A Mathon-Type Construction for Digraphs and Improved Lower Bounds for Ramsey Numbers

Dermot McCarthy Chris Monico

Submitted: Aug 11, 2024; Accepted: May 4, 2025; Published: Jun 6, 2025 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We construct an edge-colored digraph analogous to Mathon's construction for undirected graphs. We show that this graph is connected to the k-th power Paley digraphs and we use this connection to produce improved lower bounds for multicolor directed Ramsey numbers.

Mathematics Subject Classifications: 05C55, 05C25

1 Introduction

In [5], Mathon leveraged properties of generalized Paley graphs to improve lower bounds on diagonal multicolor (undirected) Ramsey numbers. He did this by constructing a multicolored graph which contained monochromatic induced subgraphs isomorphic to the generalized Paley graph. Among his results were $R(7,7) \ge 205$, $R(9,9) \ge 565$, $R(10,10) \ge 798$ and $R_3(4) \ge 128$, which are still the best known lower bounds today [9]. Independently, Shearer [13] produced the same results in the two-color case using an equivalent construction. More recently, Xu and Radziszowski [14] made incremental improvements to Mathon's construction and showed that $R_3(7) \ge 3214$ (increased from Mathon's 3211), which is the current best known lower bound.

In this paper, we adapt Mathon's construction to digraphs and leverage properties of k-th power Paley digraphs to produce improved lower bounds for diagonal multicolor directed Ramsey numbers. For the remainder of this paper all Ramsey numbers will be directed, and will be denoted $R_t(m)$. As such, $R_t(m)$ is the least positive integer n such that any tournament with n vertices, whose edges have been colored in t colors, contains a monochromatic transitive subtournament of order m. When t = 1 we recover the usual directed Ramsey number R(m), so we drop the subscript in this case. Recall, a tournament is transitive if, whenever $a \to b$ and $b \to c$, then $a \to c$. Our main results, which improve on the previously best known lower bounds, can be summarized as follows.

Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79410-1042, U.S.A. (dermot.mccarthy@ttu.edu, C.Monico@ttu.edu).

Theorem 1. $R(8) \ge 57$, $R(11) \ge 169$, $R(12) \ge 217$, $R(14) \ge 401$, $R(15) \ge 545$, $R(16) \ge 737$, $R(17) \ge 889$, $R(18) \ge 1241$, $R(19) \ge 1321$ and $R(20) \ge 1945$.

Theorem 2. For $t \geqslant 4$,

$$R_t(3) \geqslant 169 \cdot 3^{t-4} + 1.$$

For $t \geqslant 2$,

$$R_t(6) \geqslant 829 \cdot 27^{t-2} + 1$$
 and $R_t(8) \geqslant 3320 \cdot 56^{t-2} + 1$.

2 Preliminaries and Notation

For a graph G, we denote its vertex set by V(G), so the order of G is #V(G). For a vertex v of a digraph G, we will denote the set of vertices which are out-neighbors of v by $\mathrm{ON}(v)$ and the set of in-neighbors by $\mathrm{IN}(v)$. If the edges of G are colored, we will denote the set of out-neighbors (resp. in-neighbors) of v connected via an edge of color i by $\mathrm{ON}_i(v)$ (resp. $\mathrm{IN}_i(v)$). We define the set of neighbors of v as $\mathrm{N}(v) := \mathrm{ON}(v) \cap \mathrm{IN}(v)$ and the set of color i neighbors as $\mathrm{N}_i(v) := \mathrm{ON}_i(v) \cap \mathrm{IN}_i(v)$. We will refer to any collection of vertices in G, which are pairwise connected via two edges oriented in opposite directions, as a clique, i.e., $C \subseteq V(G)$ is a clique if, for all $v,v \in C$, v,v and v,v are edges of v,v. Further, if all those edges are of color v,v we will refer to it as a color v,v clique.

We note that a tournament of order m is transitive if and only if the set of out-degrees of its vertices is $\{0, 1, \ldots, m-1\}$ [7, Ch. 7]. Thus, we can represent a transitive subtournament of order m by the m-tuple of its vertices (a_1, a_2, \ldots, a_m) , listed in order such that the out-degree of vertex a_i is m-i, i.e. the corresponding m-tuple of out-degrees is $(m-1, m-2, \ldots, 1, 0)$. We let $\mathcal{K}_m(G)$ denote the number of transitive subtournaments of order m contained in a digraph G.

