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Abstract

A graph Γ is said to be unstable if for the direct product Γ × K2, the group
Aut(Γ×K2) is not isomorphic to Aut(Γ)×Z2. We show that a connected and non-
bipartite Cayley graph Cay(H,S) is unstable if and only if the set S × {1} belongs
to a Schur ring over the group H × Z2 satisfying certain properties. The S-rings
with these properties are characterized if H is a cyclic group of twice odd order.
As an application, a necessary and sufficient condition is given for a connected and
non-bipartite circulant graph of order 2pe to be unstable, where p is an odd prime
and e > 1.

Mathematics Subject Classifications: 05C25, 20B25

1 Introduction

All groups in this paper will be finite and all graphs will be finite, simple, and undirected.
If Γ is a graph, then V(Γ), E(Γ) and Aut(Γ) denote its vertex set, edge set and auto-
morphism group, respectively. The direct product Γ×K2 of a graph Γ and the complete
graph K2 on two vertices, also known as the canonical double cover of Γ, is defined to
have vertex set V(Γ) × {0, 1} and edges {(u, 0), (v, 1)}, where {u, v} ∈ E(Γ). The graph
Γ×K2 admits natural automorphisms, namely the permutation

(v, i) 7→ (v, 1− i), where v ∈ V(Γ), i = 0, 1;

and for every α ∈ Aut(Γ), the permutation

(v, i) 7→ (vα, i), where v ∈ V(Γ), i = 0, 1.

These permutations can be easily seen to form a group, which is isomorphic to Aut(Γ)×Z2.
Now, we say that Γ is stable if Aut(Γ×K2) ∼= Aut(Γ)×Z2, and unstable otherwise. This
concept of stability was defined in [14]. Recently, several papers were devoted to the
stability of graphs [1, 8, 19, 27], especially to circulant graphs [2, 5, 9, 10, 18, 25].
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Let H be a group with identity element 1H , and let S ⊆ H be a subset such that
1H /∈ S and x−1 ∈ S whenever x ∈ S. The Cayley graph Cay(H,S) is defined to have
vertex set H and edges {x, sx}, where x ∈ H and s ∈ S. In the case when H is a cyclic
group, the term circulant graph is commonly used.

The goal of this paper is to propose an approach to the stability of Cayley graphs using
Schur rings. A Schur ring (S-ring for short) over a group G is a subring of the integer
group ring ZG satisfying certain conditions. S-rings were defined by Wielandt [24] and
studied first by Schur [20] in his investigation of permutation groups. S-rings became an
effective tool in algebraic combinatorics [16]. For the exact definition and all the S-ring
theoretical concepts, which appear in our results below, we refer to Section 2.

In Section 3, by translating [5, Lemma 2.4] into the language of S-rings, we establish
a necessary and sufficient condition for a connected and non-bipartite Cayley graph to be
unstable in terms of S-rings. We remark that none of the latter constraints on the given
Cayley graph is essential. It is easy to show that any disconnected graph as well as any
bipartite graph with a non-trivial automorphism group is unstable (see, e.g., [25]).

Proposition 1. Let G = H×〈a〉, where H is any finite group and 〈a〉 ∼= Z2. The following
conditions are equivalent for every connected and non-bipartite graph Cay(H,S).

(i) Cay(H,S) is unstable.

(ii) There exists a Schurian S-ring A over G such that H, Sa ∈ A and {a} /∈ A.

Proposition 1 suggests the following recipe for finding all connected and non-bipartite
unstable graphs Cay(H,S) on a given group H.

Step 1. Let G = H × 〈a〉, where 〈a〉 ∼= Z2. Describe all S-rings A over G
with H ∈ A and a /∈ A.

Step 2. Describe the connected and non-bipartite graphs Cay(H,S) using
the fact that Sa ∈ A for some S-ring A described in Step 1.

We explore this idea in the case when H is a cyclic group of order 2pe for an odd prime
p and e > 1. To the best of our knowledge, a characterization of the unstable circulant
graphs of order n and valency k is known only in some special cases: n is odd [5, 18],
n = 2p for a prime p [9], or k 6 7 [10]. Recently, the case where n is square-free was
solved [2] using one of the results developed in this paper (Theorem 3). Regarding abelian
groups of odd order, using elementary techniques, Witte Morris [26] obtained the following
theorem (as a demonstration of our approach, we give an alternative proof in Remark 13).

Theorem 2 ([26]). If H is an abelian group of odd order, then every unstable connected
graph Cay(H,S) has two vertices with the same neighbours.

In Section 4, we turn to the S-rings described in Step 1 in the case where H is a cyclic
group of twice odd order. The main result of the section is the following theorem.

the electronic journal of combinatorics 32(2) (2025), #P2.49 2



Theorem 3. Let G = H × 〈a〉, where H ∼= Z2n, n > 1, n is odd, and 〈a〉 ∼= Z2. If A is
an S-ring over G with H ∈ A and {a} /∈ A, then {a, ab} is a basic set of A, or⋂

X∈S(A), X∩H0a6=∅

rad(X ∩H0a) 6= 1,

where b is the unique involution of H and H0 is the subgroup of H of order n.

The above theorem shows that if Γ is a connected and non-bipartite Cayley graph of H
(using the notation of Theorem 3), then either Γ is a known example of an unstable Cayley
graph (because it is of Wilson type (C.1)), or Γ is stable modulo 〈b〉. The latter condition
implies that every automorphism of Γ × K2 factors to a well-defined automorphism of
(Γ/〈b〉)×K2, hence it is contained in the group Aut(Γ/〈b〉)× Z2. Based on Theorem 3,
we derive the following characterization of unstable connected and non-bipartite circulant
graphs of order 2pe for an odd prime p.

Theorem 4. Let H ∼= Z2pe, where p is an odd prime and e > 1. A connected and
non-bipartite graph Cay(H,S) is unstable if and only if one of the following conditions
holds.

(i) e > 1 and (S ∩H0)h = S ∩H0, where H0 is the unique subgroup of H of order pe

and h ∈ H0, h 6= 1G.

(ii) Cay(H,S) ∼= Cay(H,Sb), where b is the unique involution of H.

Remark 5. In fact, the sufficiency part of the theorem follows from known constructions
of unstable circulant graphs. The graphs satisfying the condition in case (i) are of Wilson
type (C.1) (see [25]), and those satisfying the condition in case (ii) are unstable by [9,
Proposition 3.7].

In deriving Theorem 4, besides S-rings, we shall also use generalized multipliers. A
brief account on generalized multipliers can be found in Section 5, the proof of Theorem 4
will be presented in Section 6.

2 Schur rings

In this section, we review the necessary Schur ring theory in order to keep our paper
self-contained. We begin by setting some notation.

For integers m 6 n, we use the symbol [m,n] to denote the set {i ∈ Z | m 6 i 6 n}.
For an integer n > 1 and a prime number p, np and np′ denote the p-part and the

p′-part of n, respectively, i.e., np is the largest power of p that divides n, and np′ = n/np.
For a group G, we denote by 1G the identity element and by G# the set of non-identity

elements.
For x ∈ G, o(x) denotes the order of x; and for a non-empty subset X ⊆ G, let

o(X) = |〈X〉|. The p-part of o(x) and o(X) are denoted by o(x)p and o(X)p, respectively.
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For an integer m > 1 such that m is not divisible by a prime p, we denote by σpi(m)
the order of m modulo pi, i.e., the smallest positive integer l satisfying ml ≡ 1(mod pi).

If G acts on a set X and x ∈ X, then Gx denotes the stabiliser of x in G, OrbG(x)
denotes the G-orbit containing x, and Orb(G,X) denotes the set of all G-orbits.

For g ∈ G, the right multiplication gr is the permutation of G acting as x 7→ xg
(x ∈ G). We let

Gr = {xr | x ∈ G} and Sup(G) = {A 6 Sym(G) | Gr 6 A}.

For a non-empty subset X ⊆ G, the element
∑

x∈X x in the group ring ZG is denoted
by X.

