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Abstract

The Rado Graph, sometimes also known as the (countable) Random Graph, can
be generated almost surely by putting an edge between any pair of vertices with
some fixed probability p ∈ (0, 1), independently of other pairs.

In this article, we study the influence of allowing different probabilities for each
pair of vertices. More specifically, we characterize for which sequences (pn)n∈N of
values in [0, 1] there exists a bijection f from pairs of vertices in N to N such that if
we put an edge between v and w with probability pf({v,w}), independently of other
pairs, then the Random Graph arises almost surely.

Mathematics Subject Classifications: 05C80, 60C05

1 Introduction

The Rado Graph is a fascinating object that appears unexpectedly in various areas of
mathematics. First constructed by Ackermann in [1], it was a matter of interest for Erdős
and Rényi in [8], Rado in [10], and still attracts many mathematicians, see e.g. [5, 6, 7, 9].
The crucial property needed to define the Random Graph is the following.

Definition 1. We say that a graph (V,E) satisfies the property ? if

For all finite disjoint A,B ⊆ V there is a vertex v ∈ V such that

v is connected to all elements of A and to no element of B.
(?)

This definition has three immediate consequences: a simple induction shows that ?
in fact implies that there are infinitely many v connected to each element of A and not
connected to any element of B, any graph satisfying ? must be infinite and have infinitely
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many edges and non-edges, and any two countable graphs satisfying property ? are iso-
morphic (this follows by a standard back-and-forth argument). The latter observation
allows us to call any countable graph with ? the Random Graph.

Cameron, in his paper [4], presented a nice introduction to the topic, providing a
number of instances where the Random Graph appears and explaining some of its basic
properties. Therefore, we refer the reader to this paper for a more detailed introduction.
In the presented note we want to discuss some issues related to one of the most stan-
dard constructions leading to the Random Graph. Therefore, we will now sketch this
construction and discuss some of its aspects.

The simplest, although not exactly explicit, way of generating the Random Graph is
by fixing a countably infinite set V and declaring that any pair of vertices {v, w} to be an
edge with probability exactly 1/2, independently of other pairs. It is straightforward to
verify that with probability 1, the resulting graph will satisfy property ?, making it the
Random Graph (in fact this is a consequence of the fact that in an infinite sequence of
coin flips any finite sequence of tails and heads appears infinitely many times). Putting
it more simply, if GN,1/2 is the countable Erdős–Rényi random graph model, then GN,1/2
is isomorphic to the Random Graph with probability 1. Now, one may wonder if there
is something special about the probability 1/2 used in this construction. In other words,
we ask the following question about a property of a sequence of probabilities.

Question 1. For which assignments of probabilities to the edges do we obtain the Random
Graph with probability 1?1

Even though the above question looks very natural, and the Random Graph was
introduced in the first half of the 20th century, we could not find a direct answer in the
existing literature. Therefore, the aim of the presented note is to give an answer and also
to popularize the fascinating object that the Random Graph is among a wider audience.
Another remark is that the question above it is not very precise, but now we will discuss
it in order to formulate the right one. It is easy to see that if we replace 1/2 by any other
probability p ∈ (0, 1) we still get the property ? (i.e., GN,p is also almost surely isomorphic
to the Random Graph). But what happens if we allow different probabilities for various
edges? An initial observation here is that if these probabilities are separated from 0 and
1, then we still get the Random Graph.

