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Abstract

Bermond, Jackson and Jaeger [J. Combin. Theory Ser. B, 35: 297-308, 1983]
proved that every bridgeless ordinary graph G has a circuit 4-cover and Fan [J.
Combin. Theory Ser. B, 54: 113-122, 1992] showed that G has a circuit 6-cover
which together implies that G has a circuit k-cover for every even integer k > 4.
The only left case when k = 2 is the well-known circuit double cover conjecture.
For signed circuit k-cover of signed graphs, it is known that for every integer k < 5,
there are infinitely many coverable signed graphs without signed circuit k-cover and
there are signed eulerian graphs that admit nowhere-zero 2-flow but don’t admit
a signed circuit 1-cover. Fan conjectured that every coverable signed graph has a
signed circuit 6-cover. This conjecture was verified only for signed eulerian graphs
and for signed graphs whose bridgeless-blocks are eulerian. In this paper, we prove
that this conjecture holds for signed K4-minor-free graphs. The 6-cover is best
possible for signed Ky4-minor-free graphs.

Mathematics Subject Classifications: 05C22, 05C70

1 Introduction

Graphs or signed graphs considered in this paper are finite and may have multiple edges
or loops. For terminology and notations not defined here we follow [5, 9, 21, 27].

A signed graph is a graph G with a mapping o : E(G) — {1,—1}. The mapping
o, called signature, is sometimes implicit in the notation of a signed graph and will be
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specified when needed. An edge e is positive if o(e) = 1, and otherwise it is negative.
An ordinary graph is a signed graph without negative edges and a circuit is a connected
2-regular graph. A circuit of length £ is called a k-circuit. A circuit in a signed graph
is balanced if it has an even number of negative edges and otherwise it is unbalanced. A
signed circuit is a signed graph of one of the following three types: (1) a balanced circuit;
(2) a long barbell, the union of two disjoint unbalanced circuits with a path (called the
barbell-path) that meets the circuits only at its ends; (3) a short barbell, the union of two
unbalanced circuits that meet at a single vertex (also called the barbell-path, for technical
reasons). A barbell is either a long barbell or a short barbell. The edges of a signed circuit
in a signed graph correspond to a minimal dependent set in the signed graphic matroid
(see [30]).

Let G be a signed graph. A family F of signed circuits of G is called a signed circuit
cover of G if every edge is contained in some member of F and is called a signed circuit
k-cover if each edge is contained in precisely k members of F. A signed graph is coverable
if it has a signed circuit cover. Given a coverable signed graph G, the minimum length of
a signed circuit cover of G is denoted by SSC(G).

Note that an ordinary graph contains no unbalanced circuit and thus no barbell. The
circuit covers of ordinary graphs are closely related to some mainstream areas in graph
theory, such as, Tutte’s integer flow theory [1, 4, 13, 16, 19, 24, 31], Fulkerson conjecture
[14], snarks and graph minors [2, 17]. Thus the circuit cover of ordinary graphs has been
studied extensively.

It is proved by Bermond, Jackson and Jaeger [4] that every ordinary graph admitting
a nowhere-zero 4-flow has SCC(G) < %IE(G)| By applying Seymour’s 6-flow theorem
[26] or Jaeger’s 8-flow theorem [18], Alon and Tarsi [1], and Bermond, Jackson and Jaeger
[4] proved that every bridgeless ordinary graph G has SCC(G) < 2|E(G)|. One of the
most famous open problems in this area was proposed by Alon and Tarsi [1] that every
bridgeless ordinary graph G has SCC(G) < £|E(G)].

Bermond, Jackson and Jaeger [4] proved that every bridgeless ordinary graph G has
a circuit 4-cover and Fan [12] showed that G has a circuit 6-cover which together implies
that G has a circuit k-cover for every even integer k > 4. The only left case when k = 2
is the well-known circuit double cover conjecture.

For signed graphs, Macajova, Raspaud, Rollova and Skoviera [23] presented the first
upper bound of SSC(G). They showed that SSC(G) < 11|E(G)| if G is coverable and
the upper bound was improved by Lu et al. [22] to £!|E(G)|. More improvements were
obtained later in [7, 20, 25, 28, 29].

For k-cover of signed graphs, Fan [15] showed that for every integer k < 5, there
are infinitely many coverable signed graphs that have no signed circuit k-cover and he
proposed the following conjecture.

Conjecture 1. (Fan [15]) Every coverable signed graph has a signed circuit 6-cover.

The conjecture was verified for signed eulerian graphs in [3] and for signed graphs
whose bridgeless-blocks are eulerian in [8].
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A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from G
by edge contractions, edge deletions and vertex deletions; if not, G is H-minor-free. The
class of K -minor-free graphs, which includes all series-parallel graphs and outerplanar
graphs, is a very important family of graph class and has been studied by many researchers
for various graph theory problems (for example see [10, 11]). In this paper we study the
signed circuit k-cover for signed K, -minor-free graphs and confirm Conjecture 1 for this
family of signed graphs.

Theorem 2. FEvery coverable signed K -minor-free graph has a signed circuit 6-cover.

Note that if a coverable signed graph G containing four distinct degree 3 vertices
x1, T2, Y1, Y2 such that G[{x1, z5}] is a balanced 2-circuit and G[{yi, y2}] is an unbalanced
2-circuit, then G has no signed circuit k-cover for any 1 < k& < 5. Thus the 6-cover in
Theorem 2 is tight.

Before proceeding, it is worth pointing out that the problems of flow and signed circuit
cover in signed graphs are significantly more challenging than their counterparts in ordi-
nary graphs. For instance, while ordinary Eulerian graphs trivially allow for a nowhere-
zero 2-flow and a 1-cover, signed Eulerian graphs can have flow values of 2, 3, or even 4,
as shown in [25]. Additionally, there are signed Eulerian graphs that admit nowhere-zero
2-flow but don’t have a 1-cover, as demonstrated in [3]. Unlike ordinary graphs, cover-
able signed graphs may have bridges. The intricate structures of signed graphs, such as
barbells, bridges, and negative loops, add to their complexity in comparison to ordinary
graphs.

This paper is organized as follows. In Section 2, we introduce more notations and
terminology. Some simple cases and reduction lemmas needed in the proof of Theorem 2
are presented in Section 3. In Section 4, we prove Theorem 2 by contradiction.

2 Preliminaries

Let G be a graph. A vertex x is called a cut-vertex of GG if G —x has more components than
G. A graph is 2-connected if it is connected and has no cut-vertex. A block of G is either
a maximal 2-connected subgraph, or a cut-edge (with its ends), or an isolated vertex. An
end-block of G is a block containing exactly one cut-vertex. Let L, represent a loop at x
and L(G) be the set of all loops of G. Let Ng(x) and dg(z) denote the neighborhood and
the degree of z in G, respectively, where each loop at = contributes 2 to dg(z). A d-vertex
is a vertex with degree d. For two subsets X,Y C V(G) (not necessarily disjoint), denote
by Eg[X,Y] the set of edges of G with one end in X and the other end in Y. A path
with ends z and y is called an xy-path.

Let G be a signed graph. For an edge subset or a subgraph S of GG, denote the set of
all negative edges of S by En(S) and define the sign of S to be (S) = Il.ego(e). A path
P in G is positive if o(P) = 1, and negative otherwise. The path P is called a subdivided
edge of GG if every internal vertex of P is a 2-vertex of G. The suppressed graph of G,
denoted by G, is the signed graph obtained from G by replacing each maximal subdivided
edge P with a single edge e and assigning o(e) = o(P).
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Given a signed graph G, switching at a vertex x is the inversion of the signs of all edges
incident with . A signed graph G’ is said to be equivalent to G if G' can be obtained
from G via a sequence of switchings and is denoted by G’ ~ . Define the negativeness of
G by €(G) = min{|En(G")| : G' ~ G}. A signed graph is balanced if its negativeness is 0
and otherwise unbalanced. That is, a balanced signed graph is equivalent to an all-positive
signed graph, i.e. an ordinary graph. It is easy to see that a signed graph is balanced if
and only if all of its circuits are balanced.