2.1 The definition and some properties

Definition 6. (Wielandt [24, Chapter IV]) A subring A of the group ring ZG is called a
Schur ring (S-ring for short) if there exists a partition S(A) of G such that

(i) {1G} ∈ S(A).

(ii) If X ∈ S(A) then X−1 ∈ S(A).

(iii) A = SpanZ{X | X ∈ S(A)}.

The subsets in S(A) are called the basic sets of A and the number rank(A) := |S(A)|
is called the rank of A. The motivation of the above definition can be explained by the
result of Schur [20] stating that for any group A ∈ Sup(G), the free Z-module

SpanZ{X | X ∈ Orb(A1G , G)}

is a subring of ZG. This ring is an example of an S-ring, which is also called the transitivity
module over G induced by A and denoted by V (G,A1G). An S-ring A is called Schurian if
A = V (G,B1G) for some permutation group B ∈ Sup(G). We remark that not all S-rings
are Schurian (see [24]).

If A and B are two S-rings over G, then their usual intersection A∩B is also an S-ring
over G (see, e.g., [15, the paragraph following Theorem 4.2]). Moreover, if both A are B
are Schurian, then A ∩ B is also Schurian.

Let A be an S-ring over a group G. A subset X ⊆ G is called an A-set if X ∈ A, and
a subgroup H 6 G is called an A-subgroup if H ∈ A. We say that A is primitive if 1 and
G are the only A-subgroups of G.

There are two natural A-subgroups associated with an A-set X, namely, 〈X〉 and the
radical of X defined as

rad(X) = {g ∈ G | Xg = X and gX = X}

(see [24, Propositions 23.5 and 23.6]). If H and K are two A-subgroups, then it can be
easily checked that so are H ∩K and 〈H ∪K〉.
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Let H 6 G be an A-subgroup. Then the free Z-module

AH := SpanZ{X | X ∈ S(A), X ⊆ H}

is an S-ring over H, which is called an induced S-subring of A. Furthermore, if X ∈ S(A),
then there is a positive constant ` such that

∀x ∈ G, |Hx ∩X| = 0 or `. (1)

Assume, in addition, that H E G. For an arbitrary non-empty subset X ⊆ G, we let
X/H denote the subset of the quotient group G/H defined by

X/H = {Hx | x ∈ X}.

It follows that the sets X/H form the basic sets of an S-ring over G/H while X runs
over S(A) (see [23]). The latter S-ring is called a quotient S-ring and denoted by AG/H .
In what follows, if K,L are two A-subgroups such that L E K, then the more simple
notation AK/L will be used instead of (AK)K/L. Note that, if A is Schurian, then so is
AK/L.

2.2 Products of S-rings

Definition 7 ([7]). Let A be an S-ring over a group G and V,W 6 G be two A-subgroups.
The S-ring A is the star product of AV with AW , written as A = AV ?AW , if the following
conditions hold.

(i) V ∩W E W .

(ii) For every X ∈ S(A), if X ⊆ (W \ V ), then X is a union of some (V ∩W )-cosets.

(iii) For every X ∈ S(A), if X ⊆ (G \ (V ∪W )), then there exist basic sets Y, Z ∈ S(A)
such that Y ⊆ V , Z ⊆ W and X = Y Z.

The star product is non-trivial if 1 < V < G. In the special case when V ∩W = 1 it
is also called the tensor product and written as AV ⊗AW .

If A and B are two S-rings over G such that A ⊆ B, then A is also called an S-subring
of B. In this case every basic set of A can be written as a union of basic sets of B.

Definition 8 ([3, 12]). Let A be an S-ring over a group G and let L,U be A-subgroups of
G such that L 6 U . The S-ring A is the U/L-wreath product (also called the generalised
wreath product of AU with AG/L) if the following conditions hold.

(i) L E G.

(ii) For every X ∈ S(A), if X ⊆ G \ U , then X is a union of some L-cosets.

The U/L-wreath product is non-trivial if L 6= 1 and U 6= G. The following simple
relation with the star product will be used later, hence we record it here.
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Lemma 9. Let A be an S-ring over a group G such that A = AV ?AW and V ∩W E G.
Then A is the V/(V ∩W )-wreath product.

Proof. Let X ∈ S(A) be an arbitrary basic set outside V . We have to show that V ∩
W 6 rad(X). This follows from Definition 7(ii) if X ⊆ W . Let X be outside W . By
Definition 7(iii), there exist basic sets Y, Z ∈ S(A) such that Y ⊆ V , Z ⊆ W and
X = Y Z. Then V ∩W 6 rad(Z), implying that V ∩W 6 rad(Y Z) = rad(X).

2.3 S-rings over abelian groups

Let G be a group. For a subset X ⊆ G and integer m, define X(m) = {xm | x ∈ X}, and
for a group ring element η =

∑
x∈G cxx, define η(m) =

∑
x∈G cxx

m. If G is also abelian
and d is a divisor of |G|, let

G[d] = {x ∈ G | xd = 1G};

furthermore, for a prime divisor p of |G|, define the subset X [p] ⊆ G as

X [p] = {xp | x ∈ X and |X ∩ xG[p]| 6≡ 0 (mod p)}.

Note that X [p] is possibly the empty set.
The next properties are also referred to as Schur’s first and second theorem on multi-

pliers, respectively (see [16]).

Theorem 10. Let A be an S-ring over an abelian group G.

(i) ([16, Theorem 3.1]) If m is an integer coprime to |G| and η ∈ A, then η(m) ∈ A. In
particular, X(m) ∈ S(A) whenever X ∈ S(A).

(ii) ([16, Theorem 3.3]) If p is a prime divisor of |G| and X is an A-set, then X [p] is
an A-set.

In the following proposition we consider S-rings over abelian groups having a Sylow
q-subgroup of order q. In the case where q > 2 and rank(A) > 2, the statement was
derived by Somlai and Muzychuk, see [21, Proposition 3.1].

Proposition 11. Let H = P × Q, where P is an abelian group of order n and Q ∼= Zq
for a prime q such that q - n. Let A be an S-ring over H and T be a basic set of A with
the property that T (m) = T whenever q - m and m ≡ 1(mod n).1 Let P1 be the maximal
A-subgroup contained in P and Q1 be the minimal A-subgroup containing Q. Then

T = S1 ∪ S−1Q# ∪ S0Q,

where S1, S−1 and S0 are pairwise disjoint subsets of P , and S1 and S−1 are A-subsets.
In addition, the sets S1, S−1 and S0 satisfy the following conditions.

1Subsets with this property are called Mq-invariant in [21].
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(i) If S1 6= ∅, then S−1 = S0 = ∅ and T ⊆ P1.

(ii) If S1 = ∅ and S−1 6= ∅, then T = S−1(Q1 \ P1).

(iii) If S1 = S−1 = ∅, then Q1T = T .

Proof. If rank(A) = 2, then T = {1H} or H#. If T = {1H}, then case (i) holds; and if
T = H#, then case (ii) holds with S−1 = {1H}, P1 = 1, and Q1 = H. For the rest of the
proof we assume that rank(A) > 2.

If q > 2, then the statement is true by [21, Proposition 3.1], and therefore, we are left
with the case where q = 2. In this case it follows immediately that T can be written in
the form T = S1 ∪S−1Q# ∪S0Q, where S1, S−1 and S0 are pairwise disjoint subsets of P .

We compute that T [2] = S
(2)
1 ∪ S

(2)
−1 .

Suppose that S1 ∪ S−1 6= ∅. We show that one of cases (i) and (ii) in the proposition
holds, and that both sets S1 and S−1 are A-subsets. By the Chinese remainder theorem,
there exists an odd integer k satisfying 2k ≡ 1(mod n) (note that n is odd as q - n).
Then,

(T [2])(k) =
(
S
(2)
1 ∪ S

(2)
−1
)(k)

= S1 ∪ S−1.

