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Abstract

We establish a tantalizing symmetry of certain numbers refining the Narayana
numbers. In terms of Dyck paths, this symmetry is interpreted in the following
way: if wn,k,m is the number of Dyck paths of semilength n with k occurrences
of UD and m occurrences of UUD, then w2k+1,k,m = w2k+1,k,k+1−m. We give
a combinatorial proof of this fact, relying on the cycle lemma, and showing that
the numbers w2k+1,k,m are multiples of the Narayana numbers. We prove a more
general fact establishing a relationship between the numbers wn,k,m and a family
of generalized Narayana numbers due to Callan. A closed-form expression for the
even more general numbers wn,k1,k2,...,kr counting the semilength-n Dyck paths with
k1 UD-factors, k2 UUD-factors, . . ., and kr U

rD-factors is also obtained, as well as
a more general form of the discussed symmetry for these numbers in the case when
all rise runs are of certain minimal length. Finally, we investigate properties of the
polynomials Wn,k(t) =

∑k
m=0wn,k,mt

m, including real-rootedness, γ-positivity, and
a symmetric decomposition.

Mathematics Subject Classifications: 05A05, 05A10, 05A15, 05A19, 05C05

1 Introduction

A lattice path is a path in the discrete integer lattice Zn consisting of a sequence of steps
from a prescribed step set and satisfying prescribed restrictions. Among classical lattice
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paths, Dyck paths are perhaps the most well-studied. A Dyck path of semilength n is
a path in Z2 with step set S = {(1, 1), (1,−1)} that starts at the origin (0, 0), ends
at (2n, 0), and never traverses below the horizontal axis. The steps (1, 1) are called up
steps and can be represented by the letter U , while the steps (1,−1) are down steps and
denoted D. It is well known that the number of Dyck paths of semilength n is the Catalan
number Cn =

(
2n
n

)
/(n+ 1) which is known to enumerate more than 250 other families of

combinatorial objects [27].
The number of Dyck paths of semilength n that contain exactly k places where a U

is immediately followed by a D—called UD-factors (or peaks)—is equal to the Narayana
number Nn,k defined by

Nn,k =
1

n

(
n

k

)(
n

k − 1

)
,

for all 1 6 k 6 n and N0,0 = 1. Knowing this, it is easy to see that Nn,k also counts the
number of Dyck paths of semilength n with k − 1 DU -factors (valleys). The Narayana
numbers are known to exhibit the symmetry Nn,k = Nn,n+1−k, which can be proved
combinatorially via several involutions; see, for example, [12, 18, 19, 20].

There is interest in counting Dyck paths (and other kinds of lattice paths) by the num-
ber of occurrences of longer factors, or even finding the joint distribution of occurrences
of multiple kinds of factors. Two early works in this direction are [11, 26]. In [29], Wang
discusses a general technique that is useful for obtaining the relevant generating functions
in many such cases; see also [30]. Our work is concerned with the joint distribution of
UD-factors and UUD-factors over Dyck paths. This does not seem to have been stud-
ied before, and is different from the instances discussed in the works cited above as the
factor UD is an ending segment of the factor UUD. We can also interpret these factors
in terms of rise runs—maximal consecutive subsequences of up steps—as the number of
UD-factors is equal to the total number of rise runs, and the number of UUD-factors is
equal to the number of rise runs of length at least 2.

Let wn,k,m be the number of Dyck paths of semilength n with k UD-factors and m
UUD-factors. Then we have the following symmetry:

Theorem 1. For all 1 6 m 6 k, we have

w2k+1,k,m = w2k+1,k,k+1−m.

In other words, among all Dyck paths of semilength 2k+1 with k UD-factors, the number
of those with m UUD-factors is equal to the number of those with k+1−m UUD-factors.
To prove this symmetry, the first and third authors used generating function techniques to
derive the following closed formula for the numbers wn,k,m (see Section 6 in the Appendix),
from which Theorem 1 readily follows.

Theorem 2. We have

wn,k,m =


1

k

(
n

k − 1

)(
n− k − 1

m− 1

)(
k

m

)
, if 0 < m 6 k, and k +m 6 n,

1, if m = 0 and n = k,

0, otherwise.
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Nonetheless, Theorem 1 cries for combinatorial explanation, but a combinatorial proof
eluded the first and third authors for several years. The remaining authors joined this
project in Summer 2022 as part of the AMS Mathematics Research Community Trees in
Many Contexts, during which we found a combinatorial proof for Theorem 1. This proof
is the main focus of the current paper. In fact, we give a combinatorial proof for the
following identity relating the numbers w2k+1,k,m to Narayana numbers.

Theorem 3. For all k > 1 and m > 0, we have

w2k+1,k,m =

(
2k + 1

k − 1

)
Nk,m. (1)

Observe that Theorem 1 follows immediately from Theorem 3 and the symmetry of
the Narayana numbers. Our combinatorial proof of Theorem 3 requires heavy use of the
cycle lemma. We show that analogous statements to Theorem 1 and Theorem 3 hold for
the numbers w2k−1,k,m. We also generalize Theorem 3 to a relationship between the wn,k,m
and a family of generalized Narayana numbers introduced by Callan [8] (see Theorem 20).

Using the ideas in the combinatorial proofs of Theorem 1 and Theorem 2, we establish
the following more general statements for wn,k1,k2,...,kr , defined to be the number of Dyck
paths of semilength n with k1 UD-factors, k2 UUD-factors, . . . , and kr U

rD-factors.

Theorem 4. For all r > 2 and 1 6 m 6 k, taking k1 = k2 = . . . = kr−1 = k, we have

wrk+1,k,k,...,k,m = wrk+1,k,k,...,k,k+1−m

and
wrk−1,k,k,...,k,m = wrk−1,k,k,...,k,k−m.

Note that r = 2 recovers the symmetry of the numbers w2k±1,k,m (our Theorems 1 and
16). Observe also that in terms of rise runs, Theorem 4 describes a symmetry in the case
when all rise runs in the considered Dyck paths are of length at least r − 1.

Theorem 5. Let r > 1, k1 > k2 > · · · > kr > 0, and n > k1 + k2 + · · · + kr. Take
k̂ = k1 + k2 + · · ·+ kr−1. Then wn,k1,k2,...,kr =

1

k1

(
n

k1 − 1

)(
n− k̂ − 1

kr − 1

)(
k1

k1 − k2, k2 − k3, . . . , kr−1 − kr, kr

)
, if kr > 0,

1

k1

(
n

k1 − 1

)(
k1

k1 − k2, k2 − k3, . . . , kr−1 − kr, kr

)
, if kr = 0 and n = k̂,

0, otherwise.

Theorem 5 specializes to the formula for Narayana numbers upon setting r = 1 and to
Theorem 2 for r = 2.

We note that the numbers wn,k,m have been independently studied under different
guises in the Ph.D. theses of Wang and Lemus-Vidales. Wang [29, Theorem 2] gave a
formula for the joint distribution of UU -factors and UUD-factors over Dyck paths of
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semilength n. Wang’s formula is equivalent to our formula in Theorem 2, as a Dyck
path of semilength n with k occurrences of UD has n− k occurrences of UU . Moreover,
Lemus-Vidales [21, Theorem 3.1.3] gave an analogous formula for counting Dyck paths by
“short peaks” (i.e., UD-factors not preceded by a U), UUU -factors, and UUD-factors. It
is shown in [21, Lemma 3.1.1] that the number of UD-factors of a Dyck path is the sum of
its number of short peaks and UUD-factors and that the semilength is equal to the sum
of its number of short peaks, UUU -factors, and twice its number of UUD-factors. Hence,
Theorem 2 can be recovered from Lemus-Vidales’s formula. Though Wang and Lemus-
Vidales’ results provide alternate routes to obtain some of our results, their formulas are
obtained by deriving an appropriate functional equation and applying Lagrange inversion;
neither of them had a combinatorial proof. One more relevant and recent result is by Fu
and Yang [17], who found that wn,k,m also counts plane trees with n edges, k internal
nodes, and m internal nodes with degree larger than one.

This paper is structured as follows.1

• Section 2 reviews background material needed for our combinatorial proofs, includ-
ing Dyck paths and cyclic compositions.

