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Abstract

Many famous integer sequences, including the Catalan numbers and the Motzkin
numbers, can be expressed as the constant terms of the polynomials P (x)nQ(x) for
some Laurent polynomial Q, and symmetric Laurent trinomial P . In this paper,
we characterize the primes for which sequences of this form are uniformly recurrent
modulo p. For all other primes, we show that the set of indices for which our
sequences are congruent to 0 has density 1. This is accomplished by showing that
the study of these sequences mod p can be reduced to the study of the generalized
central trinomial coefficients, which are well-behaved mod p.

Mathematics Subject Classifications: 11B50, 68R15, 05A15, 11B85

1 Introduction

The Motzkin numbers (A001006 of [9]), Mn, count the number of lattice paths from the
origin to (n, 0), which do not go below the x-axis, with steps U = (1, 1), L = (1, 0), and
D = (1,−1). See [6] for many other combinatorial settings in which the Motzkin numbers
arise. Some work has been done to characterize Mn and similar sequences modulo various
prime powers. For example, Deutsch and Sagan [5] characterized Mn mod 3. They also
described all n such that Mn ≡ 0 (mod p) for p = 2, 4, 5.

In recent years, much of this work has utilized Rowland and Zeilberger’s finite au-
tomaton [11], which encodes the behavior of every sequence of the form ct [P nQ] mod p
where ct stands for “constant term of,” and P and Q are Laurent polynomials (possi-
bly in multiple variables). Burns [4] has used these automata to study the asymptotic
behavior of Mn mod small primes. And Rampersad and Shallit [10] have used these au-
tomata alongside the automatic theorem prover Walnut [8] (finite state automata have a
decidable first-order theory) to re-prove Deutsch and Sagan’s results, as well as showing
that Mn mod 5 is uniformly recurrent (see Definition 1), and various other congruence
properties of the Motzkin numbers, Catalan numbers, and central trinomial coefficients.
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The central trinomial coefficients (A002426 of [9]) are Tn = ct [(x−1 + 1 + x)n]. They
are related to the Motzkin numbers since Mn = ct [(x−1 + 1 + x)n(1− x2)]. From this, one
can derive that 2Mn = 3Tn+2Tn+1−Tn+2 (see Section 4). In this paper, we call sequences
of the form an = ct [(α−1x

−1 + α0 + α1x)n] generalized central trinomial coefficients.
In Problem 6 of [10], Rampersad and Shallit ask for a characterization of the primes,

p, for which the Motzkin numbers mod p are uniformly recurrent. Based on Burns’ results
for small primes in [4], Rampersad and Shallit conjectured that the answer is the sequence
of primes not dividing any central trinomial coefficient; these primes form the sequence
A113305 of [9]. They also conjectured that for all other p, the Motzkin numbers mod p
are 0 with density 1.

In this paper, we confirm these conjectures (Corollary 14). This is accomplished by
showing that the set of primes, p for which every sequence that arises as an integral linear
combination of generalized central trinomial coefficients is uniformly recurrent mod p, is
the set of primes that do not divide any of the corresponding generalized central trinomial
coefficients (Theorem 11). In particular, the Motzkin numbers can be described by such
an integral linear combination. Furthermore, we confirm that for all other p, sequences
of this form are 0 mod p with density 1.

In the case that p does divide a central trinomial coefficient, our approach is to utilize
the fact that generalized central trinomial coefficients mod p are determined independently
by the digits in their base-p expansions (Proposition 2). Thus, p must divide one of the
first p coefficients and every index whose base-p expansion contains that digit. This forces
the set of indices for which p divides that central trinomial coefficient to have density 1.
Consequently, there are arbitrarily long runs of 0s, which inhibits uniform recurrence.

In the case that p does not divide any central trinomial coefficient, our approach
is again to utilize Proposition 2 applied to integral linear combinations of the form
bn =

∑h
i=0 an+i, where (an)n is a sequence of generalized central trinomial coefficients.

Specifically, the prefix of base-p digits that all of the indices n, n + 1, . . . , n + h have in
common can be factored out. And since individual central trinomial coefficients mod p re-
cur within a constant bound (Lemma 7), we can force every word in our general sequence
to recur by adding to this shared prefix, except for a few special cases treated separately.