Applying Theorem 10(i)-(ii) to T yields that S1∪S−1 is anA-subset. The group 〈S1 ∪ S−1〉
is an A-subgroup contained in P . It follows that S1 ∪S−1 ⊆ P1. If S1 6= ∅, then the basic
set T intersects P1 non-trivially, implying that T ⊆ P1, since P1 is an A-subgroup. We
conclude that case (i) holds and S1 is an A-subset.

Let S1 = ∅. Then S−1 ∪ T is an A-subset, for which Q 6 rad(S−1 ∪ T ). Since
rad(S−1 ∪T ) is an A-subgroup, it follows that Q1 6 rad(S−1 ∪T ), or equivalently, (S−1 ∪
T )Q1 = S−1 ∪ T . It follows from this that S−1Q1 ⊆ S−1 ∪ T , and hence

S−1(Q1 \ P1) ⊆ S−1 ∪ T. (2)

Now, if S−1(Q1\P1)∩S−1 6= ∅, then there exist s, s′ ∈ S−1 and t ∈ Q1\P1 such that st = s′.
But S−1 ⊆ P1, implying that t ∈ P1 as well, a contradiction. Thus S−1(Q1 \P1)∩S−1 = ∅,
and we retrieve from (2) that S−1(Q1 \ P1) ⊆ T . On the other hand, as both S−1 and
Q1\P1 are A-subsets, so is S−1(Q1\P1). Since basic sets are minimal A-subsets, it follows
that S−1(Q1 \ P1) = T , i.e., case (ii) holds.

Finally, suppose that S1 = S−1 = ∅. In this case Q 6 rad(T ), implying that Q1 6
rad(T ). Equivalently, Q1T = T , i.e., case (iii) holds.

The theorem below was derived by Somlai and Muzychuk [21] for q > 2 (part (i) is
Corollary 3.2, and parts (ii)–(iv) are Propositions 3.3, 3.4, and 3.5, respectively). The
proof relies on Proposition 11 and can be extended to cover also the case where q = 2 by
copying the arguments in [21]. Therefore, we omit the proof.

Theorem 12. With the notation given in Proposition 11, let rank(A) > 2, H1 = P1Q1,
and A1 = AH1. The following statements hold.

(i) A is a H1/Q1-wreath product.
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(ii) P1 is an A1-maximal subgroup.

(iii) If |H1/P1| 6= q, then (A1)H1/P1 has rank 2 and A1 = (A1)P1 ? (A1)Q1.

(iv) If |H1/P1| = q and (A1)H1/P1 = Z(H1/P1), then A1 = (A1)P1 ? (A1)Q1.

Remark 13. One can combine Theorem 12 and Proposition 1 to derive Theorem 2.
Indeed, suppose that H is an abelian group of odd order and Cay(H,S) is a connected

and unstable graph. By Proposition 1, there is a Schurian S-ring A over H×〈a〉, 〈a〉 ∼= Z2

such that H,Sa ∈ A and {a} /∈ A. Let us apply Theorem 12 to A (we let q = 2). Recall
that P1 is the maximal A-subgroup of odd order, Q1 the minimal A-subgroup of even
order, H1 = P1Q1, and A1 = AH1 . It follows that P1 = H and Q1 > 〈a〉. In particular,
L := P1 ∩Q1 6= 1. Clearly, H1 = P1Q1 = G, hence A = A1 and by Theorem 12(iii)-(iv),

A = AP1 ?AQ1 .

By Lemma 9, A is the P1/L-wreath product. Since Sa is a union of some basic sets
of A, all of which are outside P1, it follows that L 6 rad(Sa). Consequently, as vertices
of Cay(H,S), any two x, y ∈ L have the same neighbours.

In the remaining part of this subsection we prove two lemmas on S-rings.

Lemma 14. With the notation given in Proposition 11, let q = 2 and let L = P1 ∩ Q1.
Then Q1 \ L is a basic set. Furthermore, A is the P1/L-wreath product.

Proof. Let a be the unique involution of H and T be the basic set of A containing a. We
show now that T = Q1 \ L. Clearly, L ∈ A. Consider the S-ring AQ1/L. We claim that
it is primitive. If not, then there was an A-subgroup N such that L < N < Q1. Since
N < Q1, N cannot contain a by the minimality of Q1. Thus N 6 P1, so N 6 P1∩Q1 = L,
contradicting the assumption that N > L.

Wielandt showed that every primitive S-ring over an abelian group of composite order
with a cyclic Sylow subgroup has rank 2 (see the proof of [24, Theorem 25.4]). Thus
rank(AQ1/L) = 2, and combining this with (1) yields the existence of a positive number `
such that

|Lx ∩ T | = ` for every x ∈ Q1 \ L.
On the other hand, AP1Q1 = AP1 ? AQ1 by Theorem 12(iii)-(iv). This shows that

La ⊆ T , so ` = |L|, i.e., T = Q1 \ L.
Let X ∈ S(A) be an arbitrary basic set outside P1. We have to show that L 6 rad(X).

If X 6⊆ P1Q1, then P1Q1 6= H, and A is a non-trivial P1Q1/Q1-wreath product due to
Theorem 12(i), in particular, L 6 Q1 6 rad(X). If X ⊆ P1Q1, then L 6 rad(X) follows
from Lemma 9 and Theorem 12(iii)-(iv).

Lemma 15. Let H = E×F be an abelian group such that E = 〈u, v〉 ∼= Z2
2 and |F | is odd.

Suppose that A is a Schurian S-ring over H such that F , 〈F, v〉 ∈ A and {u, uv} ∈ S(A).
Let X ∈ S(A), X 6⊆ 〈F, v〉. Then

|X ∩ Fu| = |X ∩ Fuv|.
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Furthermore, both sets X ∩ Fu and X ∩ Fuv are basic sets of a Schurian S-ring B over
H, for which A ⊂ B.

Proof. As A is Schurian, A = V (H,A1H ) for a group A ∈ Sup(H). Let K be the kernel of
the action of A on the set [H : F ] consisting of the F -cosets in H, and let B = K〈ur, vr〉.
Clearly, B ∈ Sup(H). Let B = V (H,B1H ).

Since B < A, it follows that B ⊃ A. The sets {u, uv}/F and X/F are basic sets of the
S-ring AH/F whose intersection is non-empty. Thus, they are equal, implying that there
are elements x1 ∈ X ∩ Fu and x2 ∈ X ∩ Fuv.

Let Xi be the basic set of B containing xi for i = 1, 2. Clearly, X1 and X2 are contained
in X and belong to different F -cosets. Observe that A1H ∩Ax1 6 K. It follows from this
that A1H ∩Ax1 = B1H ∩Bx1 . Also, |B| = |K||E| = |A|/2, and therefore, |B1H | = |A1H |/2.
These together with the orbit-stabilizer lemma yield

|X1| =
|B1H |

|B1H ∩Bx1 |
=

|A1H |
2|A1H ∩ Ax1|

= |X|/2.

The same argument shows that |X2| = |X|/2, and so |X1| = |X2| and X1 = X ∩ Fu and
X2 = X ∩ Fuv.

2.4 S-rings over cyclic p-groups

The basic sets of S-rings over a cyclic group are described in [15, Theorem 5.9]. In the
case where the order of the cyclic group is a p-power for a prime p > 2, the description
was obtained earlier by Pöschel [17], and in the case where the order is a 2-power, it was
derived in [6, 11].

For our purposes, we need to consider the special case where the order of the cyclic
group is a power of an odd prime. In order to invoke this description, we need one more
concept. Given an S-ring A over a group H, a basic set X ∈ S(A) is called cyclotomic if
it is a K-orbit for some subgroup K 6 Aut(H).

Proposition 16 ([17, Lemma 4.8]). Let A be an S-ring over a cyclic p-group H for an
odd prime p. For every basic set X ∈ S(A), one of the following holds.

(i) X is cyclotomic.

(ii) |H| > p and X = F \ E, where 1 6 E < F 6 H and |F | > p|E|.