For two integers ny < no, let [ny, ny] denote the set of integers between n; and ng
inclusive. A tadpole at a vertex x is the union of an xy-path P and an unbalanced circuit
C with V(P)NV(C) = {y}. The vertex z is called a tail and the path P is called a
tadpole-path. Note that it is possible that x = y. In this case, the tadpole-path of the
tadpole is a single vertex.

Definition 3. Let F be a family of signed subgraphs of a signed graph G. Let ¢ € [0, 3]
be an integer and x,y be two distinct vertices of G.

(1) For each e € E(G), F(e) denotes the number of members in F containing e.

(2) For an edge subset or a subgraph S of G, F is a signed subgraph k-cover of S if
F(e) = k for each edge e in S. In particular, F is a signed circuit k-cover of G if
every member of F is a signed circuit.

(3) A WU,y (t)-cover is a signed subgraph 6-cover that consists of ¢ positive zy-paths, ¢
negative xy-paths, t tadpoles at x, 6 — 2t tadpoles at y, and some signed circuits.

(4) Let zy be an edge. A W (2)-cover is a Wy, (2)-cover such that for each u € {z,y},
one tadpole at u doesn’t contain the vertex in {z,y} \ {u}, and the tadpole-path of
the other tadpole at u contains the edge xy.

Signed circuit cover and flows are closely related. It is known that a signed graph G is
coverable if and only if it admits a nowhere-zero k-flow for some integer k£ > 2. Refining
the results in [6], we have the following characterization.

Proposition 4. A connected signed graph G is coverable if and only if e(G) # 1 and there
1s no cut-edge b such that G — b has a balanced component.

3 W,y(t)-covers of two-terminal signed graphs

A two-terminal signed graph H(x,y) is a connected signed nonempty graph H with two
specified vertices, a source terminal x and a target terminal y. In particular, if x = y,
H(z,x) is defined to be a negative loop, i.e., a two-terminal signed graph with the source
and target terminals same is just one vertex with a negative loop. For short, we abbreviate
H(x,y) to H if the terminals are understood from the context.

Let H; = H;(z;,y;) be a two-terminal signed graph for each ¢ € [1,n]. When x; #
y; for each i, the parallel connection P(Hy,...,H,) of Hy,...,H, is the two-terminal
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signed graph obtained from H, U---U H,, by identifying x4, ..., x, into a source terminal
and identifying v, ...,y, into a target terminal. When x; # y,, the series connection
S(Hy,...,H,) of Hy,..., H, is the two-terminal signed graph with source terminal x;
and target terminal y,, obtained from H; U ---U H, by identifying y;_; and z; for each
i € [2,n]. If G is a series connection of Hy, ..., H, and n is maximum with this property,
then we call every H; a part of G. Let B(G) = {H,,..., H,} be the set of all parts of G.
Obviously, B(G) can be partitioned into three subsets as follows:

By(G) = {H; € B(G) : »; = y;},

B\(G) = {H; € B(G) : x; # yi, | E(H;)
By(G) ={H; € B(G) : x; # v;, | E(H;

| - 1}7
)| =2}

Note that every member of By(G) is a negative loop and every member of B;(G) is a
positive or negative K,. A series connection is shown in Fig. 1.

Figure 1: A series connection G with By(G) = {Hs, Hs}, Bi(G) = {H,, H3, H5} and
By(G) = {Hy, H7}. Solid lines are positive; dotted lines are negative.

The next lemma will be applied in the reduction.

Lemma 5. Let H; = Hi(x;_1,x;) for each i € [1,n] and G = S(Hy, ..., H,) with n =
|B(G)| and |B2(G)| = 1. Let 0* = (1,1,—1,—1) if |Bo(G)| =1, and 6* = (1,1, —1,—1) or
(—1,—1,—1,-1) if |B2(G)| = 2. If every H; € Bo(G) has a YV, ., (2)-cover, then G has
a signed subgraph 6-cover

FoU2By(G)U{Py, Py, P3, Py} U{Ty, Ty, T3, T4},
where
> Fo is a family of signed circuits;
> Py, Py, P3, Py are four xox,-paths of G and (o(Py),0(P,),0(P3),0(Py)) = 6*%;

> 11,1, are two tadpoles of G at xy whose unbalanced circuits are in the part of
By(G) U By (G) with minimum subscript.

> 13,7, are two tadpoles of G at x, whose unbalanced circuits are in the part of
Bo(G) U By (G) with mazimum subscript.

Proof. Denote I; = {i : H; € B;(G)} for each j € [0,2], and for each i € I, let
Fi=Ci U{Pu, P, Pi3, P} U{Ti1, Tig, Ti3, Tia},
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be an arbitrary W,. ..(2)-cover of H;, where C; is a family of signed circuits, Py, Py are
two positive x;_ix;-paths, P;3, Py are two negative x;_jx;-paths, Tj1, T;s are two tadpoles
at x;_1, and T3, T;4 are two tadpoles at x;. Note that every part in By(G) is a negative
loop and every part in B;(G) is a positive or negative K.

Let Gi = (Uier,{Pn, P2, Pi3, Pu}) U4B1(G). Then G; can be expressed as a family P
consisting of 4 xox,-paths Py, Py, P3, Py such that (o(P;),0(P,),0(Ps),0(F,)) = 6* and
Gi(e) = P(e) for each e € E(G).

Let Go = (Uier,{Ti, Ti2, Ti3, Tia}) U 4Bo(G) U 2B, (G). For the sake of convenience,
let T;; = H; for each i € Iy and each j € [1,4] since H; is a tadpole at z;_1 (=z;), and
IoU Iy = {iy,i9,... 0} with 0 <1y <ip < ... < iy <n. Foreach j € [1,2], we construct
a tadpole T} at ¢, a tadpole T}, at x,, and some barbells as follows:

T; = (zozy -+ - x4y —1) U T},
Tivo = Tiyj42) U (i) - Tpe1Tn),

Bkj = Ek(j-l-Q) U (%ikxik+1 . '.’L’ik+1,1) U Tl-kHj,V k € [1,€ — 1]

Let T = {T1, Ty, T3,T,} and C = U_ {By1, Bz }. Obviously, Go(e) = (T UC)(e) for each
e € E(G). Therefore, (U;cr,C;) UCU2By(G)UPUT is a desired signed subgraph 6-cover

By the definition and Lemma 5, the following result is straightforward and its proof
is omitted.

Lemma 6. Let H; = Hi(x;_1,x;) for each i € [1,n] and G = S(Hy,...,H,) with n =
IB(G)| = 2 and |B2(G)| = 1. If Bo(G) = 0 and every H; € By(G) has a ¥, ., (2)-cover,
then exactly one of the following statements holds.

(1) G has a V.., (2)-cover whose tadpoles at xo and xz, don’t contain xz, and xq, Te-
spectively;

(2) Bo(G) ={H:} and any V.., (2)-cover of Hy has a tadpole at x1 containing xo;
(3) Bo(G) ={H,} and any Y, .. (2)-cover of H, has a tadpole at x,,_1 containing x,.
The next lemma is another reduction technique in the proof of the main result.

Lemma 7. Let Hy, Hy, H} be three two-terminal signed graphs with source terminal x and
target terminal y, where Hy and H! satisfy one of the following conditions.

(1) Hy has a W, (t)-cover for each t € [0,3] in which no tadpole at x contains y; HY is
the signed graph Dy(z,y) in Fig. 2.

(2) Hj has a U, (2)-cover whose tadpoles at x and y don’t contain y and x, respectively;
HY is the signed graph Do(z,y) in Fig. 2.

If P(Hy, H)) has a signed circuit 6-cover, then so does P(Hy, Hs).
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x €1 €2 Yy x €1 €2 €3 Yy

Dy(z,y) Ds(x,y)

Figure 2: Two two-terminal signed graphs with terminals x and y.

Proof. Denote G = P(Hy, Hy) and G' = P(H,, H}). Let F be a signed circuit 6-cover of
G

We only prove the case when Hs satisfies (1) since the augment for the other case is
very similar.