Lastly, in Section 4 we show that sequences of the form bn = ct [P (x)nQ(x)], where
P is a symmetric Laurent trinomial and Q is some arbitrary Laurent polynomial, can be
written as combinations of ct [P (x)n+i] for various i so that Theorem 11 applies to all
sequences of the form ct [P (x)nQ(x)]. Lastly, we mention a situation in representation
theory where such sequences arise and in that context Theorem 11 gives a surprising
result.

1.1 Notation and Conventions

Throughout this paper, P (x) denotes a Laurent trinomial of the form α−1x
−1 + α0 + α1x

with αi ∈ Z, while Q(x) denotes an arbitrary Laurent polynomial with integer coefficients,
and ct [Q(x)] denotes the constant term of Q(x). For a fixed P (x), we let an denote the
nth term of the sequence (ct [P (x)n])n∈N.
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If Σ is a set, Σ∗ denotes the set of words (i.e., strings) of any length whose letters
are from Σ (including the empty word). If n is a non-negative integer, and p is a prime
then let np ∈ F∗p be the word whose letters are the digits of n in base p. That is, if
we let np[i] denote the ith least significant digit in the base-p expansion of n so that
n =

∑
i∈Z>0

np[i]p
i, then np = (np [length(np)− 1]) · · · (np[1])(np[0]). Note that when

working with strings, exponents denote repetition; for example, (p − 1)k denotes a run
of k letters that are all the letter (p − 1). Also, note that every statement made in this
paper about np should also hold for 0knp for every k.

This paper is primarily focused on showing when sequences mod primes are uniformly
recurrent, which can be thought of as a weaker form of periodicity:

Definition 1. A sequence sn is called uniformly recurrent if for every word in sn (i.e.,
contiguous subsequence), w = sisi+1 · · · si+`−1, there is a constant Cw such that every
occurrence of w is followed by another occurrence of w at a distance of at most Cw. I.e.,
there is a j 6 Cw such that w = si+jsi+j+1 · · · si+j+`−1.

For background on uniform recurrence in automatic sequences, see Section 10.9 of [1].

2 Central Trinomial Coefficients

We begin by demonstrating why it is desirable to reduce to the study of generalized central
trinomial coefficients when working mod p.

Proposition 2. For every prime p and symmetric Laurent trinomial P (x), the generalized
central trinomial coefficients, an = ct [P (x)n], satisfy an ≡

∏
anp[i] (mod p).

Proof. We induct on the number of digits in np. Certainly if n = np[0] < p then an = anp[0].
Otherwise, if n = qp+ np[0], then

an = ct
[
P (x)qp+np[0]

]
≡ ct

[
P (xp)qP (x)np[0]

]
(mod p) (P (x)p ≡ P (xp) (mod p))

= ct [P (xp)q] ct
[
P (x)np[0]

]
(np[0] < p so there is no cancellation)

= ct [P (x)q] ct
[
P (x)np[0]

] (
ct
[
P (xk)n

]
= ct [P (x)n]

)
= aqanp[0]

≡
∏

anp[i] (mod p) (by induction, since qp has fewer digits than np).

Then the result follows.

This is why the central trinomial coefficients, A002426 of [9], satisfy this Lucas con-
gruence (see [7]) since they are defined by Tn = ct [(x−1 + 1 + x)n]. However, in the case
that α0 = 0, one usually wants to discuss the sequence ct [(α−1x

−1 + α1x)2n] since the
odd powers all have 0 constant term. But this is no issue since ct [(α−1x

−1 + α1x)2n] is
equal to ct

[
(α2
−1x

−1 + 2α−1α1 + α2
1x)n

]
(for example, the central binomial coefficients,

A000984 of [9], are Bn = ct [(x−1 + 2 + x)n]). This gives us,
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Corollary 3. If bn = ct [P (x)2n] = a2n, then bn also satisfies the congruence

bn ≡
∏

bnp[i] (mod p).

3 Combinations of Central Trinomial Coefficients

Here we characterize the primes, p, for which generalized central trinomial coefficients,
an = ct [P (x)n], are uniformly recurrent mod p. This was nearly accomplished in [10],
but here we do away with the assumption that one of {a0, a1, . . . , ap−1} needs to be a
primitive root. Additionally, the proof is extended to characterize the primes for which
every integral linear combination of an+i is uniformly recurrent mod p, where the charac-
terization is independent of the linear combination given.

