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Abstract

A necessary condition for a Cayley digraph Cay(R,S) to be a regular represen-
tation is that there are no non-trivial group automorphisms of R that fix S setwise.
A group is DRR-detecting or GRR-detecting if this condition is also sufficient for
all Cayley digraphs or graphs on the group, respectively. In this paper, we deter-
mine precisely which groups of squarefree order are DRR-detecting, and which are
GRR-detecting.

Mathematics Subject Classifications: 05C25

1 Introduction and background

All groups and digraphs in this paper are finite. Given a group R and a subset S ⊆ R,
the Cayley digraph Cay(R, S) is the digraph with vertex-set R, with an arc from r to sr
if and only if s ∈ S. If S = S−1 then we also say that Cay(R, S) is a Cayley graph. It
is straightforward to show that the right-regular representation R̂ of R is a subgroup of
the automorphism group of Cay(R, S). It is also not hard to show that, conversely, if
the automorphism group of a digraph admits a regular subgroup isomorphic to R, then
the digraph is isomorphic to Cay(R, S) for some S ⊆ R. Digraphs such that their (full)
automorphism group is regular are of special interest.

Definition 1. A Cayley digraph Cay(R, S) is a Digraphical Regular Representation (DRR
for short) if Aut(Cay(R, S)) = R̂. If it is also a Cayley graph, then it is a Graphical Regular
Representation or GRR.

It is usually not easy to determine whether a Cayley digraph is a DRR, mostly because
it is not easy to calculate the automorphism group. On the other hand, there is a particular
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subgroup of the automorphism group that is easier to understand. We first introduce some
notation. Given a permutation group G acting on a set Ω and S ⊆ Ω, we denote by GS

the subgroup of G that fixes S setwise. Given two subgroups X and Y of a common
overgroup, we denote by NY (X) (CY (X)) the normaliser (centraliser) of X in Y .

Theorem 2. [5, Lemma 2.1] Let R be a group, let S ⊆ R and let A = Aut(Cay(R, S)).
Then NA(R̂) = R̂o Aut(R)S.

Generally speaking, given a Cayley digraph Cay(R, S), calculating R̂ o Aut(R)S is
relatively easy, especially compared to determining Aut(Cay(R, S)). We are interested in
groups for which knowing R̂oAut(R)S is enough to decide whether Cay(R, S) is a DRR.

Definition 3. A group R is DRR-detecting if, for every subset S of R, Aut(R)S = 1
implies that Cay(R, S) is a DRR. It is GRR-detecting if, for every inverse-closed subset
S of R, Aut(R)S = 1 implies that Cay(R, S) is a GRR.

Clearly, every DRR-detecting group is GRR-detecting. If Aut(R)S = 1 but Cay(R, S)
is not a DRR (respectively, not a GRR), then we say that Cay(R, S) witnesses that R is not
DRR-detecting (respectively, not GRR-detecting). Equivalently by Theorem 2, Cay(R, S)
witnesses that R is not DRR-detecting if R̂ is self-normalising in Aut(Cay(R, S)) but
Cay(R, S) is not a DRR.

We would like to determine which groups are DRR-detecting or GRR-detecting. Previ-
ous work on this topic includes a result by Godsil [5] that if p is prime, then every p-group
that admits no homomorphism onto the wreath product Cp oCp is DRR-detecting. In par-
ticular, every abelian p-group is DRR-detecting. In [12], with D. Morris we showed that
this result is sharp in the sense that Cp o Cp is not GRR-detecting (or DRR-detecting)
when p is odd. We also proved that if a DRR-detecting group is nilpotent, then it is a
p-group. In this paper we determine which groups of squarefree order are GRR-detecting,
and which are DRR-detecting:

Theorem 4. Let R be a group of squarefree order.

1. If |R| is prime, then R is DRR-detecting (and therefore is GRR-detecting).

2. If |R| has two prime factors, then:

(a) R is not GRR-detecting (and therefore not DRR-detecting) if R ∼= CqoCr and
either:

i. (q, r) = (31, 5); or

ii. (q, r) is a safe/Sophie Germain prime pair with q ≡ 3 (mod 4) and q > 11.

(b) R is GRR-detecting but not DRR-detecting if:

i. R is abelian; or

ii. R ∼= C7 o C3.

(c) R is DRR-detecting (and therefore GRR-detecting) if R does not fall into any
of the above cases.
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3. If |R| has at least three prime factors, then R is not DRR-detecting, but is GRR-
detecting if one of the following holds:

(a) R is abelian;

(b) R ∼= D30; or

(c) R ∼= Cq ×D2r with r ∈ {3, 5}.

(Throughout the paper, Cn denotes a cyclic group of order n and D2n a dihedral
group of order 2n. A safe/Sophie Germain prime pair is a pair of primes (q, r) such that
q = 2r + 1.)

In Section 2, we define generalised wreath products in the context of Cayley digraphs
and show that they are never DRRs, which makes them very useful as potential witnesses
that a group is not DRR-detecting (or GRR-detecting). We also give a sufficient condition
to recognise a Cayley digraph as a generalised wreath product. Starting in Section 3, we
restrict our attention to groups of squarefree order. We first show that “most” of these
groups are not GRR-detecting and then deal with the remaining “exceptional” groups in
Section 4.

2 Generalised wreath products

Our main approach to construct witnesses is to use generalised wreath products. It is
therefore important for us to understand what a generalised wreath product is in the
context of Cayley digraphs.

Definition 5. Let R be a group and let S ⊆ R. If there exist K and H with 1 < K E
H < R such that

K(S \H) = S \H = (S \H)K (??)

then Cay(R, S) is a nontrivial generalised wreath product (with respect to K and H). If
H = K, then Cay(R, S) is a nontrivial wreath product (with respect to K).

It is not hard to see that, if K E R or S = S−1, then (??) is equivalent to K(S \H) =
S \H. We will often use this fact throughout the paper.

Lemma 6. A Cayley digraph that is a nontrivial generalised wreath product is not a DRR.