It is natural to consider the case of probabilities tending to 0 (or 1) now, but we have to
clarify some subtleties before this. Namely, we assign a probability to each pair of vertices;
thus, formally, we do not have a sequence of probabilities. Of course, we may rearrange
them to get a sequence, but this idea requires some extra caution. Note that the property
of generating the Random Graph is not invariant with respect to permutations! Indeed,
suppose that we have some fixed arrangement of probabilities that generates the Random
Graph, but the probabilities are not separated from 0 (the second case is completely
analogous). Then for every ε > 0 we may split the probabilities into two infinite sets, say
C and D, such that the sum of elements of C is smaller than ε, and D contains the rest

1This question arose during the second-named author’s collaborative work on the Random Graph with
his bachelor’s student, Aleksandra Czerczak.
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of them. Now fix an arbitrary vertex v ∈ V and assign the probabilities in such a way
that elements of D are probabilities of those edges, for which v is one of the ends, and
probabilities of all other edges are elements of C. Note that in such a case, the probability
of the existence of any edge for which v is not an endpoint is less than ε; hence, with the
probability 1 property ? will not be satisfied. Therefore, right thing to do is to consider
properties of the sequence of probabilities, rather than some particular assignment, and
the precise way to formulate the Question 1 is the following one:

Question 2. Let V be a countably infinite set. For which sequences (pn)n∈N of elements
of the interval [0, 1] is there a bijection f : [V ]2 → N such that if we set probability of
existence of an edge {v, w} as pf({v,w}) (to be picked independently from other pairs), then
with probability 1 the resulting graph will be the Random Graph?

Let us conclude the introduction with another easy observation. Namely, suppose
that the sequence of probabilities (pn)n∈N has a finite series

∑∞
n=0 pn <∞. Then, for any

assignment of pn’s values to edges between vertices from V , one will not get the Random
Graph with probability 1. Indeed, the (first) Borel–Cantelli Lemma (see Theorem 5(i)
below) implies that with probability 1 the graph will have only finitely many edges,
hence ? does not hold. As we will see, a similar almost sure finiteness argument is the
only obstacle to producing the Random Graph.

2 Preliminaries

We will denote by N the set of non-negative integers and for a set V and k ∈ N, we denote
by [V ]k the set of subsets of V of cardinality exactly k.

We start with a few lemmas needed to prove our main theorem.

Lemma 2. Let (an)n∈N be a non-increasing sequence of elements of interval [0, 1] and let
k ∈ N. Suppose that limn→∞ an = 0 and

∑∞
n=0 a

k
n =∞. Then

∞∑
m=0

k−1∏
i=0

amk+i =∞.

In plain English, the conclusion of the lemma above says that if we form the sequence of
products of the first k elements, then the next k elements and so on, then the corresponding
series diverges.

Proof. Let bmk+i = amk for m ∈ N, i ∈ {0, . . . , k − 1} and note that

∞ =
∞∑
n=0

akn 6
∞∑
n=0

bkn =
∞∑

m=0

kakmk = k
∞∑

m=0

akmk,

so by omitting the first term of the last sum, we conclude that
∑∞

n=1 a
k
nk =∞. Therefore,

∞∑
m=0

k−1∏
i=0

amk+i >
∞∑

m=0

k−1∏
i=0

b(m+1)k+i =
∞∑

m=0

k−1∏
i=0

a(m+1)k =
∞∑
n=1

aknk =∞,

where the inequality follows since amk+i > amk+k = a(m+1)k = b(m+1)k+i.
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Lemma 3. Let (an)n∈N be a sequence of elements in the interval [0, 1]. Suppose that
limn→∞ an = 0 and

∑∞
n=0 a

k
n = ∞ for every k ∈ N. Then (an)n∈N may be split into

infinitely many subsequences ((ani,k
`

)`)i,k (this notation means that for every i, k ∈ N
(ani,k

`
)`∈N is an infinite subsequence of (an)n∈N) such that

∑∞
`=0 a

k

ni,k
`

=∞ for every i, k ∈
N.

In plain English, the conclusion of the lemma above says that we can split (an)n∈N
into infinitely many sequences in a way to get for each k ∈ N infinitely many sequences
whose series of k’th powers diverges.