• In Section 3, we provide combinatorial proofs of Theorem 2 and Theorem 3 as well
as a variant of Theorem 3 for the numbers w2k−1,k,m. In addition, we show that
these proofs can be generalized to prove Theorem 4 and Theorem 5.

• In Section 4, we establish a more general formula relating the numbers wn,k,m to the
generalized Narayana numbers.

• We conclude in Section 5 with some investigation of the polynomials

Wn,k(t) =
k∑

m=0

wn,k,mt
m,

including real-rootedness and γ-positivity results, as well as a symmetric decompo-
sition. Several conjectures on the polynomials Wn,k(t) and their symmetric decom-
position are given.

2 Preliminaries

Here, we introduce the background material necessary for the forthcoming combinatorial
proofs.

2.1 Dyck paths

Recall that a Dyck path of semilength n is a path in Z2 that begins at the origin, ends at
(2n, 0), never goes below the horizontal axis, and consists of a sequence of up steps (1, 1)

1An algebraic proof (using generating functions) for the explicit formula in Theorem 2 can be found in
the Appendix.

the electronic journal of combinatorics 32(2) (2025), #P2.46 4



and down steps (1,−1). We can represent Dyck paths as Dyck words : words π on the
alphabet {U,D} with the same number of U ’s and D’s, such that there are never more
D’s than U ’s in any prefix of π. When we refer to a UD- or UUD-factor in a Dyck path,
we really mean a factor in the corresponding Dyck word.

2.2 Cyclic compositions and the cycle lemma

Given a sequence p = p1p2 · · · pn, we say that a sequence p′ is a cyclic shift (or cyclic
rotation) of p if p′ is of the form

p′ = pipi+1 · · · pnp1p2 · · · pi−1,

for some 1 6 i 6 n. Let us write p ∼ p′ whenever p and p′ are cyclic shifts of each other.
Let Compn,k denote the set of all compositions of n into k parts, i.e., a sequence of k

positive integers whose sum is n. We define a cyclic composition [µ] to be the equivalence
class of a composition µ under cyclic shift. Let CCompn,k be the set of cyclic compositions
consisting of compositions of n into k parts, which is well-defined because the number of
parts of a composition and the sum of its parts are clearly invariant under cyclic shift.
We define the order of a cyclic composition [µ], denoted by ord[µ], to be the number of
representatives of [µ]—that is, the number of distinct compositions that can be obtained
from cyclically shifting µ. Note that applying ord[µ] cyclic shifts to µ will return back µ.
If [µ] ∈ CCompn,k has order k, then we say that [µ] is primitive.

For any [µ] ∈ CCompn,k, there exists a positive integer d dividing both n and k such
that [µ] is a concatenation of d copies of a primitive cyclic composition [ν] ∈ CCompn/d,k/d,
which means that there exists ν̄ ∈ [ν] for which µ is a concatenation of d copies of ν̄. In this
case, ord[µ] = k/d = ord[ν]. (If d = 1, then [µ] itself is primitive and is a concatenation
of itself.) For example, the cyclic composition [1, 2, 1, 1, 2, 1] is a concatenation of two
copies of the primitive cyclic composition [1, 2, 1], and both of these cyclic compositions
have order 3. Observe that this decomposition of cyclic compositions into primitive cyclic
compositions is unique.

Lemma 6. If n and k are relatively prime, then [µ] ∈ CCompn,k is primitive.

Proof. Let [µ] ∈ CCompn,k. Then [µ] can be uniquely decomposed as a concatenation of
d copies of a primitive cyclic composition, where d is a common divisor of n and k. Since
n and k are relatively prime, it follows that d = 1, whence it follows that [µ] itself is
primitive.

The cycle lemma will play an important role in our proofs. Given a positive integer k
and a sequence p = p1p2 · · · pl consisting only of U ’s and D’s, we say that p is k-dominating
if every prefix of p (i.e., every sequence p1p2 · · · pi where 1 6 i 6 l) has more copies of U
than k times the number of copies of D.

Lemma 7 (Cycle lemma [15]). Let k be a positive integer. For any sequence
p = p1p2 · · · pm+n consisting of m copies of U and n copies of D, there are exactly
max(0,m− kn) cyclic shifts of p that are k-dominating.
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We refer to [10, 15] for a proof of the cycle lemma as well as some applications. We
note that Raney [25] showed that the cycle lemma is equivalent to the Lagrange inversion
formula; Raney’s proof was later generalized to the multivariate case by Bacher and
Schaeffer [2].

Corollary 8 (of the cycle lemma). Any sequence of k copies of © and k+ 1 copies of �
has exactly one cyclic shift with no proper prefix having more �s than ©s.

Proof. Given any sequence λ of k copies of © and k + 1 copies of �, let λ̃ be the reverse
sequence of λ—that is, the sequence consisting of the entries of λ but in reverse order. The
cycle lemma guarantees that there is exactly one cyclic shift of λ̃ that is 1-dominating.
The reverse sequence of this 1-dominating cyclic shift is the cyclic shift of λ that has no
proper prefix having more �s than ©s.

3 Combinatorial proof of formulas for wn,k,m

3.1 Combinatorial proof of Theorem 2

We will give a combinatorial proof for the explicit formula of the numbers wn,k,m stated in
Theorem 2. This proof will require the notion of “extended peaks” and the decomposition
of a Dyck word into “extended peaks”.

Definition 9. An extended peak is a word in the alphabet {U,D} consisting of a nonempty
sequence of U ’s followed by one D. Given an extended peak S = UaD, define its up-length,
denoted by `(S), as `(S) := a.

We define a necklace of extended peaks (or simply a necklace) to be the equivalence
class of a sequence of extended peaks under cyclic shift. Often it is more convenient for
us to view a necklace as simply a collection of extended peaks with a given cyclic order;
it will be clear from context when we do so. Let Neckn,k denote the set of all necklaces
with k extended peaks and a total of n U ’s.

Let ψ be the map taking a composition (µ1, µ2, . . . , µk) of n to the sequence S1S2 · · ·Sk
of extended peaks where `(Si) = µi for each i. Note that ψ is a bijection between
compositions of n with k parts and sequences of k extended peaks with a total of n U ’s;
moreover, ψ induces a bijection—which we also denote ψ by a slight abuse of notation—
from CCompn,k to Neckn,k. To be precise, the necklace ψ[µ] is the equivalence class of
ψ(µ̄) for any µ̄ ∈ [µ], which clearly does not depend on the choice of representative.

We define a marking of a necklace of extended peaks [S1, . . . , Sk] to be the necklace
[S1, . . . , Sk] with k − 1 U ’s marked. Given [µ] ∈ CCompn,k, let MNeck[µ] be the set of all
marked necklaces of extended peaks corresponding to the cyclic composition [µ]. If [µ] is
primitive—that is, if ord[µ] = k—then observe that the necklace ψ[µ] has

(
n
k−1

)
distinct

markings. More generally, we have the following:

Lemma 10. Given [µ] ∈ CCompn,k, we have

|MNeck[µ]| = ord[µ]

k

(
n

k − 1

)
.
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Proof. Let N denote the necklace of extended peaks corresponding to [µ], and fix a se-
quence S1S2 · · ·Sk ∈ N of extended peaks. Then there are

(
n
k−1

)
ways to choose the k− 1

U ’s to be marked in S1S2 · · ·Sk. Upon taking all k cyclic shifts of S1S2 · · ·Sk, observe
that each cyclic shift appears k/ord[µ] times; accordingly, each of the markings counted
by
(
n
k−1

)
is k/ord[µ] times the number of markings in MNeck[µ]. In other words, we have

k

ord[µ]
|MNeck[µ]| =

(
n

k − 1

)
,

which is equivalent to our desired conclusion.

A Dyck word π = π1 · · · π2n with exactly k UD-factors can be expressed uniquely in
the form π = Ua1Db1 · · ·UakDbk , where (a1, . . . , ak) and (b1, . . . , bk) are both compositions
of n. Let us call (a1, . . . , ak) the rise composition of π. Given a cyclic composition [µ],
denote by D[µ] the set of all Dyck words with rise composition in the equivalence class
[µ].