Proof. Let Γ = Cay(R, S) be a nontrivial generalised wreath product with respect to K
and H. By definition, we have 1 < K E H < R and K(S \H) = S \H = (S \H)K.

Let k ∈ K and let αk ∈ Sym(R) be the map which right multiplies elements of H by
k while fixing all other elements of R. We claim that αk ∈ Aut(Γ). Let (y, x) be an arc
of Γ, so that xy−1 ∈ S. We check that αk(x)αk(y)−1 ∈ S. If x, y /∈ H, this is trivial.
Similarly, if x, y ∈ H, then αk(x)αk(y)−1 = xk(yk)−1 = xy−1 ∈ S. Now, suppose that
x ∈ H and y /∈ H. In particular, xy−1 /∈ H. We have

αk(x)αk(y)−1 = xky−1 = kx
−1

xy−1 ∈ Kxy−1 ⊆ K(S \H) = S \H,
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as required (we used the fact that K E H and x ∈ H). Finally, if x /∈ H and y ∈ H, then
again xy−1 /∈ H and

αk(x)αk(y)−1 = x(yk)−1 = xk−1y−1 = xy−1(k−1)y
−1 ∈ xy−1K ⊆ (S \H)K = S \H.

Since 1 < K, there is some k such that αk 6= 1 and, since H < R, it follows that
αk /∈ R̂ and Γ is not a DRR.

We have the following immediate corollary.

Corollary 7. Let R be a group, let S ⊆ R and let K and H be such that

1. 1 < K EH < R,

2. K(S \H) = S \H = (S \H)K, and

3. Aut(R)S = 1.

Then Cay(R, S) witnesses that R is not DRR-detecting (and not GRR-detecting if S =
S−1).

To apply Corollary 7, one must show that Aut(R)S = 1. To do this, it will often
be easiest to show first that Aut(R)S normalises H, so that Aut(R)S = Aut(R)S∩H ∩
Aut(R)S\H . The most obvious situation in which Aut(R)S normalises H is if Aut(R)
itself normalises H; that is, when H is characteristic in R. Here is another approach that
can also be used.

Proposition 8. Let R be a group, let S ⊆ R and let 1 < K < H < R. If

1. K is characteristic in R,

2. K is maximal in H,

3. K(S \H) = S \H, and

4. it is not the case that K(S \K) = S \K,

then Aut(R)S normalises H.

Proof. Let H0 = 〈s ∈ S : Ks 6⊆ S〉. Since K is characteristic in R, Aut(R) normalises K,
and therefore so does Aut(R)S. It follows that Aut(R)S normalises H0. By (3) we have
H0 6 H, and by (4), H0 � K. It follows that K < KH0 6 H. Since K is maximal in H,
H = KH0 hence Aut(R)S normalises H, as required.

We end this section with a sufficient condition to recognise a Cayley digraph as a
nontrivial generalised wreath product. (For G 6 Aut(Cay(R, S)), we denote by G1 the
stabiliser of the vertex of Cay(R, S) corresponding to the identity of R.)
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Lemma 9. Let R be a group, let S ⊆ R, let G 6 Aut(Cay(R, S)) and let K and H
be such that 1 < K E H < R and H 6 NR(G1). If, for every r ∈ R \ H, we have
K,Kr ⊆ G1G

r
1, then Cay(R, S) is a nontrivial generalised wreath product with respect

to K and H. Moreover, if S = S−1, then K ⊆ G1G
r
1 is sufficient to reach the same

conclusion.

Proof. Since H 6 NR(G1), we have G1H
G1 = G1HG1 = G1H. Note that since G 6

Aut(Cay(R, S)) implies that SG1 = S, we have G1(S \ H)G1 = G1(S \ H). If, for every
r ∈ R \H, we have K ⊆ G1G

r
1, then we have

G1Kr
−1 ⊆ G1G

r
1r
−1 = G1r

−1G1 = G1(r
−1)G1

and it follows that G1K(S \H) ⊆ G1(S \H)G1 = G1(S \H). Since G1 ∩ (K(S \H)) = 1,
this implies K(S \ H) = S \ H. Likewise, if for every r ∈ R \ H, we have Kr ⊆ G1G

r
1,

then
G1r

−1K ⊆ G1r
−1G1 = G1(r

−1)G1

and it follows that G1(S \ H)K ⊆ G1(S \ H)G1 = G1(S \ H), which again implies
(S \H)K = S \H.

Hence, if K,Kr ⊆ G1G
r
1 for every r ∈ R \ H, then K(S \ H) = S \ H = (S \ H)K

hence Cay(R, S) is a nontrivial generalised wreath product. Moreover, if S = S−1, then
as previously noted, K(S \H) = S \H suffices to reach the same conclusion.

3 Groups of squarefree order, generic case

The structure of groups of squarefree order has been well understood since the work of
Hölder [7]. An obvious observation is that every subgroup of such a group is a Hall
subgroup hence every normal subgroup is characteristic. Hölder proved that these groups
are metacyclic. In particular, if R is a group of squarefree order, we have R ∼= Ct× (Cno
Cm), where Z(Cn o Cm) = 1 (and t, n and m are pairwise coprime) see for example [2].
(We use the usual notation Z(G) for the centre of the group G.) An easy consequence
of this is the fact that, for every set of primes π dividing |R|, R has a Hall π-subgroup.
Finally, we will make frequent use of the fact that if p and q are primes with q > p and
X is a nonabelian subgroup of order pq, then q ≡ 1 (mod p). We will also make use of
the following result.

Lemma 10. Let R ∼= CnoCm be a group of squarefree order with trivial center. Suppose
that, for every pair of primes p and q with p | m and q | n, every subgroup of R of order
pq is nonabelian. Let H be a characteristic subgroup of prime index in R. If m is not
prime, then CAut(R)(H) = 1.