As shown in Fig. 2, it follows from the structure of the signed graph D;(z,y) that, for
any signed circuit C' € F,

E(C)NE(H;) € {0,{e1, e}, {2, €3}, {e1,es}, {e1, 2,3} }.

Denote by F; (resp., Fa, F3, F4) the set of signed circuits C € F with E(C) N E(H)) =
{e1,ea} (resp., = {es,ea}, = {e1,e3}, = {e1, e2,e3}). Since F(ey) = F(eq) = Flesz) = 6,

\Fil 4 [ Fa| + [Fa| = [Fu] + | Fo| + | Fa| = | Fo| + | F3| + | Fa| = 6.

Thus there is an integer ¢ € [0, 3] such that |Fy| = |F2| = |F3| =t and |Fy| = 6 — 2¢t. Let
Fi = {Ci,...,Cy} for each @ € [1,3] and Fy = {Cu1,...,Cye-21)}. On the other hand,
by assumption, Hs has a U, (t)-cover

CoU{Pu,...., Py} U{Po,..., Py} U{Ps1,..., Py} U{Pu,..., Pis_on},

such that no tadpole at « contains y, Cy is a family of signed circuits, each P; (resp., Ps;)
is a positive (resp., negative) xy-path, and each Ps; (resp., Py;) is a tadpole at x (resp.,
y). One can easily check that the family

CoU (F\ (UL F)) U (UL UL (Cy — E(HR) U P})
is a signed circuit 6-cover of G = P(H;, Hs). O

Throughout this paper, we use Ry, Ry, ..., R5 to denote the six signed graphs shown
in Fig. 3.

Observation 8. (1) Ry has a U, (t)-cover for each t € [0, 3], and a ¥, (2)-cover in which
exactly one tadpole at y doesn’t contain x.

(2) R3 has a ¥}, (2)-cover.

(3) Both Ry and R5 have a V., (2)-cover F satisfying that y ¢ V(T1) UV (1), x ¢ V(T3)
and zy is in the tadpole-path of Ty, where {11, Ty} and {T3, T4} are the sets of tadpoles of
F at x and y, respectively.

For any H = H(u,v), the notation H = R;(x,y) (resp., H ~ R;(x,y)) means that G
is isomorphic (resp., equivalent) to H, u and v correspond to x and y, respectively.
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R() R1 R2 R3 R4 R5

Figure 3: Six small signed graphs with two specified vertices x and y.

Lemma 9. Let H = H(x,y) and G = P(H Uyz,xz) such that xy € E(H) and xyzx is
an unbalanced triangle. If H ~ Ri(x,y) for some i € {2,4,5} or H has a ¥}, (2)-cover,
then G has a V7 (2)-cover.

Proof. With possible switching, assume that o(zy) = 1. If H ~ R;(z,y) for some i €
{2,4,5}, then G is a small signed graph and thus it is easy to find a W% _(2)-cover of G.
Now we assume that H has a ¥} (2)-cover Fy. By the definition of W} (2)-cover, let

Fu=CoU{P, P} U{Q1,Q2} U{Ts1, 2y U Ty} U{T ), yx UT,s},

where Cy is a family of signed circuits, P;, Py (resp., Q1,Q2) are two positive (resp.,
negative) xy-paths, T,1, Ty2 are the two tadpoles at u not containing the vertex in {z, y}\
{u} for each u € {xz,y}.

Let eg = zy, e = xz and ey = zy. Since zyzx is unbalanced and o(ey) = 1, WLOG,
assume that o(e;) = —1 and o(ep) = 1. From G and F \ Cp, we construct an auxiliary
signed graph G’ shown in Fig. 4. Observe that the family

./—"G'/ :{63 U €9, €3 U 62} U {61,61} U {65,61 U ()] U 66} U {62 U €6, €1 U €o U 64}
U{61 U62U€0U65,€1U62U€4}

covers {ej,ex} 6 times and F(G’) \ {e1,ea} twice. Let Fg be the family obtained from
Feor by replacing two egs with Py, P, two egs with 1, Q2, two ess with T, T,o, two egs
with T}, Ty. One can easily check that Fo UCy is a W, (2)-cover of G. O

Figure 4: An auxiliary signed graph G’.

By Observation 8, each of { Ro, R4, R5} has a U, (2)-cover in which at least one tadpole
at y doesn’t contain x. By this fact and a similar method of the proof of Lemma 9, we
obtain the following lemma.

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(2) (2025), #P2.5 8



Lemma 10. Let H; = H;(x,y;) for each i € [1,2], G = P(H1 Uy12z, Hy Uysz) and G’ be
the signed graph obtained from G by adding a new negative loop at x.

(1) If Hi = Ry, and either Hy ~ R;(z,y) for some j € {0,2,4,5} or Hy has a ¥}, (2)-
cover, then both G and G' have a signed circuit 6-cover. Moreover, G has a VU, (t)-cover
for each t € ]0,3].

(2) If either H; ~ Rj(x,y) for some j € {2,4,5} or H; has a V}, (2)-cover for each
i € [1,2], then both G and G’ have a signed circuit 6-cover. Moreover, G has a V,,(2)-
cover in which no tadpole at z contains x.

4 Proof of Theorem 2

In this section, we will complete the proof of Theorem 2 by contradiction.

Let G be a counterexample to Theorem 2 with minimum |E(G)|. Then G is unbalanced
since every coverable graph has a circuit 6-cover (see [12]). By the minimality, G contains
no 2-vertices and can’t be decomposed into two coverable signed subgraphs. The latter
implies that G is connected and contains no positive loops.

4.1 Properties of the smallest counterexample G

In this subsection, we will present some properties of G. For two sets X and Y, the
symmetric difference of X and Y is

XAY = (X\Y)U(Y\X).

For two signed subgraphs H; and H, of a signed graph G, the symmetric difference of Hy
and Hs, denoted by Hy; A Hs, is the signed subgraph of G induced by (E(H;) \ F(H2)) U
(E(Hs) \ E(H,)).

A two-terminal signed graph H = H(x,y) is said to be a piece of G at {z,y} if there
is another two-terminal signed graph H' = H'(z,y) such that G = P(H,H') = H U H'.

Claim 11. The following statements hold.

1) No two negative loops share a common vertex.

2) G is 2-connected.

(1)

(2)

(3) Ewvery balanced piece of G is a positive or negative K.

(4) If Ry is a piece of G at {x,y}, then dg(x) > 4 and dg(y) > 4.
(5)

5) G contains no balanced subgraph H = K4 — 11y2, where Ky is the complete graph on

vertices T, Y1, Y2, y3 and x is a 3-vertex of G.

(6) G — L(G) contains no adjacent 2-vertices.
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Proof. (1) Suppose to the contrary that e;, es are two negative loops at a vertex. Since
Co = e; Ueg is a short barbell, G — {e;, es} is not coverable and so G — e; is coverable.
By the minimality of G, G — e; has a signed circuit 6-cover F. Pick three signed circuits
C1,Cy, C3 from F containing ey. Then the family

(F\A{C4,Cy,C3}) U{C A Co,Cy A Cy, C3 A Co} U 3{Chp}

is a signed circuit 6-cover of G, a contradiction. This proves (1).

(2) Suppose to the contrary that there are two subgraphs H;, Hy in G such that G =
H, U H, and V(H,) NV (Hy) = {z}. Since the minimum degree of G is at least three,
|E(H;)| > 2 for each i € [1,2]. Note that if H; is balanced, then it is coverable and thus
both H; and H, are coverable, a contradiction to the minimality of G. Hence neither H;
nor H, is balanced. Therefore for each i € [1,2], the signed graph obtained from H; by
adding a new negative loop L; at x is also coverable and thus has a signed circuit 6-cover
Fi by the minimality of G again. Let C; = {Cj1,...,Cis} be the six signed circuits in F;
containing L;. Then the family

(Fi\C) U (F2\ Co) U (US_ {(Crj \ {L1}) U (Co; \ {L2})})

is a signed circuit 6-cover of G, a contradiction. This proves (2).