3 Mathon-Type Construction for Digraphs

Let $k \ge 2$ be an even integer. Let q be a prime power such that $q \equiv k+1 \pmod{2k}$. This condition ensures that -1 is not a k-th power in \mathbb{F}_q , the finite field with q elements, but is a $\frac{k}{2}$ -th power. Let S_k be the subgroup of the multiplicative group \mathbb{F}_q^* of order $\frac{q-1}{k}$ containing the k-th power residues, i.e., if ω is a primitive element of \mathbb{F}_q , then $S_k = \langle \omega^k \rangle$. We define $S_{k,0} := \{0\}$ and $S_{k,i} := \omega^{i-1}S_k$, for $1 \le i \le \frac{k}{2}$, so that $S_{k,1} = S_k$. We note that $-S_{k,i} = \omega^{\frac{k}{2}}S_{k,i}$ (as $-1 = \omega^{\frac{q-1}{2}}$ and $\frac{q-1}{2} \equiv \frac{k}{2} \pmod{k}$), yielding the disjoint union

$$\mathbb{F}_q = S_{k,0} \cup \bigcup_{i=1}^{k/2} S_{k,i} \cup \bigcup_{i=1}^{k/2} -S_{k,i}.$$

Let $X := (\mathbb{F}_q \times \mathbb{F}_q) \setminus \{(0,0)\}$. We define an equivalence relation \sim on X where $(a,b) \sim (c,d)$ if (c,d) = (ag,bg) for some $g \in S_k$. We denote the equivalence class of (a,b)

by [a, b]. There are n := k(q + 1) such equivalence classes, each containing $|S_k| = \frac{q-1}{k}$ elements. Let $M_k(q)$ be the edge-colored digraph of order n, with vertex set X/\sim , where $[a, b] \to [c, d]$ is an edge in color i, $0 \le i \le \frac{k}{2}$, if and only if $bc - ad \in S_{k,i}$. We note that this is well-defined as $gS_{k,i} = S_{k,i}$ for all $g \in S_k$. We also note that any pair of vertices of $M_k(q)$ will either be connected by a single oriented edge in color i, for some $1 \le i \le \frac{k}{2}$, or, connected by two edges of color 0 oriented in opposite directions. For ease of illustration in what follows, we will represent the former case by $v_1 \xrightarrow{i} v_2$ and the latter case by $v_1 \xleftarrow{0} v_2$.

Proposition 3. $M_k(q)$ is vertex transitive.

Proof. For $s \in \mathbb{F}_q$, define the maps ρ_s and σ_s on X/\sim by

$$\rho_s : [a, b] \to [a, b + as]$$

$$\sigma_s : [a, b] \to [a + bs, b].$$

It is easy to show that both ρ_s and σ_s are well-defined automorphisms of $M_k(q)$. Let [a,b] and [c,d] be distinct vertices of $M_k(q)$. Assume first that $b,c \neq 0$ and let $s_1,s_2 \in \mathbb{F}_q$ satisfy $a+bs_1=c$ and $b+cs_2=d$. Then $\rho_{s_2}(\sigma_{s_1}[a,b])=[c,d]$. If b=0 then $a\neq 0$, and we can first apply $\rho_1[a,0]=[a,a]$ and then proceed as before. If c=0 then $d\neq 0$, and we can proceed as before to get to [d,d]. Then we apply $\sigma_{-1}[d,d]=[0,d]$.

Proposition 4. For $0 \le i \le \frac{k}{2}$, let Γ_i be the subgraph of $M_k(q)$, with vertex set X/\sim , induced by the color i edges of $M_k(q)$.

- (1) Γ_0 is the disjoint union of q+1 color 0 cliques of order k.
- (2) $\Gamma_1, \Gamma_2, \ldots, \Gamma_{\frac{k}{2}}$ are pairwise isomorphic.

