + Z2 + Z(1 + Z)U(x)

)
.

Note that U(1) = Z/(1 + Z). One can then write x rationally in terms of U and Z. In
particular, the discriminant ∆(x) becomes a square, and finally

G′(x, 1) = G′(1, x) =
tx(1 + U)

(1 + 2Z)2 (1 + 3Z + Z2 − Z2U)
P (Z,U)

with

P (Z,U) = −Z7 (1 + Z)3 U4 − Z5(1 + Z)2
(
2Z3 + 3Z2 − 4Z − 2

)
U3

+ Z3(1 + Z)
(
13Z5 + 49Z4 + 62Z3 + 24Z2 − 1

)
U2

+ Z2
(
2Z8 + 35Z7 + 140Z6 + 221Z5 + 120Z4 − 48Z3 − 80Z2 − 31Z − 4

)
U

+
(
Z2 + 3Z + 1

) (
Z8 + 15Z7 + 31Z6 + 10Z5 − 19Z4 − 7Z3 + 9Z2 + 6Z + 1

)
.

Proof of Proposition 27. As discussed at the end of Section 4, the series R(t;x, y) =
G′(t; 1 + x, 1 + y)/(t(1 + x)(1 + y)) counts, by length and final coordinates, quadrant walks
with step polynomial

S(x, y) = 3 +
1

xy
+

2

x
+

2

y
+
x

y
+
y

x
+ x+ y.

These walks have already been counted in [8], but without the empty step, which has
multiplicity 3 here. This means that the series R is related to the series denoted Q in [8]
and Qold here, to avoid confusion, by

R(t;x, y) =
1

1− 3t
Qold

(
t

1− 3t
;x, y

)
.
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We now dig in the details of the solution presented in [8, App. A.7]. The series denoted Z(t)
in Eq. (A.8) of [8], and Zold(t) in the present paper, is related to the series Z(t) of the
proposition by

Z(t) = 2× Zold

(
t

1− 3t

)
.

Using Eq. (A.9) of [8], which gives the expression of Qold(t; 0, 0), we then obtain

G′(t; 1, 1) = tR(t; 0, 0) =
1

1− 3t
Qold

(
t

1− 3t
; 0, 0

)
= Z(1− 2Z + 2Z3).

Then Eq. (A.10) in [8] gives a quadratic equation forQold(t; 0, y), or equivalentlyQold(t; y, 0),
with coefficients that are rational expressions in t, y and two series A1 and A2, having
themselves rational expressions in Zold. From this we derive a quadratic equation for
G′(t;x, 1) in terms of x and Z (details are given in our Maple session). Solving this
equation gives the announced rational expression of G′(t;x, 1) in terms of x, Z and√

∆(x).

5.2 The finals descents of P and Q

We will now solve the equation (12) defining Q(x, y), and thus count intervals [P,Q] by
the heights of the final descents of P and Q. Our solution is inspired from the invariant
approach used in [8] to solve, among other equations, the equation (13) defining R(x, y)
(or more precisely, its variant with no empty step). The proof is detailed in Appendix A.
The specialists of equations in two catalytic variables may be interested in the fact that it
uses both an additive and a multiplicative decoupling.

Proposition 28. The series G(t;x, y) that counts intervals [P,Q] in the lattices Dn by the
size, the height of the last descent of P and the height of the last descent of Q, is algebraic
of degree 12 over Q(t, x, y), and can be expressed as follows.

Let Z be the only series in t with constant term 0 satisfying

Z = t(1 + Z)(1 + 2Z)2.

Then

G(x, 1) =
C0(x)− C1(x)

√
∆1(x)

2x2Z2
,

with

∆1(x) = (1 + Z − xZ)
(
(1 + 2Z)2 (1 + Z)− xZ

)
,

C1(x) = (x− 1)
(
(1 + 2Z)2 − 2xZ

)
(2 (1 + Z) (1 + 2Z)− x)

and

C0(x) = −2 (1 + Z)
2

(1 + 2Z)
4

+ 3 (1 + Z) (1 + 2Z)
2 (

4Z3 + 8Z2 + 6Z + 1
)
x−(

12Z6 + 64Z5 + 132Z4 + 134Z3 + 70Z2 + 16Z + 1
)
x2 + Z

(
12Z3 + 24Z2 + 16Z + 3

)
x3 − 2Z2x4.
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Analogously,

G(1, y) =
D0(y)−D1(y)