(3) Suppose to the contrary that there are two pieces Hy, Hy of G at {z,y} such that
G = H, U Hy and H, is balanced and of size at least 2. Then at least one of H; and H,
is not coverable.

We first show that H; is unbalanced. Suppose not. Then either H; or H, is not
2-edge-connected and for any cut-edge b of Hy; or Hy, G — b is balanced, contradicting
that G is coverable by Proposition 4. Hence H; is unbalanced.

WLOG, assume that H, has a positive xy-path. Then all xy-paths in Hs are positive
since Hs is balanced.

For each i = 1,2, let H! be the graph obtained from H; by adding a new positive edge
e; connecting x and y. Then |E(H})| < |E(G)| and H) is balanced. Moreover, both H{
and H/ are 2-connected and K -minor-free. Obviously, H} has a balanced circuit 6-cover,
denoted by Fs.

We now show that Hj is coverable. Suppose not. Since Hj is 2-connected, by Propo-
sition 4, there is an edge e in H{ such that H] — e is balanced. Note that e # e; since
H, = H] — e, is unbalanced. Since e; is a positive edge, every zy-path in H; — e is
positive. Thus G — e = (H; — e) U H, is balanced, for otherwise there is an unbalanced
circuit C' in G — e such that x,y € V(C), and hence exactly one of segments xCy and
yCz is a negative xy-path in H; — e or Hy, a contradiction. Since G is unbalanced, it is
not coverable by Proposition 4, a contradiction. Therefore H] is coverable.

By the minimality of G, H] has a signed circuit 6-cover F;. For each ¢ = 1,2, let
Ci ={Ci,---,Ci} be the six members of F; containing e;. Since every member of Cy is
a balanced circuit, the family

(F1\C) U (F2\ C2) U (Ui {(Chj \ {er}) U (Co; \ {ea})})
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is a signed circuit 6-cover of G, a contradiction. This proves (3).

(4) By symmetry, we only need to show that dg(y) > 4. Suppose by contradiction that
de(y) = 3. Let H = H(z,y) be a piece of G such that G = H U Ry. As shown in Fig. 3,
denote Cy = xyzx and Ry = CyUL,. Clearly G—xy is 2-connected and coverable. Thus it
has a signed circuit 6-cover G by the minimality of G. For each C € G, E(C)N{L.,zz,yz}
is either {zz, L.}, or {yz, L.}, or {zz,yz}, or {zz,yz, L,}. Denote by G; (resp., G2, Gs,
G4) the set of signed circuits C' € G with E(C) N E(Ry) = {zz,L.} (resp., = {yz, L.},
= {xz,yz}, = {xz,yz, L.}). Since G(zz) = G(yz) = G(L,) = 6, we have

|G1| + |Gs| + |Ga| = |Ga| + |Gs| + |Ga| = |G1] + |G2| + |Ga| = 6.

Thus there is an integer ¢ € [0, 3] such that |G| = |Ga| = |Gs| =t and |G4| = 6 — 2t. Let
gi = {Ci17 ceey C,t} for i € [1, 3] and g4 = {041, ceey C4(6—2t)}- Then the famlly

( (G \{Cu1,Cu2,Cu3, Caa}) U {Cs1 A 2wy, Cip A zay, Cuz A wyz, Cua A wyz} U 2{Cy}
if t € [0, 1];
3 (G\A{C11,C31,Cu3,Cua}) U{Cr1 A Cp, C3y A Cp, Cy3 A wyz, Cyy A zyz} U2{Co}

if t =2;
[ (G\{C31,C32,C33}) U{C31 A C, C32 A Co, C33 A Co} U 3{Co} ift=3

is a signed circuit 6-cover of G, a contradiction. This proves (4).

(5) Suppose that such a balanced subgraph H exists. Since G is Ky-minor-free, y3 is in
all y1yo-paths of G — x and thus y is a cut-vertex of G — x. Let Hy, Hy be two subgraphs
of G — x such that G —x = H, U Hy, V(H,) N V(H2) = {ys} and y;y3 € E(H;) for
i € [1,2]. Note that dg,(y;) > 2. Since G is 2-connected, by (3), either H; is 2-connected
and unbalanced, or H; is the union of y;y3 and a negative loop at y;. Hence G — x
is coverable and thus has a signed circuit 6-cover F by the minimality of G. Pick six
distinct members Cy, Ciz, Ci3, Co1, Ca2, Cos from F such that y,y3 € E(C;;) for i € [1,2]
and j € [1,3]. Then the family

(F\ (UL Uiy {C3}) U (UL Uiy {Cy A ayiysa}) U 3{ayysyor}

is a signed circuit 6-cover of G, a contradiction. This proves (5).

(6) Suppose to the contrary that x,y are two adjacent 2-vertices of G — L(G). If G— L, is
not coverable, then Ex(G —L,) = {L,} and G—{L,, L,} is balanced. Since G —{L,, L,}
is 2-connected, it has a balanced circuit 6-cover F. Pick Cy,Cy, C3 € F with zy € E(C})
for i € [1,3]. Then the family

(F\{C1,Ca, C3}) U (U {LUzyUL,, L, U (C; — zy) U L,})

is a signed circuit 6-cover of G, a contradiction. Therefore, G — L, is coverable. Let F’
be a signed circuit 6-cover of G' — L, by the minimality of G. Similar to the proof of (4),
we can extend F' to a signed circuit 6-cover of G, a contradiction. This proves (6) and
thus completes the proof of the claim. O
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Claim 12. Let H be a 2-connected piece of G. If e(H) = 1, then H ~ R; for some
i €0,5].

Proof. Let H and H' be two pieces of G at {z,y} such that G = HUH'. WLOG, assume
that Ex(H) = {eo} and the ends of ey are 2y, 29 (possibly z; = z). If [V(H)| < 3, it is
obvious that H € {Ry, Ry, Ro}. Thus we assume that |V (H)| > 4.

We first show that H is outerplanar. Since H is K4-minor-free, it is sufficient to prove
that H is K, s-minor-free. Suppose by contradiction that H has a Kj3-minor. Then
there are two distinct vertices u,v and three internally disjoint uv-paths Py, P, P3 in H
such that each |V(P;)| > 3. For each i € [1,3], let M; be the component of H — {u,v}
containing V' (P;) \{u, v}, and M] = H[V (M;)U{u,v}] —uv. Since H is K -minor-free, for
{wy,we} = {x,y} or {z1, 22}, there are at least two members of { M, My, M3} containing
neither w; nor wy. Therefore there is a member of {Mj, My, M3}, say Ms, satisfying
{z,y, 21,22} NV (M3) = (. This implies that M} is an all-positive piece of G at {u,v}. By
Claim 11-(3), Mj is a positive or negative K, a contradiction to |E(Mj5)| > |E(Ps)| =
\V(P;) \ {u,v}| +1 > 2. This proves that H is outerplanar.

Let C be an outer facial circuit of H. Since G = H U H' is K;-minor-free, there
are two pieces Hy, Hy of G at {x,y} such that H = H; U Hy, V(H;) = V(2Cy) and
V(Hsy) = V(yCx). Since En(H) = {eg}, at least one of Hy and H,, say Hy, is all-positive
and so H; is a positive Ky by Claim 11-(3). Therefore, xzy € E(C). It follows that
H — ey remains 2-connected for otherwise the end-block B of H — e with xy ¢ F(B) and
V(B) N{z1,22} # 0 is a positive K, by Claim 11-(3). Thus at least one of z; and 2, is a
2-vertex of G, a contradiction. If e is a loop, then z; = 2z, ¢ {z,y} since H — ¢ is not a
piece of G at {z,y}. If ey is not a loop, then there are two pieces Hs, Hy of G at {21, 22}
such that G = Hy U {eq} U Hy and V(H') C V(H,4). Thus Hj is a positive K by Claim
11-(3). Denote the single edge of Hz by e;. Then ey U e; is an unbalanced 2-circuit and
E(C) N {60,61} 7é @

WLOG, assume that 2, x,y, zo appear on C' in the cyclic order. Let

Py = 2Cr =wupu; -+ -up and P = yCzy = vy - - 0109

such that C' = z;2UP, UzyU P, where ug = 21, u, = o, v, = y and vy = 22. Because H is
outerplanar and the minimum degree of G is at least 3, E(H)\ E(C) C Eg[V(P),V(P)]
by Claim 11-(3).