Proof. (1) The neighbors of [0,1] in Γ_0 are $N_0([0,1]) = \{[0,\omega^j] \mid j=1,2,\ldots,k-1\}$. All elements of $N_0([0,1])$ are neighbors of each other in Γ_0 and, thus, [0,1] and its neighbors form a clique of order k. As $M_k(q)$ is vertex transitive, every vertex belongs to such a clique. And, as the elements of $N_0([0,1])$ are not neighbors of any other vertices in Γ_0 , all such cliques are disjoint. Therefore, there must be $\frac{n}{k} = q+1$ of them. (2) Γ_i is isomorphic to Γ_{i+1} , for all $1 \leq i \leq \frac{k}{2} - 1$, via the map $[a,b] \to [wa,b]$.

Proposition 5. Let $v \in V(M_k(q))$. Let $x \in N_0(v)$. Then for any $i \in \{1, 2, \dots, \frac{k}{2}\}$,

$$ON_i(x) \cap ON_i(v) = IN_i(x) \cap IN_i(v) = \emptyset.$$

Proof. As $M_k(q)$ is vertex transitive, it suffices to prove for v = [0, 1]. Then, let $x \in N_0([0, 1])$, i.e., $x = [0, w^j]$ for some j = 1, 2, ..., k - 1. Now

$$[0,\omega^j] \stackrel{i}{\to} [c,d] \iff \omega^j c \in S_{k,i} \iff c \in \{\omega^{kl+i-j-1} \mid l=0,1,\ldots,\frac{q-1}{k}-1\},$$

and so

$$ON_i(x) = ON_i([0, \omega^j]) = \{ [\omega^{i-j-1 \pmod{k}}, d] \mid d \in \mathbb{F}_q \}.$$

Also,

$$ON_i(v) = ON_i([0, 1]) = \{ [\omega^{i-1}, d] \mid d \in \mathbb{F}_q \}.$$

As $j \not\equiv 0 \pmod{k}$, we get that $ON_i(x) \cap ON_i(v) = \emptyset$. Similar arguments produce

$$IN_i(x) = IN_i([0, \omega^j]) = \{ [\omega^{i-j-1+\frac{k}{2} \pmod{k}}, b] \mid b \in \mathbb{F}_q \}$$

and

$$IN_i(v) = IN_i([0,1]) = \{ [\omega^{i-1+\frac{k}{2}}, b] \mid b \in \mathbb{F}_q \}.$$

So, $IN_i(x) \cap IN_i(v) = \emptyset$.

4 Relation to the k-th power Paley digraphs

Recall from Section 3, $k \ge 2$ is an even integer and q is a prime power such that $q \equiv k+1 \pmod{2k}$. S_k is the subgroup of \mathbb{F}_q^* containing the k-th power residues, i.e., if ω is a primitive element of \mathbb{F}_q , then $S_k = \langle \omega^k \rangle$, and $S_{k,i} := \omega^{i-1} S_k$, for $1 \le i \le \frac{k}{2}$.

We now recall some definitions and properties from [6] concerning Paley digraphs. We define the k-th power Paley digraph of order q, $G_k(q)$, as the graph with vertex set \mathbb{F}_q where $a \to b$ is an edge if and only if $b-a \in S_k$. We note that $-1 \notin S_k$ so $G_k(q)$ is a well-defined oriented graph. For each $1 \leqslant i \leqslant \frac{k}{2}$, we define the related directed graph $G_{k,i}(q)$ with vertex set \mathbb{F}_q where $a \to b$ is an edge if and only if $b-a \in S_{k,i}$. Each $G_{k,i}(q)$ is isomorphic to $G_{k,1}(q) = G_k(q)$, the k-th power Paley digraph, via the map $f_i : V(G_k(q)) \to V(G_{k,i}(q))$ given by $f_i(a) = \omega^{i-1}a$. Now consider the multicolor k-th power Paley tournament $P_k(q)$ whose vertex set is \mathbb{F}_q and whose edges are colored in $\frac{k}{2}$ colors according to $a \to b$ has color i if $b-a \in S_{k,i}$. Note that the induced subgraph of color i of $P_k(q)$ is $G_{k,i}(q)$. Thus, $P_k(q)$ contains a monochromatic transitive subtournament of order m if and only if $G_k(q)$ contains a transitive subtournament of order m.