√
∆2(y)

2yZ(1− y)2
,

with

∆2(y) = (1 + 2Z)2 − 4yZ(1 + Z),

D1(y) = (1 + 2Z − y)(2 + 2Z − y(1 + 2Z)),

and

D0(y) = −2Z y3+
(
4Z3 + 8Z2 + 10Z + 1

)
y2−

(
12Z3 + 24Z2 + 16Z + 3

)
y+2 (1 + 2Z)2 (1 + Z) .

An algebraic expression of G(x, y) in terms of x, y and Z can then be obtained from the
functional equation of Proposition 20.

Remarks
1. Note that the second factor in ∆1(x) is simply Z(1− tx)/t.
2. Again we have rational parametrisations for the series G(x, 1) and G(1, y), by series
U ≡U(x) and V ≡V (y) (with no constant term in t) satisfying

U =
xZ(1 + U)

(1 + Z)(1 + 2Z − Z2U)
, and V =

yZ(1 + Z)(1 + V )2

(1 + 2Z)2
,

respectively. Indeed,

G(x, 1) = U
(1 + Z)P (Z,U)

(1 + 2Z − Z2U)2
,

with

P (Z,U) = 2Z6 (1 + Z)U3 + Z4
(
8Z3 + 4Z2 − 8Z − 5

)
U2

+Z2
(
6Z5 − 6Z4 − 20Z3 − 5Z2 + 9Z + 4

)
U−(1 + 2Z)

(
4Z5 + 4Z4 − 2Z3 − 3Z2 + Z + 1

)
,

and

G(1, y) = V
2Z2 (1 + Z)2 V 2 + Z (4Z3 + 4Z2 − 4Z − 3)V + (1 + Z) (2Z3 − 2Z2 + 1)

(1 + Z − ZV )2
.

6 Asymptotic enumeration of intervals

Our aim in this section is to prove Propositions 2 and 3, which give asymptotic estimates
for the interval numbers in Dm,n and D′m,n and establish non-D-finiteness results. The key
ingredient is the existence of bijections between intervals and quadrant walks, described
in Section 4, combined with general asymptotic results on such walks by Denisov and
Wachtel [31] and their application to enumeration by Bostan et al. [11]. So far these results
do not seem to have been applied to walks with infinitely many allowed steps, but, as will
shall see by following the arguments of [11], this does not raise difficulties as long as the
step generating function converges in a sufficiently large domain.
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6.1 Intervals of Dm,n

Proof of Proposition 2. According to the second part of Corollary 21, the number gm(n)
of intervals in the ascent lattice Dm,n is also the number of quadrant excursions of length
n taking their steps in the set Sm. The generating function of this set is

Sm(x, y) = xm +
m−1∑
i=−∞

xi
m−i∑
j=−∞

yj = xm +
m−1∑
i=−∞

xi
ym−i

1− 1/y
=
xm (xy − x+ y)

(x− y) (y − 1)
.

It converges absolutely for 1 < |y| < |x|. We now follow the probabilistic arguments of [11,
Sec. 2.3] (see also [31, Sec. 1.5]). We consider a random walk (Y1(n), Y2(n))n>0 in Z2,
starting at (0, 0) and taking its steps in Sm, where each step (i, j) occurs with a probability
x0

iy0
j/Sm(x0, y0), for some (x0, y0) chosen such that 1 < y0 < x0. We moreover require

that
∂Sm
∂x

(x0, y0) =
∂Sm
∂y

(x0, y0) = 0,

as this choice guarantees that the walk (Y1, Y2) has no drift, that is, the average displacement
is zero. This gives

x0 =
2 +
√
m2 + 4

m
, y0 =

√
m2 + 4−m+ 2

2
=
m

2
(x0 − 1),

and one can check that indeed, 1 < y0 < x0. The next step is to apply to the walk
Y = (Y1, Y2) a linear transformation so that the covariance matrix of the resulting walk,
denoted Z = (Z1, Z2), is the identity. As in [11], the image by this transformation of the
first quadrant ends up being a wedge Wc of opening arccos(−c), where

c =

∂2Sm

∂x∂y√
∂2Sm

∂x2
∂2Sm

∂y2

(x0, y0).