If ug = vy, then eq is a negative loop not at x or y. Thus uguiviug U ey = Ry. Since
(V(C)| = |V(H)| = 4, either dg(uy) < 3 or dg(vy) < 3, contradicting Claim 11-(4). Hence
Ug F# V.

Note that there are no two indices ¢ € [0, p] and j € [0, g—2] satisfying {v;, vj1+1,vj12} C
Ny (w;), for otherwise H [{u;, vj, vj41, 042} —eo = K4 —vvj10 and dg(vjt1) = dg(vjt1) =
3, where K is the complete graph on {w;,v;,v;41,vj12}, contradicting Claim 11-(5). By
the symmetry of P; and P, it follows that p > 1, ¢ > 1 and

{ dg(w) <3 if we {uy,v}: (1)
dp(w) <4 ifweV(H)\ {up, vy}
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Let H* = H[{ug,u1,v0,v1}]. According to dy(ug) and dg(vy), we distinguish the
following two cases.

Case 1. dy(ug) = 4 or dy(vg) = 4.

By the symmetry of P; and P, assume that dy(vg) = 4. Then dy(ug) = 3, ujvg €
E(H) and H[{ug,us,v0}] = Ry. lf p=1, then H = H* = Ry by Eq. (1). Now we assume
p=2.

If dg(uy) = 3, then uguy U H [{ug, u1,v0}] is a piece of G at {ug,vo} and has a W, (t)-
cover for each t € [0, 3] in which no tadpole at vy contains us. By Lemma 7-(1) and the
minimality of G, G has a signed circuit 6-cover, a contradiction.

If dy(uy) =4, then H* = Ry. Let Cy = ujvgviuy and G = G — {uqvg, ugv, }. Clearly,
G’ has a signed circuit 6-cover ' by the minimality of G. Note that dg/(u1) = 2 and
de (ug) = dgr(vg) = 3. By the structure of G', there are 3 signed circuits Cy, Cy, C3 in F’
such that each of C7, Csy contains the tadpole eqg U ey U vgv; but not the vertex uq, and Cs
contains the path usujug U ey Uvgv;. Hence the family

(F\{C), Ca, C5}) U{CL A Cy, Cy A Co, C3 A Co} U3{Co}

is a signed circuit 6-cover of GG, a contradiction.

Case 2. dg(up) = dy(vy) = 3.

If p=¢qg=1,then H= R3. If p=1and q > 2, then dy(v;) = 3. Thus ¢ = 2
and H = R5. By the symmetry of P, and P, we assume that p > 2 and ¢ > 2. Then
U1 € E(H)

If dy(uy) = dy(v1) = 3, then H* = R3. By Lemma 6-(1) ugu; U H* U v1v, has a
W00, (2)-cover satisfying the condition of Lemma 7-(2). Together with the minimality of
G, we can obtain a signed circuit 6-cover of (G, a contradiction.

Assume that either dy(ui) > 4 or dy(vy) > 4. WLOG assume dy(u;) > 4. Then
dg(u;) = 4 by Eq. (1) and thus dgy(v;) = 3. Let G’ = G — {ujvy,uyv2}. By the
minimality of G, G’ has a signed circuit 6-cover F'. Note that dg/(u;) = de(v1) = 2
and de/(ug) = der(vg) = 3. It follows from the structure of G’ that there are 4 signed
circuits C1, Cy, C3, Cy in F' such that both C; and C5 contain the tadpole eg U e Uvgv,vs
but not the vertex u; and both C5 and C) contain the path usujug U e; U vgvive. Let
Co1 = urv1vuy, Cha = ugug U eg Uvgviug and Coz = uiug U e Uvgviveug. Then the family

(F'\{Ch,Ca,C5,Cy}) U{C1 A Cp1,Cy A Co1, C3 A Cog, Cy A Coz} U 2{Co1 } U {Coa, Cos}

is a signed circuit 6-cover of GG, a contradiction.
This completes the proof of the claim. O

For two distinct vertices x,y € V(G), let tg(x,y) denote the maximum number of
pieces Hy, ..., H; of G at {x,y} such that G = P(Hy,..., H;).

Claim 13. tg(z,y) < 3 for any two distinct vertices x,y € V(G).
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Proof. Suppose to the contrary that there are two distinct vertices z,y such that ¢ =
te(z,y) > 4. Let Hy,...,H; be t pieces of G at {x,y} such that G = P(Hy,..., Hy).
Since G is K -minor-free, no H; is 2-connected by the maximality of ¢.

WLOG, assume that ¢(H;) < €(Hs) < --- < €(H;). Then by Claim 11-(3), ¢(H; U
Hy) > 1 and €(Hs) > 1. Thus if ¢ > 5, then G can be decomposed into two coverable
subgraphs H; U Ho U H3 and Hy U --- U H;, a contradiction. Hence ¢ = 4.

We first consider the case when €¢(Hy) = 0. Then H;UHy; = Ry by Claim 11-(3). Since
G cannot not be decomposed into two coverable subgraphs, H; U H; is not coverable for
some i € {1,2} and j € {3,4}. WLOG, assume that H; U H; is not coverable and thus
€(H; U Hs) = 1. By Claim 12, for some k € [1, 5],

HlqukaandHluHQUngRkUe, (2)

where e is a negative edge not in R with ends x,y. Since H; U Hy U Hj is coverable, Hy is
not coverable. By Proposition 4, there is an edge b of H, such that H, — b has a balanced
component M. Since Hy is not 2-connected, it follows from Claim 11-(3) that M is the
single vertex x or y, say y. Then dy,(y) = 1. Let b = yy’. Then H = H; U Hy, U H3 U b
is a piece of G at {z,y'}. By Eq. (2), it is easy to check that for any ¢ € [0, 3], H has a
WU,/ (t')-cover in which no tadpole at = contains y’. By Lemma 7-(1) and the minimality
of G, G has a signed circuit 6-cover, a contradiction.

Now we consider the case when e(Hy) > 1. Since €(Hs) > 1, for any {i,j} C [2,4],
€(H; UH;) > e(H;) +€e(Hj) > 2. Thus H; U H; is coverable. This implies that for each
J € [2,4], Hy U Hj is not coverable and thus by Claim 12, Hy U H; ~ Ry, for some
k;j € [1,5]. With some switchings, assume that H; is the positive edge zy and thus for
each j € [2,4],

H; = Ry, — xy.

One can check directly that G' has a signed circuit 6-cover, a contradiction. This proves
the claim. [

Claim 14. H — L(H) is unbalanced for every 2-connected piece H of G.

Proof. Prove by contradiction. Let x,y be two distinct vertices and H be a 2-connected
piece of G at {z,y} such that

(i) H— L(H) is balanced;
(ii) subject to (i), |E(H)| is as small as possible.

WLOG, assume that H — L(H) is all-positive. Then Enx(H) = L(H). By (ii), no member
of L(H) has its end at x or y. Denote by H’ another piece of G at {z,y} such that
G =P(H, H).

We first show that H = R;. Since G is K -minor-free and H is 2-connected, there are
two pieces Hy, Hy of G at {z,y} such that G = P(H,, Hy, H') = Hy U Ho U H'. Note that
G is 2-connected. By (ii), neither Hy nor Hy is 2-connected, and By(Hy) = By(Hy) = 0.
This implies that H; — L(H;) is an zy-path for ¢ € [1,2]. Furthermore, the length of each

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(2) (2025), #P2.5 14



H; — L(H;) is equal to 1 or 2 by Claim 11-(6). Since G (and thus H — L(H)) contains no
balanced 2-circuit, H — L(H) = (H; — L(H,)) U (Hy — L(H3)) is a 3- or 4-circuit. Suppose
that H — L(H) = xz1yzx is a 4-circuit. Then H = xz1yzox U{L,,, L,,} and hence any
signed circuit 6-cover of H' U {L,, L,} can be extended to a signed circuit 6-cover of G,
where L, is a new negative loop at u for each u € {z,y}, a contradiction. Thus H — L(H)
is a 3-circuit and H = R;.