Proposition 6. Let $i \in \{1, 2, ..., \frac{k}{2}\}$. Let $v \in V(M_k(q))$. Then the induced subgraph of $M_k(q)$ with vertex set $ON_i(v)$ is isomorphic to $P_k(q)$.

Proof. As $M_k(q)$ is vertex transitive, it suffices to prove for v = [0,1]. Let H denote the induced subgraph of $M_k(q)$ with vertex set $\mathrm{ON}_i([0,1])$. In the proof of Proposition 5 we saw that $\mathrm{ON}_i([0,1]) = \{[\omega^{i-1},d] \mid d \in \mathbb{F}_q\}$. So $\#V(H) = |\mathrm{ON}_i([0,1])| = q = \#V(P_k(q))$. Now consider the bijective map $\phi: V(H) \to V(P_k(q))$ given by $\phi([\omega^{i-1},d]) = -\omega^{i-1}d$. It remans to show that ϕ is color-preserving. Let $[\omega^{i-1},d_1] \in V(H)$ and let $[\omega^{i-1},d_2] \in \mathrm{ON}_s([\omega^{i-1},d_1])$] for some $s \in \{1,2,\ldots,\frac{k}{2}\}$ (note that $s \neq 0$ otherwise $d_1 = d_2$). Now,

$$[\omega^{i-1}, d_1] \stackrel{s}{\to} [\omega^{i-1}, d_2] \iff d_1 \omega^{i-1} - \omega^{i-1} d_2 \in S_{k,s}$$

$$\iff \phi([\omega^{i-1}, d_2]) - \phi([\omega^{i-1}, d_1]) \in S_{k,s}$$

$$\iff \phi([\omega^{i-1}, d_1]) \stackrel{s}{\to} \phi([\omega^{i-1}, d_2]),$$

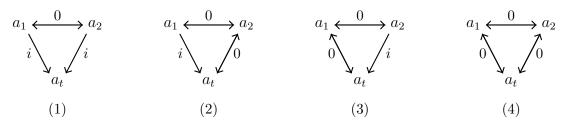
as required. \Box

Recall that any pair of vertices of $M_k(q)$ will either be connected by a single oriented edge in color i, for some $1 \leq i \leq \frac{k}{2}$, or, connected by two edges of color 0 oriented in opposite directions. We now replace all these pairs of color 0 edges with a single oriented edge of color $1 \leq i \leq \frac{k}{2}$, where the new color and orientation are randomly assigned. We call this altered graph $M_k^*(q)$, which is a tournament whose edges are colored in $\frac{k}{2}$ colors.

Theorem 7. Let $k \ge 2$ be an even integer and q be a prime power such that $q \equiv k+1 \pmod{2k}$. Let $m \ge k-1$ be a positive integer. If $P_k(q)$ contains no monochromatic transitive subtournament of order m, then $M_k^*(q)$ contains no monochromatic transitive subtournament of order m+2.

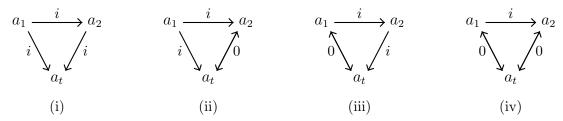
Proof. Assume $P_k(q)$ contains no monochromatic transitive subtournament of order m. We note that $0 \xrightarrow{i} \omega^{i-1}$ is an edge in $P_k(q)$ for all $1 \leqslant i \leqslant \frac{k}{2}$, and, so, $m \geqslant 3$ necessarily. Let T_l^* be a monochromatic, in color $i, 1 \leqslant i \leqslant \frac{k}{2}$, transitive subtournament of $M_k^*(q)$ of order l. We will show that l < m + 2. We can assume $l \geqslant 4$, as, otherwise, $l < 4 \leqslant m + 1$, as required. We represent T_l^* by the l-tuple of its vertices (a_1, a_2, \ldots, a_l) with the corresponding l-tuple of out-degrees $(l - 1, l - 2, \ldots, 1, 0)$. Let T_l be the corresponding subgraph of $M_k(q)$ before the color 0 edges were reassigned, i.e., T_l also has vertices a_1, a_2, \ldots, a_l but some vertices may be connected by two edges of color 0 oriented in opposite directions.