Lemma 11. Given [µ] ∈ CCompn,k, we have

|D[µ]| = ord[µ]

k

(
n

k − 1

)
. (2)

Proof. From Lemma 10, it suffices to find a bijection from MNeck[µ] to D[µ].
Let [S] = [S1, S2, . . . , Sk] ∈ MNeck[µ]. We will choose a unique ordering of the marked

extended peaks S1, S2, . . . , Sk. To do this, we first record the k − 1 marked U ’s and k
extended peaks using a sequence of ©’s and �’s as follows. Starting with any extended
peak Si, record a © for each marked U on this extended peak, and then record a � for
this extended peak. Repeat this procedure for the next extended peak in the cyclic order
until all extended peaks and their markings have been recorded.

This gives a sequence consisting of k−1 copies of© and k copies of �. It then follows
from Corollary 8 that there is exactly one cyclic shift σ = σ1σ2 . . . σ2k−1 of this sequence
where every proper prefix of σ has at least as many ©’s as the number of �’s. Note that
σ1 = © and σ2k−2σ2k−1 = ��. Using σ, we obtain a unique ordering R1, R2, . . . , Rk of
the marked extended peaks of [S] by taking Ri to be the extended peak corresponding
to the ith © in σ, for every i ∈ [k]. As this choice of ordering does not depend on the
representative of [S] chosen, the ordering R1, R2, . . . , Rk of the marked extended peaks in
[S] is well-defined.

For example, consider the representative (UUUD,UD,UUUD,UD) in the marked
necklace [UUUD,UD,UUUD,UD] ∈ MNeck[3, 1, 3, 1]. This is associated to the sequence
©©���©� with only the cyclic shift ©�©©��� having at least as many ©’s as
�’s in every proper prefix. Thus, R1 = UD, R2 = UUUD, R3 = UD, and R4 = UUUD.

Given the sequence of extended peaks R1, R2, . . . , Rk, we construct a Dyck word w in
the following manner.

1. Set w = U `(R1) and mark the corresponding U ’s that are marked in R1.
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2. For the next Ri that has not been appended to w, find the rightmost marked U in
w, and let its position in w be j. Let c be the number of U ’s from wj to the end
of w inclusive that are not paired with a D to their right. Append c copies of D to
the end of w followed by U `(Ri).

3. Mark the corresponding U ’s in w that were marked in Ri and unmark wj in w.

4. Repeat steps (2) and (3) until we have appended all k extended peaks.

5. Append enough D’s to the end of w such that w is a word of length 2n.

For example, given R1 = UD, R2 = UUUD, R3 = UD, and R4 = UUUD, the associated
word w is UDUUUDUDDDUUUDDD.

Note that there will always be at least one marked U to indicate how many D’s must
be added before the next extended peak because the number of marked U ’s (the ©’s)
will always be at least the number of extended peaks (the �’s) that need attaching by the
choice of ordering. Moreover, w is a Dyck word as at every point in the construction of w,
the number of D’s added are weakly less than the number of U ’s present in w. The rise
composition of w is given by (`(R1), `(R2), . . . , `(Rk)) which by construction is cyclically
equivalent to µ. Thus, w is in D[µ].

Conversely, consider a Dyck word π = Ua1Db1 · · ·UakDbk whose rise composition
(a1, a2, . . . , ak) is contained in the equivalence class [µ]. We decompose π into a marked
sequence of extended peaks (R1, R2, . . . , Rk) as follows.

1. Set Rk = UakD with no markings and set w to be the word π with UakDbk deleted
from its end.

2. For the largest 1 6 i < k such that Ri is not defined, delete Dbi from the end of w.
Mark the bith rightmost U of w that is not paired with a D in w.

3. Set Ri to be the last ai U ’s of w including any markings. Append a D to Ri and
delete Uai from the end of w.

4. Repeat steps (2) and (3) until R1, R2, . . . , Rk have all been defined.

By construction, we have `(Ri) = ai for all 1 6 i 6 k. Moreover, as π is a Dyck word,
the U that is marked at the end of step (2) must have been unmarked at the beginning
of step (2). Hence, R1, R2, . . . , Rk have exactly k − 1 marked U ’s, and [R1, R2, . . . , Rk] is
an element of MNeck[µ].

It is straightforward to verify that the two procedures described above are inverse
bijections between marked necklaces of extended peaks whose up-lengths are cyclically
equivalent to µ and Dyck words whose rise compositions are cyclically equivalent to µ.
Hence, the lemma follows.

Let Compn,k,m denote the set of all compositions in Compn,k with exactly m parts at
least 2, and let CCompn,k,m be its cyclic counterpart. Using Lemma 11, we obtain a
combinatorial proof for Theorem 2. The proof of the nontrivial case is given below.
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Combinatorial proof of Theorem 2. First, we take the Dyck paths counted by wn,k,m and
partition them by the cyclic equivalence classes of their rise compositions. Then we have

wn,k,m =
∑

[µ]∈CCompn,k,m

|D[µ]| =
∑

[µ]∈CCompn,k,m

ord[µ]

k

(
n

k − 1

)
(3)

upon applying Lemma 11. Next, recall that every cyclic composition [µ] ∈ CCompn,k,m
contains ord[µ] distinct compositions in Compn,k,m, so we have

wn,k,m =
∑

µ∈Compn,k,m

1

ord[µ]

ord[µ]

k

(
n

k − 1

)
=

1

k

(
n

k − 1

)
|Compn,k,m|. (4)

Finally, we claim that

|Compn,k,m| =
(
n− k − 1

m− 1

)(
k

m

)
; (5)

indeed, we can uniquely generate all compositions of n into k parts with exactly m parts
at least 2 using the following process:

1. Take the composition (1k) consisting of k copies of 1, and choose m positions 1 6
i1 < i2 < · · · < im 6 k within this composition; there are

(
k
m

)
ways to do this.

2. Choose a composition µ = (µ1, µ2, . . . , µm) of n− k into m parts; there are
(
n−k−1
m−1

)
ways to do this.

3. For each 1 6 j 6 m, add µj to the ijth entry of (1k). The result is a composition
of n into k parts with exactly m parts at least 2.

Substituting (5) into (4) completes the proof.

As a consequence of our combinatorial proof for Theorem 2, we also obtain a proof
of Theorem 5 for the numbers wn,k1,k2,...,kr .

3.2 Combinatorial proof of Theorem 3

Now, we focus our attention on finding a combinatorial proof of Theorem 3, which in
turn will give a combinatorial proof of Theorem 1. See Figure 1 for an example of the
symmetry in Theorem 1 that we wish to prove.

Our proof will mostly rely on two key results. The first gives a combinatorial inter-
pretation for Narayana numbers in terms of cyclic compositions.

Lemma 12. Let k > 1 and m > 0. Then the Narayana number Nk,m is the number of
cyclic compositions of 2k + 1 into k parts such that exactly m parts are at least 2.
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(A) w5,2,1 = 5

(B) w5,2,2 = 5

Figure 1: Dyck paths of semilength 5 with 2 peaks where peaks that are part of a UUD-
factor are colored red.

Proof. We will give a bijective map that takes a cyclic composition of 2k+ 1 into k parts,
exactly m of which are at least 2, to a Dyck path of semilength k with m UD-factors,
which are counted by the Narayana numbers Nk,m.

Given a cyclic composition [µ1, µ2, . . . , µk] of 2k + 1 with exactly m parts that are at
least 2, consider the word Uµ1−1DUµ2−1D · · ·Uµk−1D, which has k + 1 copies of U and
k copies of D. By the cycle lemma, there is exactly one cyclic shift of this word that is
1-dominating—that is, with more U ’s than D’s in every prefix. Then the first two entries
of this 1-dominating sequence are necessarily U ’s. Removing the first U , we obtain a
Dyck path of semilength k with exactly m UD-factors.

It is easily verified that the inverse procedure is given by the following: from a
semilength k Dyck path with m UD-factors, we get a sequence (a1, a2, . . . , ak) where ai is
the number of U ’s that immediately precede the ith D. For example, from UDUUDDUD
we get the sequence (1, 2, 0, 1). Then we add 2 to a1 and 1 to each other ai, forming a
composition µ of 2k+ 1 into k parts, exactly m of which are at least 2. Taking the cyclic
composition [µ] completes the inverse.

