Generalized Quaternion Groups
with the m-DCI Property

Jin-Hua Xie®’  Yan-Quan Feng’ Binzhou Xia“

Submitted: Feb 19, 2024; Accepted: Mar 14, 2025; Published: Jun 20, 2025
(©) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A Cayley digraph Cay(G, S) of a finite group G with respect to a subset S of
G is said to be a Cl-digraph if for every Cayley digraph Cay(G,T') isomorphic to
Cay(G, S), there exists an automorphism o of G such that S = T'. A finite group
G is said to have the m-DCI property for some positive integer m if every Cayley
digraph Cay(G,S) of G with |S| = m is a Cl-digraph, and is said to be a DCI-
group if G has the m-DCI property for all 1 < m < |G|. Let Qu, be a generalized
quaternion group (also called dicyclic group) of order 4n with an integer n > 3, and
let Q4n have the m-DCI property for some 1 < m < 2n—1. It is shown in this paper
that n is odd, and n is not divisible by p? for any prime p < m — 1. Furthermore,
if n > 3 is a power of a prime p, then Qg, has the m-DCI property if and only if p
is odd, and either n =por 1 < m < p.
Mathematics Subject Classifications: 20B25, 05C25

1 Introduction

Unless otherwise indicated, digraphs and graphs considered in this paper are finite with
no parallel edges or loops, and groups are finite. For a digraph I', denote by V(I'),
E(T), Arc(I') and Aut(I") the vertex set, edge set, arc set, and automorphism group of
I, respectively. If for some integer m, the in-valency or out-valency of every vertex of I'
equals m, then we say that the digraph has in-valency m or out-valency m, respectively.
Moreover, if the in-valency and out-valency of every vertex of a digraph both equal m,
then we say that the digraph has valency m or is m-valent.

Let G be a group and S be a subset of G with 1 ¢ S. A digraph with vertex set G
and arc set {(g,s9) | ¢ € G, s € S} is said to be a Cayley digraph of G with respect
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to S, denoted by Cay(G,S). If S = S~!, then both (u,v) and (v,u) are arcs for two
adjacent vertices u and v in Cay(G, S), and Cay(G, S) is a graph by identifying the two
arcs with one edge {u,v}. Clearly, a Cayley graph Cay(G,S) as well as its identifying
Cayley digraph has the same valency |S|. Two Cayley digraphs Cay(G, S) and Cay(G,T)
are said to be Cayley isomorphic if S7 = T for some ¢ € Aut(G), where Aut(G) is the
automorphism group of GG. Cayley digraphs are isomorphic if they are Cayley isomorphic,
but the converse is not necessarily true. A subset S of G with 1 ¢ S is said to be a
Cl-subset if Cay(G,S) = Cay(G,T), for some T" C G (1 ¢ T), implies that they are
Cayley isomorphic. In this case, Cay(G, S) is said to be a Cl-digraph, or a CI-graph when
S = S A group G is said to be a DCI-group or a Cl-group if all Cayley digraphs or
Cayley graphs of G are Cl-digraphs or Cl-graphs, respectively.

Adém [1] conjectured that every finite cyclic group is a CI-group. Although this
conjecture was disproved by Elspas and Turner [10], many researchers actively studied
Cl-groups and DCI-groups during the last fifty years and obtained great contributions,
see [3, 4, 7, 9, 15] for example. For cyclic DCI-groups and Cl-groups, the classifications
were finally completed by Muzychuk([32, 33]: a cyclic group of order n is a DCI-group if
and only if n/ ged(2,n) is square-free, and is a Cl-group if and only if either n/ ged(2,n)
is square-free or n € {8,9,18}. A powerful method for studying DCI-groups or CI-
groups comes from Schur ring theory, which was initiated by Schur and developed by
Wielandt (see [43, Chapter IV]). In particular, this method is widely used to classify the
DClI-groups and Cl-groups among abelian groups, especially elementary abelian groups,
refer to [14, 17, 34, 39, 40, 41]. So far DCI-groups and CI-groups have been restricted to
some particular families of groups (see [8, 9, 18, 27]), and it is very difficult to determine
whether these groups are DCI-groups or Cl-groups.

For a positive integer m, a group G is said to have the m-DCI property or m-CI
property if all m-valent Cayley digraphs of G are Cl-digraphs or all Cayley graphs of G
of valency m are Cl-graphs, respectively. Clearly, if G has the m-DCI property then G
has the m-CI property. A group G is said to be an m-DCI-group or m-Cl-group if G
has the k-DCI property or k-CI property for every positive integer k < m, respectively.
Evidently, a group G is a DCI-group or Cl-group if G has the m-DCI property or m-CI
property for all m < |G|, respectively; that is, if it is a |G|-DCI-group or a |G|-CI-group,
respectively.

Considerable work has been done on the m-DCI property or m-CI property of a
group, with interesting results obtained to characterize m-DCI-groups or m-Cl-groups.
In [11, 12, 13|, Fang and Xu completely classified abelian m-DCl-groups for a positive
integer m at most 3. For an integer n at least 3 and m € {1, 2,3}, the dihedral group
Dy, is an m-DCl-group if and only if n is odd (see [36]), and the generalized quaternion
group Qy, is an m-DClI-group if and only if n is odd (see [29]). In [24], Li, Praeger and
Xu classified all finite abelian groups with the m-DCI property for a positive integer m at
most 4, and they proposed a natural problem: characterize finite groups with the m-DCI
property. For cyclic groups, Li [20] gave a necessary condition for the cyclic group of
order n to have the m-DCI property. Soon after, Li [25] proved that all Sylow subgroups
of an abelian group with the m-DCI property are homocyclic. For more details, we refer

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(2) (2025), #P2.47 2



to [21, 22, 23, 26] for example.