In particular, weighted Motzkin sequences [12] (including the standard Motzkin se-
quence) can be written as integral linear combinations of generalized central trinomial
coefficients, so the results in this section apply to these sequences.

We begin with the case where our sequences are not uniformly recurrent:

Example 4. The Motzkin numbers satisfy 2Mn = 3Tn + 2Tn+1 − Tn+2 where Tn is equal
to ct [(x−1 + 1 + x)n] (see Section 4 or [3]). If p > 2, then Mp,n = 2−1(3Tn+2Tn+1−Tn+2)
gives us a sequence congruent to Mn mod p where 2−1 is the multiplicative inverse of 2
mod p.

Consider p = 3 so that p | T2 = 3. Proposition 2 implies that Tn ≡ 0 whenever
np contains a 2. This in turn implies that every time all three of np, (n + 1)p, (n + 2)p
contain a 2, then all three of Tn, Tn+1, Tn+2 ≡ 0 and thus Mn ≡ 0. Thus, to find a run
of 0s in Mn mod 3 of length at least 3k−1, we can use the fact that for every integer,
n, in the interval [2(3)k, 2(3)k + 3k−1], all three of n, n + 1, n + 2 have a 2 in their base
3 representations, so long as k > 1 (if k = 1 and m = 2(3)1 + 31−1 = 2(3) + 1, then
m+ 2 = 32).

Proposition 5. If p is a prime dividing some element of an, and if bn =
∑h

i=0 cian+i

where ci ∈ Z, then bn mod p has arbitrarily large runs of 0s. Thus, bn mod p is not
uniformly recurrent. In particular, these statements hold for bn = 1 · an.

Proof. Let 0 < z < p be an integer such that az ≡ 0 (mod p). Because bn =
∑h

i=0 cian+i ≡∑h
i=0

(
ci ·
∏
a(n+i)p[j]

)
(mod p) by Proposition 2, the prefix of base-p digits that all of the

indices n, . . . , n + h share, say anx up to any , can be factored out of this sum so that we
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have

bn ≡
h∑
i=0

(
ci ·
∏

a(n+i)p[j]

)
=

h∑
i=0

(
ci ·

y∏
j=x

anp[j]

∏
j<x

a(n+i)p[j]

)

=

y∏
j=x

anp[j]

(
h∑
i=0

(
ci ·
∏
j<x

a(n+i)p[j]

))
.

In particular, we have that if np[j] = z for some x 6 j 6 y, then bn ≡ 0 (mod p).
Therefore, for sufficiently large integers k (relative to the length of hp), z · pk marks the
beginning of a run of 0s mod p of length at least pk−1 since

(
z · pk

)
p

= z0k (i.e., z followed

by k 0s). And pk−1 can be made arbitrarily large.

Proposition 6. If p is a prime dividing some element of an, and if bn =
∑h

i=0 cian+i

where ci ∈ Z, then 0 has density 1 in the sequence bn mod p.

Proof. As mentioned in the proof of Proposition 5, if some digit is z (such that p | az)
in a shared prefix of a run of indices, n through n + h, then bn ≡ 0 (mod p). If β is the
length of hp, then consider the first pk terms of our sequence (n = 0, . . . , pk − 1). For
k > β, if any of the first (k − β) digits of an index np are z, then that z must be part
of the shared prefix (i.e., every string np, . . . , (n + h)p have a z in that position) and so
bn ≡ 0. So there are at least pk− (p− 1)k−βpβ of the first pk terms of bn that are divisible
by p (since there are p− 1 choices for the first k − β digits of np that allow non-zero bn),

and so the proportion is at least pk−(p−1)k−βpβ

pk
= 1− pβ

(p−1)β

(
p−1
p

)k
→ 1 as k →∞.

This completes the characterization of what happens when p | an for some an. We
now turn to the case where p - an for all n, in which case our sequences are uniformly
recurrent. This result mostly boils down to using the fact that an mod p has uniform
recurrence for words of length 1:

Lemma 7. If p - an for all n, then for every n ∈ Z>0, there is an n′ ∈ Z>0 such that

n′ > n, n′ − n < pp
(p−1)+p+1, and an ≡ an′ (mod p).