Assume $a_1 \stackrel{0}{\longleftrightarrow} a_2$ in $M_k(q)$. Consider a_t for $3 \le t \le l$. Then there are four possibilities for the triangle (a_1, a_2, a_t) in $M_k(q)$:



By Proposition 5, $ON_i(a_1) \cap ON_i(a_2) = \emptyset$ so case (1) can't happen. Now consider case (2). As $M_k(q)$ is vertex transitive, we can let $a_2 = [0, 1]$, without loss of generality. Then $a_1, a_t \in N_0([0, 1]) = \{[0, \omega^j] \mid j = 1, 2, \dots, k - 1\}$. If we let $a_1 = [0, \omega^{j_1}]$ and $a_t = [0, \omega^{j_2}]$, for some $1 \leq j_1 \neq j_2 \leq k - 1$, then $a_1 \stackrel{i}{\to} a_t$ implies $0 = \omega^{j_1} \cdot 0 - 0 \cdot \omega^{j_2} \in S_{k,i}$, which is a contradiction. Case (3) is isomorphic to case (2). So, if $a_1 \stackrel{0}{\longleftrightarrow} a_2$, then case (4) is the only possibility, which inductively implies that T_l is monochromatic in color 0. Thus, by Proposition 4 (1), T_l must be contained in a color 0 clique of Γ_0 and so $l \leq k \leq m+1$.

Now assume $a_1 \xrightarrow{i} a_2$ in $M_k(q)$. Consider a_t for $3 \le t \le l$. Again, we see that there are four possibilities for the triangle (a_1, a_2, a_t) in $M_k(q)$:



Case (ii) can't happen because $IN_i(a_2) \cap IN_i(a_t) = \emptyset$, by Proposition 5. Case (iv) is isomorphic to case (2) above, which we've seen is not possible. We now examine case (iii). As $M_k(q)$ is vertex transitive, we can let $a_1 = [0,1]$, without loss of generality. Then $a_2 \in ON_i([0,1]) = \{[\omega^{i-1},d] \mid d \in \mathbb{F}_q\}$ and $a_t \in N_0([0,1]) = \{[0,\omega^j] \mid j=1,2,\ldots,k-1\}$. Further,

$$a_{2} \xrightarrow{i} a_{t} \iff [\omega^{i-1}, d] \xrightarrow{i} [0, \omega^{j}]$$

$$\iff d \cdot 0 - \omega^{i-1} \cdot \omega^{j} \in S_{k,i}$$

$$\iff \omega^{i+j-1} \in -S_{k,i} = \{\omega^{kv+i-1+\frac{k}{2}} \mid v = 0, 1, \dots, \frac{q-1}{k} - 1\}$$

$$\iff \omega^{j} \in \{\omega^{kv+\frac{k}{2}} \mid v = 0, 1, \dots, \frac{q-1}{k} - 1\}$$

$$\iff j = \frac{k}{2}$$

$$\iff a_{t} = [0, \omega^{\frac{k}{2}}] = [0, -1]$$

So, case (iii) is possible but there is only one possible a_t , which means there is only one value of $t \in \{3, \ldots, l\}$ for which $a_1 \stackrel{0}{\longleftrightarrow} a_t$. So assume there is an $s \in \{3, \ldots, l\}$ such that

Then $a_1 \stackrel{i}{\to} a_t$ for all $t \in \{3, \dots, l\} \setminus \{s\}$ and by previous arguments we must have

Therefore, if $t_1, t_2 \in \{3, \dots, l\} \setminus \{s\}$ with $t_1 < t_2$, then

is not possible, by Proposition 5, and so $a_{t_1} \stackrel{i}{\to} a_{t_2}$. Thus, if we remove a_s from T_l we get a monochromatic, in color i, transitive subtournament of $M_k(q)$ of order l-1, which we call T_{l-1} . Furthermore, $T_{l-1} \setminus \{a_1\}$ is a monochromatic, in color i, transitive subtournament of $M_k(q)$ of order l-2. If we let H denote the induced subgraph of $M_k(q)$ with vertex

set $ON_i(a_1)$, then by Proposition 6, $T_{l-1} \setminus \{a_1\} \subseteq H \cong P_k(q)$. So, if $P_k(q)$ contains no monochromatic transitive subtournament of order m, then l-2 < m.