Recently, Xie, Feng and Kwon [44] studied dihedral groups with the m-DCI property:
if a dihedral group G of order 2n has the m-DCI property for some 1 < m < n — 1, then
n is odd and not divisible by the square of any prime less than m; moreover, the converse
of this is true for prime power n, but in general it is unknown whether the converse is

true. In this paper, we consider the m-DCI property of generalized quaternion groups.
Following [2, (2.1)], we call

Qun={a,b|a® =1,0"=a", a" =a")

the generalized quaternion group of order 4n. Note that a generalized quaternion group
is also called a dicyclic group (see [31, Definition 1.1]). For n = 1, Q4 is the cyclic group
of order 4, and hence Q4 is a DCI-group by [26, Theorem 7.1]. For n = 2, Qg is the
quaternion group of order 8, and Qg is a DCI-group by [38, Theorem 1.1]. Thus, we may
assume that n > 3. For a group G, a subset S of G'\ {1} is a Cl-subset of G if and only if
the complement of S in G \ {1} is a Cl-subset of G. To investigate the m-DCI property
of Qu,, it suffices to consider m such that 1 < m < 2n —1. As the first main result of this
paper, we give necessary conditions for the m-DCI property of Qu,, which generalizes the
necessary conditions for the 1-DCI property of [29, Lemma 3.1].

Theorem 1. Let G be the generalized quaternion group of order 4n with n > 3 such that
G has the m-DCI property for some 1 < m < 2n—1. Then n is odd, and n is not divisible
by p* for any prime p < m — 1.

Based on Theorem 1, we have the following corollary, which can also be obtained from
known results: n is odd by [29, Theorem 1.4] and square free by [26, Theorem 7.1].

Corollary 2. If the generalized quaternion group of order 4n with n > 3 is a DCI-group,
then n is odd and square-free.

It is worth remarking that we do not know whether the converses of Theorem 1 and
Corollary 2 are true in general. However, we will show that they are true when n is a
prime power. Note that when n is a power of a prime p, the conclusion in Theorem 1
turns out to be that p is odd and either n = p or m < p.

The converse of Corollary 2 holds when n = p, as Qq, is a DCI-group for every prime
p (see Lemma 11). Next let n = 4p® for an odd prime p and an integer £ > 2. Then the
following theorem asserts that 4, has the m-DCI property for all m < p. In other words,
Q4 is a p-DCI-group.

Theorem 3. Let n > 3 be a power of a prime p, and let G be a generalized quaternion
group of order 4n. Then for 1 < m < 2n — 1, G has the m-DCI property if and only if p
18 odd and either n = p or m < p.

After this Introduction, we introduce some preliminary results in Section 2. Then
Theorems 1 and 3 will be proved in Sections 3 and 4, respectively.
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2 Preliminaries

In this section we give some basic concepts and facts that will be used later. For a
positive integer n and a prime p, denote by n, the largest p-power dividing n and denote

ny = n/n,. Denote by C,, the undirected cycle of length n and denote by 6)n the directed
cycle of length n. Denote by K,, the complete graph with n vertices in which two arbitrary
vertices are adjacent, and denote by K,, the empty graph with n vertices in which no two
vertices are adjacent. A digraph K,,, is called a complete bipartite digraph if its vertex
set can be partitioned into two subsets X and Y such that |X| =m and |Y| = n and its
arc set is {(z,y) |z € X, y € Y}.

Let G be a group. The commutator of elements z and y in G is [z,y] = x 7'y tay.
The derived group G' of G is ([x,y] | z,y € G). For a subgroup H of G, denote the
normalizer and centralizer of H in G by Ng(H) and Cg(H), respectively. The following
result is from [42, Chapter 2, Theorem 1.6].

Proposition 4. Let G be a p-group for some prime p and let H be a proper subgroup of
G. Then Ng(H) properly contains H, that is, No(H) > H.

Let p be a prime. A finite group G is said to be p-abelian if (zy)? = xPy? for all
x and y in G. A p-group G is called a regular p-group if for arbitrary two elements
x and y in G, there exists c¢1,co,..., ¢, in the derived group (x,y)’ of (x,y) such that
(zy)? = aPyPclcy--- k. The following proposition is from [30, Proposition 3] and [45,
Proposition 2.3].

Proposition 5. Let G be a p-group for some prime p. If every subgroup of G' can be
generated by at most (p—1)/2 elements, then G is a reqular p-group. Moreover, a regular
p-group G is p-abelian if and only if G' has exponent p.

Let Cay(G, S) be a Cayley digraph of a group G with respect to S. For a given g € G,
the right multiplication R(g) is a permutation on G such that 279 = zg¢ for every € G.
Clearly, R(g) is an automorphism of Cay(G,S). Let R(G) = {R(g9) | ¢ € G}. Then
R(G) is a regular group of automorphisms of Cay(G, .S), which is called the right reqular
representation of G. The following well-known Babai’s criterion is from [4] (also see [27,
Theorem 2.4]).

Proposition 6. A Cayley digraph Cay(G,S) is a Cl-digraph if and only if every reqular
subgroup of Aut(Cay(G, S)) isomorphic to G is conjugate to R(G) in Aut(Cay(G,S5)).

The following result says that the m-DCI property of a group is hereditary by sub-
groups, which can be proved by the same argument as that for the m-CI property in |26,
Lemma 8.2].

Proposition 7. Suppose that a finite group G has the m-DCI property for a positive
integer m. Then every subgroup of G has the m-DCI property.

Li [20, Theorem 1.2] gave a necessary condition for cyclic groups to have the m-DCI
property. We restate this result as follows.
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Proposition 8. Let G be a cyclic group of order n such that G has the m-DCI property
for some p+1<m<n—(p+2) with p a prime. Then either n = p? and m =0 or —1
(mod p), orn, divides lem(4,p).

For subsets of a cyclic group, we have the following result (see [25, Lemma 2.1]).

Lemma 9. Let G = (z) be a cyclic group of order n, and let i,j € {1,2,...,n—2}. If
{2,222y ={29,2%,... .29} then j = 1.

Let G be a finite group. If for any two subgroups H and K of GG, every isomorphism
from H to K can be extended to an automorphism of GG, then G is called homogeneous.
For generalized quaternion groups Qu,, the following property is shown in [29, Lemma 2.4].