Next we show that H' has a cut-edge. Suppose to be contrary that H’ is 2-edge-
connected. Since G = P(H, H') and H is 2-connected, ty/ (z,y) = ta(x,y) —ty(zr,y) <1
by Claim 13. Thus H’ contains cut-vertices separating z from y. This implies that
there are s (> 2) 2-connected subgraphs or negative loops By, ..., Bs such that H' =
S(By,...,Bs) with € V(B;) and y € V(By). By Claim 11-(3), €(B;) > 1 for each

€ [1,s]. If s > 3, then both H U By and By U --- U By are coverable. If €(B;) > 2 for
some 7 € [1, s], then both H U (Ujepi g\ (s} B;) and B; are coverable. In both cases, we get
a contradiction that G has a decomposition into two coverable signed subgraphs. Hence
s =2and ¢(By) = €(B2) = 1. By Claim 12, By ~ R;, and By ~ R}, for some j, j2 € [0, 5].
By the structures of Ry, R;, and Rj,, it is easy to find a signed circuit 6-cover of G, a
contradiction. Thus H' has a cut-edge.

By the above two claims, let H = Cy U L, where Cy = zzyx and uv be a cut-edge of
H'. Let My, Ms be the two components of H' — uv with z,u € V(M) and y,v € V(Ms).

Let G’ = G — zy. Then G’ is 2-connected and coverable. By the minimality of G, G’
has a signed circuit 6-cover. Choose a signed graph 6-cover F’ of G’ such that the number
of balanced circuits and short barbells in F' is as large as possible.

To complete the proof, we will construct a signed circuit 6-cover F of G from F.

With a similar argument of the proof of Claim 11-(4), one can show that there is an
integer ¢ € [0, 3] and four families F; = {Cj1,...,Cy, }, i € [1,4], in F' such that t; =t =
ts =t, ty = 6 — 2t and for every C' € F; (resp., Fo, F3, Fu), E(C)NE(H) = {L,, zx}
(resp., = {L.,yz}, = {zx,yz}, = {L., zx,yz}).

If t € [0, 1], let

F = (.FI \ {041, 042, C’437 044}) U {041 A Zry, 042 A zZry, C43 AN ryYz, 044 YA .’ByZ} U 2{00}

Ift= 3, let F = (.F/ \ {031, 032, C33}) U {031 A Co, 032 AN Co, 033 A Co} U 3{00}
If t =2 and either y ¢ V(C11) NV (Ch2) or x ¢ V(Cq1) NV (Cas), say y ¢ V(Ciy), let

F = (F'\{C11,C31,Cu1,Cra}) U{Cr1 & Co, C31 A Co, Ciy A wyz, Cug A wyz} U 2{Cy}.

In each of the above cases, we obtain a signed circuit 6-cover of GG, a contradiction.

Finally we consider the case that t =2,y € V(C11)NV(C2) and z € V(Cq1) NV (Ca).

Then uv € Ni_; (E(Cy;) N E(Cy;) N E(Cy;)) but uv ¢ E(Csy) U E(Csy). For each
J € [1,2], denote by Py; (resp., Ts;, P41j), the segment of Cy; (resp., Cyj, Cyj) in M, and
by Ti; (vesp., Pyj, Pf;) the segment of Cy; (resp., Cy;, Cy;) in M. Thus

Clj = LZUZ.I'UPUUUUUTU, Ogj = LZUszngUUuUng, C4j = LZUZCEUPLUU’UUPEJU:UZ

Clearly Pi; and P; are zu-paths, Pp; and Pj; are vy-paths, and Ty, (resp., Ty;) is a
tadpole at v (resp., u).
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Since uv ¢ E(C3) and z is a cut-vertex of G’ — wwv, C3; is a barbell and z is in the
barbell-path of Cs;. Hence there are two barbells, denoted by Ci,,C%, in C3; U L, such
that {C},,C%} covers C3; once and L, twice.

If o(Pyj,)o(Psy,) # o(Pfy)o(Pf) for some ji,js € [1,2], then C; = zaz U Py, Uuv U
P,;, Uyz is a balanced circuit. Let

F' = (F'\{Cyj,, Caj,. Cs1}) U{C1, Csy, C3, Thj, Uuv U Ty, }.

If o(Pyj,)o(Psy,) = o(P)y)o(Pf) for any ji1,js € [1,2], then both Cy = za U Py Uuv U
Py Uyz and C5 = zz U P Uuv U Py U yz are unbalanced circuits. Let

F" = (F\{C11, Cia, Co1, Coa, C31 })U{C5UL,, C3UL,, C3y, C3,, Tiy UvuUThy, TioUvulUTos }.

In both cases, F” is a signed circuit 6-cover of G’ which has a larger number of balanced
circuits and short barbells than F’, a contradiction to the choice of F’. This completes
the proof of the claim. O

Claim 15. FEwvery balanced 3-circuit is in a piece H of G with H ~ R; for some i €
{2,4,5}.

Proof. Let C' = xyzx be a balanced 3-circuit. With possible switchings, assume that C
is all-positive. For any {u,v} C V(C),

Viw ={w € V(G)\ V(C) : there is a uv-path containing w but not V(C) \ {u,v} in G}.

Since G is 2-connected and Ky-minor-free, {V,,, V.., V,.} is a partition of V(G) \ V(C).
Let Guy = G|V U {u,v}], where every loop at V(C) belongs to exactly one of G =
{Gsy, G2, Gy.}. Then Gy, is a piece of G at {u,v} and

G =P(S(GrzyGry), Goy) = Gpz UGy U Gy

WLOG, assume that €(G,,) > €(Gy.) = €(G,.). Note that, by the definition and Claim
11-(3), every G, € G is a positive edge if €(G,,) = 0 and is 2-connected if €(G,) > 1.

If €(G.2) = 1, then €(G,y) = €(Gy.) = €(G,.) = 1; otherwise G can be decomposed
into two coverable subgraphs G,, and G,. U G,., a contradiction. By Claim 12, every
Guw € G is equivalent to R; for some i € [0,5]. One can check easily that G has a signed
circuit 6-cover, a contradiction. Therefore €(G,,) = 0. By Claim 11-(3), G,. = zz.

Note that G, # yz otherwise z is a 2-vertex of G. Thus €(G,,) > 1.

If €(Gy.) > 2, then €(G.y) > €(Gy.) > 2. This implies that both G,, and G, are
coverable. By the minimality of G, let F; and JF» be two signed circuit 6-covers of G,
and G, respectively. For each ¢ € [1,2], pick three members C;;, Cjo, C;3 from F; such
that zy € E(C;) and yz € E(Cy;) for j € [1,3]. Then

UL, (Fi \ {Ci1, Ci2, Ci3}) U{Cis & C,Cin A C,Ci3 A CY)
is a signed circuit 6-cover of G, a contradiction. Therefore e(G,,) = 1.
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Recall that G, is 2-connected. By Claims 12 and 14, G,. ~ R; for some i €
{0,2,3,4,5}. By the structure of R;, there is an edge e € E(Gy.) \ {yz} such that G, —e
is balanced. Since C'is balanced, (G, —e)UC' is also balanced. Thus ¢(G,,UC) = 1. By
Claims 12 and 14 again, G, UC ~ R; for some j € {2,4,5}. This completes the proof of
the claim. O

Claim 16. Let B; = B;i(x;_1,x;) fori € [1,h] and H = S(By,...,By) be a piece of G
at {xg,xp} such that h = |B(H)| > 2, e(G — E(H)) > 1, and every B; € By(H) has a
U, 1z (2)-cover.

(1) If Bo(H) = 0, then either H ~ Do(x,y) in Fig. 2, or h = 2 and By(H) €
{{B1},{B2}}. Furthermore, when By(H) = { By}, the following statements hold.