Proof. Let x and y be elements of order m and n in R, respectively and let Y = 〈y〉. Note
that Y is a characteristic subgroup of R and there exists an integer j such that, for every
y′ ∈ Y , we have (y′)x = (y′)j. Now, if α ∈ Aut(R), then xα must also have this property,
that is, (y′)x

α
= (y′)j for every y′ ∈ Y . An easy calculation shows that this implies that
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xα ∈ Y x, say xα = yix. Let p = |R : H|. Note that, since H is normal in R, we have
Y 6 H and p divides m. Let α ∈ CAut(R)(H). Since m is not prime, we have xp ∈ H \ Y
so (xp)α = xp. Since xp commutes with x, (xp)α = xp commutes with xα = yix. It follows
that xp commutes with yi. If yi 6= 1, then by hypothesis, CR(yi) = Y but xp /∈ Y hence
we must have yi = 1. This implies that xα = x and α = 1, as required.

In our first main result, Theorem 12, we construct Cayley graphs Cay(R, S) that are
nontrivial generalised wreath products with respect to some subgroups K and H of R, and
that witness that R is not GRR-detecting. One component of our construction involves
taking a GRR on H when possible. In order to understand when this is possible, we
will look at known results about which groups admit GRRs, and restrict our attention
to groups of squarefree order. Although many researchers including Watkins, Imrich,
Nowitz, and Hetzel made significant contributions along the way (see for example [6, 8,
9, 13, 16, 17, 18]), the ultimate result about which groups admit GRRs is due to Godsil.
We provide a statement of his result that makes it easy to see which of the groups that
do not admit a GRR have squarefree order.

Theorem 11. [4] Every group admits a GRR except:

• abelian groups of exponent greater than 2;

• generalised dicyclic groups (which have orders divisible by 4);

• the dihedral groups D6 and D10; and

• eleven other small groups, none of whose orders is squarefree.

It follows that the only nonabelian groups of squarefree order that do not admit a
GRR are D6 and D10. We are now ready to show that “most” groups of squarefree order
are not GRR-detecting (and thus not DRR-detecting). (We do set aside a number of
special cases for further consideration in Section 4.)

Theorem 12. Let R be a group of squarefree order. If R is not abelian and R /∈
{D6,D10,D30,D6 × Cq,D10 × Cq,Cq o Cp : p, q primes}, then R is not GRR-detecting.

Proof. We can assume that |R| has at least three prime divisors, since we have excluded
the other possibilities. Let R ∼= Ct × (Cn o Cm), where Z(Cn o Cm) = 1. Since R is
nonabelian, we have n,m > 2. We now split the proof into two cases.

Case 1: For every pair of primes p and q with p | m and q | nt, every subgroup
of R of order pq is nonabelian.

In this case, we have t = 1. Let p be the smallest prime dividing m. If m 6= p,
then take H to be the characteristic subgroup of index p in R, so H ∼= Cn o Cm/p, with
m/p > 3. In particular, H admits a GRR. Let S be the connection set for a GRR on
H. Since H is characteristic in R, there is a natural homomorphism f : Aut(R) →
Aut(H). Since Cay(H,S) is a GRR, we have f(Aut(R)S) 6 Aut(H)S = 1. It follows that
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Aut(R)S 6 ker(f) = CAut(R)(H). By Lemma 10, CAut(R)(H) = 1 hence Aut(R)S = 1 and
by Corollary 7 (applied with K = H), R is not GRR-detecting.

We may thus assume that m = p. Since |R| has at least three prime divisors and
t = 1, n is not prime. Let q be the largest prime dividing n and write n = qn′. Recall
that every prime divisor of n must be 1 modulo p. If p > 3, then it immediately follows
that q > 7. If p = 2, the only other possibility is (q, n) = (5, 15), but this is excluded by
our hypothesis, hence q > 7 in either case. Let K be the characteristic subgroup of order
q in R, and H a subgroup of order pq. Note that H is nonabelian and, since q > 7, H
admits a GRR.

Let k ∈ K have order q, let h ∈ H have order p, and let x ∈ R \H have order n′. Let
S ′ be the connection set for a GRR on H, and let S = S ′ ∪ Khx ∪ K(hx)−1. Suppose
that K(S \ K) = S \ K. Note that K,S ′ ⊆ H whereas Khx ∩ H = ∅ = K(hx)−1 ∩ H
hence K(S ′ \K) = S ′ \K and then Lemma 6 implies that Cay(H,S ′) is not a DRR, a
contradiction. It follows that K(S \K) 6= S \K. Let α ∈ Aut(R)S. By Proposition 8, α
normalises H, so since Cay(H,S∩H) is a GRR, α fixes H pointwise. The neighbourhood
of h ∈ H outside H is Khxh ∪Kx−1 = Kxh

−1
h2 ∪Kx−1, which must therefore be fixed

setwise by α.
If 1 6= k ∈ K, then k has order q and since k commutes with x−1, it follows that kx−1

has order n. This implies that x−1 is the unique element of order n′ in Kx−1. If p = 2,
then Khxh = Kx−1, whereas if p > 3, then every element of Kxh

−1
h2 has order p. Either

way, α must fix x−1 and thus fix R pointwise so α = 1. We conclude that Aut(R)S = 1
and, by Corollary 7, R is not GRR-detecting.

Case 2: There exists primes p and q with p | m and q | nt such that R has a
cyclic subgroup of order pq.

Choose p and q satisfying the above with p as large as possible. Since R is nonabelian,
nt is not prime. Let H be the characteristic subgroup of index p in R. Since nt is not
prime, H is not isomorphic to D6 or D10, hence either H admits a GRR or H ∼= Cnt.

Let r = nt/q. Note that every element of order p in R must act nontrivially on some
subgroup of the cyclic subgroup of order r in R. We show that r > 5. Suppose, by
contradiction, that r 6 5. This implies p = 2 and r ∈ {3, 5}. If m = p = 2, then
R ∼= D2r × Cq, a case we have excluded by hypothesis. So m > p and there is a prime p′

dividing m with p′ > 2. Since r ∈ {3, 5}, R has a cyclic subgroup of order p′r but this
contradicts our choice of p. It follows that r > 5.