Lemma 10. For an odd positive integer n, the generalized quaternion group Qu, is ho-
MOgeNeous.

We see from [6, Corollary 29] that Qy, is a DCI-group for each prime p > 5. Since
it can be verified by Magma [5] that Qg and Qo are also DCI-groups, we obtain the
following result.

Lemma 11. For every prime p, the generalized quaternion group Qua, ts a DCI-group.

From [44, Lemma 3.1], we have the following lemma, which provides a fairly general
way to construct isomorphic Cayley digraphs.

Lemma 12. Let G be a finite group with L I G and L < M < G. Suppose that A
and B are subsets of M \ {1} such that AY = B for some v € Aut(M) and v fizes
every coset of L in M, and that C C G \ L is a union of some cosets of L in G. Then
Cay(G,AUC) = Cay(G,BUC).

Let I" be a digraph and let X C V(T"). The induced subdigraph [X] of T" by X is the
digraph whose vertex set is X and arc set is {(u,v) | u,v € X, (u,v) € Arc(I")}. Let N be
a subgroup of Aut(I"). Denote by u¥ the orbit of N containing u € V(I'), and by I'* (u)
the out-neighborhood of w in I'. The quotient digraph I'y of I' induced by N is defined
as the digraph whose vertex set is the set of N-orbits in V(') such that (uV,v") is an
arc of I'y, where v’V and vV are distinct orbits of N, if and only if (z,y) is an arc of T
for some 2z € " and y € v". The digraph I is said to be an N-cover of I'y, if for every
u € I, the out-valency of u in I' is the same as the out-valency of vV in I'y, is said to be
G-locally primitive if G, acts primitively on I'"(u) for every v € V(T'), and is said to be
strongly connected if there exists a directed path from u to v for each pair of vertices u
and v. To avoid trivial cases, a digraph with one vertex is also called strongly connected.
It well known that every finite connected vertex-transitive digraph is strongly connected
(see [16, Lemma 2.6.1] for instance). For convenience, the complete graph on two vertices
is also viewed as a directed cycle.

The following result generalizes [35, Theorem 4.1] by Praeger to digraphs, with the
proof closely following her approach and incorporating minor adjustments.

ot
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Lemma 13. Let I' be a finite connected G-vertex-transitive digraph, where G < Aut(I'),
and let N be a normal subgroup of G with at least two orbits on V(I'). Then the following
statements hold:

(a) IfT' is G-arc-transitive, then there are no arcs in the induced subdigraph of any orbit
of N inT.

(b) IfT' is G-locally primitive, then either N is the kernel of G on V(I'y) acting semireg-
ularly on V(I'), and T" is an N-cover of ' with |V(I'n)| = 3, or 'y is a directed
cycle.

Proof. To prove part (a), let I' be G-arc-transitive and suppose on the contrary that the
induced subdigraph of some orbit of N has an arc. Since I' is G-vertex-transitive, it
follows that the induced subdigraph of every orbit of N has an arc. By the connectivity
of I', there is an arc between some distinct orbits of N, say O; and Os. Let (u,v) be an
arc of I' with v € O7 and v € O,. Since O has an arc and N is transitive on Oq, there is
an arc (u,w) of I' with w € O;. Since I' is G-arc-transitive, there exists g € G such that
ud = u and v9 = w. However, such an element g does not preserve the set of N-orbits as
u,w € Op and v € Oy. This contradicts the fact that N is normal in G, completing the
proof of part (a).

In following we prove part (b). Let I" be G-locally primitive. Since I' is connected,
there exists an arc between some distinct orbits of N, say O; and O,. Let (u,v) be an
arc of I' with u € O7 and v € Os.

First assume that the out-neighbors of u are contained in the same orbit of N. Then
['T(u) € Oy as v € O. Since N is transitive on both O; and O,, we have 't (z) C O,
for all z € O;. Since GG has an element mapping O; to O,, the out-neighborhood of each
vertex in Oy is a subset of some orbit of N. Repeating this argument, we see that the
out-neighborhood of each vertex in every orbit of N is a subset of some orbit of N. Then
we conclude from the connectivity of I' that I'y is a directed cycle.

Now assume that the out-neighbors of v are not contained in the same orbit of N. Let
O = {01,0,,...,0,} be the set of orbits of N and assume that the out-neighborhood
of O; in T'y is {O9,0s,...,04}. Then [V(I'y)| =n > d > 3, and [I'"(u) N O;| > 1 for
each i € {2,...,d}. The hypothesis of part (b) implies that I is strongly connected and
G-arc-transitive, whence G, is transitive on I'"(u). Moreover, the conclusion of part (a)
implies that

{TH(w) N Oy, T (u) N Os, ..., T (u) N O4}
is a partition of I't(u). Since N is normal in G, it follows that this partition is preserved
by G,. Then we conclude from the G-local-primitivity of T' that |I'"(u) N O;| = 1 for
each i € {2,...,d}. Hence u has the same out-valency as O; in I'y, which means that
I' is an N-cover of I'y. Let K be the kernel of G acting on O. Then the stabilizer K,
fixes I'" (u) pointwise because |I'"(u) N O;] =1 for each i € {2,...,d}. This implies that
K, = K, for every w € T'"(u). Then the strong connectivity of I" implies that K, = 1
for all x € V(I'), that is, K is semiregular on V(I'). Noting N < K, we deduce by the
Frattini argument that K = NK, = N. This shows that N is the kernel of G acting on
V(I'y) and is semiregular on V(I). O
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3 Proof of Theorem 1

By [29, Lemma 3.1], if Q4, (n > 3) has the 1-DCI property, then n is odd. This is true
for every 1 < m < 2n — 1 as the following lemma states.

Lemma 14. Let G be a generalized quaternion group of order 4n with n > 3 such that G
has the m-DCI property for some 1 <m < 2n — 1. Then n is odd.