(1a) Every W, ., (2)-cover of By has a tadpole at x1 containing xo;
(1b) By has no V., (t)-cover for some t € {0,1,3};
(lc) If By has a Vi . (2)-cover and e = xoxy, € E(G — E(H)), then either H U e

ZoT1

has a U  (2)-cover, or H U e is equivalent to one of Rs(y,xz), Ry(z,y) and

o2

R5(l’,y).

(2) If h > 3, Bo(H) = {Bx} and Bo(H) = {Byy1} for some k € [1,h — 2], then By, has
no W; . (2)-cover and By, is not equivalent to R; for each i € {2,4,5}.

—1Tk

Proof. Let H' be a piece of G at {xg,x2} such that G = P(H,H’). Then E(H') =
E(G — E(H)).

(1) Assume that H o Dy(z,y). If H has a U, ,, (2)-cover whose tadpoles at x, and
xp, don’t contain xj, and xy, respectively, then we have |E(H)| > 5. Since e(H') > 1,
P(Ds(x,y), H') has a signed circuit 6-cover by the minimality of G. By Lemma 7-(2), G
has a signed circuit 6-cover, a contradiction. Hence H has no such ¥, ,, (2)-cover. Since
Byo(H) =0, h=2and By(H) € {{B:1},{B2}} by Lemma 6.

Assume Bi(H;) = {B;}. Clearly, (1la) follows from Lemma 6 and (1b) follows from
Lemma 7-(1).

We now prove (1c). Suppose to the contrary that H U e has no ¥  (2)-cover and
H U e is not equivalent to any of Rs(y,x), Ri(x,y), and Rs(x,y). Furthermore since
is a 2-vertex of H Ue, HUe o R; for each i € {2,4,5}. Since B has a ¥}, . (2)-cover,
xor1 € E(By) by the definition. With some switchings, assume that xgz; is positive. By
Lemma 9, C' = xqx1x2x0 is a balanced 3-circuit. Note that x; is a 2-vertex of H' UC. By
Claim 15, (H' U C)(xo, 1) is equivalent to Rs(y,z) or R;(z,y) for some i € {4,5}, and
thus H' ~ R;(x,y) for some i € {0,2,3}. Since G = P(B; Ux1xy, H'), by Lemma 10 and
Observation 8-(2), G has a signed circuit 6-cover, a contradiction. This proves (1c).

(2) Suppose to the contrary that either By, has a W} (2)-cover or By ~ R; for some
i € {2,4,5}. Since By, is a negative loop at o (= 2411), By U Bry1 hasa Uy, o 0 (2)-
cover in which no tadpole at xj; contains z;_;. Since k < h — 2, we have By, € By(H).
Thus H has a U, (2)-cover in which no tadpole at x (resp, x5) contains xp, (resp., o).
Since €(H') > 1, by Lemma 7-(2) and the minimality of G, G has a signed circuit 6-cover,

a contradiction. This prove (2) and thus completes the proof of the claim. O
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Claim 17. Suppose that G = P(H1, Hy, H3) where each H; = H;(x,y) and e(H3) > 1. If
H = H,UHy # R; for any i € {0,2,4,5} and contains no negative loop at {x,y}, then
the following statements hold.

(1) If either Hy ~ Di(z,y) or Hy ~ D;(x,y), then H has a V., (t)-cover for each
t € [0, 3], where D(x,y) is the two-terminal signed graph in Fig. 2.

(2) If vy € E(H), then H has a ¥}, (2)-cover.

(3) Ifzy ¢ E(H) and neither Hy nor Hy is equivalent to Dy(x,y), then H has a ¥, (2)-
cover in which no tadpole at y contains x.

Proof. Suppose that H is a counterexample to the claim with minimum |[E(H)|. Re-
call that G is 2-connected and contains no positive loop. By the definition, let B; =
Bi(zi—1,%;), 1 € [1,s], such that

Hl(l',y) :S(Bl,...,Bh) :B1U"'UBh, Hg(y,l') :S(Bh—i-l;---aBs) :Bh+1U"'UBS

and s is maximum with this property, where x = 2o =z, € V(B1) NV (B;) and y = x), €
V(Br) NV (Bpy1). Then, for any B € By(H;p) U By(Hs) with terminals v and v, B is 2-
connected by the maximality of s, and B— L(B) is unbalanced by Claim 14. Furthermore,
it follows from the minimality of H that B has either a ¥, (t)-cover for each t € [0, 3], or
a U* (2)-cover, or a ¥,,(2)-cover in which no tadpole at v contains u, unless B ~ R; for
some ¢ € {0,2,4,5}. By this fact and Observation 8, B has a W,,(2)-cover.

We will find a desired ¥, (2)-cover of H, contradicting that H is a counterexample to
the claim. To do this, when H;, i € [1,2], is not a single edge (that is, |Bo(H;)|+|B2(H;)| >
1), we apply Lemma 5 to construct a signed subgraph 6-cover F; of H; as follows:

Fi = FioU2By(H;) U{Pi1, P, Pis, Pu} U{T1, Ti2, Ti3, Tin },

7
where

> Fio is a subfamily of signed circuits of Hj;

> P;; and Py (resp., Pz and Pyy) are two positive (resp., negative) zy-paths of H; if
|BQ(H1)| > 1, and otherwise Pil = BQ = Pig = -Pi4 = Hz - B()(Hl),

> Ti1, T (resp., Ti3, T;y) are two tadpoles of H; at x (resp., y) such that the unbalanced
circuit in 7—%(21'_1) (resp., ﬂ(gi), 7—;(5_21')7 n(6—2i)) is in the part in BO(Hz) UBQ(HIL) with
minimum (resp., minimum, maximum, maximum) subscript.

Note that Pj; U Py is a circuit and every part in By(H;) U By(H>) is a negative loop.
When By(H;) U By(Hs) # 0, the signed graph Py; U Py U Bo(Hy) U By(Hs) has a family

CO U {T1/7 T2/}

which covers Pj; U Py once and By(H;) U By(Hs) twice, where Cy is a set of barbells and
T7,T; are two tadpoles at .
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(1) WLOG, assume that Hy = D;(x,y). Then h > 2 since H ¢ R,. Let t € [0, 3].

If Bo(Hy) = 0, then H; = xz1y U L,, by Claim 11-(6), and thus it is easy to check
that H = Hy; U H; has a W, (t)-cover.

If h =2 and B2 € Bl(Hl), then Bo(Hl) = @ and Bg(Hl) = {Bl} By (1&) and (1b) of
Claim 16, B; has a ¥} . (2)-cover. Thus H has a W,,(t)-cover by Lemma 10-(1).

Next assume that either h > 3 and By(Hy) # 0, or h = 2 and By € By(H;). Then
x ¢ V(T13) UV (T14). We construct a family F* as follows.

F* = FioUFoU{Pi1 U Py, T1; UTy U

{P14 U Py, T1o UToo} U{Pia U Py3, Pis U Pay, T3, T14, T3, Tos} if t = 0;
{P1aU Pay, T1o U Ty} U{Pia, Pog} U{P13U Pag, T13, 114, To3, Tos} if t = 1;
{P1aU Pay, T13U T3} U{Pia, Pyo, Pi3, Pog} U{T12, T2, T14, T4} if t = 2;

{T12 U T} U{Pia, Pay, Pyy A By, Py3, Py, Pos} U{Bs, T13U Py, T14 U Pay} if t = 3.

When |By(Hy)| =0, let F = F*. When By(H;) = {B;} for some i € [2,h — 1], let Co =0
and

J._.Z (f*\{PHUP21,P14UP24})U{P11UP24UBZ',P14UP21UBZ'} lftE [0,2],
(F*\{P11U Py, Bs}) U{B, UT]} U{T3} if t = 3.

When |By(Hy)| = 2, let F = (F*\ {P11UPy})UCoU{T{ UT,}. In each case, one can
easily check that F is a W, (t)-cover of H by the structure of Hy = Dy(z,y).