Let k, g and x be elements of order q, r and p in R, respectively. Let K = 〈k〉
and B = 〈kg〉. Note that B ∼= Cnt and that K and B are both characteristic in R and
contained in H. If H is nonabelian, then take S ′ to be the connection set for a GRR on
H; if H ∼= Cnt then take S ′ = {kg, (kg)−1}. Let S = S ′ ∪Kx±1 ∪K(gx)±1 ∪K(g3x)±1.
Note that these really are three distinct cosets of K since |g| = r > 5. Note also that
S ∩H = S ′ and that S \ S ′ ⊆ Bx±1.

Let α ∈ Aut(R)S. Since H is characteristic in R, Hα = H hence (S ′)α = S ′. By our
choice of S ′, it follows that (kg)α = (kg)±1 which implies gα = g±1. Write xα = bxε, with
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b ∈ B and ε = ±1. Note that

(gα)x = (gx)α = (gα)x
α

= (gα)bx
ε

= (gα)x
ε

.

This implies that ε = 1, so xα ∈ Bx and therefore α fixesKx∪Kgx∪Kg3x. SinceKα = K,
α must permute these three K-cosets. Write (Kx)α = Kgix with i ∈ {0, 1, 3}. It follows
that (Kgx)α = (gKx)α = g±1Kgix = Kgi±1x and i 6= 3. Moreover, if i = 1 then gα = g−1

and α interchanges Kg and Kgx, so must fix Kg3x, so Kg3x = (Kg3x)α = Kg−3+1x and
g5 = 1, contradicting |g| = r > 5. It follows that i = 0 and α fixes Kx, Kgx, and Kg3x.
Since x and k commute, x is the unique element of order p in Kx, so it is fixed by α.
Similarly, gx is the unique element of Kgx whose order is not a multiple of q, so it too
is fixed by α hence so is g. It follows that α centralises H and α = 1. This shows that
Aut(R)S = 1 and it follows from Corollary 7 that R is not GRR-detecting.

4 Groups of squarefree order, exceptional cases

In this section we proceed through the groups that were excluded in the hypothesis of
Theorem 12. We begin with the three sporadic groups. The following result can be
checked by computer.

Proposition 13. D6 and D10 are DRR-detecting (and therefore GRR-detecting). D30 is
GRR-detecting but not DRR-detecting.

If D30 = 〈x, y | x15 = y2 = 1, xy = x−1〉, then Cay(D30, {x2, x3, x5, x8, x11, x14, y}) is a
witness that D30 is not DRR-detecting.

We next deal with abelian groups. We divide these into two classes, according to
whether or not their order is prime.

Proposition 14. Groups of prime order are DRR-detecting (so are also GRR-detecting).

Proof. Let R be a group of prime order and let S ⊆ R. It is known that either R̂ is
normal in Aut(Cay(R, S)) or Aut(Cay(R, S)) is doubly transitive (see for example [19,
Theorem 11.7]). In the latter case, Cay(R, S) is a complete graph and Aut(Cay(R, S)) =
Sym(R). In either case, Aut(R)S = 1 implies that Aut(Cay(R, S)) = R̂, and R is DRR-
detecting.

Proposition 15. Abelian groups of squarefree composite order are GRR-detecting.

Proof. Let R be an abelian group of squarefree composite order and let S ⊆ R with S =
S−1. Inversion is a non-identity automorphism of R that preserves S hence Aut(R)S 6= 1.
This shows that R is GRR-detecting.

We still need to show that abelian groups of squarefree composite order are not DRR-
detecting. In order to do so, we will use the following two results.

Theorem 16. [12, Theorem 1.9] If G1 and G2 are nontrivial groups that admit a DRR
(a GRR, respectively) and gcd(|G1|, |G2|) = 1, then G1 × G2 is not DRR-detecting (not
GRR-detecting, respectively).
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To apply Theorem 16, we need to understand which groups of squarefree order admit
DRRs. We use the following result of Babai.

Theorem 17. [1, Theorem 2.1] Every group admits a DRR except Ci
2 for 2 6 i 6 4, C2

3,
and Q8. In particular, every group of squarefree order admits a DRR.

Corollary 18. Let R be a group of squarefree order. If R is abelian of composite order
or R ∼= D2r × Cq with r ∈ {3, 5} and q prime, then R is not DRR-detecting.

Proof. Note that R is a nontrivial direct product of two groups of coprime squarefree
order. The result then follows from Theorems 16 and 17.

To prove Theorem 4, it remains to show that Cq×D6 and Cq×D10 are GRR-detecting
and to determine the status of nonabelian groups whose order is a product of two primes.
This is our goal in the remainder of the paper.

4.1 The case when Cay(R,S) is a generalised wreath product

Since we are trying to show that some groups are DRR or GRR-detecting, we have to
show that they do not admit witnesses. One case that needs to be handled is to show
that even nontrivial generalised wreath products on these groups are not witnesses. This
is the goal of this subsection.

Lemma 19. If Cay(R, S) is a nontrivial generalised wreath product with respect to K and
H and Z(H) ∩K � Z(R), then Aut(R)S > 1.

Proof. By definition, K(S \ H) = S \ H = (S \ H)K. Let k be an element of (Z(H) ∩
K) \ Z(R) and let αk ∈ Aut(R) denote conjugation by k. Since k ∈ Z(H), we have that
αk fixes H pointwise. Moreover, since k ∈ K, for every s ∈ S \H, we have sαk = k−1sk ∈
KsK ⊆ S. It follows that αk ∈ Aut(R)S. Finally, as k /∈ Z(R), αk 6= 1, as required.

From this we are able immediately to prove our desired result in the case where |R| is
a product of two primes.

Corollary 20. Let R be a nonabelian group whose order is a product of two distinct
primes and let S ⊆ R. If Cay(R, S) is a nontrivial generalised wreath product, then
Aut(R)S > 1.