We note that the map used in the proof of Lemma 12 is related to the standard
bijection between  Lukasiewicz paths and Dyck paths. A  Lukasiewicz path of length n is a
path in Z2 with step set {(1,−1), (1, 0), (1, 1), (1, 2), . . .}, starting from (0, 0) and ending
at (n, 0), that never traverses below the x-axis; these paths were introduced in relation to
the preorder degree sequence of a plane tree, which determines the tree unambiguously
[16, Section 1.5.3].

As 2k + 1 and k are relatively prime, every cyclic composition of CComp2k+1,k is
primitive. Lemma 11 then gives us the following corollary.

Corollary 13. Let k > 1. Given a cyclic composition [µ] ∈ CComp2k+1,k, there are exactly(
2k+1
k−1

)
Dyck words whose rise composition belongs to [µ].

We are now ready to complete our combinatorial proof of Theorem 3.

Proof of Theorem 3. Recall that w2k+1,k,m counts Dyck words of semilength 2k + 1, k
UD-factors, and m UUD-factors; these are precisely the Dyck words of semilength 2k+ 1
whose rise composition has k parts with exactly m parts having size at least 2. These rise
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compositions can be grouped into cyclic compositions of 2k + 1 having k total parts and
m parts at least 2, which are counted by Nk,m as established in Lemma 12. Furthermore,
by Lemma 13, there are exactly

(
2k+1
k−1

)
Dyck words corresponding to each such cyclic

composition. It follows that w2k+1,k,m =
(
2k+1
k−1

)
Nk,m as desired.

From the proofs of Lemmas 11 and 12, we implicitly obtain a bijection that demon-
strates the symmetry w2k+1,k,m = w2k+1,k,k+1−m. For the sake of completeness, we explic-
itly write out the bijection that we obtain and give an example in Figure 2.

Definition 14. Let π be a Dyck word with semilength 2k + 1, k UD-factors, and m
UUD-factors. Construct a Dyck word π′ with semilength 2k + 1, k UD-factors, and
k + 1−m UUD-factors via the following algorithm:

1. Set M to be the marked necklace of extended peaks associated to π via Lemma 11.

2. Decompose M into a pair consisting of its underlying unmarked necklace of extended
peaks N and a (k−1)-subset S of [2k+1] = {1, 2, . . . , 2k+1} containing the positions
of the U ’s marked in M .

3. Set P to be the Dyck path of semilength k with m UD-factors that is associated to
N via the bijective map in Lemma 12.

4. Set P ′ to be a Dyck path of semilength k with k + 1−m UD-factors obtained via
any bijection demonstrating the Narayana symmetry (see [18, 19, 20] for example).
Perhaps the simplest and most intuitive is the one in terms of non-crossing set
partitions in [19], where the author proved the stronger fact that the lattice of
non-crossing partitions is self-dual.

5. Set N ′ to be the necklace of extended peaks associated to P ′ via Lemma 12.

6. Set M ′ to be the marked necklace of extended peaks obtained from the necklace N ′

and subset S.

7. Set π′ to be the Dyck word with semilength 2k + 1, k UD-factors, and k + 1 −m
UUD-factors associated with M ′ via Lemma 11.

Remark 15. In Steps (2) and (6), there is some choice of how to label the positions of
the U ’s in a necklace N ∈ Neck2k+1,k such that one can pass from a marked necklace
to a pair consisting of its underlying unmarked necklace and a (k − 1)-subset of [2k +
1] and vice versa. We detail a choice of labeling that we deem to be canonical. By
Lemma 7, there is a unique ordering (S1, S2, . . . , Sk) of the extended peaks in N such
that Uµ1−1DUµ2−1D · · ·Uµk−1D is 1-dominating where µi = `(Ni). Starting from the
leftmost U , label the U ’s in N1 with the numbers 1, 2, . . . , µ1, label the U ’s in N2 with
the numbers µ1 + 1, . . . , µ1 + µ2, and so on.
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−→
[
U UUD,UD,UUUD,UUD

]
−→([

U3D,U2D,U3D,UD
]
, {1, 6, 7}

)
−→

(
,{1, 6, 7}

)
−→(

,{1, 6, 7}
)
−→

([
U5D,UD,UD,U2D

]
, {1, 6, 7}

)
−→

[
UUUUUD,UD,U,UUD

]
−→

Figure 2: Example of the bijection given in Definition 14 for k = 4 where the Lalanne-
Kreweras involution [18, 20] is used in Step (4).

3.3 Combinatorial proof of a related symmetry

In addition to the symmetry in Theorem 1, it can also be observed that w2k−1,k,m =
w2k−1,k,k−m for all 1 6 m 6 k, which is a consequence of the following variation of
Theorem 3.

Theorem 16. For all k > 1 and m > 0, we have

w2k−1,k,m =

(
2k − 1

k − 1

)
Nk−1,m. (6)

Theorem 16 can be proven in a way that is completely analogous to our combinatorial
proof of Theorem 3, but relying on Lemma 17 and Corollary 18 below.

Lemma 17. Let k > 1 and m > 0. Then the Narayana number Nk−1,m is the number of
cyclic compositions of 2k − 1 into k parts such that exactly m parts are at least 2.

Proof. We follow the proof of Lemma 12 closely. Given a cyclic composition
[µ1, µ2, . . . , µk] of 2k − 1 with exactly m parts that are at least 2, we build a sequence
consisting of k − 1 copies of U and k copies of D in the same way as in the proof of
Lemma 12. By Corollary 8, there is exactly one cyclic shift of this sequence such that any
proper prefix of the sequence contains at least as many U ’s as the number of D’s. Then
the last entry of this cyclic shift is a D; removing this last D, we obtain a Dyck path of
semilength k − 1 and exactly m UD-factors.

Conversely, consider a Dyck path of semilength k− 1 with exactly m UD-factors. We
append a D to the corresponding Dyck word, and form the sequence a1, a2, . . . , ak, where
ai is the number of Us that immediately precede the ith D. We then add 1 to every
number in this sequence and take the equivalence class of its cyclic shifts, yielding a cyclic
composition of 2k − 1 into k parts, exactly m of which are at least 2.
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As 2k − 1 and k are relatively prime, Lemma 11 gives us the analogous corollary to
Corollary 13.

Corollary 18. Let k > 1. Given a cyclic composition [µ] ∈ CComp2k−1,k, there are exactly(
2k−1
k−1

)
Dyck words whose rise composition belongs to [µ].

Using Lemma 11 and the proofs of Lemmas 12 and 17, we obtain a proof of Theorem
4 regarding a symmetry on the numbers wn,k1,k2,...,kr .

Proof of Theorem 4. Let µ ∈ CComprk+1,k,k,...,k,m. From Lemma 11, we have D[µ] =(
rk+1
k−1

)
as [µ] must be primitive. Note that |CComprk+1,k,k,...,k,m| = Nk,m which can be

shown via an argument analogous to that in the proof of Lemma 12. Thus, we have
wrk+1,k,k,...,k,m =

(
n
k−1

)
Nk,m, which gives the desired symmetry in light of the Narayana

symmetry. The symmetry for the numbers wrk−1,k,k,...,k,m can be proven similarly.

4 Further generalizations and applications

We now detail several interesting generalizations and applications that can be obtained
from our results in Section 3.

4.1 Catalan identity

First, we obtain a formula for the Catalan numbers Cn in terms of primitive cyclic com-
positions via Lemma 11.

Corollary 19. For all n > 1, we have

Cn =
1

n+ 1

(
2n

n

)
=
∑
d|n

∑
[µ]∈CCompn/d

primitive

1

d

(
n

ord[µ] · d− 1

)
,

where CCompn is the set of all cyclic compositions of n.

Proof. Grouping Dyck paths by their cyclic rise composition, we have

Cn =
∑

[µ]∈CCompn

D[µ].

Recall that every cyclic composition of n can be uniquely expressed as the concatenation
of d copies of a primitive cyclic composition of n/d for some divisor d of n. Similarly, for
every divisor d of n, each primitive cyclic composition of n/d can be made into a cyclic
composition of n by concatenating d copies. This gives us

Cn =
∑

[µ]∈CCompn

D[µ] =
∑
d|n

∑
[µ]∈CCompn/d

primitive

D([µ]d)
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where [µ]d is the concatenation of d copies of [µ]. From Lemma 11, this gives us precisely

Cn =
∑
d|n

∑
[µ]∈CCompn/d

primitive

D([µ]d) =
∑
d|n

∑
[µ]∈CCompn/d

primitive

1

d

(
n

ord[µ] · d− 1

)
.