This coincides with the value of c given in Proposition 2. Now the probability that the
walk (Z1, Z2) visits (0, 0) at time n without exiting the wedge Wc before is

pm(n) :=
gm(n)

Sm(x0, y0)n
,

as each of the corresponding trajectories has probability 1/Sm(x0, y0)
n. Now the random

walk Z satisfies the conditions of [31]: its steps are not contained in any (linear) half-plane,
it is aperiodic (since the step (0, 0) is allowed), has no drift, its covariance matrix is the
identity, and there are finite moments of any order. Moreover, the point (0, 0) can be
reached from infinity (an assumption that seems to be missing in [31], see [9, Sec. 3.3]).
By [31, Thm. 6], there exists a positive constant κ such that

pm(n) ∼ κn−1−π/ arccos(−c).
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Combining this with the previous identity, and using

µ := Sm(x0, y0) =
m
√
m2 + 4 +m2 + 2

2
·

(
2 +
√
m2 + 4

m

)m

,

yields the announced asymptotic estimate of gm(n).
Let us now discuss the implications of this result on the nature of the generating

function of these numbers.
When m = 1, we obtain c = (1 −

√
5)/4, so that the uncorrelated random walk Z

lives in a cone of opening arccos(−c) = 2π/5, and the exponent α is −7/2, as already
established in the previous section.

Let us now prove that m = 1 is the only integer value of m for which π/ arccos(−c)
is rational. By [11, Thm. 3], this implies that the series

∑
n gm(n)tn = Gm(1, 1) is not

D-finite when m > 1. If arccos(−c) was a rational multiple of π, say of the form π − θ,
then we would have c = cos θ = (z + 1/z)/2 for z = eiθ a root of unity. Since c is a root of
the polynomial

Pm(u) := 4
(
m2 + 3

)
u4 − 4

(
m2 + 2

)
u2 +m2,

the two solutions z and 1/z of c = (z + 1/z)/2 are roots of

Pm(v) :=
(
m2 + 3

)
v8 + 4v6 + 2

(
m2 + 1

)
v4 + 4v2 +m2 + 3.

So we only have to prove that this polynomial admits no root of unity — that is, no
cyclotomic factor — for m > 1. There are exactly 18 cyclotomic polynomials of degree
at most 8. The first one is of course φ1(v) = v − 1, and the last one is φ30(v) =
v8 + v7 − v5 − v4 − v3 + v + 1. We then take each of these polynomials φ(v) one by one,
and reduce Pm(v) modulo φ(v) to detect if it could be a multiple of φ(v) for some values
of m. But the leading coefficient of the remainder (which is a polynomial in m) never
vanishes when m is an integer larger than 1. For instance, for φ = φ30, we find

Pm(v) mod φ30 = −
(
m2 + 3

)
z7 + 4z6 +

(
m2 + 3

)
z5 +

(
3m2 + 5

)
z4 +

(
m2 + 3

)
z3 + 4z2 −

(
m2 + 3

)
z,

and the leading coefficient −(m2 + 3) has no integer root. We conclude that no root of
Pm(v) is a root of unity, so that the exponent α is irrational, and the generating function
of the numbers gm(n) is not D-finite.

6.2 Intervals of D′
m,n

Proof of Proposition 3. We now argue in a similar fashion for mirrored m-Dyck paths.
According to the second part of Corollary 25, the number g′m(n) of intervals in the ascent
poset D′m,n is also the number of quadrant excursions of length n taking their steps in the
set S ′m. The generating function of this set is

S ′m(x, y) = xm
0∑

j=−∞

yj+
m−1∑
i=−∞

xi
1∑

j=−∞

yj =
xm

1− 1/y
+

xm−1

1− 1/x
· y

1− 1/y
=
xmy (x+ y − 1)

(x− 1) (y − 1)
.
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It converges absolutely for 1 < |x| and 1 < |y|. The critical point (x0, y0) is now

x0 =
2m2 + 1 +

√
4m2 + 1

2m2
, y0 =

2m+ 1 +
√

4m2 + 1

2m
= 1 +m(x0 − 1),

and one can check that indeed, 1 < x0 and 1 < x0. The opening angle is found to be
arccos(−c), where c takes the value of Proposition 3. One obtains the asymptotic estimate
of g′m(n) as before, using

µ := S ′m(x0, y0) =
(

2m+
√

1 + 4m2
)(1 +

√
1 + 4m2

2m

)2m

.