Proof. Given n, write it as a word in {0, 1, . . . , p− 1}∗ via its base-p expansion

np = n∗(np[p
p−1]) · · · (np[1])(np[0]),

where the leading np[i] may be 0 and n∗ ∈ {0, 1, . . . , p− 1}∗ may be the empty word. We
find n′ by altering only this suffix (or slightly more) to achieve the bound. We describe
n′ in an exhaustive set of cases:
Case 1: ∃i > j such that np[i] < np[j].

Since the value of an mod p is independent of the order of the digits in np by Propo-
sition 2, we can let n′ be the result of switching the ith and jth (least significant) digits
of n.

the electronic journal of combinatorics 32(2) (2025), #P2.44 5



Case 2: The digits np[p
p−1] through np[0] are in descending order.

By the pigeonhole principle there is some i such that

np[i] = np[i− 1] = · · · = np[i− (p− 2)].

Because p - anp[i], we can apply Fermat’s little theorem to see that the contribution of

these digits is ap−1
np[i] ≡ 1 (mod p).

Case 2a: ∃i < p− 1 with np[i] = np[i− 1] = · · · = np[i− (p− 2)].
We can let n′ be the result of replacing digits i through i − (p − 2) in n with the

letter (np[i] + 1), which results in the same contribution to the product of Proposition 2
of ap−1

np[i]+1 ≡ 1 (mod p).

Case 2b: np is of the form n∗∗(np[k + |γ|])(p− 1)kγ where k > p, γ ∈ {0, 1, . . . , p− 2}∗,
|γ| < pp−1 − p, and np[k + |γ|] 6= p− 1 is the least significant non-(p− 1) digit in n∗.

If k = q(p− 1) + r with r < p− 1, we can let n′ correspond to the word

(n′)p = n∗∗(np[k + |γ|] + 1)0(q−1)(p−1)(np[k + |γ|])(np[k + |γ|] + 1)p−2(p− 1)rγ.

Again using Proposition 2, that p - np[i] for all i, and Fermat’s little theorem, it is clear
that an ≡ an′ (mod p).

Example 8. To illustrate this last case, let p = 5 and consider the sequence an = Tn =
ct [(x−1 + 1 + x)n]. Let np = 12324678333222111000 so that n∗∗ = 123, γ = 333222111000,
k = 678, q = 169, r = 2, and np[k + |γ|] = 2. Then (n′)p = 1233067223342333222111000.
Both n and n′ have the same number of each possible digit mod p − 1 = 4 so that by
Proposition 2 and Fermat’s little theorem, Tn and Tn′ are congruent.

We now give examples to motivate the approach in the proof of our main theorem.

Example 9. Let p = 5, an = Tn and bn = Mp,n = 2−1(3an + 2an+1− an+2) as in Example
4. Consider n = 75156245 so that np = 123214444443, (n + 1)p = 123214444444, and
(n + 2)p = 123220000000. One method for constructing an n′ > n such that bn ≡ bn′ is
to use the fact that each of an, an+1, and an+2 share a factor of a1a2a3a2 = a192 (because
192p = 1232) from the shared prefix of these three indices. Thus we can use Lemma 7 to
add some value to this shared prefix. In this case, it just so happens that a192 ≡ 3 ≡ a199

so we can let n′ = n + 7(5)8. All three pairs (n, n′), (n + 1, n′ + 1), and (n + 2, n′ + 2)
have congruent numbers of each possible digit mod p− 1, so that bn ≡ bn′ . However, we
have actually accomplished more than this: if we let ∆ = n′ − n then every index from
mp = 123200000000 to 123244444444 satisfies bm ≡ bm+∆.

Example 10. Again let p = 5, an = Tn, bn = Mp,n and n = 75156245. An alternative
method for constructing an n′ > n such that bn ≡ bn′ is to use Fermat’s little theorem to
replace p− 1 of the 4s, and to use those positions to undo the effect of incrementing the
first non-4 digit. We turn np = (1232)1(4444)443 into (n′)p = (1232)2(2221)443. Just as
in the previous example, not only is bn ≡ bn′ but if ∆ = n′− n, then bm ≡ bm+∆ for all m
from mp = 123214444000 through 123220000443.
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Note that one can always use the method of Example 9 to cause a recurrence in bn
without requiring any structure on n. However, there is no general bound on ∆ when this
method is used. On the other hand, the method of Example 10 requires access to p − 1
consecutive copies of the digit (p− 1), and bounds ∆ relative to the first such occurrence.