If there is no $3 \le t \le l$ for which (a_1, a_2, a_t) satisfies cases (ii), (ii) or (iv) then all a_t , for $3 \le t \le l$, satisfy case (i). Then $a_{t_1} \stackrel{i}{\to} a_{t_2}$ for all $3 \le t_1 < t_2 \le l$ by previous arguments. So, in this case, T_l itself is a monochromatic, in color i, transitive subtournament of $M_k(q)$. Letting H denote the induced subgraph of $M_k(q)$ with vertex set $ON_i(a_1)$ and, again, using Proposition 6, we get that $T_l \setminus \{a_1\} \subseteq H \cong P_k(q)$. So, if $P_k(q)$ contains no monochromatic transitive subtournament of order m, then l-1 < m.

Overall, if $P_k(q)$ contains no monochromatic transitive subtournament of order m, then $M_k^*(q)$ contains no monochromatic transitive subtournament of order m + 2.

Corollary 8. Let $k \ge 2$ be an even integer and q be a prime power such that $q \equiv k+1 \pmod{2k}$. If $\mathcal{K}_m(G_k(q)) = 0$, for $m \ge k-1$, then $R_{\frac{k}{2}}(m+2) \ge k(q+1) + 1$.

Proof. By definition, $\mathcal{K}_m(G_k(q)) = 0$ means that $G_k(q)$ contains no transitive subtournaments of order m. By the discussion at the start of this section, this implies $P_k(q)$ contains no transitive subtournaments of order m [6]. Consequently, by Theorem 7, $M_k^*(q)$ contains no monochromatic transitive subtournament of order m+2. Recall, $M_k^*(q)$ is a tournament of order n = k(q+1) whose edges are colored in $\frac{k}{2}$ colors, so $R_{\frac{k}{2}}(m+2) \geqslant k(q+1)+1$. \square

5 Proofs of Theorems 1 and 2

We now examine properties of $G_k(q)$ and apply Corollary 8 to get improved lower bounds for certain directed Ramsey numbers, proving Theorems 1 and 2.

Proof of Theorem 1. Theorem 1 corresponds to the case when k=2. For all appropriate $q\leqslant 1583$ we found, by computer search (see Section 6 for details), the order of the largest transitive subtournament of $G_2(q)$. Then, from this data, we identified the largest q such that $\mathcal{K}_m(G_k(q))=0$, for each $3\leqslant m\leqslant 20$. Call this q_m . Then, by definition, $R(m)\geqslant q_m+1$. Combining with Corollary 8, when k=2, yields $R(m+2)\geqslant \max(2(q_m+1)+1,q_{m+2}+1)$. The results for $7\leqslant m\leqslant 20$ are shown in Table 1. (R(m) for $3\leqslant m\leqslant 6$ are already known, specifically R(3)=4, R(4)=8 [2], R(5)=14 [10], R(6)=28 [11].) We note that $q_6=27$.

m	7	8	9	10	11	12	13	14	15	16	17	18	19	20
q_m	27	47	83	107	107	199	271	367	443	619	659	971	1259	1571
$R(m) \geqslant$	28	57	84	108	169	217	272	401	545	737	889	1241	1321	1945

Table 1: Lower Bounds for R(m).

The values of q_m in Table 1, for $7 \le m \le 18$, confirm those of Sanchez-Flores [12], and, for m = 19, that of Exoo [3]. The best known lower bound for m = 7 is $R(7) \ge 34$, due to Neiman, Mackey and Heule [8]. For $8 \le m \le 10$ and $12 \le m \le 19$ the previously best known lower bound was $R(m) \ge q_m + 1$ [3]. Also from [3] we have that $R(11) \ge 112$.