Proof. Fix an enumeration (im, km)m∈N of pairs (i, k) ∈ N such that each pair (i, k)
appears infinitely many times. Then find n0 ∈ N such that

∑n0

n=0 a
k0
n > 1 and assign

elements a0, . . . , an0 to the sequence (a
n
i0,k0
`

)`. Next find an n1 such that
∑n1

n=n0+1 a
k1
n > 1,

and assign elements an0+1, . . . , an1 to the sequence (a
n
i1,k1
`

)`. Proceeding inductively, we

satisfy our claim. Indeed, note that enumeration of pairs (i, k) ensures that we assign
infinitely many elements to each of (ani,k

`
)`, and

∑∞
`=0 a

k

ni,k
`

is greater than sum of infinitely

many
∑np+1

n=np+1 a
k
n, hence infinite.

Lemma 4. If for each natural number k the sums
∑∞

n=0 p
k
n and

∑∞
n=0(1−pn)k are infinite,

then for

X := {(k,m, n, i) ∈ N4 : i 6 2k − 1},

there exists an injection f : X→ N such that

∀k,m ∈ N,
∞∑
n=0

k−1∏
i=0

pf(k,m,n,i)

2k−1∏
i=k

(1− pf(k,m,n,i)) =∞.

Moreover, such an f can be taken so that its range is coinfinite (i.e., N \ rng(f) is
infinite).

Proof. Consider the following three cases.
In the first case, there exists ε > 0 such that the set Mε := {n ∈ N : ε 6 pn 6 1− ε}

is infinite. Then any injection f : X→Mε with coinfinite range works. Indeed, note that
for each (k,m, n, i) ∈ X we have pf(k,m,n,i), 1 − pf(k,m,n,i) > ε. Therefore, all terms of the
considered sum are at least ε2k, hence the sum is infinite.

In the second case, for every ε > 0 the set Mε defined above is finite, but both sets
{n ∈ N : pn 6 ε}, {n ∈ N : pn > 1−ε} are infinite. Then we may fix a partition N = A∪B
such that (pn)n∈A converges to 0 and (pn)n∈B converges to 1. For (k,m, n, i) ∈ X put
f(k,m, n, i) ∈ A if i > k and f(k,m, n, i) ∈ B if i 6 k− 1, while ensuring that N \ rng(f)
is infinite. Then for all but finitely many (k,m, n, i) ∈ X we have pf(k,m,n,i) > 1/2 if i < k,
and 1− pf(k,m,n,i) > 1/2 if i > k. Thus the considered sum is infinite.

In the final case, either pn → 0 or pn → 1. We will deal only with the first one
since the second one is analogous. By passing to a subsequence, we may assume that
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all pn’s are positive. Let us use Lemma 3 to split (pn)n∈N into ((psm,k
`

)`)m,k such that for

every m, k ∈ N, we have
∑∞

`=0 p
k

sm,k
`

= ∞. Without loss of generality, we may assume

that for every m, k ∈ N the sequence (psm,k
`

)` is non-increasing. Now, set f(k,m, n, i) =

sm+1,k
nk+i for i ∈ {0, . . . , k − 1} (+1 is just to leave infinitely many elements unused). Since
pn → 0 and there are still infinitely many unused elements we may set f(k,m, n, i) for
i ∈ {k, . . . , 2k− 1} such that range of f is coinfinite and pf(k,m,n,i) < 1/2. Then Lemma 2
yields

∞∑
n=0

k−1∏
i=0

pf(k,m,n,i)

2k−1∏
i=k

(1− pf(k,m,n,i)) >
∞∑
n=0

k−1∏
i=0

pf(k,m,n,i)

2k−1∏
i=k

1

2

=

(
1

2

)k ∞∑
n=0

k−1∏
i=0

psm+1,k
nk+i

=∞.

As mentioned in the introduction, the main tool of the paper will be the Borel–
Cantelli Lemmas. Therefore, we present their formulation in a probabilistic setting. For
more information see e.g. [3, Theorems 4.3 and 4.4].