Theorem 11. If an = ct [P (x)n] where P (x) = α−1x
−1+α0+α1x, and if bn =

∑h
i=0 cian+i

where ci ∈ Z, then (bn)n∈N is uniformly recurrent mod p if and only if p does not divide
any an (which can be checked for n < p).

Proof. One direction is Proposition 5, so we need only show that if p - an for all n (so
that Lemma 7 applies), then bn is uniformly recurrent mod p.

Given a word, w = (bi mod p)(bi+1 mod p) · · · (bi+`−1 mod p) of length `, we wish to
bound the next occurrence of w in (bn)n∈N, and the bound must be independent of i.

First, a proof sketch: Let ps be the largest power of p that has a multiple in the
open interval (i− 1, i+ h+ `). Note that this interval gives us the indices that appear if
we expand the digits of w into sums of elements of the sequence (an)n∈N. If ps is small
relative to h (Case 1), or small relative to ` (Case 2a), then since our bound need not
be independent of h or `, we can utilize the method demonstrated in Example 9 of using
Lemma 7 to add to a shared prefix of the base-p representations of the indices in the open
interval (i−1, i+h+ `) to find a recurrence of w. Otherwise, if ps is large relative to both
h and ` (Case 2b), then we are assured to have the conditions for which it is possible to
use the method demonstrated in Example 10 of using Fermat’s little theorem to find a
recurrence.

Let β be the length of hp. Let α > 1 be the largest integer such that

p(α−1)(p−1)+β − pβ 6 `

(note that ` < pα(p−1)+β−pβ). Let k = s−β and write k = q(p−1) + r where q and r are
non-negative integers and r < p − 1. Let C be a fixed bound on the recurrence of every
an, which is guaranteed to exist (and can be less than pp

p−1+p+1) by Lemma 7. We prove
that (bn)n∈N is uniformly recurrent mod p by showing that w recurs within a difference of
index of at most C · p3p+α+β` (independently of i).

Case 1: s < β + p.
Clearly, ps < p3p+β`. In the following case, we prove the same bound and then justify

that the result follows for both Cases 1 and 2a in the subsequent conclusion.

Case 2a: s > β + p and q 6 α.
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As in Case 1, we also have the same inequality,

ps = pk+β

= p(q−1)(p−1)+βpp−1+r (k = q(p− 1) + r)

6 pp−1+r(`+ pβ) (q 6 α and p(α−1)(p−1)+β 6 `+ pβ)

6 p2p(1 + pβ)` (r < p and `+ pβ 6 `+ `pβ)

6 p3p+β`. (1 + pβ 6 pp+β).

Conclusion for Cases 1 and 2a:
The base-p representations of all indices in the open interval (i − 1, i + h + `) share

a prefix above the s’th least significant digit by our choice of s. That is, every integer
in this interval has a base-p representation of the form n∗n∗∗ where n∗ ∈ {0, . . . , p − 1}∗
and n∗∗ ∈ {0, . . . , p − 1}s for a fixed n∗ and variable n∗∗. Thus, adding ∆ps to all
indices simply results in the addition of ∆ to their shared prefix, n∗. Therefore, by
Lemma 7, we can pick ∆ < C such that an∗ ≡ an∗+∆ implying, by Proposition 2,
that an∗n∗∗ ≡ a(n∗+∆)n∗∗ = an∗n∗∗+∆ps for all n∗∗ and so w recurs beginning at index
i + ∆ps. Lastly, since in both cases we have that ps 6 p3p+β`, we can conclude that
∆ps 6 C · p3p+α+β`.

Case 2b: s > β + p and q > α.
Let n be the first index such that n+ h is a multiple of ps = pk+β. Then

np = n∗(m)(p− 1)kγ

where n∗ ∈ {0, . . . , p − 1}∗, m ∈ {0, . . . , p − 2}, and γ ∈ {0, . . . , p − 1}β. Let ∆ be the
integer such that ∆p = (m + 1)p−10α(p−1)+r+β. Note that ∆ < p(2+α)p+β. We begin by
inspecting

(n+ ∆)p = n∗(m+ 1)0(q−α−1)(p−1)(m+ 1)p−2(m)(p− 1)α(p−1)+rγ.