So the values in bold in Table 1 represent an improvement to the previously best known lower bounds, establishing Theorem 1, and the values in italics equal the best known lower bounds. \Box

Proof of Theorem 2. We also performed a similar exercise for k = 4, 6, 8 and 10, identifying, in each case, the largest q such that $\mathcal{K}_m(G_k(q)) = 0$, for $3 \leq m \leq 10$. We will denote such q as $q_{m,k}$. Table 2 outlines these values. The values in the last row of the table indicate the upper limit for q in our search. Note that values of $q_{m,k}$ close to this limit will not be optimal.

\overline{m}	k=4	k = 6	k = 8	k = 10
3	13	43	169	71
4	125	343	953	3331
5	157	859	2809	6791
6	829	4339	15625	33191
7	709	4423	26153	43411
8	1709	18523	29929	58771
9	3517	29611	29929	59951
10	7573	29959	29929	59971
q <	10000	30000	30000	60000

Table 2: Largest q found such that $\mathcal{K}_m(G_k(q)) = 0$.

Now, by definition,

$$R_{\frac{k}{2}}(m) \geqslant q_{m,k} + 1 \tag{1}$$

and, by Corollary 8,

$$R_{\frac{k}{2}}(m+2) \geqslant k(q_{m,k}+1)+1$$
 (2)

when $m \ge k - 1$. We note also that for $t \ge 2$ [4, Prop. 5]

$$R_t(m) \geqslant (R_{t-1}(m) - 1)(R(m) - 1) + 1.$$
 (3)

It is already known that R(3) = 4, R(4) = 8 [2], R(5) = 14 [10], R(6) = 28 [11], $R(7) \ge 34$ [8], $R_2(3) = 14$ [1], $R_2(4) \ge 126$ and $R_3(3) \ge 44$ [6]. We combine all this information, including values from Table 1, to get lower bounds on the Ramsey numbers $R_t(m)$ for $t \ge 2$ and $3 \le m \le 10$. The results are shown in Table 3.

For example, in the case m=3, it is already known that $R_2(3)=14$ [1]. It is also known that R(3)=4 [2], so by (3) we get that $R_3(3)\geqslant (R_2(3)-1)(R(3)-1)+1=40$. But, from Table 2, we see that $q_{3,6}=43$ and so $R_3(3)\geqslant 44$ by (1) which is better. When t=4, (3) tells us that $R_4(3)\geqslant (R_3(3)-1)(R(3)-1)+1\geqslant 130$, but (1) produces $R_4(3)\geqslant 170$, as $q_{3,8}=169$ from Table 2. For $t\geqslant 5$, (3) produces the best bound, i.e., $R_t(3)\geqslant 169\cdot 3^{t-4}+1$. We note that, as m=3, the bound produced by Corollary 8, (2), is not applicable for $t=\frac{k}{2}>2$.

In contrast, in the case m = 8, (2) produces the best bound when t = 2. From Table 2, we see that $q_{8,4} = 1709$ and so (1) yields $R_2(8) \ge 1710$. From Table 1, we get that

 $R(8) \ge 57$ and so $R_2(8) \ge (57-1)^2 + 1 = 3137$ by (3). Again from Table 2, we see that $q_{6,4} = 829$ and so (2) yields $R_2(8) \ge 4(829+1) + 1 = 3321$, which is better than the bounds coming from both (1) and (3). For m = 8 and $t \ge 3$, (3) produces the best bound, i.e., $R_t(8) \ge 3320 \cdot 56^{t-2} + 1$.

The remainder of Table 3 is produced similarly.

m	t = 2	t = 3	t=4	$t \geqslant 5$				
3	14	44	170	$169 \cdot 3^{t-4} + 1$				
4	126	$125 \cdot 7^{t-2} + 1$						
5		$13^t + 1$						
6	830	$829 \cdot 27^{t-2} + 1$						
7	$33^t + 1$							
8	3321	$3320 \cdot 56^{t-2} + 1$						
9	$83^t + 1$							
10	$107^t + 1$							

Table 3: Lower bounds for $R_t(m)$.

The general formulas in the cases m=3,6,8 improve on what was previously known and establish Theorem 2. We note that the m=8 case is the only one where Corollary 8 influences the results. For $m \neq 3,6,8$, the bounds in Table 3 reflect already known bounds combined with (3).