A constructive characterization of S-rings over a cyclic group was given by Leung and
Man [12, 13], which was later refined in [4]. Again, we are content with considering only
p-groups, where p is an odd prime.

Proposition 17 (cf. [16, Theorem 4.10]). Let A be an S-ring over a cyclic p-group H
for an odd prime p. Suppose that there is a basic set X ∈ S(A) such that 〈X〉 = H and
rad(X) = 1. Then X = H#, or A = V (H,K), where K 6 Aut(H) and p - |K|.
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3 Proof of Proposition 1

We keep the notation set in Proposition 1, i.e., G = H × 〈a〉, where H is any group and
〈a〉 ∼= Z2, furthermore, Cay(H,S) is a connected and non-bipartite graph.

It can be easily seen that Cay(H,S) × K2
∼= Cay(G,Sa). Moreover, Cay(H,S) is

stable if and only if

Aut(Cay(G,Sa)) = Aut(Cay(H,S))× 〈ar〉, (3)

where by the latter group we mean the direct product of two permutation groups acting
on G = H × 〈a〉. We let A = Aut(Cay(G,Sa)) and write 1 for 1G. The following claim is
a direct consequence of [5, Lemma 3.3]. As the proof is short, we include it here.

Claim. Cay(H,S) is stable if and only if arα = αar for every α ∈ A1.

Proof of the claim. The implication “⇒” is clear by (3).
For the implication “⇐”, assume that arα = αar for every α ∈ A1, where A1 is

the stabilizer of 1 in A. The graph Cay(G,Sa) is bipartite with colour classes H and
Ha. Since Cay(H,S) is connected and non-bipartite, it follows that Cay(G,Sa) is also
connected. Therefore, the partition of G into H and Ha is A-invariant. Let α ∈ A1.
Then Hα = H. Let β be the permutation of H induced by α. Then for every x ∈ H,
(xa)α = xarα = xαar = xβa. This means that α ∈ Sym(H) × 〈ar〉. We show now that
β ∈ Aut(Cay(H,S)).

Pick an arbitrary edge {x, sx} of Cay(H,S). Then {x, sax} ∈ E(Cay(G,Sa)), and
since α ∈ A1, it follows that

(sax)α = s′axα for some s′ ∈ S.

On the other hand, (sax)α = (sx)βa and s′axα = s′xβa. We obtain that β maps
the edge {x, sx} to the edge {xβ, s′xβ}, so β ∈ Aut(Cay(H,S)). We showed that A1 6
Aut(Cay(H,S)) × 〈ar〉. Using this, together with the fact that A = A1Gr and (3), we
deduce that Cay(H,S) is stable.

Assume first that Cay(H,S) is unstable. It is sufficient to show that the S-ring A =
V (G,A1G) satisfies all the conditions in Proposition 1(ii). i.e.,

H, Sa ∈ A and {a} /∈ A. (4)

It is clear that Sa ∈ A. It has been shown above that H and Ha form an A-invariant
partition. This implies that H ∈ A. Finally, due to the claim, arα 6= αar for some
α ∈ A1. Thus (ga)α 6= gαa for some g ∈ G. Using that a ∈ Z(G), this can be rewritten as
(ag)α(gα)−1 6= a. Letting a′ = (ag)α(gα)−1 and α′ = grα · ((gα)−1)r, we find that 1α

′
= 1

and aα
′
= a′ 6= a, showing that {a} 6∈ A.

Now assume that there is a Schurian S-ring A over G satisfying all conditions in
(4). Then A = V (G,B1G) for some permutation group B ∈ Sup(G). Observe that, as
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Sa ∈ A, B 6 A. Assume to the contrary that Cay(H,S) is stable. Then αar = arα for
every α ∈ A1 due to the claim above, hence

OrbB1(a) =
{

1arx | x ∈ B1

}
=
{

1xar | x ∈ B1

}
= {a}.

This, however, contradicts the condition that {a} /∈ A. The proof of Proposition 1 is
completed.

4 Proof of Theorem 3

For this section we set the following assumptions.

Hypothesis 18. H is an abelian group of twice odd order with a unique involution b and
H0 < H is the unique subgroup of H of order |H|/2 and |H| > 2. Furthermore,

A is an S-ring over G = H × 〈a〉, where 〈a〉 ∼= Z2 such that H ∈ A.

T is the basic set of A containing a.

K is the largest A-subgroup of odd order.

The proof of Theorem 3 will be given in the end of the section following four prepara-
tory lemmas.

The following simple fact will be used a couple of times hence we record it here. If
A,B 6 G are any subgroups and S ⊆ G is any non-empty subset, then

AB/B 6 rad(S/B) =⇒ A 6 rad(SB). (5)

Lemma 19. Assuming Hypothesis 18, suppose that Kab ∈ A and La ⊆ T for some
A-subgroup L, L 6 H0. Then

L 6
⋂

X∈S(A), X 6⊆H∪Kab

rad(X).

Proof. Fix a basic set X ∈ S such that X 6⊆ H ∪Kab. We show now that L 6 rad(X).
As L ∈ A, there is a positive number ` such that |X ∩ Lx| = 0 or ` for every x ∈ G, see
(1). As X 6⊆ H, X can be expressed as

X = X1a ∪X2ab ∪X3a ∪X3ab,

where X1, X2 and X3 are pairwise disjoint subsets of H0.
Assume first that X1 ∪X2 = ∅. Then b ∈ rad(X), hence Q 6 rad(X), where Q is the

least A-subgroup containing b. Let us consider the S-ring AG/Q. Then G/Q has twice
odd order and T/Q is a basic set of AG/Q containing the unique involution of G/Q. It
follows from Lemma 14 that

T/Q = 〈T 〉Q/Q \H/Q and 〈T 〉Q/Q ∩H/Q 6 rad(X/Q).
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The group 〈T 〉Q/Q ∩ H/Q = (〈T 〉 ∩ HQ)Q/Q. Using (5), we obtain 〈T 〉 ∩ HQ 6
rad(XQ) = rad(X). As La ⊆ T , L 6 〈T 〉 ∩HQ, so L 6 rad(X).

Now assume that X1 ∪X2 6= ∅, Then X [2] = (X1 ∪X2)
(2). Due to Theorem 10(ii), the

latter set is an A-set, which is clearly contained in K. As |K| is odd, there is an integer
m such that gcd(m, |K|) = 1 and 2m ≡ 1(mod |K|). Using Theorem 10(i), we conclude
that X1 ∪ X2 = (X1 ∪ X2)

(2m) is also an A-set. If X2 6= ∅, then X ∩ Kab 6= ∅, hence
X ⊆ Kab. This is impossible by our assumption that X 6⊆ Kab, thus X2 = ∅ and X1 6= ∅.
Then X ·X(−1)

1 ∈ A. We have X ·X(−1)
1 =

∑
x∈G αxx for some non-negative integers αx’s.

It is easy to see that αa = |X1|. Also, αy = αa for every y ∈ T because T is a basic set
and a ∈ T . In particular, as La ⊆ T , we obtain that∑

y∈La

αy = |X1| · |L|.

Now fix x ∈ X1. Denote by νx the number of elements x′ ∈ X such that x′x−1 ∈ La.
We find that νx = |X ∩ Lax| = ` because ax ∈ X. Then we can write that

|X1| · |L| =
∑
y∈La

αy =
∑
x∈X1

νx = |X1| · `.

This shows that ` = |L|, so L 6 rad(X).

Lemma 20. Assuming Hypothesis 18, suppose that ab ∈ T and La ⊆ T for some A-
subgroup L, L 6 H0. Then A is the H/L-wreath product.

Proof. Assume to the contrary that there is a basic set X, X 6⊆ H and L 66 rad(X). Due
to (1), there is a constant `, 0 < ` < |L| such that |X ∩ Lx| = 0 or ` for every x ∈ G.
Since |L| is odd, it is possible to choose X so that ` < |L|/2.