Theorem 5. Let (Ω,F , p) be a probabilistic space. The following hold for a sequence
(An)n∈N of events in Ω:

i. If
∑∞

n=0 p(An) <∞, then

p ({x ∈ Ω : x is only in finitely many An’s}) = p

(
∞⋃
n=0

∞⋂
k=n

Ω \ An

)
= 1.

ii. If
∑∞

n=0 p(An) = ∞ and the An’s are pairwise independent (i.e., p(An ∩ Am) =
p(An)p(Am) whenever n 6= m), then

p ({x ∈ Ω : x is in infinitely many An’s}) = p

(
∞⋂
n=0

∞⋃
k=n

An

)
= 1.

3 Main theorem

In this section, we formulate and prove the main theorem of this note, which fully answers
Question 2. In fact, our theorem shows a 0/1-law regarding the problem: either there
exists a bijective assignment that generates the Random Graph with probability 1, or for
every bijective assignment the Random Graph is generated with probability 0.

Theorem 6. The following are equivalent for a sequence (pn)n∈N of numbers from the
interval [0, 1].

i. There exists a bijective assignment f : [N]2 → N such that by letting each {v, w} ∈
[N]2 be an edge with probability pf({v,w}), independently from other pairs, the resulting
graph is the Random Graph with probability 1.
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ii. Item ((i)) holds but the conclusion holds with positive probability instead of proba-
bility 1.

iii. For every k ∈ N, the sums
∑∞

n=0 p
k
n and

∑∞
n=0(1− pn)k are infinite.

Before we prove the theorem, let us note that a standard example of a sequence (pn)n∈N
satisfying item ((iii)) that is not bounded away from 0 is pn := 1/(log(n+ 3)).

Proof. We will first deal with the harder implication ((iii)) =⇒ ((i)), namely, we will
construct a proper assignment of probabilities provided that

∑∞
n=0 p

k
n =

∑∞
n=0(1− pn)k =

∞ for every k ∈ N. Note that in order to check property ? it suffices to consider sets A,B
of the same cardinality (by possibly taking a superset of the smaller set, disjoint from the
other one). Let us then enumerate all pairs of finite disjoint subsets of N of same size as
(An, Bn)n∈N.

Let f : X → N be provided by Lemma 4. For every n ∈ N, let kn := |An| = |Bn| and
define inductively in n sets Cn and Dn as follows: set D−1 := N and for each n ∈ N, let
Cn ⊆ Dn−1 \ (An ∪Bn) be an infinite set with Dn := Dn−1 \ (An ∪Bn ∪ Cn) also infinite.

Note that for every {v, w} ∈ [N]2, there exists at most one n ∈ N such that {v, w}
intersects both An ∪ Bn and Cn in exactly one point each (since Ci ∩ Cj = ∅ whenever
i 6= j). This means that we can proceed inductively to determine the probabilities of
existence of edges between An ∪ Bn and Cn in the n’th step of our induction without
running the risk of defining p{v,w} more than once.

When handling (An ∪ Bn, Cn) in the n’th step of induction, we will use the first
unused sequence given by f that is suitable for kn = |An| = |Bn|. Formally, we set `n :=
|{i < n : ki = kn}| and use the probabilities pf(kn,`n,·,·). More precisely, let us enumerate
An = {a0 < a1 < · · · < akn−1}, Bn = {b0 < b1 < · · · < bkn−1}, Cn = {c0 < c1 < · · · },
and set the probability of existence of the edge between ai and cj as pf(kn,`n,j,i), while the
probability of existence of the edge between bi and cj we set as pf(kn,`n,j,i+kn). At this
point we have some probabilities assigned to some edges. Note that since e.g. all edges
between elements of C0 \ (A1 ∪ B1) and C1 remains unspecified, we still have infinitely
many unspecified edges. Moreover, so far we assigned only pn’s with indices within rng(f),
so Lemma 4 ensures that there are infinitely many unused probabilities (i.e., N \ f(N) is
infinite). Thus we may assign unused probabilities to unspecified edges in any bijective
way.