4.2 Generalized Narayana identities

Next, we generalize Theorems 3 and 16 by expressing the numbers wn,k,m, for any n 6= 2k,
in terms of a family of generalized Narayana numbers due to Callan [8].

Given 0 6 r 6 n and 0 6 k 6 n − r, define the r-generalized Narayana number N
(r)
n,k

by

N
(r)
n,k =

r + 1

n+ 1

(
n+ 1

k

)(
n− r − 1

k − 1

)
.

Observe that the usual Narayana numbers Nn,k can be obtained by setting r = 0 in

N
(r)
n,k. For k < 0, we use the convention that

(
n
k

)
= 0 except for the special case when

n = k = −1, where we define
(−1
−1

)
to be 1.

The following is a generalization of Theorems 3 and 16.

Theorem 20. For all j, k > 1 and m > 0, we have

w2k+j,k,m =
1

j

(
2k + j

k − 1

)
N

(j−1)
k+j−1,m

and for all 1 6 j 6 k and m > 0, we have

w2k−j,k,m =
1

j

(
2k − j
k − 1

)
N

(j−1)
k−1,m.

Before proving Theorem 20, we first introduce a generalization of Dyck paths and
prove a useful lemma. Consider paths in Z2 from (0, 0) to (2n − r, r), consisting of n
up steps (1, 1) and n − r down steps (1,−1), that never pass below the horizontal axis.

Denote by D
(r)
n,k the set of words on the alphabet {U,D} corresponding to such paths with

exactly k UD-factors. In [8], Callan describes a proof by Schulte showing that N
(r)
n,k is the

cardinality of D
(r)
n,k.

For ω, ν ∈ D(r)
n,k, let us write ω ∼ ν if the words Uω and Uν are cyclic shifts of each

other. The relation ∼ is an equivalence relation on D
(r)
n,k, and we denote the set of its

equivalence classes by D̃
(r)
n,k. For [ω] ∈ D̃(r)

n,k, let ord[ω] be the number of distinct elements

of D
(r)
n,k contained within the equivalence class [ω].

Definition 21. For j, k > 1, let φj,k be the map from CComp2k+j,k,m to D̃
(j−1)
k+j−1,m where

φj,k[µ] is obtained via the following algorithm:

1. For [µ] = [µ1, . . . , µk] ∈ CComp2k+j,k,m, set ω = Uµ1−1DUµ2−1D · · ·Uµk−1D.
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2. Let ν = ν1ν2 · · · ν2k+j be any cyclic shift of ω that is 1-dominating.

3. Set φj,k[µ] to be the equivalence class of the subword ν2 · · · ν2k+j.

It is not immediately clear from the above definition whether the map φj,k is well-
defined, but this will be established in the proof of the following lemma.

Lemma 22. For all j, k > 1, the map φj,k is a bijection. Moreover, for all [µ] ∈
CComp2k+j,k,m, we have

ord(φj,k[µ])

ord[µ]
=
j

k
.

Proof. We first prove that φj,k is well-defined. Since ω contains k + j copies of U and k
copies of D, the cycle lemma guarantees that at least one cyclic shift of ω is 1-dominating.
By construction of ω, the word ν must contain exactly m UD-factors. The fact that ν
is 1-dominating and contains m UD-factors implies that its subword ν2 · · · ν2k+j is an

element of D
(j−1)
k+j−1,m. From the definition of ∼ on D

(j−1)
k+j−1,m, any 1-dominating cyclic shift

of ω will be sent to the same equivalence class in D̃
(j−1)
k+j−1,m. This same argument also

implies that φj,k[µ] does not depend on the representative of [µ] that is chosen.
Injectivity and surjectivity are straightforward to check from the definition of φj,k.

By the cycle lemma, there are exactly j cyclic shifts of ω that are 1-dominating; among
these j words, there are j · ord[µ]/k distinct cyclic shifts as each of them appears k/ord[µ]
times. These 1-dominating sequences are in bijection with paths in the equivalence class
of φj,k[µ] by removing the first U from the sequence. Thus, ord(φj,k[µ]) = j · ord[µ]/k.

We are now ready to prove Theorem 20.

Proof of Theorem 20. From Lemma 22, we have

|Comp2k+j,k,m| =
k

j
|D(j−1)

k+j−1,m| =
k

j
N

(j−1)
k+j−1,m.

Substituting this into (4) gives the desired result

w2k+j,k,m =
1

j

(
2k + j

k − 1

)
N

(j−1)
k+j−1,m.

The proof for w2k−j,k,m follows similarly by defining an analogous map ϕj,k from

CComp2k−j,k,m to D̃
(j−1)
k−1,m and reproving Lemma 22 for ϕj,k.

Lemma 22 naturally leads to the following generalization of Lemmas 12 and 17, which
expresses the number of cyclic compositions in CComp2k±j,k,m in terms of r-generalized
Narayana numbers. Below, ϕ denotes Euler’s totient function.

Proposition 23. Let k > 1 and m, j > 0, and let d = gcd(k,m, j).2

2If m = 0 or j = 0, then gcd(k,m, j) is defined to be the greatest common divisor of the nonzero
numbers among k, m, and j.
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(a) If j > 1, we have |CComp2k+j,k,m| =
1

j

∑
s|d

ϕ(s)N
(j/s−1)
(k+j)/s−1,m/s.

(b) If j = 0, we have |CComp2k,k,m| =
1

k

∑
s|d

ϕ(s)

(
k
s
− 1

m
s
− 1

)(
k
s
m
s

)
.

(c) If 1 6 j 6 k, we have |CComp2k−j,k,m| =
1

j

∑
s|d

ϕ(s)N
(j/s−1)
k/s−1,m/s.

Proof. Let us call an (ordinary) composition µ primitive if [µ] is primitive, and let
PCompn,k,m denote the set of primitive compositions of n with k parts with exactly m
parts at least two. Let 1 6 k 6 m and j > 0, and let d = gcd(k,m, j). Given ` | d, define

f(`) = |Comp(2k+j)`/d, k`/d,m`/d| and g(`) = |PComp(2k+j)`/d, k`/d,m`/d|.

Every composition can be uniquely decomposed as a concatenation of one or more copies
of a primitive composition, which leads to the formula f(`) =

∑
s|` g(s). By Möbius

inversion, we then have g(`) =
∑

s|`Möb(s)f(`/s) where Möb is the Möbius function.
Observe that

|CComp2k+j,k,m| =
∑
`|d

`

k
|PComp(2k+j)/`, k/`,m/`|;

after all, every cyclic composition in CComp2k+j,k,m is a concatenation of ` copies of a
primitive cyclic composition with k/` parts for some ` dividing d, and this primitive
cyclic composition is the cyclic equivalence class of k/` elements of PComp(2k+j)/`, k/`,m/`.
We then have

|CComp2k+j,k,m| =
∑
`|d

`

k
|PComp(2k+j)/`, k/`,m/`|

=
∑
`|d

`

k
g
(d
`

)
=

1

k

∑
`|d

∑
q|(d/`)

Möb(q)`f
( d
`q

)
=

1

k

∑
s|d

∑
`q=s

Möb(q)
s

q
f
(d
s

)
.

=
1

k

∑
s|d

ϕ(s)f
(d
s

)
,

where the last step uses the well-known identity ϕ(s) =
∑

q|sMöb(q)s/q. If j > 1, then
we have

f
(d
s

)
= |Comp2(k/s)+j/s, k/s,m/s| =

k

j
N

(j/s−1)
(k+j)/s−1,m/s
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by Lemma 22, and if j = 0, then we instead have

f
(d
s

)
= |Comp2(k/s), k/s,m/s| =

(
k
s
− 1

m
s
− 1

)(
k
s
m
s

)
by (5); substituting appropriately completes the proof of parts (a) and (b). We omit the
proof of (c) as it is similar to that of (a).