Proof. Suppose for a contradiction that n is even. Then n >4 asn > 3. Let G = Qq, =
{a,b] a® =1,b* =a", a® = a~!). Then |a| = 2n, where |a| is the order of a, and hence
|a?| = n. Note that (a?) is a characteristic subgroup of G of index 4 and b* = a™ € (a?).

Furthermore, G = (a?) U b(a®) U a{a®) U ba{a?®). Define
@ : x> x for x € (a®) Ub(a*) and x + bx for = € a{a®) U ba(a?).

Then ¢ fixes every element in (a®) U b(a?) and acts on a({a?) U ba(a®) the same as the
restriction of the left multiplication of b on GG. Thus, ¢ is a permutation of order 4 on G,
and interchanges a(a?) and ba(a?®). First we prove a claim.

Claim: Let H C (a?) and K C a{a?®) such that H ! = H, K! = K and a"K = K.
Then ¢ is an isomorphism from I' = Cay(G,bH U K) to ¥ = Cay(G,bH U bK).

Let (u,v) be an arc of I'. Then v = su for some s € bH U K. First assume that
s € bH. Note that bH C b(a?). If u € (a®) Ub(a?), then v = su € (a®) Ub{a?). Tt
follows that u¥ = u and v¥ = v = su, which implies that (u?,v?) is an arc of 3 because
s € bH. If u € a{a?) U ba(a?), then v = su € a(a®) U ba(a?), and so u¥ = bu and
v¥ = bv = bsu = bsb™'(bu). Since H = H~ ' C (a?), we have bsb™! € b(bHb™') =
bH~! = bH, which implies that (u¥,v?) is an arc of ¥.. Next assume that s € K. Note
that K C a(a®). If u € (a®) U b(a?), then v = su € a{a®) U ba(a?®), which implies that
u? = u and v¥ = bv = bsu. Since bs € bK, it follows that (u?,v?) is an arc of 3.
If w € a(a®) Uba(a?), then v = su € (a?) U b(a?), which implies that u? = bu and
v =v=su=sb'bou=>0b"'s"tbuas s € (a). Since K!' = K and a"K = K, we have
that b='s™! = ba"s™! € ba" K~! = bK, and so (u¥,v¥) is an arc of ¥.. Thus, in every case,
(u®,v¥) is an arc of ¥, and hence ¢ is an isomorphism from I' to X, as claimed.

Note that every element in G\ (a) has order 4 and has the form ba' with 1 < i < 2n.
Since (a) is a characteristic subgroup of G, we obtain that

a® € {(a) and (ba")* ¢ {(a), for every a € Aut(G) and 1 <i < 2n. (1)

By hypothesis, G has the m-DCI property for some 1 < m < 2n — 1. Since n is even, we
have m # 1 by [29, Lemma 3.1], and thus 2 < m < 2n — 1.

Suppose m = 2. Take S = {b,b7'} and T = {a™?,a*"/?}. It is not difficult to see
that Cay(G,S) = nCy = Cay(G,T), where nCy is a disjoint union of n 4-cycles. Then
the 2-DCI property of GG implies that there is an automorphism of G mapping S to T,
contradicting (1).

Suppose m = 3. Take S = {b,b=',0*} and T = {a™? a*"/? a"}. Then Cay(G,S) =
nKy = Cay(G,T), where nKy is a disjoint union of n copies of K,. The 3-DCI property
of G gives an automorphism of G that maps S to T, contradicting (1).
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Suppose m = 4,5,6,7. It follows from |a| = 2n > 8 that a® # a2 Take K =
{a,a™, @™ a" 1}, and H =0, {1}, {1,a"} or {1, a? a~?}, respectively. Then we derive
from the Claim that Cay(G,bH U bK) = Cay(G,bH U K). Since G has the m-DCI
property, there exists an automorphism of G mapping bH UbK to bH U K, contradicting
(1).

Now we may assume that 8 < m < 2n — 1. Write m = 8k + j, where 0 < j < 7 and
k > 1. It follows that 4k < n. Set

_ 2 4 2k 2n—2 2n—4 2n—2k
Hy ={a*,a",...,a" a2 0™ ", ... Ja 1

Kl — {CL, CL3, o 7a2k717 a2n71’ a2n737 o ’a2n7(2k71)}.
Then H;' = H, C (a®), K;' = K, C a{a?),

n _ n+2 _n+4 n+2k n—2 _n—4 n—2k
a"Hy = {a"™,a"™,...,a""™" a"" % a coa" Y

n o n+1 _n+3 n+2k—1 n—1 _n-—3 n—(2k—1
a"Ky ={a"",a"", . . a ca" a3y

Y

(a"Hy)™' = a"H; C (a?), and (a"K;)"! = a"K; C a{a®). Moreover, we observe from
4k < n that |H,| = |K{| = |a"Hy| = |a"K;| = 2k. Suppose H; N a"H, # (). Let
xz € HiNa"H;. Note that

(HLNa"H) ' =H'N(a"H) ' =H Na"H,.

Since x € Hy, we may assume x = a*¢ for some e € {1,...,k}, and then we derive from
r € a"H, that a* = 2 = a" 2/ for some f € {1,...,k}. This implies that a"*2(+f) =1,
which is impossible because n + 2(e + f) < n+ 4k < 2n. Thus, H; Na"H; = ), and so
|H, Ua"H,| = 4k. Similarly, if K; Na"K; # (), then we can obtain a"*2(+f=1) = 1 for
some e, f € {1,...,k}, which is also impossible because n + 2(e + f — 1) < n + 4k < 2n.
Thus, K1 Na"K; = (), and so |Ky Ua" K| = 4k.

Note that the results of the above paragraph are proved under the condition 4k < n,
which is a consequence of the assumption. If further 4k + 2 < n, then we set

]J2 — Hl U {CLQ(k+1), a2n—2(k+1)} and K2 — Kl U {a2(l€+1)—17 aQn—2k—1}.