Proof. Say that Cay(R, S) is a nontrivial generalised wreath product with respect to K
and H, so that 1 < K E H < R. Given the order of R, we must have H = K of prime
order, with Z(H) = H � Z(R) = 1, and the result follows by Lemma 19.

It remains to deal with groups of the form Cq × D2r where r ∈ {3, 5}. We first need
the following result, which is easy but we include a proof for completeness.

Lemma 21. Let r ∈ {3, 5}, let D = D2r and let S ⊆ D with S = S−1. Then there exists
some nontrivial β ∈ Aut(D)S that inverts every element of the subgroup of order r of D.
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Proof. Let C be the (cyclic) subgroup of order r of D and let x ∈ D \ C. We show that
there exists an element z ∈ xC such that conjugation by z fixes S setwise. The result
then follows.

Clearly, conjugation by an element of xC inverts every element of C (and hence pre-
serves S∩C), so it suffices to show that S \C is preserved by conjugation by an element of
xC. This is equivalent to preserving the complement (D \C)\ (S \C). Since |D \C| 6 5,
we assume without loss of generality that |S \ C| 6 2.

If |S \ C| = 0, there is nothing to prove. If |S \ C| = 1, then just take z ∈ S \ C.
Finally, assume that |S \C| = 2, say S \C = {xyi, xyj} where C = 〈y〉. Let z = xy(i+j)/2

(where (i + j)/2 is computed in Zr.) One can check that conjugation by z interchanges
xyi and xyj hence preserves S, as required.

Proposition 22. Let r ∈ {3, 5}, let q be an odd prime distinct from r, let R = Cq ×D2r

and let S ⊆ R with S = S−1. If Cay(R, S) is a nontrivial generalised wreath product with
respect to K and H, and K has prime order, then Aut(R)S > 1.

Proof. Write R = 〈z〉×(〈y〉o〈x〉), with |z| = q, |y| = r and |x| = 2. Note that Z(R) = 〈z〉.
Up to conjugacy, we can assume that K is generated by one of x, y or z. As for H, we
can assume that it is maximal in R with respect to being proper in R and normalising K.
Indeed, if Cay(R, S) is a nontrivial generalised wreath product with respect to K and H0,
with H0 6 H, then S \H0 = K(S \H0) = (S \H0)K so S \H = K(S \H) = (S \H)K
and Cay(R, S) is also a nontrivial generalised wreath product with respect to K and H.
We thus only have to consider the following cases.

1. H = 〈x, y〉 ∼= D2r and K = 〈y〉 ∼= Cr;

2. H = 〈y, z〉 ∼= Cqr and K = 〈y〉 ∼= Cr;

3. H = 〈y, z〉 ∼= Cqr and K = 〈z〉 ∼= Cq;

4. H = 〈x, z〉 ∼= C2q and K = 〈z〉 ∼= Cq; and

5. H = 〈x, z〉 ∼= C2q and K = 〈x〉 ∼= C2.

We now address each of these cases individually:

1. H = 〈x, y〉 ∼= D2r and K = 〈y〉 ∼= Cr. By Lemma 21, there exists some nontrivial
β ∈ Aut(H)S∩H that acts by inversion on K. In particular Kβ = K. Let α be
the unique automorphism of R that fixes z and agrees with β on H. Note that
α preserves both K and H so α preserves the two K-cosets in H. If s ∈ S ∩ H
then sα = sβ ∈ S ∩ H. If s ∈ S \ H, say s ∈ zihK, for some h ∈ H, then
sα ∈ zi(hK)α = zihK ⊆ S \H, so α ∈ Aut(R)S, as required.

2. H = 〈y, z〉 ∼= Cqr and K = 〈y〉 ∼= Cr. In this case, Z(H) ∩K = K � Z(R) and the
result follows by Lemma 19.
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3. H = 〈y, z〉 ∼= Cqr and K = 〈z〉 ∼= Cq. Let π : R→ R/K be the canonical projection
mapping. Note that π(R) ∼= D2r and π(S) = π(S)−1 so, by Lemma 21, there exists
some nontrivial β ∈ Aut(π(R))π(S) that inverts every element of π(〈y〉). Let α be
the unique automorphism of R that inverts z and such that πβ = απ. (In other
words, sαK = (sK)β for every s ∈ R.) Since H is characteristic in R, we have
Hα = H. As β inverts π(〈y〉), we have yαK = (yK)β = y−1K. Moreover, 〈y〉 is
characteristic in R hence yα ∈ 〈y〉 ∩ y−1K and yα = y−1. It follows that α acts by
inversion on H. Since S = S−1, α preserves S ∩ H. Now, if s ∈ S \ H, then we
have sK ∈ π(S) and since β preserves π(S), it follows that sαK = (sK)β ∈ π(S).
As K(S \H) = S \H, we have that sαK ∈ S \H. This shows that α ∈ Aut(R)S.

4. H = 〈x, z〉 ∼= C2q and K = 〈z〉 ∼= Cq. Let α : R → R be defined by (xiyjzk)α =
xiyjz−k. Note that α ∈ Aut(R). Moreover, α acts by inversion onH. Since S = S−1,
S ∩H is fixed by α. If s ∈ S \H, say s = xiyjzk, then sα = xiyjz−k ∈ sK ⊆ S \H
hence S \H is also fixed by α and α ∈ Aut(R)S, as required.

5. H = 〈x, z〉 ∼= C2q and K = 〈x〉 ∼= C2. In this case, Z(H) ∩K = K � Z(R) and the
result follows by Lemma 19.

4.2 Main results

We are at last ready to show that groups of the form Cq × D2r are GRR-detecting and
to characterise DRR-detection and GRR-detection for nonabelian groups whose order is
a product of two primes. We first prove the following well known result:

Lemma 23. If G is a primitive group of affine type with socle an elementary abelian
p-group, then a point-stabiliser has no non-trivial normal p-subgroup.