It remains to prove that the exponent α is irrational for m > 1. The argument is the
same as in the previous subsection, with now

Pm(v) =
(
3m2 + 1

)
v8 + 4m2v6 + 2

(
m2 + 1

)
v4 + 4m2v2 + 3m2 + 1.

Remark 29. One could alternatively establish the asymptotic estimate of g′m(n) via the
bijection with weighted walks mentioned in Corollary 26. Recall that these walks use
finitely many steps only.

7 Final comments

Several questions that have been investigated on other Dyck posets may be asked for the
ascent poset. For instance, what is the height of a random vertex of P or Q in an interval
[P,Q] (see [28])? Can one write a q-analogue of our functional equations recording the
size of the longest chain from P to Q (see [18, 21])?

Conversely, it seems to be the first time that an order induced on mirrored m-Dyck
paths is examined. For the ascent orders as for the other Dyck orders (e.g., Tamari)
this seems less natural than studying m-Dyck paths because mirrored paths do not form
an upper ideal (while m-Dyck paths do). However, this is how we discovered here the
connection with sylvester classes of m-parking functions, and were able to count these, at
least asymptotically. Would interesting results arise from other orders?

The most immediate question raised by this paper is probably to explain bijectively,
and non-recursively, the symmetry in x and y of the series G′1(x, y) that counts ascent
intervals [P,Q] in D1 by the height a(P ) of the first ascent of P (variable x) and the
statistics r(P,Q) defined at the beginning of Section 4.2 (variable y). Recall that this is
directly related to the fact that the quadrant walks that encode the recursive construction
of these intervals (Corollary 25) have a step set S ′1 that is x/y-symmetric. On these walks,
the involution is obvious and consists in a reflection in the first diagonal. In recursive
terms, if w′ is a quadrant walk and w is the walk obtained by deleting its final step (δx, δy),
then the image of w′ by the involution is obtained by appending the step (δy, δx) at the
end of the image of w. Recall the quadrant walk associated with an interval [P,Q] such
a(P ) = a and r(P,Q) = r ends at (a− 1, r − 1). Hence we can define an involution f on
intervals [P ′, Q′], recursively on their size n as follows:
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• f([UD,UD]) = [UD,UD]

• for n > 1, let b = a(P ′) and s = r(P ′, Q′), and let [P,Q] be the interval of size n− 1
obtained by deleting the initial peaks of P ′ and Q′. Then f([P ′, Q′]) is the only
interval [P̄ ′, Q̄′] obtained by insertion of peaks in f([P,Q]) such that a(P̄ ′) = s and
r(P̄ ′, Q̄′) = b. An example is given is Figure 10.

[P3, Q3][P2, Q2]
[P1, Q1]

[P̄1, Q̄1] [P̄2, Q̄2] [P̄3, Q̄3]

[P4, Q4]

[P̄4, Q̄4]

(2, 1)(1, 2)
(1, 1)

(1, 1) (2, 1) (1, 2)

(1, 2)

(2, 1)

f

Figure 10: Recursive construction of an interval [P4, Q4] in D4, and of its image [P̄4, Q̄4]
by the involution f . For each interval [P,Q] we give the statistics (a(P ), r(P,Q)).
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Combiné (ANR-19-CE48-0011), and CartesEtPlus (ANR-23-CE48-0018). JLB and SK
were supported in part by ANR PiCs (ANR-22-CE48-0002) and ANER ARTICO funded
by Bourgogne-Franche-Comté region.
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A Proof of Proposition 28

Here we solve the equation (12) defining Q(x, y), by adapting the invariant approach
of [8]. All details of the calculations can be followed on an accompanying Maple session,
available on the second author’s webpage.