Then a similar argument to the above paragraph implies that H, ' = H, C (a?), K;' =
Ky C a{a®), (a"Hy)™' = a"Hy C (a?), (a"Ky) ™! = a"Ky C a(a?), |Ha| = |Ks| = |a"Hsy| =
la"Ks| = 2k + 2, |HyUa"Hy| = |KyUa"Ks| = 4k + 4. Recall that m = 8k + 7 with k > 1
and 0 < j < 7. We now discuss several cases according to j.

For j = 0, write H = Hi Ua"H; and K = K; U a"K;. We deduce from the Claim
that Cay(G,bH UbK) = Cay(G,bH U K). Then the m-DCI property of G provides an
automorphism of G mapping bH U bK to bH U K, contradicting (1). For j =1 or j = 2,
we have the same contradiction by taking K = K; Ua"K; and H = Hy Ua"H, U {1} or
H; Ua™Hy U {1, a"}, respectively. For j = 3, we have m = 8k + 3 < 2n — 1 and hence
4k +2 < n. If 4k + 2 = n, then we take H = H; Ua"H; U {1} and K = a{a?), and if
4k + 2 < n, then we take H = HyUa"H; U{1l} and K = K; Ua"K;. Similarly, the same
contradiction for (1) occurs.
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For j =4,5,6,7, we have 4k+2 <nasm =8k+7j < 2n—1. We take K = KoUa"Ks,
and H = HyUa"Hy, HHUa"H, U{1}, HyUa"H; or Hy Ua™H; U {1}, respectively. By
the Claim, Cay(G,bH UbK) = Cay(G,bH U K), and then the m-DCI property implies
that there is an automorphism of G mapping bH UbK to bH U K, contradicting (1). [

For the group G = Qg, with the m-DCI property and a prime divisor p of n such that
p+1<m<2n— 1, we have the following result.

Lemma 15. Let G be a generalized quaternion group of order 4n with n > 3. If G has
the m-DCI property such that p+1 < m < 2n — 1 for some prime divisor p of n, then p
is odd and n is not divisible by p*.

Proof. Let G = Qq, = {(a,b | a® =1, b* = a, a® = a~1). Suppose that G has the m-DCI
property such that p+1 < m < 2n — 1 for some prime divisor p of n. By Lemma 14, n
is odd, and so p is odd.

Write n/ = 2n/p, z = a” and P = (z). Then n/ is even and P is the unique subgroup
of order p in GG, which implies that P is characteristic in G. Suppose for a contradiction
that p divides n’. Note that (a) has the m-DCI property by Proposition 7 and by our
hypothesis on G. Then it follows from Proposition 8 that 2n — (p+ 1) < m < 2n — 1.
Define an integer j € {1,...,p — 2} and a subset @ of G as follows:

(m mod p, 0), if m#0or —1 (mod p)

(ja Q) = (p -2, {b})7 ifm=-1 (mOd p)
(p—2,{b,bz}), if m=0 (mod p).

Then m = kp+ j + |Q| for some positive integer k < n’ — 1. Write X = (z,b) = (z) x (b).
Then X has an automorphism 7 induced by z + 27! and b — b. Let Z = {z,...,2/} and
let

S=aPU(baPU---Uba*'P)U(ZUQ),
T =aPU(baPU---Ubd* 'P)U(Z7UQ).

Note that |S| = |T'| = m. Taking L = P and M = X and C = aPU(baPU---Uba*~1P) in
Lemma 12, we obtain Cay(G, S) = Cay(G,T). Since G has the m-DCI property, we have
S? =T for some 0 € Aut(G). Let z € aP. Then v = a2’ = a™ 1 for some 0 < £ < p—1,
which implies that |z| = 2n/(2n,¢n’ + 1). Since 2 divides n’ and p divides n', we have
(2n,fn’ +1) = 1, and so |x| = 2n. This means that every element in aP has order 2n.
Note that every element in (baP U---Uba*"1P)UQ U Q" has order 4 and every element
in Z U Z7 has order p. We derive from S? = T that (aP)? = aP and Z7 = Z7. Since (a)
is characteristic in G, it follows that a” = a” for some integer r. In particular,

{227y =2"=2"={z"" ..., 277}

Then by Lemma 9, r = —1 (mod p). Note that P° = P as P is characteristic in G. We
conclude that aP = (aP)° = a’ P’ = a" P, which leads to a"~* € P = (a™). However, this
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together with p dividing n’ implies that p divides r — 1, contradicting » = —1 (mod p).
Thus p does not divide n’, which means that n is not divisible by p?, completing the
proof. O]

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let G be a generalized quaternion group of order 4n with n > 3 such
that G has the m-DCI property for some 1 < m < 2n — 1. Then n is odd as Lemma 14
asserts. Furthermore, for any prime p < m — 1, according to Lemma 15 we have that n
is not divisible by p?. This completes the proof. O

4 Proof of Theorem 3

In this section, we prove Theorem 3. Besides being important ingredients of the proof of
Theorem 3, the following two lemmas are of their own interest as well.

Lemma 16. Let G < A < Sym(Q2) with G regular on ), and let H be a normal subgroup
of odd order n in G. Suppose G = H x (b) for some b € G with |b| € {2,4} such that
either G = H x (b) or h® = h™! for all h € H. Then for a regular subgroup X of A
isomorphic to G, the subgroups X and G are conjugate in A if and only if H and the
unique subgroup of order n of X are conjugate in A.

Proof. By the assumption of the lemma, there exists » = £1 such that h® = A" for all
h € H. Let X be a subgroup of A isomorphic to G. Then X has a unique subgroup of
order n, say Y, and we may write X =Y x (c) such that |b| = |¢| and y© = y" for all
y € Y. We need to prove that G and X are conjugate in A if and only if H and Y are
conjugate in A. The necessity is clear because H and Y are the unique subgroups of order
n in G and X, respectively. To finish the proof, assume that A has an element a with
Y* = H, and we shall show that there exists an element of A conjugating X to G.