Proof. Let V be the socle of G and, to arrive at a contradiction let T be a non-trivial
normal p-subgroup of Gx. Since T is normal in Gx, CG(T ) is normalised by Gx. It follows
that Z = CV (T ) is also normalised by Gx. Now, V and T are both p-groups, so 1 < Z
but since V is a regular subgroup of the permutation group G, CGx(V ) = 1 6= T hence
Z < V . It follows that the orbits of Z form a non-trivial system of imprimitivity for G,
contradicting its primitivity.

The rest of the proof is split into two: Theorem 24 which essentially reduces the
problem to the almost simple case, and Corollary 25 which handles that case.

Theorem 24. Let q, r be distinct primes and either

• r ∈ {3, 5}, q is odd and let R ∼= Cq ×D2r, or

• R is a nonabelian group isomorphic to Cq o Cr.

Let S ⊆ R, suppose that S = S−1 when R ∼= Cq × D2r and let G satisfy R̂ < G 6
Aut(Cay(R, S)). If R̂ is maximal in G, then one of the following occurs:
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1. Aut(R)S > 1,

2. R̂ is core-free in G and G is almost simple, or

3. R ∼= Cq ×D2r, Cq is the core of R̂ in G, and G/Cq is almost simple.

Proof. For X 6 Aut(Cay(R, S)), let X1 denote the stabiliser in X of the vertex of
Cay(R, S) corresponding to the identity of R. For simplicity, we will identify R̂ with
R from now on. Note that G1 is non-trivial and core-free in G and G = RG1 with
R ∩G1 = 1. Let N be the core of R in G. If R is normal in G, then 1 < G1 6 Aut(R)S,
hence we assume that R is not normal in G and N < R. Let G = G/N , R = R/N
and G1 = G1N/N ∼= G1. Note that R is a maximal core-free subgroup of G, so we can
view G as a primitive group with point-stabiliser R and a regular subgroup G1. Since
the point-stabiliser R is soluble, the primitive type of G is either affine, almost simple, or
product action. Moreover, because the order of the point-stabiliser R is squarefree, the
product action case can’t occur. (See for example [10, Theorem 1.1] for both of these
claims.)

Suppose first that G is almost simple. In this case, the point-stabiliser R cannot be
abelian (see for example [3, Lemma 2.1]), so either N = 1 (and G ∼= G, R ∼= R, and
conclusion (2) holds, completing the proof) or N ∼= Cq and R ∈ {D6,D10}. In the latter
case, conclusion (3) holds, again completing the proof.

From now on, we assume that G is of primitive affine type. In this case, there exists a
normal subgroup E of G such that N 6 E, G = E oR and E ∼= Cx

p for some prime p. It

follows that |G1| = |G1| = px. Note that R acts faithfully and irreducibly on E. We now
prove the following claim.

Claim: If p divides |N | and R has a normal Sylow p-subgroup, then Aut(R)S > 1.

Let H = NR(G1), let K be a Sylow p-subgroup of R and let X be a Sylow p-subgroup
of E. Since p divides |N |, it does not divide |R|, hence E is a normal Sylow p-subgroup of
G. Note that K is characteristic in N thus normal in G. It follows that K 6 X, X/K = E
and X is normal in G. Moreover, |X : G1| = p, hence G1 is normal and maximal in X
hence K 6 H. Let r ∈ R \ H. By definition, we have Gr

1 6= G1 but G1 is contained in
X which is normal in G, so Gr

1 6 X. Since G1 is a normal maximum subgroup of X,
G1G

r
1 = X. It follows that K,Kr ⊆ X = G1G

r
1, and we can apply Lemma 9 to conclude

that Cay(R, S) is a nontrivial generalised wreath product with respect to K and H. If
R ∼= Cq o Cr then the claim follows by Corollary 20, whereas if R ∼= Cq × D2r, it follows
by Proposition 22.

We split the remainder of the proof into two cases, according to whether N is cyclic
or dihedral.

N is cyclic: Suppose that p divides |N |. Since N is cyclic, its Sylow p-subgroup is
characteristic, therefore normal in R. We can thus apply our claim to conclude that
Aut(R)S > 1, completing the proof. From now on, we assume that p does not divide |N |.
Let C be the centraliser of N in G. Since N is cyclic, we have N 6 C. If N = C, then
G/N embeds in Aut(N) which is abelian, a contradiction since G/N is nonabelian. We
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conclude that N < C. Since E is the unique minimal normal subgroup of G, we have
E 6 C.

If p is coprime to |R|, then E is the unique Sylow p-subgroup of G so G1 = E and
G1 6 E 6 C which implies E = NG1 = N × G1. Since p does not divide |N |, G1 is
characteristic in E, and thus normal in G, a contradiction. This shows that p divides |R|.
Recall that R has no non-trivial normal p-subgroup (Lemma 23), so we get the following
cases:

1. R ∼= Cq o Cr, N = 1, R ∼= Cq o Cr and p = r.

2. R ∼= Cq ×D2r, N = 1, R ∼= Cq ×D2r and p = 2.

3. R ∼= Cq ×D2r, N ∼= Cq, R ∼= D2r and p = 2.

In case (1), we have G = E o R ∼= Cx
r o (Cq o Cr). Since Cq o Cr is nonabelian and

acts faithfully on Cx
r , we have x > 2 and E1 6= 1. Since G1 is not normal in G, we have

G1 6= E, hence |EG1 : G1| = |EG1 : E| = r. It follows that both E1 and G1 are normal in
EG1. Note that EG1 is a maximal subgroup of G and neither E1 nor G1 is normal in G
(since G1 is core-free in G), so NG(E1) = NG(G1) = EG1. Note that REG1 = G, hence

|G| = |R||EG1|
|R ∩ EG1|

=
|R||E||G1|

|R ∩ EG1||E ∩G1|
(?)

and |R ∩ EG1| = |G1 : E ∩ G1| = r. Let K = R ∩ EG1 = NR(E1) = NR(G1) ∼= Cr. By
definition, EK 6 EG1 hence EK = EG1 by order considerations.