In Eq. (12), let us group the terms involving Q(x, y), and multiply out by (y − 1). We
thus obtain

K(x, y)(y − 1)Q(x, y) = y − 1− t xQ(x, 1)−Q(1, 1)

x− 1
− ty3

x− y
Q(y, y), (15)

where

K(x, y) = 1− tx− txy2

(x− y)(y − 1)
(16)

is the kernel of the equation.

A.1 Invariants

The notion of invariants is related to the expansion (in t) of 1/K(x, y). Namely,

1

K(x, y)
=
∑
n>0

tn
(
x+

xy2

(x− y)(y − 1)

)n
.

This is a series in t, with coefficients in Q(x, y). The denominators of these coefficients are
powers of (x − y)(y − 1). Seen as fractions in y, they have a pole at x and a pole at 1,
and the orders of these two poles increase with the exponent of t. Let us now introduce a
notion of series with poles of bounded order.

Definition 30. Let F (t;x, y) =
∑

n t
nfn(x, y) be a Laurent series in t with coefficients in

Q(x, y). We say that F has poles of bounded order at y = 1 and y = x if there exists an
integer m such that the coefficients of (x− y)m(y− 1)mF (t;x, y), seen as rational functions
in y, have no pole at y = 1 nor y = x. We will often say, for short, that F has poles of
bounded order.

Clearly, the above series 1/K(x, y) does not have poles of bounded order.

Definition 31. A pair (I(x), J(y)) of Laurent series in t with coefficients in Q(x) and
Q(y), respectively, is a pair of invariants (for the kernel K(x, y)) if the ratio

I(x)− J(y)

K(x, y)
,

expanded as a series in t with coefficients in Q(x, y), has poles of bounded order.

Note that in this case, J(y) itself has no pole at y = x (because it does not depend on
x), but may have a pole (of bounded order) at y = 1. The following lemma allows us to
build new pairs of invariants from old. Its proof mimics the proof of Lemma 2.8 in [16].
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Lemma 32. The componentwise sum of two pairs of invariants (I1(x), J1(y)) and (I2(x), J2(y))
is still a pair of invariants. The same holds for their componentwise product.

The following lemma will be key to construct equations (for Q(x, 1), or Q(y, y)) in a
single catalytic variable — hence with an algebraic solution, by [19].

Lemma 33. Let (I(x), J(y)) be a pair of invariants such that the ratio

I(x)− J(y)

(x− y)(y − 1)K(x, y)
,

expanded in powers of t, has coefficients with no pole at y = 1 nor y = x (when seen as
rational series in y). Then I(x) and J(y) are equal, and in particular, they depend on t
only.

Proof. Assume on the contrary that I(x) 6= J(y), and write

I(x)− J(y) = (x− y)(y − 1)K(x, y)H(x, y),

where H(x, y) is a non-zero series in t, with coefficients in Q(x, y) and no pole at y = 1 nor
y = x. Let m be the valuation of H(x, y) in t, and denote by hm(x, y) 6= 0 the coefficient
of tm. Then, given that K(x, y) = 1 +O(t),

I(x)− J(y) = (x− y)(y − 1)hm(x, y)tm +O(tm+1).

Let us write I(x) =
∑

n in(x)tn and J(y) =
∑

n jn(y)tn. The above identity gives

im(x)− jm(y) = (x− y)(y − 1)hm(x, y).

By assumption, hm(x, y), seen as a fraction in y, has no pole at y = 1 nor at y = x. Hence
the same holds for jm(y). Evaluating the above identity at y = 1 shows that im(x) = jm(1),
so that im(x) does not depend on x. We now have

jm(1)− jm(y) = (x− y)(y − 1)hm(x, y).

Evaluating this at y = x gives jm(x) = jm(1) = im(x), but this forces hm(x, y) = 0, a
contradiction.