Remark 24. Proposition 23 has an interesting interpretation related to permutation enu-
meration, as |CCompn,k,m| is the number of distinct cyclic descent sets among cyclic per-
mutations of length n with k cyclic descents and m cyclic peaks (for all 1 6 k < n); see
[13, 14, 22, 23] for definitions. In particular, when j 6= 0 and gcd(k, j,m) = 1, the number
of cyclic descent classes among such cyclic permutations of length 2k + j is equal to a
generalized Narayana number divided by j. The case j = ±1 (Lemmas 12 and 17) yields
a new interpretation of the (ordinary) Narayana numbers Nk,m in terms of cyclic descent
classes.

5 Polynomials

5.1 Real-rootedness

A natural question is whether or not the sequence {wn,k,m}06m6k, for a fixed n and k, is
unimodal. In other words, for fixed n and k, does there always exist 0 6 j 6 k such that

wn,k,0 6 wn,k,1 6 · · · 6 wn,k,j > wn,k,j+1 > · · · > wn,k,k?

One way to prove unimodality results in combinatorics is through real-rootedness. A
polynomial with coefficients in R is said to be real-rooted if all of its roots are in R.
(We use the convention that constant polynomials are also real-rooted.) It is well known
that if a polynomial with non-negative coefficients is real-rooted, then the sequence of its
coefficients is unimodal (see [6], for example).

Let Wn,k(t) be the polynomial defined by

Wn,k(t) =
k∑

m=0

wn,k,mt
m.

In what follows, we prove that the polynomials Wn,k(t) are real-rooted, thus implying the
unimodality of the sequences {wn,k,m}06m6k.

We begin with a simple result involving the roots of Wn,k(t).

Proposition 25. For all 1 6 k 6 n− 1, the polynomials Wn,k(t) and Wn,n−k(t) have the
same roots.

Proof. This follows from the fact that wn,k,m = k(k+1)
(n−k)(n−k+1)

wn,n−k,m, which is readily
verified from Theorem 2.
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To prove the real-rootedness of the Wn,k(t), we make use of Malo’s result regarding
the roots of the Hadamard product of two real-rooted polynomials.

Theorem 26 ([24]). Let f(t) =
∑m

i=0 ait
i and g(t) =

∑n
i=0 bit

i be real-rooted polynomials
in R[t] such that all the roots of g have the same sign. Then their Hadamard product

f ∗ g =
∑̀
i=0

aibit
i,

where ` = min{m,n}, is real-rooted.

Theorem 27. For all n, k > 0, the polynomials Wn,k(t) are real-rooted.

Proof. From Theorem 2, we have

Wn,k(t) =


0, if n < k,

1, if n = k,
1
k

(
n
k−1

)∑min{k,n−k}
m=1

(
n−k−1
m−1

)(
k
m

)
tm, if n > k.

(7)

Thus it suffices to check that the polynomial
∑min{k,n−k}

m=1

(
n−k−1
m−1

)(
k
m

)
tm is real-rooted,

which follows from applying Theorem 26 to f(t) = t(t− 1)n−k−1 and g(t) = (t− 1)k.

More generally, we conjecture the polynomials Wn,k(t) satisfy stronger conditions
which we presently define. For two real-rooted polynomials f and g, let {ui} be the
roots of f and {vi} the roots of g, both in non-increasing order. We say that g interlaces
f , denoted by g → f , if either deg(f) = deg(g) + 1 = d and

ud 6 vd−1 6 ud−1 6 · · · 6 v1 6 u1,

or if deg(f) = deg(g) = d and

vd 6 ud 6 vd−1 6 ud−1 6 · · · 6 v1 6 u1.

(By convention, we assume that a constant polynomial interlaces with every real-rooted
polynomial.) We say that a sequence of real-rooted polynomials f1, f2, . . . is a Sturm
sequence if f1 → f2 → · · · . Moreover, a finite sequence of real-rooted polynomials
f1, f2, . . . , fn is said to be Sturm-unimodal if there exists 1 6 j 6 n such that

f1 → f2 → · · · → fj ← fj+1 ← · · · ← fn.

Conjecture 28. For any fixed k > 1, the polynomials {Wn,k(t)}n>k form a Sturm se-
quence.

Conjecture 29. For any fixed n > 1, the sequence {Wn,k(t)}16k6n is Sturm-unimodal.
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We note that Conjectures 5.4 and 5.5 were originally posed in previous versions of this
paper; since their appearance, these conjectures have been resolved in [28].

Our result expressing the numbers wn,k,m in terms of generalized Narayana numbers

has a natural polynomial analogue. Let Nar
(r)
k (t) denote the kth r-generalized Narayana

polynomial defined by

Nar
(r)
k (t) =

k−r∑
m=0

N
(r)
k,mt

m =
r + 1

k + 1

k−r∑
m=0

(
k + 1

m

)(
k − r − 1

m− 1

)
tm.

Setting r = 0 recovers the usual Narayana polynomials Nark(t) =
∑k

m=0Nk,mt
m. From

Theorem 20 and straightforward computations, we have the following expressions for
Wn,k(t).

Proposition 30. Let k > 1.

(a) For all j > 1, we have W2k+j,k(t) =
1

j

(
2k + j

k − 1

)
Nar

(j−1)
k+j−1(t).

(b) We have W2k,k(t) = Ck

k∑
m=1

(
k − 1

m− 1

)(
k

m

)
tm where Ck denotes the kth Catalan num-

ber.

(c) For all 1 6 j 6 k, we have W2k−j,k(t) =
1

j

(
2k − j
k − 1

)
Nar

(j−1)
k−1 (t).

The real-rootedness of the r-generalized Narayana polynomials was recently shown in
[9] using a different approach; Proposition 30 shows that the real-rootedness of the Wn,k(t)

implies the real-rootedness of the Nar
(r)
k (t), thus giving an alternative proof of this result.

5.2 Symmetry, γ-positivity, and a symmetric decomposition

It is fitting that we end this paper by returning full circle to the topic of symmetry. A
polynomial a0 + a1t + · · · + adt

d of degree d is said to be symmetric if ai = ad−i for all
0 6 i 6 d. First, we note that our symmetries for the numbers w2k+1,k,m and w2k−1,k,m
immediately imply the following:

Proposition 31. The polynomials W2k+1,k(t) and W2k−1,k(t) are symmetric.

A symmetric polynomial of degree d can be written uniquely as a linear combination
of the polynomials {tj(1 + t)d−2j}06j6bd/2c, referred to as the gamma basis. A symmetric
polynomial is called γ-positive if its coefficients in the gamma basis are nonnegative.
Gamma-positivity has shown up in many combinatorial and geometric contexts; see [1]
for a thorough survey. It is well known that the coefficients of a γ-positive polynomial
form a unimodal sequence, and that γ-positivity is connected to real-rootedness in the
following manner:
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Theorem 32 ([4]). If f is a real-rooted, symmetric polynomial with nonnegative coeffi-
cients, then f is γ-positive.

The γ-positivity of the polynomials W2k+1,k(t) and W2k−1,k(t) then follows directly
from Theorem 27, Proposition 31, and Theorem 32. Furthermore, we can get explicit
formulas for their gamma coefficients by exploiting their connection to the Narayana
polynomials.

Proposition 33. The polynomials W2k+1,k(t) and W2k−1,k(t) are γ-positive for all k > 1.
More precisely, we have the following gamma expansions:

(a) W2k+1,k(t) =

b k+1
2
c∑

j=1

(
2k + 1

k − 1

)
(k − 1)!

(k − 2j + 1)! (j − 1)! j!
tj(1 + t)k+1−2j for all k > 1;

(b) W2k−1,k(t) =

b k+1
2
c∑

j=1

(
2k − 1

k − 1

)
(k − 2)!

(k − 2j)! (j − 1)! j!
tj(1 + t)k+1−2j for all k > 2.

Proof. The Narayana polynomials are known to be γ-positive with gamma expansion

Nark(t) =

b k+1
2
c∑

j=1

(k − 1)!

(k − 2j + 1)! (j − 1)! j!
tj(1 + t)k+1−2j

for all k > 1 [1, Theorem 2.32], and this implies the desired result by the j = 1 case of
Proposition 30 (a) and (c).