We show that, for every s ∈ R \ K, we have K,Ks ⊆ G1G
s
1. Since K = NR(E1),

we have Es
1 6= E1. Since E1 is maximal in E which is normal in G, it follows that

E = E1E
s
1 ⊆ G1G

s
1, so G1G

s
1 = EG1G

s
1. Now, K 6 EK = EG1 ⊆ EG1G

s
1 = G1G

s
1.

On the other hand, since EK = EG1, we have EGs
1 = EKs and thus Ks ⊆ EG1K

s =
EKKs = EKEKs = EG1EG

s
1 = G1G

s
1, as required. It follows by Lemma 9 that

Cay(R, S) is a nontrivial wreath product with respect to K and the claim follows by
Corollary 20.

In case (2), we have G = E o R ∼= Cx
2 o (Cq × D2r). We consider faithful irreducible

representations of Cq×D2r over F2. Since Cq×D2r is a direct product, its representations
arise as tensor products of the ones for Cq and D2r. Note that the faithful irreducible
representations of the factors have dimension at least 2.

Since G1 is not normal in G, we have E 6= G1 hence |EG1 : E| = |EG1 : G1| = 2
and, in particular, EG1 6 NG(E1). Now, suppose EG1 < NG(E1), so an element of R of
order q or r normalises E1

∼= Cx−1
2 . By Maschke’s Theorem, it must also normalise some

C2 6 E, but this contradicts the dimensions of the faithful irreducible representations in
the previous paragraph. We conclude that NG(E1) = EG1. A calculation similar to (?)
yields that |R ∩EG1| = |G1 : E ∩G1| = 2. Let K = R ∩EG1 = NR(E1) 6 NR(G1). Let
r ∈ R\K, so Er

1 6= E1. Since E1 is normal and maximal in E, which itself is normal in G,
it follows that E1E

r
1 = E. It follows that K 6 EG1 ⊆ G1G

r
1 and, by Lemma 9, Cay(R, S)
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is a nontrivial wreath product with respect to K. Note that K ∼= C2, so Proposition 22
completes the proof.

In case (3), R 6 C, so G = ER 6 C and N is central in G hence G ∼= Cq× (Cx
2oD2r).

Let X ∼= Cx
2 be the Sylow 2-subgroup of E. Note that X is normal in G. Since D2r is

nonabelian and acts faithfully on X, we have x > 2 and X1 6= 1. Since G1 is not normal
in G, we have G1 6= X, hence |XG1 : G1| = |XG1 : X| = 2. It follows that X1 and G1

are both normal in XG1. Clearly, Cq also normalises X1 and G1, so NG(X1) and NG(G1)
both contain Cq × (X oC2) which is a maximal subgroup of G. Since neither X1 nor G1

is normal in G (since G1 is core-free in G), we have NG(X1) = NG(G1) = Cq × (X oC2).
Let K = R ∩ XG1 and H = NR(X1) = NR(G1). We have K 6 H and a calculation
similar to (?) gives |K| = 2 and |H| = 2q hence K ∼= C2 and H ∼= Cq×C2. Let r ∈ R\H,
so Xr

1 6= X1. Since X1 is normal and maximal in X, which itself is normal in G, it follows
that X1X

r
1 = X. This implies that K ⊆ XG1 ⊆ G1G

r
1 and, by Lemma 9, Cay(R, S)

is a nontrivial generalised wreath product with respect to K and H, so Proposition 22
completes the proof.

N is isomorphic to D2r: In this case, R ∼= Cq and G ∼= Cx
p o Cq. Let C be the

centraliser of N in G. Note that C ∩N = 1, so CN = C ×N .
Note that q divides |C ∩R| and thus q divides the order of CN/N , which is a normal

subgroup of G. It follows that CN/N = G and thus G = C × N hence G ∼= C and
G ∼= (Cx

p o Cq) × D2r, with p 6= q. Since |G1| = px and G1 is not normal in G, we must
have p ∈ {2, r}. By the claim proved earlier, we can assume p = 2 and G ∼= (Cx

2oCq)×D2r.
Let X ∼= Cx

2 be the Sylow 2-subgroup of C. Note that X is normal in G. Moreover, since
Cq acts faithfully on X and q > 3, we have x > 2. Since G1 is not normal, G1 6= X
hence |XG1 : X| = |XG1 : G1| = 2 and X1 6= 1. The same calculation as in (?) gives
|R ∩ XG1| = 2. Write 〈k〉 = R ∩ XG1. Note that XG1 is elementary abelian and
XG1 = G1 × 〈k〉 = X × 〈k〉. Write X = X1 × 〈y〉. Since XG1/X1 is a Klein group,
there are three subgroups strictly between X1 and XG1, namely X, G1 and X1×〈k〉. As
X1× 〈yk〉 is one of these three subgroups, by elimination, we must have X1× 〈yk〉 = G1.
Let h and m be elements of order r and q in R, respectively. Note that m is central in R
while hk = h−1 hence kh = kh2. Note also that k and h commute with X. We have

(G1)
h−i = (X1〈yk〉)h

−i
= X1〈yk〉h

−i
= X1〈ykh−2i〉.

Let α : R → R be given by (mjhikε)α = m−jhikε. Note that α ∈ Aut(R). Moreover,
α 6= 1 since q > 3. We show that Sα = S. Note that α fixes 〈h, k〉 pointwise. Let
s ∈ S \〈h, k〉, say s = mjhikε, with mj 6= 1. If ε = 1, then sα = m−jhik = s−1 ∈ S−1 = S.
We now assume that ε = 0 so s = mjhi. Since 〈m〉 ∼= Cq acts irreducibly on X and

X1 6= 1, we have (X1)
mj 6= X1, which implies that X1(X1)

mj = X and thus G1(X1)
mj =

G1X1(X1)
mj = G1X. Since mj 6= 1, we have
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G1sG1 = G1m
jhiG1

= G1(G1)
h−im−j

mjhi

= G1(X1〈ykh−2i〉)m
−j
mjhi

= G1(X1)
m−j〈ykh−2i〉m−j

mjhi

= G1X〈ykh−2i〉m
−j
mjhi

= G1{mjhi, kmjhi, kh−2imjhi, kkh−2imjhi}
= G1{mjhi,mjh−ik,mjhik,mjh−i}

Since S is preserved under G1, we have mjh−i ∈ S and sα = m−jhi = (mjh−i)−1 ∈
S−1 = S. This completes the proof that Sα = S hence α ∈ Aut(R)S > 1.