A.2 A finite group, and rational invariants

To the kernel K, given by (16), one can associate as in [20] a group of birational transfor-
mations of pairs (u, v) that leave the value K(u, v) unchanged. Solving K(u, v) = K(u′, v)
for u′ gives u′ = u or u′ = v (uv − u+ v) /(u− v)/(v − 1). Solving K(u, v) = K(u, v′) for
v′ gives v′ = v or v′ = uv/(uv − u+ v). We introduce accordingly two transformations Φ
and Ψ defined by

Φ(u, v) =

(
v (uv − u+ v)

(u− v) (v − 1)
, v

)
, Ψ(u, v) =

(
u,

uv

uv − u+ v

)
.
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One can check that they are involutions, and generate a group G of order 10. The orbit of
(x, y) under the action of G is

(x, y)
Φ←→
(
y (xy − x+ y)

(x− y) (y − 1)
, y

)
Ψ←→
(
y (xy − x+ y)

(x− y) (y − 1)
,
xy − x+ y

x (y − 1)

)
Φ←→
(
xy − x+ y

y (y − 1)
,
xy − x+ y

x (y − 1)

)
Ψ←→(

xy − x+ y

y (y − 1)
,
xy − x+ y

y2

)
Φ←→
(
x (xy − x+ y)

y (x− y)
,
xy − x+ y

y2

)
Ψ←→
(
x (xy − x+ y)

y (x− y)
,

x

x− y

)
Φ←→(

xy

(y − 1) (x− y)
,

x

x− y

)
Ψ←→
(

xy

(y − 1) (x− y)
,

xy

xy − x+ y

)
Φ←→
(
x,

xy

xy − x+ y

)
Ψ←→(x, y).

Groups of order 10 also appear in the enumeration of several families of walks in the
quadrant, including of course those used in the previous subsection [8, 45]. The group
G can be used to construct rational invariants. Guided by Theorem 4.6 in [8], we take
any rational function H(u, v), and compute the sum of its values over all pairs (u, v) of
the above orbit. Denoting this sum by Hσ(x, y), we now define I0(x) = Hσ(x, Y ) and
J0(y) = Hσ(X, y), where X (resp. Y ) is a root of K(·, y) (resp. K(x, ·)). We could
adapt the proof of Theorem 4.6 in [8] to prove that (I0(x), J0(y)) then forms a pair of
rational invariants. But this is not really needed, as we can simply apply the above recipe
with some rational function H(u, v), and check that the resulting pair is indeed a pair of
invariants.

So let us start for instance with H(u, v) = u. The above recipe gives I0(x) = J0(y) =
−2 + 4/t, which is a trivial pair of invariants. Starting instead from H(u, v) = v, we obtain
a non-trivial pair, which, after dividing by 2 and subtracting 2, reads

I0(x) =
1

1− tx
− 1

tx2
+

1 + t

tx
+x(1−t)−tx2, J0(y) = − t

(y − 1)2
+

1− t
y − 1

− 1

ty2
+

1 + t

yt
+y.

Indeed, one can check that

I0(x)− J0(y)

K(x, y)
=

(x− y)(1− y + txy)(x+ y − xy − xyt(1 + x− xy))

x2y2t(xt− 1)(y − 1)
, (17)

which has poles of bounded order (at y = 1 and y = x). Note that the pair (I0, J0) does
not satisfy the conditions of Lemma 33.

A.3 Decouplings, and a new pair of invariants

Let us now return to the functional equation (15) that defines Q(x, y). We would like to
derive from it a new pair of invariants, that is, to transform it into an identity of the form

K(x, y)H(x, y) = I(x)− J(y), (18)

where H(x, y) has poles of bounded order. But there is an obstacle on our way, since the
term ty3/(x − y)Q(y, y) does not depend on y only, but also on x. A similar difficulty
also arises, for instance, when counting quadrant walks weighted by interactions with
the coordinates axes [3], or walks avoiding a quadrant [16, 34, 52], or in some continuous
probabilistic models [22].
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We are going to remedy this difficulty using a multiplicative decoupling (and later, an
additive decoupling). First, we observe that by definition (16) of the kernel,

ty3

x− y
=

1− tx
x
· y(y − 1)− y(y − 1)

x
K(x, y).