6 A note on the computer search

In order to use the results of Section 4 to obtain various lower bounds, the central problem is to find a maximum length subtournament of a given directed graph G. For this, we adopt a straightforward recursive approach. Begin with $M \leftarrow 0$ and $T \leftarrow \emptyset$. Given a (possibly empty) transitive subtournament T of G, enumerate $T = \{a_1, \ldots, a_\ell\}$ with $a_i \to a_j$ for all $1 \le i < j \le \ell$. Determine the set $S = \bigcap_{i=1}^{\ell} \mathrm{ON}(a_i)$ of possible successors of a_ℓ , where the empty intersection is taken as V(G). If S is empty, set $M \leftarrow \max\{M, \ell\}$; otherwise, for each $s \in S$, recursively apply this procedure to $T \cup \{s\}$. Several obvious optimizations are employed, but this is the essential idea.

We then appeal to Lemma 4.2(c) from [6]. Let $H_k(q)$ be the subgraph of $G_k(q)$ induced by S_k , and let $H_k^1(q)$ be the subgraph of $H_k(q)$ induced by ON(1). By that lemma, $G_k(q)$ has a transitive subtournament of order m if and only if $H_k^1(q)$ has a transitive subtournament of order m-2. We therefore apply the recursive procedure described above to the smaller directed graph $H_k^1(q)$, and use that to determine the maximum length transitive subtournament of $G_k(q)$. The full source code used to generate the computational results is available on GitHub¹.

¹https://github.com/AssociateDeadWood/GenPaley

Acknowledgements

The first author is supported by a grant from the Simons Foundation.

References

- [1] A. Bialostocki, P. Dierker, *Some Ramsey numbers for tournaments*, Proceedings of the sixteenth Southeastern international conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1985), Congressus Numerantium **47** (1985), 119–123.
- [2] P. Erdős, L. Moser, On the representation of directed graphs as unions of orderings, A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei 9 (1964), 125–132.
- [3] G. Exoo, W. Smith, Partial Answer to Puzzle #27: A Ramsey-like quantity, https://rangevoting.org/PuzzRamsey.html.
- [4] Y. Manoussakis, Z. Tuza, *Ramsey numbers for tournaments*, Theoretical Computer Science **263** (2001), no. 1-2, 75–85.
- [5] R. Mathon, Lower Bounds for Ramsey Numbers and Association Schemes, Journal of Combinatorial Theory, Series B, 42 (1987), no. 1, 122–127.
- [6] D. McCarthy, M. Springfield, Transitive Subtournaments of k-th Power Paley Digraphs and Improved Lower Bounds for Ramsey Numbers, Graphs and Combinatorics 40 (2024), no. 4, Paper No. 71.
- [7] J.W. Moon, *Topics on Tournament in Graph Theory*, Dover Publications, Mineola, New York (2015); Holt Rinehart and Winston, New York (1968).
- [8] D. Neiman, J. Mackey, M. Heule, Tighter Bounds on Directed Ramsey Number R(7), Graphs and Combinatorics **38** (2022), no. 5, Paper No. 156.
- [9] S. P. Radziszowski, *Small Ramsey Numbers*, Electronic Journal of Combinatorics, #DS1.17 (2024).
- [10] K. B. Reid, E. T. Parker, Disproof of a conjecture of Erdős and Moser on tournaments, Journal of Combinatorial Theory 9 (1970), 225–238.
- [11] A. Sanchez-Flores, On Tournaments and Their Largest Transitive Subtournaments, Graphs and Combinatorics 10 (1994), no. 4, 367–376.
- [12] A. Sanchez-Flores, On Tournaments Free of Large Transitive Subtournaments, Graphs and Combinatorics 14 (1998), no. 2, 181–200.
- [13] B. Shearer, Lower Bounds for Small Diagonal Ramsey Numbers, Journal of Combinatorial Theory, Series A, 42 (1986), no. 2, 302–304.
- [14] X. Xiaodong, S. P. Radziszowski, An Improvement to Mathon's Cyclotomic Ramsey Colorings, Electronic Journal of Combinatorics 16 (2009), #N1.