As X 6⊆ H, X = X1a∪X2ab∪X3a∪X3ab, where X1, X2 and X3 are pairwise disjoint
subsets of H0. If X1 ∪ X2 = ∅, then the argument, used in the proof of the previous
lemma, yields that L 6 rad(X). This is impossible, hence X1 ∪X2 6= ∅.

Consequently, X1∪X2 is a non-emptyA-set, and the product X ·X(−1)
1 ∪X(−1)

2 belongs
to A. Write it as

∑
x∈G αxx. It is easy to see that αa = |X1| and αab = |X2|. Since ab ∈ T ,

αa = αab, so |X1| = |X2|. As La ⊆ T , we obtain∑
y∈La

αy = |X1| · |L|.

Now fix x ∈ X1 ∪ X2 and denote by νx the number of elements x′ ∈ X such that
x′x−1 ∈ aL. Notice that νx = |X ∩Lax|, and so νx = 0 or ` for every x ∈ X1 ∪X2. Then
we can write

|X1| · |L| =
∑
y∈La

αy =
∑

x∈X1∪X2

νx 6 (|X1|+ |X2|) · ` = |X1| · 2`.

This contradicts our assumption that ` < |L|/2.
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Lemma 21. Assuming Hypothesis 18, suppose that T = La ∪ Lab for some subgroup
L 6 H0, L 6= 1, and L contains no non-trivial A-subgroup. Then A is the H/M-wreath
product, where M = 〈b, L〉.

Proof. Observe that 〈T 〉 = 〈a, b〉L. Thus 〈T 〉 ∩ H = M , in particular, M ∈ A because
both 〈T 〉 and H are A-subgroups. Let N be a minimal non-trivial A-subgroup contained
in M = 〈L, b〉. Then AN is a primitive S-ring. As N 66 L, 〈b〉 is a Sylow 2-subgroup of
N . By a result of Wielandt (see [24, Theorem 25.4]), AN has rank 2, and we have that
N# is a basic set.

Consider the S-ring AG/N . Then G/N has twice odd order and T/N is the basic set
containing the unique involution. It follows from Lemma 14 that

T/N = 〈T 〉/N \H/N and 〈T 〉/N ∩H/N 6 rad(X/N),

where X ∈ S(A), X 6⊆ H. The group 〈T 〉/N ∩H/N = M/N , and by (5), M 6 rad(NX).
This shows that it is sufficient to show that N 6 rad(X) for every basic set X ∈ S(A),
X 6⊆ H.

Assume to the contrary that there is a basic set X such that X 6⊆ H and N 66 rad(X).
Due to (1), there is a constant `, 0 < ` < |N | such that |X∩Nx| = 0 or ` for every x ∈ G.
It is possible to choose X such that ` 6 |N |/2.

As X 6⊆ H, X = X1a∪X2ab∪X3a∪X3ab, where X1, X2 and X3 are pairwise disjoint
subsets of H0. Let us consider the product X ·X(−1), which is in A. Write it as

∑
x∈G αxx.

It is easy to see that αb = 2|X3|. As N# is a basic set, we obtain∑
y∈N#

αy = 2|X3| · (|N | − 1).

Now fix x ∈ X. If νx denotes the number of elements x′ ∈ X such that x′x−1 ∈ N#, then
we find that νx = |X ∩Nx| − 1 = `− 1, and so we obtain that

2|X3| · (|N | − 1) =
∑
y∈N#

αy =
∑
x∈X

νx = |X| · (`− 1). (6)

This combined with the fact that |X| = 2|X3|+ |X1|+ |X2| and the assumption that
` 6 |N |/2 yield that

2|X3| < |X1|+ |X2|. (7)

In particular, X1 ∪X2 6= ∅.
Let us consider the product X · (X(−1)

1 ∪X(−1)
2 ) =

∑
x∈G βxx. Computing the value∑

y∈Na βy in two ways as in the proof of Lemma 20, we deduce that

|X1| · |N | = |X1| · 2`.

We show next that ` = 1, and hence N = 〈b〉.
Choose y, z ∈ X1a∪X2ab such that y 6= z, and assume for the moment that My = Mz.

If y, z ∈ X1a or y, z ∈ X2ab, then yz−1 ∈ M ∩ 〈X1 ∪X2〉. If y ∈ X1a and z ∈ X2ab,
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then as b ∈ M , bz ∈ X2a, and we get y(bz)−1 ∈ M ∩ 〈X1 ∪X2〉. Note that y 6= bz
because X1 ∩X2 = ∅. The set X1 ∪X2 is an A-set and we obtain that 〈X1 ∪X2〉 ∩M is
a non-trivial A-subgroup. But, as the latter subgroup is contained in L = H0 ∩M , this
contradicts our initial assumption that no such subgroup exists. Thus, My 6= Mz. This
implies that Ny 6= Nz also holds, therefore, if ` > 1, then we can write that

|X1|+ |X2| 6
∑

x∈X1a∪X2ab

|Nx ∩ (X3a ∪X3ab)| 6 2|X3|.

This contradicts (7), and we conclude that ` = 1.
Substituting this in (6) gives us that X3 = ∅. We have shown above that M 6

rad(NX). Let x ∈ X. Using also that N = 〈b〉 and X = X1a ∪X2ab, we find that

|M | = |Mx ∩NX| = |Mx ∩ (X ∪Xb)| = |Mx ∩X|+ |Mx ∩Xb|
= 2|Mx ∩X| = 2|Mx ∩ (X1a ∪X2ab)|,

where the third equality is true because X ∩ Xb = ∅ and the fourth equality follows as
b ∈ M . Finally, then |Mx ∩ (X1a ∪ X2ab)| = |M |/2 = |L| > 1, which contradicts our
previous observation that My 6= Mz for any distinct elements y, z ∈ X1a ∪X2ab.

In our last lemma before the proof of Theorem 3 we describe the basic set T when H
is a cyclic group.

Lemma 22. Assuming Hypothesis 18, suppose that H is a cyclic group. Then

T ∈
{
La, La ∪ Lab | 1 6 L 6 H0

}
∪
{
Ma ∪ (M \ L)ab | 1 6 L < M 6 H0

}
. (8)

Proof. We proceed by induction on |H0|. Suppose first that |H0| = p for a prime p. For
every integer k such that gcd(k, 2p) = 1, ak = a, and thus T (k) = T due to Theorem 10(i).
It follows that T is one of the following sets:

{a}, {a, ab}, {a} ∪H#
0 ab, {a} ∪H0ab, H0a, H0a ∪ {ab}, H0a ∪H#

0 ab, H0a ∪H0ab.

Thus (8) holds unless T = {a} ∪H#
0 ab or {a} ∪H0ab or H0a∪ {ab}. In each of the latter

cases, H0 = 〈T [2]〉, so H0 ∈ A by Theorem 10(ii). Then, however, |T ∩H0a| 6= |T ∩H0ab|,
contradicting the identity in (1). This shows that the lemma holds if |H0| is a prime.

Now assume that |H0| is a composite number. Let R = rad(T ). If R 6= 1 and |R| is
odd, then the lemma follows from the induction hypothesis applied to AG/R. Whereas if
|R| is even, then the lemma follows from Lemma 14 applied to AG/R. For the rest of the
proof let R = 1. We are going to show that T = M{a, ab} \ {ab} for some 1 6 M 6 H0,
in particular, (8) holds in this case as well.

Write T as
T = T1a ∪ T2ab ∪ T3a ∪ T3ab,

where T1, T2 and T3 are pairwise disjoint subsets of H0. Note that T1 ∪ T2 6= ∅ because
R = 1. Using also that T1 ∪ T2 ⊆ K, we find that K 6= 1. Fix a prime divisor p of |K|
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and consider the set T [p]. Since R = 1 and H0 is a cyclic group, it follows that T [p] 6= ∅.
Let N = 〈T [p]〉. It is clear that N < G and N ∈ A by Theorem 10(ii). If 〈a, b〉 6 N , then
the induction hypothesis can be applied to AN , and this yields T = M{a, ab} \ {ab} for
some 1 6M 6 H0. Therefore, we may assume that |〈a, b〉 ∩N | = 2.