First note that bn ≡ bn+∆ (mod p) by Fermat’s little theorem. Next note that because
` < pα(p−1)+β − pβ we have that i + ∆, i + ∆ + 1, . . . , n + ∆ + h − 1 all have the shared
prefix

n∗(m+ 1)0(q−α−1)(p−1)(m+ 1)p−2m

whose contribution is the same as n∗m; meanwhile all of n+ ∆ +h, . . . , i+ ∆ + `− 1 have
the shared prefix

n∗(m+ 1)0(q−α−1)(p−1)(m+ 1)p−1

whose contribution is the same as n∗(m + 1). Therefore, ai+j ≡ ai+∆+j (mod p) for all
0 6 j < `, and thus w recurs beginning at index i+ ∆. Lastly,

∆ 6 p(2+α)p+β = p(α−1)(p−1)+βp3p+α−1 6 p3p+α−1(`+ pβ) 6 p3p+α+β` 6 C · p3p+α+β`,

as desired.
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Remark 12. Because pα is bounded by some constant times `
1
p−1 , our recurrence bound is a

constant times `
p
p−1 . This bound has a much larger constant factor than the one observed

in Theorem 5 of [10] (200` for the Motzkin numbers mod 5). Additionally, the bound
here grows faster than O(`) as is observed in Theorem 5 of [10]. The author suspects
that in the case that one of the first p elements of an is a primitive root, then there is an
alternative argument that uses inverses in place of Fermat’s little theorem to achieve an
O(`) bound.

Using our main result, we can now draw as corollaries a refinement of Theorem 10
from [10] as well as validate the conjecture of Problem 6 from [10] proving that Burns’
observations in [4] hold in general.

Corollary 13. The central trinomial coefficients mod p are uniformly recurrent if and
only if p does not divide any of the central trinomial coefficients (which can be checked for
n < p). Furthermore, if p does divide a central trinomial coefficient, then 0 has density 1
in the central trinomial coefficients mod p.

Corollary 14. The Motzkin numbers are uniformly recurrent mod p if and only if p
does not divide any central trinomial coefficients. Furthermore, if p does divide a central
trinomial coefficient, then 0 has density 1 in the Motzkin numbers mod p.

Proof. The Motzkin numbers satisfy 2Mn = 3Tn + 2Tn+1 − Tn+2, where Tn is equal to
ct [(x−1 + 1 + x)n] (see the next section or [3]), so the theorem applies for all primes p > 2
because Mn ≡ Mp,n (mod p) and Mp,n = 2−1(3Tn + 2Tn+1 − Tn+2). For p = 2, one
can prove uniform recurrence directly from the automaton of Figure 1 in [10]. Ignoring
the least significant digit, the figure shows that the value of Mn mod 2 is determined by
the position of the first 0 in (n)2 (from the right). So if w = (Mn mod 2)(Mn+1 mod
2) · · · (Mn+`−1 mod 2), then we can let ∆ be one of 2blog2 `c+1 or 2blog2 `c+2 and at least one
of these yields w = (Mn+∆ mod 2) · · · (Mn+∆+`−1 mod 2), as desired.

Lastly, Proposition 6 completes the corollary.

The fact that the Motzkin numbers have an identity in terms of the central trinomial
coefficients is no coincidence, and we detail this connection in the following section.

4 A Family of Applicable Sequences

We now generalize our results for the Motzkin numbers slightly to sequences of the form
ct [P (x)nQ(x)] where P is of the (symmetric) form α1x

−1 + α0 + α1x and Q is some
arbitrary Laurent polynomial. For example, P (x) = x−1 + 1 + x with Q(x) = 1 − x2

gives us the Motzkin numbers (in fact, any symmetric P with this Q(x) yields a weighted
Motzkin sequence [12]), whereas the same P with Q(x) = 1−x gives the Riordan numbers,
A005043 of [9], and P (x) = x−1 + 2 + x2 with Q(x) = 1− x gives the Catalan numbers,
A000108 of [9].

Proposition 15. If an = ct [P (x)n] where P (x) = α1x
−1 + α0 + α1x and Q(x) is some

arbitrary Laurent polynomial, then for p > 2, bn = ct [P (x)nQ(x)] is uniformly recurrent
mod p if and only if p does not divide any an (which can be checked for n < p).
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Proof. In view of Theorem 11, it suffices to find an integral linear combination of the an+i

that yields a sequence congruent to bn mod p.