This is what we call a multiplicative decoupling: we have written the problematic term
ty3/(x− y) as the product of a series in x and a series in y, modulo the kernel K. This
would not be possible for any term of course. This allows us to rewrite (15) as follows:

K(x, y)(y − 1)

1− tx
(
xQ(x, y)− yQ(y, y)

)
=
x(y − 1)

1− tx
− tx

1− tx
xQ(x, 1)−Q(1, 1)

x− 1
− y(y − 1)Q(y, y), (19)

and our problem is solved, since the term in Q(y, y) no longer involves x.
However, we have created a second difficulty, and our equation still does not look

like (18): the constant term, which was formerly (y − 1) in (15), now mixes x and y. This
new problem will be solved as well if we can find rational functions A(x), B(y) and H(x, y)
such that

x(y − 1)

1− tx
= A(x) +B(y) +K(x, y)H(x, y), (20)

where H(x, y) does not contain a factor K(x, y) in its denominator. This is what we call
an additive decoupling. Again, an arbitrary rational function does not have, in general, an
additive decoupling.

There are two ways to look for a solution (A,B) of (20) (see [8, Sec. 4.2] and our
Maple session for details). The first one is by guessing (say, the fraction B(y)) and
checking. Let us explain how this works. Denoting by Y0 and Y1 the two roots of K(x, ·),
we observe that (20) implies that

x

1− tx
=
B(Y0)−B(Y1)

Y0 − Y1
.

We can then start from an Ansatz on the form of B(y) (fixing the number of poles and
their orders, but not their values), form the divided difference (B(Y0)−B(Y1))/(Y0 − Y1),
write it as a fraction in x and t (since it is a symmetric function of the two roots Y0 and
Y1), and solve the resulting identity for the coefficients occurring in the Ansatz. This
approach readily gives a solution,

B(y) = −y
t

+
1

t(y − 1)
− 1

t2y
,

from which we derive

A(x) =
2 + x

t
+

1

t2x
+

1

t(tx− 1)
.

We can now check that

x(y − 1)

1− tx
= A(x) +B(y) +K(x, y)

(x− y)(1− txy)

xyt2(1− tx)
. (21)
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The second approach is constructive, and consists in applying Theorem 4.11 in [8] (even
though our kernel is not of the same form as the kernels studied in [8]). This gives an
alternative solution, differing from the above solution (A,B) by a pair of invariants. More
precisely, this new solution reads:

A(x) +
9

5t
I0(x)− 7

5t2
(1 + 3t), B(y)− 9

5t
J0(y) +

7

5t2
(1 + 3t).

Let us now combine the functional equation (19) with the decoupling relation (21): we
obtain

(x− y)(y − 1)K(x, y)

1− tx

(
xQ(x, y)− yQ(y, y)

x− y
− 1− txy
t2xy(y − 1)

)
= I1(x)− J1(y), (22)

with

I1(x) =
2 + x

t
+

1

t2x
+

1

t(tx− 1)
− tx

1− tx
xQ(x, 1)−Q(1, 1)

x− 1
, J1(y) =

y

t
− 1

t(y − 1)
+

1

t2y
+y(y−1)Q(y, y).

That is, we have found a second pair (I1, J1) of invariants, this time in terms of the
unknown series Q. It does not satisfy the conditions of Lemma 33.

A.4 Equations in one catalytic variable

Our aim is now to combine polynomially our two pairs of invariants (I0, J0) and (I1, J1),
thanks to Lemma 32, to form a new pair (I(x), J(y)) satisfying the conditions of Lemma 33.
This will imply that I(x) and J(y) are in fact both equal to a series C depending on t
only. We will thus obtain an equation in only one catalytic variable for each of the two
series Q(x, 1) = G(x, 1)/(tx) and Q(y, y) = G(1, y)/t, just by writing I(x) = C = J(y).

Let us examine the ratios

I0(x)− J0(y)

(x− y)(y − 1)K(x, y)
and

I1(x)− J1(y)

(x− y)(y − 1)K(x, y)
,

derived from (17) and (22), respectively. The coefficient of tn in each of these two series
has no pole at y = x. This is obvious for the first ratio, and for the second, this relies on
the fact that the divided difference

xQ(x, y)− yQ(y, y)

x− y

has polynomial coefficients in x and y. However, the coefficient of tn in the first (resp.
second) ratio has a double (resp. simple) pole at y = 1. Accordingly, we observe a double
(resp. simple) pole at y = 1 in J0(y) (resp. J1(y)). More precisely, the singular expansions
at y = 1 of these two series are respectively

J0(y) = − t

(y − 1)2
+

1− t
y − 1

+O(1) and J1(y) = − 1

t(y − 1)
+

1 + t

t2
+O(y − 1).
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It is then natural to introduce the series

J(y) = J0(y) + t3J1(y)2 − t(1 + 3t)J1(y),

which has no pole at y = 1. By Lemma 32, the pair (I(x), J(y)) forms a pair of invariants,
if we define I(x) by

I(x) = I0(x) + t3I1(x)2 − t(1 + 3t)I1(x).