Since ¢ € N4(Y'), we have ¢ € N4(Y*) = N4(H). Hence both the 2-elements b and
¢ are in N4(H). Let P be a Sylow 2-subgroup of N4(H) such that b € P. By Sylow
Theorem, there exists 8 € N4(H) such that (c*)? € P. Then

X = (Y x () =Y x () = HP x (™) = H x (c*P).

Let d = c* € P. Then |d| = |c| = |b| and h* = h" for all h € H as y* = y" forall y € Y.

Write m = [b|. Then m = 2 or 4. The regularity of G on 2 implies || = |G| =
|b||H| = mn. Since H is a normal subgroup of G, it follows that H has m orbits on €, say
1, Qy, ..., Qy,, where || = n forevery i € {1,...,m}. Moreover, since G = H x (b) with
|b| = m, the element b permutes the set {1, Qs,...,Q,} cyclicly. Similarly, d permutes
{Q1,Q, ..., 0} cyclicly because X = H x (d) with |d| = m.

Note that P is a 2-group and b,d € P. Every orbit of P on () has length 2-power
that is at least m, where m = 2 or 4. If every orbit of P on (2 has length greater than
m, then every orbit of P on €2 has length divisible by 2m, and so |{2| is divisible by 2m,
which is impossible because |2| = mn with n odd. Thus P has an orbit of length m,
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say A. In particular, both (b) and (d) are regular on A. Write A = {d1,02,...,0m}.
Since b permutes {4y, s, ..., Q,,} cyclicly, we have |A N Q;| = 1, say §; € €, for every
ie{l,...,m}.

Consider b and d®, namely, the permutations of A induced by b and d, respectively.
For m = 2, since both (b) and (d) are regular on A, we have b> = d® and set z = d. Now
assume m = 4. It is easy to check that if a product of two elements of order 4 in S, has
2-power order, then the two elements are equal or inverse to each other. Since bd € P has
2-power order, we conclude that b> = d> or b = (d~1)?. Set # = d in the former case,
and z = d~! in the latter case. Then summarizing this paragraph, we obtain b® = 22
with # = d*!. Consequently, bx~! fixes every element in A.

Since hd = h" for every h € H and r = +1, we have h% ' = A" for every h € H.
This together with z = d*' gives h* = h" = h® for every h € H, which indicates that
bx~! centralizes H. For each i € {1,...,m}, since bz™! fixes §; and €); is the orbit of
H containing d;, it follows that bz~! fixes every element in ;. Hence bz~! = 1, and so
by = (x) = (d). As X% = H x (¢*’) = H x (d), this shows that X*® = H x (b) = G,
which completes the proof. O

Based on Lemma 16, we may prove the following:

Lemma 17. Let G be a cyclic group of order 2'n with £ € {0,1,2} and n odd, and let p
be the least prime divisor of n. Then every connected Cayley digraph of G with valency
at most p is a CI-digraph.

Proof. Write G = (a) = Zy,. Let I' = Cay(G, S) be a connected Cayley digraph with
|S| < p, and let A = Aut(T"). If £ = 0, then since G is a connected p-DCI-group ( [21,
Theorem 1.1]), I' is a Cl-digraph, as required. Next we consider the case ¢ € {1,2}.
Denote by A; the stabilizer of 1 in A.

Assume that p does not divide |A;|. Since I' is connected and has valency at most
p, each prime divisor of |A;| is at most p. Then as p is the least prime divisor of n, we
conclude that |A;| is coprime to n. Let m be the set of prime divisor of n. It follows
from A = R(G)A; that (a*) is a Hall 7-subgroup of A. By [37, Theorem 9.1.10], all
nilpotent Hall m-subgroup of A are conjugate. Hence all subgroups isomorphic to <a2‘£)
are conjugate in A, and so all regular subgroups of A isomorphic to R(G) are conjugate
by Lemma 16. This shows that I' is a CI-digraph by Proposition 6.

Assume that p divides |A;|. If T has valency less than p, then the connectivity of T
means that |A;| is not divisible by p, a contradiction. Thus I' has valency p, and it further
follows from p dividing |A;| that I" is arc-transitive. Then by [28, Theorem 1.3], every
connected arc-transitive Cayley digraph over a cyclic group is a Cl-digraph, and hence I"
is a Cl-digraph. This completes the proof. n

Let X and Y be digraphs. The lezicographic product X[Y] of X and Y is de-
fined as the digraph with vertex set V(X) x V(Y) such that ((z1,y1), (z2,92)), where
x1, 22 € V(X) and y1,y2 € V(Y), is an arc if and only if (x1,25) € Arc(X), or 1 = x9
and (y1,72) € Arc(Y). We now give some sufficient conditions for Cayley digraphs of
generalized quaternion groups Qg, to be Cl-digraphs with n > 3 odd.
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Lemma 18. Let I' = Cay(Qun, S) be a connected Cayley digraph of Qu, with n > 3 odd,
and let A = Aut(I"). Then the following statements hold:

(a) If |A1] is coprime to n, then I' is a CI-digraph.
(b) Ifn is a power of a prime p and I' is arc-transitive with |S| = p, then T is a CI-digraph.

Proof. Let G = Qq, = (a,b | a® =1, b*> = a", a® = a™ '), and let 7 be the set of prime
divisors of n.

To prove part (a), suppose that |A;| is coprime to n. Since A = R(G)A; and n is odd,
we conclude that (R(a?)) is a Hall m-subgroup of A. Since all nilpotent Hall r-subgroups
of A are conjugate by [37, Theorem 9.1.10], Lemma 16 implies that all regular subgroups
of A isomorphic to R(G) are conjugate. Hence I' is a Cl-digraph by Proposition 6. This
proves part (a).

To prove part (b), suppose that n = p’ for an odd prime p and a positive integer ¢,
and that I' is arc-transitive with |S| = p. If £ = 1, it follows from Lemma 11 that Qg is
a DCI-group. Hence I' is a Cl-digraph.