Now if a ∈ N , then we can apply Lemma 14 to AN and conclude that T = {a} because
rad(T ) = 1.

It remains to consider the case when ab ∈ N but a /∈ N . We show that these conditions
give rise to a contradiction. Using Lemma 14 and the fact that H ∈ A, we find that the
basic set of A containing ab is equal to Lab for some subgroup L 6 H0. Since Lab is a
basic set, it follows that KLab = Kab is an A-subset. It is clear that Kab∩T = ∅. Using
also that T1 ∪ T2 ⊆ K, we find that T2 = ∅. On the other hand, the condition that a /∈ N
shows that P 6 rad(T1∪T3), where P is the subgroup of K of order p. Choose an element
t ∈ T1. As T1 ⊆ K, Pt ⊆ K. Thus, if Pt ∩ T3 6= ∅, then Ptab ∩ T3ab 6= ∅, implying that
Kab ∩ T 6= ∅, which is impossible. We conclude in turn that P 6 rad(T1), P 6 rad(T3),
and eventually that P 6 rad(T ) = R, contradicting our assumption that R = 1.

We are ready to prove Theorem 3.

Proof of Theorem 3. Let us keep all the symbols H,H0, G, a, b,A, T,K set in Hypoth-
esis 18, and assume, in addition, that H is a cyclic group and {a} /∈ A. Define the
subgroup

V =
⋂

X∈S(A), X∩H0a6=∅

rad(X ∩H0a).

We have to show that V 6= 1 provided that T 6= {a, ab}. We distinguish three cases
according to the possibilities for T mentioned in Lemma 22.

Case 1. T = La, 1 6 L 6 H0.

Since {a} is not a basic set of A due to one of the assumptions in Theorem 3, it
follows that L > 1. Let X ∈ S(A) such that X ∩H0a 6= ∅. It is sufficient to show that
L 6 rad(X). Notice that 〈T,K〉 = 〈a,K〉 is an A-subgroup. Applying Lemma 14 to
A〈a,K〉, we obtain that L 6 rad(X) if X ⊆ Ka. Assume that X 6⊆ Ka. Let T ′ be the
basic set containing ab. By Lemma 22, T ′ = Mab or Nab∪ (N \M)a for some subgroups
1 6 M < N 6 H0. In the former case M 6 K and Kab ∈ A. As X 6⊆ H ∪ Kab,
L 6 rad(X) due to Lemma 19. In the latter case 〈T ′〉 \ (H ∪ T ′) = Ma, implying that
Ma ∈ A. Thus L 6 M , and so Lab ⊆ T ′. As X 6⊆ H ∪ Ka, L 6 rad(X) follows after
applying Lemma 19 with T ′ and ab playing the role of T and a, respectively, in Lemma 19.

Case 2. T = La ∪ Lab, 1 6 L 6 H0.

If L = 1, then T = {a, ab}. Assume that L 6= 1. Then it follows from Lemmas 20 and
21 that A is the H/N -wreath product, where 1 < N 6 L or N = 〈L, b〉. In either case,
1 < N ∩H0 6 V , in particular, V 6= 1.

Case 3. Ma ∪ (M \ L)ab, 1 6 L < M 6 H0.
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Then 〈T 〉 \ (H ∪ T ) = Lab, implying that Lab ∈ A. By Lemma 22, the basic set
containing ab is equal to the coset Nab for some subgroup 1 6 N 6 L.

If N = 1, then {ab} is a basic set. Then so is Tab = Mb ∪ (M \ L). Observe that if
X ∈ S(A) such that X ∩H0a 6= ∅, then Xab is also basic, it is contained in H and has
non-empty intersection with H0b. By Lemma 14, L 6 rad(Xab), so L 6 rad(X), and this
yields that 1 < L 6 V .

Now assume that N 6= 1. Let X ∈ S(A) be a basic set such that X ∩H0a 6= ∅. Then
X 6⊆ Kab, and N 6 rad(X) holds by Lemma 19. All these yield that 1 < N 6 V .

5 Generalized multipliers

Generalized multipliers of Zn were introduced by Muzychuk [15], who used them in his
solution to the isomorphism problem for circulant graphs. For our purposes, we consider
the particular case where n = pe for a prime p.

In what follows, for a cyclic group H and a positive divisor d of |H|, we denote by Hd

the unique subgroup of H of order d.

5.1 Generalized multipliers

Definition 23. Let p be a prime and e > 1 be an integer. A generalised multiplier of
Zpe is an e-tuple ~m = (m1, . . . ,me) of positive integers such that gcd(mi, p) = 1 for every
i ∈ [1, e].

The set of all generalized multipliers of Zpe is denoted by Z∗∗pe .

Definition 24. Let ~m ∈ Z∗∗pe and H = 〈h〉 ∼= Zpe . Define the mapping f~m : H → H as

∀x ∈ Zpe , (hx)f~m = hx
′
,

where x =
∑e−1

i=0 xip
i is the p-adic expansion of x, i.e., 0 6 xi 6 p−1 for every i ∈ [0, e−1];

and x′ =
∑e−1

i=0 me−ixip
i.

It is not hard to show that the mapping f~m in the above definition is bijective. In
the next definition we extend f~m to a permutation of a cyclic group Ĥ of order 2pe,
where p > 2. For this purpose we use the fact that any element x ∈ Ĥ admits a unique
factorization x = x1x2, where x1 ∈ Ĥpe and x2 ∈ Ĥ2.

Definition 25. Let ~m ∈ Z∗∗pe and Ĥ ∼= Z2pe , where p is an odd prime. Define the mapping

f̂~m : Ĥ → Ĥ as

∀x ∈ Ĥpe , ∀y ∈ Ĥ2, (xy)f̂~m = xf~my.

If ~m ∈ Z∗∗pe and S is an inverse-closed subset of Ĥ ∼= Z2p2 not containing 1Ĥ , then

Muzychuk [15] gave a sufficient condition for f̂~m to be an isomorphism of Cay(Ĥ, S).
This condition is formulated in terms of so called primary keys.
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5.2 Primary keys

Definition 26. Let p be a prime and e > 1 be an integer. The key space Kpe consists of
the e-tuples k = (k1, . . . , ke) of integers such that

(K1) If 1 6 i 6 e, then 0 6 ki 6 i− 1,

(K2) If 2 6 i 6 e, then ki−1 6 ki.

The e-tuples in Kpe are called primary keys.

Definition 27. Let k = (k1, . . . , ke) ∈ Kpe and H ∼= Zpe . The key partition ΠH(k) is the
partition of H defined as

ΠH(k) =
{
Hω(x)x | x ∈ H

}
,

where the mapping ω : H → {pi | i ∈ [0, e]} is defined as

∀x ∈ H, ω(x) =

{
1 if x = 1H ,

pkt if o(x) = pt > 1.

The above definition can be extended naturally to cyclic groups of order 2pe, where
p > 2.

Definition 28. Let k ∈ Kpe for a prime p > 2 and Ĥ ∼= Z2pe . The key partition ΠĤ(k)

is the partition of Ĥ defined as

ΠĤ(k) =
{
Xy | X ∈ ΠĤpe

(k), y ∈ Ĥ2

}
.