Let us check that the given construction produces the Random Graph with probability
1. Indeed, let us fix finite disjoint sets with the same cardinality A,B ⊆ N. We have to
check that with probability 1 there is a vertex v connected to all elements of A and to no
element of B; let us call this property “being well-connected to (A,B)”. Let n ∈ N be
such that (A,B) = (An, Bn) and note that for a fixed element cj ∈ Cn, the probability
that cj is well-connected to (A,B) is exactly

kn−1∏
i=0

pf(kn,`n,j,i) ·
2kn−1∏
i=kn

(
1− pf(kn,`n,j,i)

)
,
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so, by Lemma 4, the sum of those probabilities over all cj’s is infinite. Note that if
j 6= j′, then well-connectedness of cj and cj′ to (A,B) are clearly independent. Therefore,
by the (second) Borel–Cantelli Lemma (Theorem 5(ii)), with probability 1 there exist
infinitely many cj’s that are well-connected to (A,B). Since there are countably many
pairs (A,B), and an intersection of countably many sets of full measure is still of full
measure, we conclude that with probability 1 property ? is satisfied.

The implication ((i)) =⇒ ((ii)) is obvious, so it remains to prove the implication
((ii)) =⇒ ((iii)), which we prove by its contra-positive: we will show that if there exists
k ∈ N such that either

∑∞
n=0 p

k
n or

∑∞
n=0(1 − pn)k is finite, then, for every bijection

f : [N]2 → N, with probability 1, the resulting graph is not the Random Graph.
We prove only the case when

∑∞
n=0 p

k
n is finite as the other case is analogous. Let A

be any set of cardinality k, enumerate its elements as a0, . . . , ak−1 and the elements of
N\A as v0, v1, . . .. For each m ∈ N and each i 6 k−1, let pnm,i

∈ [0, 1] be the probability
value assigned to {ai, vm}. Note that

∞∑
m=0

k−1∏
i=0

pnm,i
6

∞∑
m=0

max
i6k−1

pknm,i
6

∞∑
m=0

k−1∑
i=0

pknm,i
6

∞∑
n=0

pkn <∞,

so by the (first) Borel–Cantelli Lemma (Theorem 5(i)), it follows that with probability 1,
there are only finitely many vj that are adjacent to all vertices of A. Therefore, by adding
to the set A those finitely many vertices, we see that ? does not hold.

Note that the result of this article easily extends to the Random t-Hypergraph.
Namely, for t > 2, we say that a t-hypergraph (V,E) has the property ?t if

For all finite disjoint A,B ⊆ [V ]t−1 there is a vertex v ∈ V such that

a ∪ {v} ∈ E for every a ∈ A and b ∪ {v} /∈ E for every b ∈ B.
(?t)

Again a simple back-and-forth argument shows that there is a unique (up to isomorphism)
countable t-hypergraph with property ?t, which we call the Random t-Hypergraph and a
simple way of generating the Random t-Hypergraph with probability 1 is to declare each
t-set to be an edge with probability 1/2, independently from other t-sets. Finally, the
following result analogous to Theorem 6 holds for the Random t-Hypergraph with an
analogous proof:

Theorem 7. The following are equivalent for t > 2 and a sequence (pn)n∈N of numbers
from the interval [0, 1].

i. There exists a bijective assignment f : [N]t → N such that by letting each e ∈ [N]t

be an edge with probability pf(e), independently from other t-sets, the resulting t-
hypergraph is the Random t-Hypergraph with probability 1.

ii. Item ((i)) holds but the conclusion holds with positive probability instead of proba-
bility 1.
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iii. For every k ∈ N, the sums
∑∞

n=0 p
k
n and

∑∞
n=0(1− pn)k are infinite.

Remark 8. Notice an unexpected resemblance of our theorem with [2, Theorem 1.3],
where Bartoszyński tries to characterize for which measures µ on 2N all filters on N are
µ-measureable.
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of random automorphisms of the random graph, Annals of Pure and Applied Logic
173, 9.

[7] Diaconis P., Malliaris M. (2021). Complexity and randomness in the Heisenberg
groups (and beyond), New Zealand Journal of Mathematics 52.
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