From now on we assume that ¢ > 2. Since A; acts transitively on S, the order |A;| is

divisible by p, and so |A| = |R(G)||A1| = 4n|A;| is divisible by p‘Tl. Write
H = {a®) and N = N4(R(H)).

Since |R(H)| = |H| = p* and |A| is divisible by p*1, it is clear that R(H) is not a Sylow

p-subgroup of A. By Sylow Theorem and Proposition 4, |N| is divisible by p‘*!. Since
R(H) < R(G), we get R(G) < N. It follows that I' is N-vertex-transitive, and
|N.| = |N|/|R(G)| is divisible by p for every u € V/(T'). (2)

Hence I' is N-arc-transitive as |S| = p. Since N = N4(R(H)), we have R(H) < N. Since
|S| = p, it follows that I' is N-locally primitive. The orbit set of R(H) on V(I') is

{H,bH,b*H, b’ H} = V(T ia))-

Recall that T" is connected. Then we have ba’ € S for some integer i. Note that there is
an automorphism o of G sending a and b to a and ba’, respectively. Then replacing S by
S, we may assume that b € S, whence

Arc(Tran) = {(H,bH), (bH,b’H), (VH,0*H), (b*°H, H)}. (3)

By Lemma 13 (b), either R(H) is the kernel of N on V(I'ggy) and I' is a R(H )-cover of

%
I'gr(my, or I'reyy is the directed cycle Cy of length 4.
Assume that R(H) is the kernel of N on V(I'rx)) and I' is a R(H)-cover of I'g.
Then I'p(z) has order 4 and out-valency p > 3. Hence p = 3. According to [29, Theorem

1.4], Qqpe is a 3-DCI-group. Hence I' is a Cl-digraph, as required.
%
In the rest of proof, we show that I'p(y) cannot be the directed cycle Cy4. For this

— -
purpose, we claim that I' 2 C 4,1 [K,]. Suppose for a contradiction that I' =2 C -1 [K,].
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Then N has an imprimitive block system on V(I') such that each block is an independent
set of size p and the induced subdigraph of each two blocks is either Kgp or K,,. Let
A be an imprimitive block containing 1. Since R(G) is a regular subgroup of N, we
derive that A is a subgroup of G and S is a union of left cosets of A in G. Since b € S
and |S| = p, it follows that A = (") and S = bA = b(a?""). This implies that
(S) < (a7, b) = Qqp, contradicting the condition (S) = G by the connectivity of I.
To complete the proof, suppose that I'rgy = C4. To derive a contradiction, by the

above claim, we only need to show that I" = 6)4pz71[Kp]. Let C = C4(R(H)) and let
K be the kernel of C' acting on V(). Then R(H) < C, R(V*) € C, C < N, and
C/K < Aut(Ipm)) = Aut(84) =~ Z,. Note that b'H is an orbit for both R(H) and K.
By the Frattini argument, K = R(H)K, for v € V(I'). As T'gyy = 84, it follows that
C, fixes V(I pmy) pointwise. Hence €, < K and C, = K,,. Since K < C = C4(R(H)),
we obtain

K = R(H) x C, for every u € V(I). (4)

Consequently, C1Cy2 < K. Noting that R(H) is a p-group, it follows from (4) that | K|, =
|Cl|p’ = |Cb2|p’ = |010b2|p’~ Since |Cl N Cb2| = |Gl||Cb2|/|CICb2|7 this implies

1C1 N Cilyr = | K

In this paragraph, we prove by contradiction that K # R(H). Suppose that K =
R(H). Then (4) implies that C; = 1, and so N; acts faithfully on R(H) by conjugation.
Hence Ny < Aut(R(H)) = Zye-1(,_1) is cyclic. This together with (2) implies that N; has
a unique subgroup of order p, say P. Let L be the kernel of N acting on V(I'g(g)). Since
Lry = 6)4, it follows that N, fixes V(I'gmy) pointwise, which means that Ny = L.
Thus, by the Frattini argument, L = R(H)N;. Consequently, L/R(H) is cyclic. Write
M = R(H)P. Then M/R(H) is the unique subgroup of order p of L/R(H) and so
characteristic in L/R(H). Note that L/R(H) < N/R(H). Then M/R(H) < N/R(H).
This implies that R(H) < M < N, and so all orbits of M on V(I') have length |R(H)].
Clearly,

R(H)P = M = R(H)M, = R(H)M,.

Since |M| = |R(H)||P| = p|R(H)|, we obtain |M;| = p = |M,|. Hence both M; and M,
are cyclic groups of order p. Recall that Aut(R(H)) = Zyt-1(,_y) and £ > 2. The unique
subgroup of order p of Aut(R(H)) is generated by the automorphism v of R(H) = (R(a?))
defined by

v: R(a®) — R(a®)" = R(a*), where r:=p~' +1.

Since the action of M; < N; by conjugation on R(H) is faithful, it follows that
R(a*)™ = R(a®)" = R(a®") for some generator o of M.
For integers i and j, since a has order n = p’ and 7/ = jp*~' +1 (mod p*), we have

)- ()
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Take arbitrary xz,y € M. Since M = R(H)M,, we may write z = x1x5 and y = y;y, with
x1,y1 € R(H) and x5,y € M;. Then the commutator

[2,y] = [2132, y112) = (z122) " (y192) " (@122) (Y1y2) = (271)™ (yy 1) ™22 (1) 2.

This together with (5) implies that [x,y] € (R(a?*"")). Hence the derived group

Since M = MyR(H), we may write a = BR(a?) for some 3 of M, and integer . Since
|M'| = p, we derive from Proposition 5 that (R(a®)')? = (87'a)? = (B71)Pa? = 1.
Therefore, t is divisible by p‘~!. In particular, ¢ is divisible by p as £ > 2. Since

b — bﬁR(az)t _ bR(aQ)t — bCth,

we derive for each integer k that

2tk)a

(ba2tk>a _ bR(ath)a _ baR(a _ baR(aZtkr) _ (ba2t>R(a2tk’") _ ba2t(1+k”.