For a primary key k ∈ Kpe , let Z∗∗pe(k) ⊆ Z∗∗pe be the subset defined by Z∗∗p (k) := Z∗∗p
(i.e., e = 1), and if e > 1, then

Z∗∗pe(k) :=
{
~m = (m1, . . . ,me) ∈ Z∗∗pe | ∀i ∈ [2, e], mi ≡ mi−1 (mod pi−1−ki)

}
. (9)

If ~m = (m1, . . . ,me) ∈ Z∗∗pe(k) ] such that mi is odd for every i ∈ [1, e] and Ĥ ∼= Z2pe ,

then f̂~m permutes the ΠĤ(k)-classes. Moreover, f̂~m induces an isomorphism of Cay(Ĥ,X)
for every class X ∈ ΠĤ(k), X 6= {1Ĥ}.
Proposition 29 ([15, case (2) in Proposition 2.4 and Proposition 2.5]). Let k ∈ Kpe for
a prime p > 2, ~m = (m1, . . . ,me) ∈ Z∗∗pe(k) be a generalized multiplier such that mi is

odd for every i ∈ [1, e], and let Ĥ ∼= Z2pe. Then for every X ∈ ΠĤ(k), if X 6= {1Ĥ} and
o(X) = pi or 2pi, then

Cay(Ĥ,X)f̂~m = Cay(Ĥ,X(mi)).

We say that a subset S ⊆ Ĥ, where Ĥ ∼= Z2pe , is a ΠĤ(k)-subset, if S is a union of
ΠĤ(k)-classes. As a corollary of Proposition 29, we have the following sufficient condition

for f̂~m (~m ∈ Z∗∗pe) to be an isomorphism of a Cayley graph Cay(Ĥ, S).

Corollary 30. Let ~m = (m1, . . . ,me) ∈ Z∗∗pe , where p is an odd prime, such that mi is odd

for every i ∈ [1, e], Ĥ ∼= Z2pe and Γ = Cay(Ĥ, S). If there exists a primary key k ∈ Z∗∗pe
such that ~m ∈ Z∗∗pe(k) and S is a ΠĤ(k)-subset, then f̂~m is an isomorphism from Γ to

Cay(Ĥ, S f̂~m).
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5.3 Primary keys and S-rings

Definition 31. Let H ∼= Zpe for an odd prime p and e > 1, and A be an S-ring over H.
For i ∈ [1, e], let Xi ∈ S(A) be a basic set containing an element of order pi.2 We define
the e-tuple k(A) := (k1, . . . , ke) as

∀i ∈ [1, e], pki =
∣∣ rad(Xi ∩ (Hpi \Hpi−1))

∣∣.
For every S-ring A over H, it is not hard to show that the e-tuple k(A) is a primary

key. It is obvious that axiom (K1) holds, i.e., ki 6 i − 1. One can use Propositions 16
and 17 to verify that axiom (K2) holds too, i.e., ki−1 6 ki whenever i > 1.

Note also that, if x ∈ H with o(x) = pi and X ∈ S(A) is the basic set containing x,
then Hpkix ⊆ X, where k(A) = (k1, . . . , ke); in other words, X is a ΠH(k)-subset.

A key step in the proof of Theorem 4 will be a construction of a particular generalized
multiplier contained in Z∗∗pe(k(A)), where A is an S-ring over a cyclic group of order pe,
p > 2. In this construction we shall use two facts from elementary number theory.

Fix an odd prime p. We denote by Z∗pe the multiplicative group of integers modulo
pe. It is well-known that Z∗pe ∼= Zpe−1(p−1). For j ∈ [0, e − 1], the unique subgroup of
Z∗pe of order pj can be can be written in the form {xpe−j + 1 | x ∈ [0, pj − 1]}, which
coincides with the coset Hpj + 1, where H = Zpe and Hpj is the subgroup of H of order
pj. Also, if L 6 Z∗pe is the subgroup of order p− 1, then acting on Zpe , Lx = 1 for every
x ∈ Zpe , x 6= 0. More generally, the following lemma holds.

Lemma 32. Let H ∼= Zpe for an odd prime p and e > 1, let x ∈ H and let K 6 Aut(H).

(i) If p - |K| and x 6= 1H , then |OrbK(x)| = |K|.

(ii) If o(x) = pi for some i ∈ [0, e] and |K| = pj for some j ∈ [0, e− 1], then

OrbK(x) = Hpj−min(j,e−i)x.

Proof. Part (i) follows directly from the paragraph preceding the lemma.
For part (ii), one can see that OrbK(x) is a coset of some subgroup of H of p-power

order, and hence it only remains to find the length of the orbit OrbK(x). It is not hard
to show that |Aut(H)x| = pe−i. As |OrbK(x)| = |K|/|K ∩ Aut(H)x|, we compute that
|OrbK(x)| = pj−min(j,e−i).

Recall that, for an integer m > 1 such that m is not divisible by a prime p, σpi(m)
denotes the order of m modulo pi, i.e., the smallest positive integer l satisfying ml ≡ 1
(mod pi). Equivalently, σpi(m) = o(m), where m is regarded as an element of Z∗pi , or in
other words, σpi(m) = |〈m〉|.
2Note that, it may happen that Xi = Xj for some i 6= j. Also, if X ′ is any basic set containing an

element of order pi, then it follows from Theorem 10(i) that X ′ = X
(m)
i for some integer m not divisible

by p. This implies that rad(X ′ ∩ (Hpi \Hpi−1)) = rad(Xi ∩ (Hpi \Hpi−1)), and this shows that k(A)
is well-defined.
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Lemma 33. Let m be a positive integer not divisible by an odd prime p such that σpi(m)
is not divisible by p for i > 1. Then σpi−1(m) = σpi(m).

Proof. We regard m as an element of Z∗pi and let M = 〈m〉 6 Z∗pi . Then σpi(m) = |M |.
Consider the homomorphism ϕ : Z∗pi → Z∗pi−1 that satisfies ϕ(1) = 1 (in the right side
1 stands for an element in Z∗pi−1). Then σpi−1(m) = |ϕ(M)|. It is well known that
|Ker(ϕ)| = p. Using also the assumption that p - |M |, we obtain that the restriction of ϕ
to M is injective, by which |ϕ(M)| = |M |, and so σpi−1(m) = σpi(m).

Lemma 34. Let H ∼= Zpe for an odd prime p, e > 1, and A be an S-ring over H. There
exists a generalized multiplier ~m = (m1, . . . ,me) ∈ Z∗∗pe(k(A)) such that for every i ∈ [1, e],
mi is odd, and for every cyclotomic basic set X ∈ S(A), X 6= {1H},

o(X) = pi =⇒ σpi(mi) = |X|/| rad(X)|. (10)

Proof. Assume first that e = 1. Then A = V (Zp, K) for a subgroup K 6 Aut(H) (see
Proposition 17). The lemma holds after letting ~m to be (m1), where m1 is a positive
integer coprime with 2p and satisfying σp(m1) = |K|.

Let e > 1 and let k(A) = k = (k1, . . . , ke). For every i ∈ [1, e], fix a a basic set Xi

containing an element of order pi. We define ~m = (m1, . . . ,me) recursively starting with
its e-th entry.

• Let me be a positive integer such that it is coprime with 2p, and if Xe is cyclotomic,
then σpe(me) = |Xe|/| rad(Xe)|.

• Let i ∈ [2, e] and suppose that mi is already defined. If Xi−1 is cyclotomic and
ki = i − 1, then let mi−1 be a positive integer coprime with 2p and satisfying
σpi−1(mi−1) = |Xi−1|/| rad(Xi−1)|; and let mi−1 = mi otherwise.

It can be easily checked that ~m ∈ Z∗∗pe(k).

We finish the proof by showing that (10) holds. Let X be an arbitrary cyclotomic

basic set of A with o(X) = pi > 1. By Theorem 10(i), X = X
(l)
i for some integer l > 1

not divisible by p. Consequently, Xi is cyclotomic and

|X|/| rad(X)| = |Xi|/| rad(Xi)|. (11)

Assume for the moment that o(X) is maximal among all cyclotomic basic sets X of
A. If i = e, then (10) holds because of (11) and the definition of me. Suppose that i < e.
Then Xi+1 is not cyclotomic, hence it follows from Proposition 16 that ki+1 = i. Then
(10) holds because of (11) and the definition of mi.