We can now completely determine the DRR and GRR-detecting status of these final
two families of groups we have been studying.

Corollary 25. Let q and r be distinct primes.

1. If R ∼= C7 o C3, then R is not DRR-detecting but it is GRR-detecting.

2. If R ∼= CqoCr, with (q, r) = (31, 5) or (q, r) a safe/Sophie Germain prime pair, with
q ≡ 3 (mod 4) and q > 11, then R is not GRR-detecting (so is not DRR-detecting).

3. If R is nonabelian and isomorphic to Cq o Cr but not in the above two cases, then
R is DRR-detecting (and is therefore also GRR-detecting).

4. If q is odd, r ∈ {3, 5} and R ∼= Cq ×D2r, then R is GRR-detecting.

Proof. The statement in (1) can be checked by computer.
In [14, Lemma 3.3], it is shown that there are Cayley graphs on C31 o C5 with au-

tomorphism group PSL(5, 2). Note that C31 o C5 is self-normalising (even maximal) in
PSL(5, 2).

In [14, Lemma 4.4], it is shown that if q > 11 is a prime (the hypothesis that q >
11 is in the paragraph before the statement of the lemma) with q ≡ 3 (mod 4), then
there are Cayley graphs on Cq oC(q−1)/2 with automorphism group PSL(2, q). Note that
Cq oC(q−1)/2 is self-normalising (even maximal) in PSL(2, q). Together with the previous
paragraph, this gives (2).

It remains to show (3) and (4). Let R be one of the groups appearing in (3) or (4). As
in Theorem 24, let S ⊆ R, suppose that S = S−1 when R ∼= Cq × D2r and let G satisfy

R̂ < G 6 Aut(Cay(R, S)), with R̂ maximal in G. By Theorem 24, we can assume the
following:

• R̂ is core-free in G and G is almost simple, or
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• R ∼= Cq ×D2r, Cq is the core of R̂ in G, and G/Cq is almost simple.

As in the proof of Theorem 24, we identify R̂ with R. Let N be the core of R in G,
let G = G/N , R = R/N and G1 = G1N/N . Note that G is an almost simple group
with a maximal core-free subgroup R and another subgroup G1 such that G = RG1

and R ∩ G1 = 1. We can then view G as a primitive group of almost simple type with
point-stabiliser R having a regular subgroup G1. Such groups were classified by Liebeck,
Praeger, Saxl in [11, Theorem 1.1 and Tables 16.1-16.3].

When consulting these tables, it is important to remember that our point of view (for
the moment) is in some sense “dual” to theirs: R is our point-stabiliser so it corresponds
to their Gα. The next thing to note is that they do not list all the almost simple groups,
but rather just their socles (which they denote L and we will denote L), and do not give
Gα, but rather Gα ∩ L. Now, R has the property that its order is squarefree, a product
of at most three primes. This property is clearly preserved under subgroups, hence if Gα

has this property, so does Gα ∩ L. So we can go through their tables and list all such
instances. This is the result:

L R ∩ L Remark
Alt(p) Cp o C(p−1)/2 p ≡ 3 (mod 4), p 6= 7, 11, 23

PSL(2, p) Cp o C(p−1)/2 **
PSL(2, 11) C11 o C5

PSL(2, 23) C23 o C11

PSL(2, 59) C59 o C29

PSL(3, 3) C13 o C3

PSL(3, 4) C7 o C3 G > L. Sym(3)
PSL(5, 2) C31 o C5

PSU(3, 8) C19 o C3 G > L.32

M23 C23 o C11

M23 C23 o C11

** In the corresponding line of [11, Table 16.1], there is a remark that this case does
not always occur.

Assume first that R ∼= Cq×D2r, with r ∈ {3, 5}. By Theorem 24, R is one of Cq×D2r

or D2r. From the table above, we see that R∩L is centreless, so either way we must have
R ∩ L = D2r. Again from the table above, the only case where this could occur is in the
second line with p = 5, but then we must have G = L ∼= PSL(2, 5), and one can check
that there is no subgroup G1 of order 6 in PSL(2, 5) such that PSL(2, 5) = G1D10.

From now on, we assume that R = Cq o Cr and R is core-free, so G = G, R = R
and L = L. Since |R| has two prime divisors and, in the table, R ∩ L has at least two
prime divisors, we must have R = R ∩ L and it follows (given the “dual” point of view
of [11]) that G = L, so G is simple. This allows us to eliminate the cases which have a
remark indicating that G > L, that is lines 7 and 9 in our table. (In other words, we can
eliminate the cases when L = PSL(3, 4) or L = PSU(3, 8).)

Finally, we note that all remaining cases correspond to (2) of our statement (that is,
(q, r) = (31, 5) or (q, r) is a safe/Sophie Germain prime pair, with q ≡ 3 (mod 4) and
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q > 11), except the case L = PSL(3, 3), which we deal with now. According to the table,
we are considering PSL(3, 3) as a transitive permutation group on 13 · 3 points. There
are two conjugacy classes of subgroups of index 13 · 3 in PSL(3, 3), but they are fused
in Aut(PSL(3, 3)). The corresponding transitive permutation group is not primitive: it
admits blocks of size 3. This group has rank 3 and its only non-trivial orbital digraphs
are 13K3 and its complement (the complete multipartite graph with 13 parts of size 3). It
follows that Cay(R, S) is a nontrivial wreath product with respect to C3 and Aut(R)S > 1
by Corollary 20. This concludes the proof.

Combining Theorems 12 and 24, Propositions 13, 14 and 15, and Corollaries 18 and
25 yields Theorem 4.
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