Using (17) and (22), we can then check that this new pair of invariants satisfies the
condition of Lemma 33. This implies that I(x) = J(y) = C for some series C. The latter
series is easily identified by expanding the expression of J(y) at y = 1. This gives

I(x) = 2− 4t− 2t2Q(1, 1) = J(y).

We can now replace I(x) and J(y) by their expressions in terms of (xQ(x, 1)−Q(1, 1))/(x−1)
and Q(y, y), respectively. This gives two polynomial equations,

Pol1(Q(x, 1), Q(1, 1), t, x) = 0, and Pol2(Q(y, y), Q(1, 1), t, y) = 0.

Each of them is a polynomial equation in one catalytic variable only, quadratic in the
main series (that is, Q(x, 1) or Q(y, y)).

A.5 Algebraicity

It remains to solve these two equations in one catalytic variable. We will work, say, with
the equation for Q(y, y), which is a bit lighter than the other. It reads:

Pol2(Q(y, y), Q(1, 1), t, y) = 0, (23)

where

Pol2(q, q1, y, t) = y2t2 (y − 1)
2
q2 +

(
y
(
2y2 − 5y + 1

)
t− (y − 1) (y − 2)

)
q + 2tq1 + (y − 1) (y − 2) = 0.

This is a very simple instance of a polynomial equation in one catalytic variable [19]: it is
(only) quadratic in Q(y, y), and involves a single additional unknown series depending on
t only, namely Q(1, 1). In this case, the machinery of [19] reduces to Brown’s quadratic
method [25, 41]. We first examine whether there exists formal power series Y ≡ Y (t) such
that the first derivative of the above polynomial Pol2, evaluated at (Q(Y, Y ), Q(1, 1), t, Y ),
vanishes. That is,

(Y − 1)(Y − 2) = 2t2Y 2(Y − 1)2Q(Y, Y ) + tY (2Y 2 − 5Y + 1).

The form of this equation shows that two such series exist, with constant terms 1 and 2,
respectively. Then Brown’s result tells us that each of these two series is a double root of
the discriminant of Pol2 with respect to its first variable, evaluated at (Q(1, 1), t, y). That
is, a double root of

− 4t y5 +
(
−8Q11 t

3 − 7t2 + 22t+ 1
)
y4 +

(
16Q11 t

3 + 18t2 − 40t− 6
)
y3

+
(
−8Q11 t

3 − 7t2 + 26t+ 13
)
y2 − 4 (t+ 3) y + 4,
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where we have written Q(1, 1) = Q11. Since this polynomial in y has multiple roots, its
discriminant vanishes. This gives for Q11 the following cubic equation:

64t6Q3
11 + 16t3

(
11t2 − 18t− 1

)
Q2

11 +
(
161t4 − 452t3 + 238t2 − 28t+ 1

)
Q11 + 49t3 − 167t2 + 25t = 1.

One can now check that if we introduce the series Z of Theorem 1, the above equation
factors and yields Q1,1 = (1 + Z)(1 + 2Z)2(1− 2Z + 2Z3), so that G(1, 1) = tQ(1, 1) =
Z(1− 2Z + 2Z3).

Let us now return to (23). We can express t and Q11 as fractions in Z, and we now
have a quadratic equation for Q(y, y) with coefficients in Q(Z, y). Solving it then gives
the announced expression of G(1, y) = tyQ(y, y) in Proposition 28.

We now proceed similarly with the other equation in one catalytic variable, Pol1(Q(x, 1),
Q(1, 1), t, x) = 0, which is quadratic in Q(x, 1). We replace t and Q11 by their rational
expressions in Z, solve the resulting equation, and obtain the announced expression of
G(x, 1) = txQ(x, 1).
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