Therefore, we may assume that (10) holds for every cyclotomic basic set X ′ with
o(X ′) > o(X). As above, (10) holds if ki+1 = i, hence let ki+1 < i. It follows from
Proposition 16 that Xi+1 is cyclotomic. According to the definition of ~m, we have that
mi = mi+1.
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Then 〈Xi+1〉 = Hpi+1 and rad(Xi+1) = Hpki+1 , hence the latter subgroups are A-
subgroups. It follows from Proposition 17 that AHpi+1/H

p
ki+1

= V (Hpi+1/Hpki+1 , L) such

that L 6 Aut(Hpi+1/Hpki+1 ) and

|L| = |Xi+1/Hpki+1 | = |Xi+1|/| rad(Xi+1)| = σpi+1(mi+1) = σpi+1(mi), (12)

where the last but one equation follows from the assumption that (10) holds for Xi+1.
Now, Xi/Hpki+1 is a basic set of AHpi+1/H

p
ki+1

, so it is an L-orbit. As p - |L|, by

Lemma 32(i),
|Xi/Hpki+1 | = |L|. (13)

We show next that
|Xi/Hpki+1 | = |Xi|/| rad(Xi)|. (14)

Fix an arbitrary element x ∈ Xi and let ` = |Xi ∩ Hpki+1x|. It follows from (1) that
|Xi/Hpki+1 | = |Xi|/`. Since Xi is cyclotomic, Xi = OrbK(x) for some subgroup K 6
Aut(H). Lemma 32 and the assumption that ki+1 < i yield in turn that, if x′ ∈ Xi ∩
Hpki+1x, then x′ is in the orbit of x under the Sylow-p-subgroup of K, x′ ∈ rad(Xi)x, and
so ` 6 | rad(Xi)|. On the other hand, as rad(Xi) = Hpki and ki 6 ki+1, we also obtain
that ` > | rad(Xi)|, by which (14) holds.

Finally, σpi+1(mi) = σpi(mi) due to Lemma 33; and combining this with the identities
(11)–(14), yields that σpi(mi) = |X|/| rad(X)|, what is required in (10).

Corollary 35. With the notation in Lemma 34, for every X ∈ S(A), if o(X) = pi for
some i ∈ [1, e], then X(mi) = X.

6 Proof of Theorem 4

We keep the notation set in Theorem 4, i.e., H ∼= Z2pe for some odd prime p and e > 1
and Cay(H,S) is a connected and non-bipartite graph. Let b be the unique involution of
H and H0 be the unique subgroup of H of order pe. In view of Remark 5, we may assume
that Cay(H,S) is unstable. To settle Theorem 4, we have to show that,

(S ∩H0)h = S ∩H0 for some h ∈ H0, h 6= 1H , (15)

or
Cay(H,S) ∼= Cay(H,Sb). (16)

By Proposition 1, there is a Schurian S-ring A over G such that H,Sa ∈ A and
{a} /∈ A. Let

V =
⋂

X∈S(A), X∩H0a6=∅

rad(X ∩H0a).

Then S ∩H0 6= ∅ because Cay(H,S) is non-bipartite. It follows that Sa ∩H0a 6= ∅ and
(Sa ∩H0a)h = Sa ∩H0a for every h ∈ V . This shows that (15) holds if V 6= 1. For the
rest of the section we assume that V = 1.
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Then {a, ab} is a basic set of A due to Theorem 3 and hence E := 〈a, ab〉 is an
A-subgroup. Let

k = k(AG/E) = (k1, . . . , ke)

and ~m = (m1, . . . ,me) be a generalized multiplier defined for AG/E in Lemma 34.
Fix a basic set X ∈ S(A) such that X 6⊆ H, X 6= {a, ab}. As 〈b〉 = E ∩H and E,H

are A-subgroups, so is 〈b〉. It follows from this and (1) that

X = X1a ∪X2ab,

where X1, X2 ⊆ H0 and either X1 = X2 or X1 ∩ X2 = ∅. Since X 6⊆ H, it follows that
the order o(X) = |〈X〉| is even. We show that

o(X) = 2pi =⇒ X(mi) = Xb. (17)

The group G is in the form G = E ×H0. In what follows, we identify G/E with H0

and regard AG/E as an S-ring over H0; in particular, X1 ∪X2 is a basic set of AG/E. By
Corollary 35, (X1∪X2)

(mi) = X1∪X2. This implies that X(mi) ⊆ X∪Xb. Thus (17) holds
if X1 = X2, and we may assume that X1 ∩X2 = ∅. As {b} ∈ S(A), Xb = X1ab ∪X2a is
also a basic set of A. On the other hand, so is X(mi), see Theorem 10(i), and therefore,
X(mi) = X or Xb. It is sufficient to show that X(mi) 6= X.

Observe that 〈X [2]〉 = 〈X1 ∪X2〉. The former subgroup is an A-subgroup, so the latter
is also and Lemma 15 can be applied to the Schurian S-ring AE〈X1∪X2〉. As a result, we
obtain that X1 and X2 are basic sets of an S-ring over the group 〈X1 ∪X2〉 6 H0, and
|X1| = |X2|. According to Proposition 16, if X1 is not cyclotomic, then |X1| = pi − pj,
where i > j + 1, and hence |X1 ∪X2| = 2(pi − pj). Regarding that X1 ∪X2 ∈ S(AG/E),
this is impossible. We deduce that each of X1, X2 and X1∪X2 is cyclotomic. This means
that X1∪X2 = OrbK(x) for some subgroup K 6 Aut(H0) and X1 and X2 are the L-orbits
contained in X, where L < K, |K| = 2|L|, say

X1 = OrbL(x1) and X2 = OrbL(x2).

Due to Lemma 34, σpi(mi) = |X1 ∪ X2|/| rad(X1 ∪ X2)|, which is equal to |K|p′ . Using
also that o(x1) = pi, this implies that xmi

1 /∈ OrbL(x1) = X1. Therefore, xmi
1 ∈ X2,

(x1a)mi ∈ X2a, so X(mi) 6= X, and by this (17) holds.
We show next that Xa = X1 ∪ X2b is a ΠH(k)-subset (recall that X was fixed to

be an arbitrary basic set of A such that X 6⊆ H, X 6= {a, ab}). If X1 = X2, then this
follows from the fact that X1∪X2 is a ΠH0(k)-subset. If X1 6= X2, then we have seen that
X1 ∪X2 = OrbK(x) for a subgroup K 6 Aut(H0). Thus the ΠH0(k)-class containing x is
equal to the orbit OrbKp(x), where Kp is the Sylow p-subgroup of K. Clearly, Kp 6 L,
and this yields that OrbKp(x) 6 X1 if x ∈ X1 and OrbKp(x)b 6 X2b if x ∈ X2. This
shows that Xa is a ΠH(k)-subset, as required.

Consequently, since Sa ∈ A, it follows that S is a ΠH(k)-subset, and hence Cay(H,S) ∼=
Cay(H,S f̂~m) due to Corollary 30. We derive (16) by showing that

S f̂~m = Sb. (18)
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Fix an arbitrary element x ∈ S and let X be the basic set of A containing xa. Note
that X ⊆ Sa, and hence X 6= {a, ab}. Suppose that o(x) = pi or 2pi and let Y = Hpkix.

Then Y ∈ ΠH(k) and Y a ⊆ X. By Proposition 29, Y f̂~m = Y (mi). All these together with
(17) yield that

xf̂~ma ∈ Y (mi)a = (Y a)(mi) ⊆ X(mi) = Xb ⊆ Sab.

This shows that xf̂~m ∈ Sb, and as x was chosen arbitrarily from S, (18) follows.
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[11] M. Ch. Klin, N. L. Neimark, and R. Pöschel. Schur rings over Z2m . Akad. der Wiss,
der DDR Ins. für Math., Preprint P-MATH-14/81, 1981.

[12] K. H. Leung and S. H. Man. On Schur rings over cyclic groups II. J. Algebra, 183:
273–285, 1996.

[13] K. H. Leung and S. H. Man. On Schur rings over cyclic groups. Isr. J. Math., 106:
251–267, 1998.
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