Remark 34. The gamma coefficients of the Narayana polynomials have a nice combina-
torial interpretation in terms of lattice paths: (k−1)!

(k−2j+1)! (j−1)! j! is the number of Motzkin

paths of length k − 1 with j − 1 up steps [3]. We can use this fact to give combinatorial
interpretations of the gamma coefficients of W2k+1,k(t) and W2k−1,k(t). It would be inter-
esting to find a combinatorial proof for Proposition 33 using Motzkin paths, perhaps in
the vein of the “valley-hopping” proof for the γ-positivity of Narayana polynomials [5].

Our question in Remark 34 was recently been addressed by Fu and Yang [17], who
gave a combinatorial proof for Proposition 33 using a group action, reminiscent of valley-
hopping, on cyclic compositions.

While the polynomials Wn,k(t) are not symmetric in general, it turns out that we can
always express Wn,k(t) as the sum of two symmetric polynomials.

Theorem 35. Let 1 6 k 6 n. Then there exist symmetric polynomials W+
n,k(t) and

W−
n,k(t), both with nonnegative coefficients, such that:

(a) if n < 2k, then Wn,k(t) = W+
n,k(t)− tW

−
n,k(t);

(b) if n = 2k, then Wn,k(t) = W+
n,k(t) + tW−

n,k(t);
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(c) and if n > 2k, then Wn,k(t) = −W+
n,k(t) + tW−

n,k(t).

Proof. Since n and k are fixed, let us simplify notation by writing wm in place of wn,k,m,

so that Wn,k(t) =
∑k

m=0wmt
m. Let

w+
i+1 =

( i+1∑
j=0

wj

)
−
( i∑
j=0

wk−j

)
and w−i = −

( i∑
j=0

wj

)
+
( i∑
j=0

wk−j

)
(8)

for all 0 6 i 6 k; also take w+
0 = 1 when k = n and w+

0 = 0 otherwise. Observe that

w+
i + w−i−1 =

( i∑
j=0

wj

)
−
( i−1∑
j=0

wk−j

)
−
( i−1∑
j=0

wj

)
+
( i−1∑
j=0

wk−j

)
= wi, (9)

w+
i − w+

k−i =
( i∑
j=0

wj

)
−
( i−1∑
j=0

wk−j

)
−
( k−i∑
j=0

wj

)
+
( k−i−1∑

j=0

wk−j

)
= 0, and (10)

w−i−1 − w−k−i = −
( i−1∑
j=0

wj

)
+
( i−1∑
j=0

wk−j

)
+
( k−i∑
j=0

wj

)
−
( k−i∑
j=0

wk−j

)
= 0. (11)

A standard induction argument utilizing the explicit formula in Theorem 2 yields the
following:

• the w+
i are positive when n 6 2k,

• the w+
i are negative when n > 2k,

• the w−i are positive when n > 2k, and

• the w−i are negative when n < 2k.

Define the polynomials W+
n,k(t) and W−

n,k(t) by

W+
n,k(t) =

k∑
i=0

|w+
i | ti and W−

n,k(t) =
k∑
i=0

|w−i | ti,

respectively. These polynomials are symmetric by (10) and (11), and the decompositions
given in (a)–(c) hold by construction in light of (9).

We end with a couple of conjectures concerning the polynomials W+
n,k(t) and W−

n,k(t)
arising from our symmetric decomposition. Our first conjecture, concerning
real-rootedness, has been numerically verified for all n 6 100.

Conjecture 36. The following completely characterizes when W+
n,k(t) and W−

n,k(t) are
both real-rooted:

(a) If n = 1 or n = 2, then W+
n,k(t) and W−

n,k(t) are both real-rooted if and only if k = 1.
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(b) If n > 1 and n ≡ 1 (mod 4), then W+
n,k(t) and W−

n,k(t) are both real-rooted if and
only if k = 1, 2, bn/2c − 1, bn/2c , or bn/2c+ 1.

(c) If n ≡ 3 (mod 4), then W+
n,k(t) and W−

n,k(t) are both real-rooted if and only if
k = 1, 2, bn/2c − 1, bn/2c , bn/2c+ 1, or bn/2c+ 2.

(d) If n is even and not equal to 2, 10, 12, or 16, then W+
n,k(t) and W−

n,k(t) are both
real-rooted if and only if k = 1, 2, n/2− 1, n/2, or n/2 + 1.

(e) If n = 10, 12, or 16, then W+
n,k(t) and W−

n,k(t) are both real-rooted if and only if
k = 1, 2, n/2− 2, n/2− 1, n/2, or n/2 + 1.

To establish real-rootedness, it would be helpful to have formulas for the polynomials
W+
n,k(t) or W−

n,k(t). Our next conjecture gives formulas for W+
2k,k(t), W

−
2k,k(t), W

−
2k,k+1(t),

and W+
2k,k−1(t). Unfortunately, we do not have conjectured formulas for any of the other

polynomials.

Conjecture 37. Let k > 1.

(a) We have

W+
2k,k(t) = (k − 1)Ck Nark−1(t) and W−

2k,k(t) = Ck

k−1∑
i=0

(
k − 1

i

)2

ti.

(b) If k > 2, we have

W−
2k,k+1(t) =

(
2k

k

)
Nark−1(t) and W+

2k,k−1(t) = − t
2

(
2k

k − 2

)
Nar

(1)

k−2(t)

where Nar
(j)

k (t) =
∑k−j

i=0
j+1
k+1

(
k+1
i

)(
k+1
i+j+1

)
ti.

The Nar
(j)

k (t) defined in Conjecture 37 form a family of generalized Narayana polyno-
mials [7] different from Callan’s.
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6 Appendix

6.1 The generating function approach

Here we present an algebraic proof of Theorem 2, which gives an explicit formula for the
numbers wn,k,m and in turn implies the symmetry in Theorem 1. To do so, we need a
functional equation satisfied by the generating function W defined by

W = W (x, y, z) =
∑
n,k,m

wn,k,m x
nykzm.

In other words, W is the generating function of all Dyck paths, where the exponents
of x, y, and z encode the semilength, the number of UD-factors, and the number of
UUD-factors, respectively.

Lemma 38. The functional equation

(x− x2y + x2yz)W 2 − (1 + x− xy)W + 1 = 0 (12)

holds.

Proof. Let us call a Dyck path of positive semilength irreducible if it does not touch the
horizontal axis, other than at its starting point and endpoint. Then each nonempty Dyck
path P uniquely decomposes as the concatenation of an irreducible Dyck path and a
Dyck path (in that order), where the latter is the empty path if P itself is irreducible.
If V (x, y, z) is the generating function for irreducible Dyck paths defined similarly to
W (x, y, z) but only for irreducible paths, then this leads to the functional equation

W = 1 + VW. (13)

Let I be an irreducible Dyck path; then I must start with an up step, end with a down
step, and consist of a Dyck path P1 between the two. If P1 is empty, then I is simply the
path UD, contributing xy to the generating function V (x, y, z). Otherwise, I = UP1D,
and I has the same number of UD-factors as P1, while its semilength is one longer. The
number of UUD-factors of I compared with that of P1, however, depends on whether P1

begins with a UD, so let us consider these two cases separately:

• If P1 does begin with a UD, then P1 is of the form UDP2 and I = UP1D = UUDP2D
has one more UUD-factor than P1. Therefore, in this case, I has one more UD-
factor and one more UUD-factor than P2, while its semilength is two longer. Dyck
paths of this type contribute x2yzW to V .

• If P1 does not begin with a UD, then I also has the same number of UUD-factors as
P1; Dyck paths of this type contribute x(W − 1− xyW ) to the generating function
V .
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Thus, we have the functional equation

V = xy + x2yzW + x(W − 1− xyW ). (14)

The proof of our claim is now routine by substituting the expression obtained for V in
(14) into (13) and rearranging.

Algebraic proof of Theorem 2. Equation (12) can be rewritten as

uW 2 − vW + 1 = 0, where u = x− x2y + x2yz and v = 1 + x− xy.

Solving for W in this second degree equation, after elementary manipulations, gives

W =
v −
√
v2 − 4u

2u
=

v

2u

(
1−

√
1− 4

u

v2

)
.