Let an,i = ct [P (x)nxi], which is the same as the coefficient of xi (or x−i) in P (x)n (so
an,0 = an). Notice that an+i,0 =

∑i
j=−i ai,j · an,j = ai,0 · an,0 +

∑i
j=1 2ai,j · an,j (see Figure

1 to see where this identity comes from). This along with the fact that ai,i = αi1 yields
2αi1 ·an,i = an+i,0−ai,0 ·an,0−

∑i−1
j=1 2ai,j ·an,j. Finally, induction applied to an,j with j < i

using this equality shows that if p - α1, then an,i can be written as linear combination of
an,0, an+1,0, . . . , an+i,0 over Fp (since 2 and α1 are units). In fact, if α1 = 1 then we even
get that 2 · an,i can be written outright as an integral linear combination in this way. For
example, if P (x) = x−1 + 1 + x and Q(x) = 1 − x2, we get an identity for the Motzkin
numbers in terms of the central trinomial coefficients by finding an identity for an,2 (and
an,0) in terms of central coefficients (see the example below).

1
1 1 1

1 12 3 2
1 13 6 7 6 3

1 6 21 50 90126141 16215090126
1 5 15 30 45 51 15153045
1 194 10 16 141016

00 0 0

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

1 194 10 16 4 11016

Figure 1: A demonstration of why an+i,0 =
∑i

j=−i ai,j · an,j when α0 = α1 = 1. The small
red numbers count the number of contributions of each number in a row to the circled
141.

Thus, in the case that p - α1, if Q(x) =
∑

j∈Z cjx
j then bn = ct [P (x)nQ(x)] is

equal to
∑

j∈Z cjan,−j, which is congruent mod p to a linear combination of an+i’s (with

0 6 i 6 max(degQ(x), degQ(x−1))), and so Theorem 11 applies.
On the other hand, if α1 ≡ 0 (mod p), then we simply get

bn ≡ ct [αn0Q(x)] = αn0 · ct [Q(x)] (mod p),

which is periodic (and thus uniformly recurrent).
In either case, for every p > 2, bn is uniformly recurrent.

Example 16. Let’s show where the identity, 2Mn = 3Tn + 2Tn+1 − Tn+2, that we have
been using to apply our results to the Motzkin numbers comes from. First note that
Mn = ct [(x−1 + 1 + x)n(1− x2)] = ct [(x−1 + 1 + x)n]−ct [(x−1 + 1 + x)nx2] = an,0−an,2.
Thus, if we let Tn = ct [(x−1 + 1 + x)n] = an,0, An = ct [(x−1 + 1 + x)nx] = an,1 and
Bn = ct [(x−1 + 1 + x)nx2] = an,2, then we can use that Tn+2 = 3Tn + 4An + 2Bn and
Tn+1 = Tn + 2An (see Figure 1 for justification) to see that

3Tn + 2Tn+1 − Tn+2 = 2(Tn −Bn) = 2Mn.
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4.1 Application to Representation Theory

Let SU(2,C) denote the Lie group of 2 by 2 unitary matrices with complex entries and
determinant 1. See [2] for background on the representations of SU(2,C). If we let
Vk denote the k-dimensional irreducible representation of SU(2,C), then the number of
irreducible components of dimension d in (V m1

1 ⊕ V m2
2 )⊗n yields a sequence for every d,

m1, and m2 in Z>0. Call this sequence bd,m1,m2
n . Because V m1

1 ⊕ V m2
2 has character

m2x
−1 + m1 + m2x, our sequence happens to have the form bd,m1,m2

n = ct [P (x)nQ(x)]
where P (x) = m2x

−1 +m1 +m2x and Q(x) = xd−1− xd−3. Well-known examples include
b1,1,1
n , which are the Motzkin numbers, and b1,2,1

n , which are the Catalan numbers. Since
these sequences have such a description by polynomials, if we reduce modulo a prime,
Proposition 15 applies to all bd,m1,m2

n mod p. Furthermore, Proposition 15 shows that
the uniform recurrence of bn is independent of Q(x); therefore, for a fixed representation,
V m1

1 ⊕V m2
2 , all of the sequences in the family {bd,m1,m2

n mod p}d>0 are either simultaneously
uniformly recurrent or else simultaneously congruent to 0 with density 1 (by Proposition
6) for each prime, p.
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