Hence « stabilizes b(a?!), and so M; = («) stabilizes b(a*). Note that the stabilizer M is
transitive or trivial on the out-neighborhood I' (1) = S of 1 in V/(I"). If M, is trivial on
S, then we obtain a contradiction that M; = 1 as [' is N-vertex-transitive and strongly
connected. Hence M is transitive on S, and so S = bM asb € S. Then S = b C b{a®),
and so (S) < (b,a?) < G as p divides ¢t. This contradicts the connectivity of I'. Therefore,
we obtain K # R(H).

Finally, we achieve I' 2 C ,.-1[K,] by discussing two cases.
Case 1: C1NCp = 1.

Recall that R(H) x C; = K # R(H). Then C; # 1, and |C1 |y = | K|y = |C1NCpr|y =
1. This means that C; is a p-group. Since C'/K < Zg4, it follows that K = R(H) x C} is
a Sylow p-subgroup of C' and thus characteristic in C'. Note that

(O C’l/(C’l N Cb2) = Clcb2/0b2 < K/Cb2 = R(H)

is cyclic. Hence K has a characteristic subgroup D = X xY = Z2 where Z, = X < R(H)
and Z, =2 Y < (). Then D is characteristic in C. As ' <IN, we have D < N. Since
X is semiregular of order p and Y fixes the vertex 1, we then conclude that the orbits of
D =Y X on V(I) all have length p. For every u € V/(I'), it follows that D = X D, and so
D, = Z, is either transitive or trivial on the out-neighborhood I'* (u) of w. If D, is trivial
on I'(u), then D, =1 as T' is N-vertex-transitive and strongly connected, contradicting
to Dy, = Z,. Thus D, is transitive on I'*(u) for every u € V(I"). This implies that if A,
and A, are two orbits of D and there is an arc from some vertex of Ay to some vertex of
Ag, then (z,y) € Arc(I") for all x € Ay and y € Ay. Since I' has out-valency p, it follows

that I' = C,,e1[K,], as required.
Case 2: C1NCyp # 1.
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Recall that I' gy = T andbe S, we have SN(HUVHUBH) = (). From C/K < Z4
we deduce that B := K(R(b?)) <C. Since R(b?) interchanges C; and Cj2 by conjugation,
we have C; N Cye < B. Note that H Ub*H and bH U b*H are the orbits of B on V().
Then the orbits of C; N Cy2 on bH U b*H have the same length, say ¢. Hence the valency
of I" is a multiple of . As I' is p-valent, we deduce that ¢t = 1 or p. Recall that

K = R(H) x C; = R(H) x Cy.

The group C; N Cy2 fixes H U b*H pointwise. If t = 1, then C; N Cy2 fixes both H U V¥*H
and bH U b®H pointwise, which means that C; N Cy2 = 1, a contradiction. Thus ¢t = p,
that is, the orbits of C; N Cy2 on bH Ub*H all have length p. Since R(b) € N normalizes
C, it follows that C, N Cys = (C, N Cy2) O fixes (H UH?H)R®) = bH Ub*H pointwise and
that the orbits of C;, N Cys on (bH U H)F®) = H UV?H all have length p. Let

T == (Cl N Cb2>(0(, N CbS).

Then all orbits of 7" on V(T") have length p. Note that C;NCy2 < T, for every v € HUWH
and C, N Cy < T, for every w € bH Ub*H. Then we derive from (3) that the stabilizer
T, is transitive on the out-neighbors of u in I" for every u € V(I'). This implies that if
A; and Ay are two orbits of T" and there exists an arc from some vertex of A; to some

vertex of Ay, then (z,y) € Arc(I') for all x € Ay and y € Ay. Hence I' = C -1 [K,], as
required. O]

Let T be a connected Cayley digraph of a finite group G of valency m < p, and let
A = Aut(I'). By the same argument as [19, Lemma 2.1] we see that every prime divisor
of |A;| is less than p. Thus the following result is a consequence of Lemma 18.

Lemma 19. Let n be a power of an odd prime p, let I' = Cay(Qun,S) be a connected
Cayley digraph of Qu, with |S| < p. Then T is a Cl-digraph.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let n = p*, where p is a prime and ¢ is a positive integer, let G =
Qun = (a,b|a® =1, =a", a®* = a!), and let m be an integer with 1 <m < 2n — 1.

First, we suppose that G has the m-DCI property. By Theorem 1, n is odd, and so
pis odd. If £ > 2, then it follows from Theorem 1 that m < p. This shows that either
n = p or m < p, which completes the proof of the necessity.

Next, we prove the sufficiency. So suppose that p is odd and either n = p or m < p.
If n = p, then it follows from Lemma 11 that Q4, is a DCI-group, and so G has the
m-DCI property. Now assume m < p. Let Cay(G, S) be a Cayley digraph with |S| = m,
and let Cay(G,T) be a Cayley digraph isomorphic to Cay(G,S). Since Cay(G,S) =
Cay(G,T), we have Cay((S),S) = Cay((T"), T, which implies that [(S)| = |(T)]. As G is
a generalized quaternion group of order 4p® with p odd prime, it follows that (S) = (T').
According to Lemma 10, there exists 6 € Aut(G) such that (T)° = (S). Then we have

CaY(<T>7T) = CaY(<T>6>T6) = Cay(<5>,T6),
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and hence Cay(({S),S) = Cay((S),T°). Set I' = Cay(({S),S). Then T is a connected
m-valent Cayley digraph with m = |[S| < p. As a subgroup of Qu,, we see that (5) is
either a cyclic or a generalized quaternion subgroup of Q4,. Since Lemmas 17 and 19
assert that T is a Cl-digraph, there is an automorphism of (S) mapping S to 7°. Again
by Lemma 10, this automorphism can be extended to an automorphism of GG, say v. Then
S7 = T°, and by taking 0 = 76! we have 0 € Aut(G) and S” = T. This shows that G
has the m-DCI property, proving the sufficiency. O
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