Setting t = u/v2 in the well known classical equation

1−
√

1− 4t

2t
=
∑
ν>0

Cνt
ν ,

where Cν =
(
2ν
ν

)
/(ν + 1) is the νth Catalan number, we expand W as

W = W (x, y, z) =
∑
ν>0

Cν
(x− x2y + x2yz)ν

(1 + x− xy)2ν+1
, (15)

whose terms are rational functions in x, y, and z and there are no square roots involved.
We now expand each term of (15) using a multinomial or negative binomial expansion.
First, the multinomial expansion of the numerator takes the form

(x−x2y+x2yz)ν =
∑

i+j+m=ν

ν!

i! j!m!
xi(−x2y)j(x2yz)m =

∑
i+j+m=ν

(−1)jν!

i! j!m!
xi+2j+2myj+mzm.

(16)
Next, the negative binomial expansion applied to the denominator gives

(1 + x− yx)−(2ν+1) =
∑
s

(2ν + s)!

(2ν)! s!
(−x+ yx)s =

∑
`,r

(2ν + `+ r)!

(2ν)! `! r!
(−1)`yrx`+r. (17)

Then, multiplying (16) and (17), summing with respect to ν, and taking into account
that by (16) we have ν = i+ j +m, Equation (15) becomes

W (x, y, z) =
∑

i,j,m,`,r

(2i+ 2j + 2m+ `+ r)!

(i+ j +m+ 1)! i! j!m! `! r!
(−1)j+`xi+2j+2m+`+ryj+m+rzm. (18)
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Collecting terms in (18), we get

wn,k,m =
∑

i+2j+2m+`+r=n
j+m+r=k

(2i+ 2j + 2m+ `+ r)!

(i+ j +m+ 1)! i! j!m! `! r!
(−1)j+`

=
1

m!

∑
i+2j+2m+`+r=n

j+m+r=k

(−1)j+`(2i+ 2j + 2m+ `+ r)!

(i+ j +m+ 1)! i! j! `! r!
. (19)

Now, solving the system {i+ 2j+ 2m+ `+ r = n, j+m+ r = k} for `, r > 0, the indexes
` and r must satisfy the conditions

` = n− k −m− i− j > 0 and r = k −m− j > 0, (20)

while i, j > 0. This implies that n, k, and m must satisfy the inequalities

m 6 k and k +m 6 n (21)

(otherwise the sum is empty and has value 0). Substituting in (19) the values of ` and r
given by (20), the coefficient wn,k,m is expressed as the double sum

wn,k,m =
1

m!

∑
i+j6n−k−m
j6k−m

(−1)n−k−m−i(n+ i)!

(i+ j +m+ 1)! i! j! (n− k −m− i− j)! (k −m− j)!
. (22)

This double sum can be greatly simplified using the Maple procedure “sum” as follows.
Since the factorials in the denominators in (22) are ±∞ when i, j are big enough to be
out of range, the corresponding terms in the double sum vanish. Hence, we can take the
ranges i=0..infty and j=0..infty in the double sum. Typing the Maple command

> w[n,k,m] = 1/m!*sum(((-1)**(n-k-m-i)*(i+n)!/i!)*

sum(1/(i+j+m+1)!/j!/(n-i-j-k-m)!/(k-m-j)!,j=0..infinity),i=0..infinity);

produces the output

wn,k,m = − (−1)n−k−m n! (m+ 1)m sin (π k − π n)

m! (m+ 1)! (n− k −m)! (k −m)! sin (πm) (k − n) (k − 1− n)
,

which we rewrite in the form

wn,k,m =
(−1)n−k−m n! (m+ 1)

m! (m+ 1)! (n− k −m)! (k −m)! (n− k + 1)
· q(n, k,m) (23)

where q(n, k,m) takes the indeterminate form

q(n, k,m) =
m sin(π(n− k))

sin(πm)(n− k)
=

0

0
,
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since n, k, and m are positive integers. We “lift” this indetermination by making use of
the limits

lim
t→0

t

sin(πt)
=

1

π
and (24)

lim
t→π

sin(kt)

sin(`t)
= (−1)k−`

k

`
, k ∈ Z, 0 6= ` ∈ Z. (25)

To complete the proof, we break into cases:

• If m = 0 and k = n, then using (24) twice, we get q(k, k, 0) = 1
π
· π

1
= 1. This

implies, by (23), that wn,k,0 = 1 when k = n.

• If m = 0 and k 6= n, then by (21) we need only to consider the case k < n. Hence,
by (24) we get

q(n, k, 0) =
1

π
· sin(π(n− k))

n− k
= 0,

since sin(π(n− k)) = 0 and n− k 6= 0. This implies that wk,0,n = 0 if k 6= n.

• If m > 0 and k + m 6 n, then we must have k < n. Thus, by (25) with k = n− k
and ` = m, we have

q(n, k,m) =
m

n− k
· sin(π(n− k))

sin(πm)
=

m

n− k
· (−1)n−k−m.

Substituting this value into (23) yields

wn,k,m =
n!

m! (m− 1)! (n− k −m)! (k −m)! (n− k) (n− k + 1)
,

which is equivalent to the desired expression in Theorem 2.

In order to “cross check” our formula in Theorem 2, we computed the first terms of
W (x, y, z) using two methods: firstly, by making use of the explicit expression for the
coefficients given in Theorem 2, and secondly, by making use of the Maple “mtaylor”
command applied to (6.1). Both methods gave the same results displayed in Table 1.
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Table 1: The nonzero values of wn,k,m for 0 6 n 6 10.

n, k,m wn,k,m

0, 0, 0 1

1, 1, 0 1

2, 1, 1 1
2, 2, 0 1

3, 1, 1 1
3, 2, 1 3
3, 3, 0 1

4, 1, 1 1
4, 2, 1 4
4, 2, 2 2
4, 3, 1 6
4, 4, 0 1

5, 1, 1 1
5, 2, 1 5
5, 2, 2 5
5, 3, 1 10
5, 3, 2 10
5, 4, 1 10
5, 5, 0 1

6, 1, 1 1
6, 2, 1 6
6, 2, 2 9
6, 3, 1 15
6, 3, 2 30
6, 3, 3 5
6, 4, 1 20
6, 4, 2 30
6, 5, 1 15
6, 6, 0 1

n, k,m wn,k,m

7, 1, 1 1
7, 2, 1 7
7, 2, 2 14
7, 3, 1 21
7, 3, 2 63
7, 3, 3 21
7, 4, 1 35
7, 4, 2 105
7, 4, 3 35
7, 5, 1 35
7, 5, 2 70
7, 6, 1 21
7, 7, 0 1

8, 1, 1 1
8, 2, 1 8
8, 2, 2 20
8, 3, 1 28
8, 3, 2 112
8, 3, 3 56
8, 4, 1 56
8, 4, 2 252
8, 4, 3 168
8, 4, 4 14
8, 5, 1 70
8, 5, 2 280
8, 5, 3 140
8, 6, 1 56
8, 6, 2 140
8, 7, 1 28
8, 8, 0 1

n, k,m wn,k,m

9, 1, 1 1
9, 2, 1 9
9, 2, 2 27
9, 3, 1 36
9, 3, 2 180
9, 3, 3 120
9, 4, 1 84
9, 4, 2 504
9, 4, 3 504
9, 4, 4 84
9, 5, 1 126
9, 5, 2 756
9, 5, 3 756
9, 5, 4 126
9, 6, 1 126
9, 6, 2 630
9, 6, 3 420
9, 7, 1 84
9, 7, 2 252
9, 8, 1 36
9, 9, 0 1

n, k,m wn,k,m

10, 1, 1 1
10, 2, 1 10
10, 2, 2 35
10, 3, 1 45
10, 3, 2 270
10, 3, 3 225
10, 4, 1 120
10, 4, 2 900
10, 4, 3 1200
10, 4, 4 300
10, 5, 1 210
10, 5, 2 1680
10, 5, 3 2520
10, 5, 4 840
10, 5, 5 42
10, 6, 1 252
10, 6, 2 1890
10, 6, 3 2520
10, 6, 4 630
10, 7, 1 210
10, 7, 2 1260
10, 7, 3 1050
10, 8, 1 120
10, 8, 2 420
10, 9, 1 45
10, 10, 0 1
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