(2) WLOG, assume that Hy = xy is positive. Then h > 2 since H # Ry.

If Bo(Hy) = 0, then H; = xzyy U L,, by Claim 11-(6). Thus H = xz1yz U Ly, is a
short barbell by Claim 14 and has a W}, (2)-cover.

If By(Hy,) = 0, then by Claim 16-(1), either H; ~ Dy(z,y) in Fig. 2 or h = 2 and
By(Hy) = {Bi} or {Bs}. In the former case, H ~ R3 and thus has a ¥} (2)-cover. In the
latter case, by the symmetry, assume that By(H;) = {B:}. Thus B, has a ¥} . (2)-cover
by (1a) and (1b) of Claim 16. Since H # R; for each i € {2,4,5}, H has a ¥} (2)-cover
by (1c) of Claim 16.

Now we assume that By(H;) # () and By(H;) # (. Then h > 3. Let By (resp., By) be
the part in By(H;p) U By(H;) with minimum (resp., maximum) subscript.

If V(B) NV (B;) = 0, then by the choice of Fy, V(T11) NV (T13) = 0. Thus Ty; U
{zy} U T3 is a barbell. Therefore, the family

FroUCoU{Pia Uy, Ti1 Uzy U T3} U{zy, zy, Pis, P} U{T}, T3, T2 Uy, Tia}

is a U7 (2)-cover of H.

If V(Br) NV (B;) # 0, then either By(Hy) = { By, Bri2} and By(Hy) = {Bgs1}, or
By(Hy) U Bo(Hy) = {Bg, Br+1}. In the former case, by the proof of Lemma 5, there
are 4 negative zoxp-paths Pjy, Py, Pj3, P{, in Hy such that (Fy \ {Pi1, P2, P13, Pis}) U
{P],, P|, P{5, P|,} is a signed subgraph 6-cover of H; and hence the family

FroU{P};UzyU Byi1, P, UzyU By 1} U{ay, xy, P35, P} U{T11, 2y U T3, yz UTio, T4}
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is a Uy (2)-cover of H. In the latter case, assume that By(H;) = {By} and By(H;) =
{Bg+1} by the symmetry. Then k = h —2 € [1, 2] since H has no negative loop at z;, and
G contains no 2-vertex. By Claim 16-(2), By has no ¥y (2)-cover and By, # R; for
each i € {2,4,5}. Hence k = 1; otherwise By U By is a piece of G at {x9, ¢} and thus, by
(1a) and (1b) of Claim 16, B; has a W}, . (2)-cover, a contradiction. Since By(H;) = { B}
and Hy U Hj is unbalanced, G — E(By) is coverable. Hence By is not coverable. By Claim
12, By = Ry and thus H — L,, ~ Ry(y,x). Since H has a unique balanced 3-circuit
C' = xox12910, by Claim 15, C'U H3 ~ R; for some i € {2,4,5}. Therefore, one can easily

check that G = (H — E(C)) U (C U H3) has a signed circuit 6-cover, a contradiction.

(3) Since xy ¢ E(H), both H; and H, contain cut-vertices by Claim 13. Thus h > 2
and s — h > 2. If |By(Hy)| = |Ba(H2)| = 0, then H = xgzi292320 U { Ly, Lys } by Claim
11-(6) and H — L(H) is unbalanced by Claim 14. Thus one can easily find a desired
U, (2)-cover, a contradiction. Hence |By(Hy)|+ |B2(Hz)| > 1 and, when |By(H;)| = 0, we
may assume that H; — L(H;) is positive (with possible switchings).

By the construction, we can choose F; and Fj such that y ¢ V(T;;) N V(T;2) and
x ¢ V(T;3) NV (Ty) for each i € [1,2]; otherwise, if either y € U2, (V(T;;) NV (T})) or
r € UL, (V(Ti3) N V(Ty)), say y € V(T11) NV (T1s), then (By(Hy), Bi(Hy),By(Hy)) =
(0,{B1},{B2}) and for every W, ,,(2)-cover of By, both its tadpoles at z; contain x,
contradicting that By has a W}  (2)-cover by (la) and (1b) of Claim 16. Therefore,
WLOG, assume that y ¢ V(T1;) UV (Ty) and @ ¢ V(T14) UV (Toy).

If © ¢ V(Ti3) or & ¢ V(Ts3), say x ¢ V(T13), since |By(Hy)| 4 |Ba(Hs)| > 1, the family

F = FioUFo U {T12 U Ty, T3 U Toz}U
{ CoU{Ti UToy UPU{T], Ty, Tia, Tos} if Bo(Hy) U By(Hy) # 0;
{Pi1UPy}UPU{T11, T2, T14, Tos} if Bo(Hy) U By(Hs) = 0.

is a desired W, (2)-cover, where P = { Pia, Pi3, Pag, Pos} U{ P14 U Py} if |Bo(H;)| > 1 and
|BQ<H2)‘ } 1, and P = {P137 P14, P23, P24} U {P12 U P22} otherwise.
If x € V(T13) NV (T33), then for each i € [1,2],

(Bo(H;), Bi(H;), Bo(H;)) = (0, {Bi1}, { Bsi—2}),

and both By and By have U}, (2)-covers by (la) and (1b) of Claim 16. Therefore H

has a desired U,,(2)-cover by Claim 10-(2). This completes the proof of the claim. [

4.2 The final step

Since G — L(G) is 2-connected, loopless, K -minor-free, and of minimum degree at least
3, it contains a 2-circuit, denoted by C7 = zoz1x9. Let Cy be the circuit of G — L(G)
corresponding to C and let

B, =CyU {Lz € L(G) A V(OQ) \ {ill(),l’l}}.

Obviously, Bj is a 2-connected piece of G at {xg,z;}. By Claims 14 and 11-(6), Cy =
By — L(By) is an unbalanced circuit of length 2 or 3 or 4, denoted by zoz120 Or xo22170
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or xgz1x122xo depending on its length. Hence By = xgri129 or By = 2922120 U L, O
By = xoz1212200 U {L,,, L., }. In each case, By has a ¥, ,, (2)-cover

Fi = FroU{ P, Pra, Pig, Pra} U {11, Too, T3, o4},

where Fj consists of signed circuits, Py; and P (resp., Pi3 and Pjy) are two positive
(resp., negative) xox;i-paths, and 71, and Ty5 (resp., T13 and Ty4) are two tadpoles at xg
(resp., x1).
Let H = H(x, 1) such that G = P(By, H). Choose B; = B;(x;-1,%;), i € [2,s], such
that
H(l’l,l'o) :S(BQ,Bg,"' ,Bs) = BQUBgUUBS

and s is maximum with this property, where z; € V(By) and x4 = 29 € V(B;). Then
|Bo(H)| > 1; otherwise, by Claim 11-(6), H — L(H) is a positive or negative path with
length 1 or 2, and thus one can easily find a signed circuit 6-cover of GG, a contradiction.
Furthermore, |B,(H)|+ |B2(H)| > 2 by Claim 13, and every B; € Bo(H) has a U, .. (2)-
cover by Claim 17. Applying Lemma 5, we pick a signed subgraph 6-cover F3 of H as
follows:

Fy = Fao U2By(H) U {Pay, P, Py, Pos} U {1y, Too, Tz, Tos},

where Fyq is a family of signed circuits, Ps; and Psy (resp., Pos and Pyy) are two positive
(resp., negative) xgri-paths, To; and Ty (resp., Tz and Tyy) are two tadpoles in H at
xo (resp., x1) whose unbalanced circuit is in the part in By(H) U B2(H) with maximum
(resp., minimum) subscript.

Let U = Npenymyusin V(B). We first show U N {xg, 21} = 0. Otherwise zy ¢
V(T23) N V(T24) and T ¢ V(Tgl) N V(TQQ) Thus the famlly

Fro U Fao U{P1aU Pag, Pi3 U Pas3} U{T11 UT1,Tio U Ty, Ti3 U Tog, T4 UToy}

U{ {P14UP24}UCO 1f|Bo(H)|7£1,
{P1U Py UBy(H), Py UPyy UBy(H)} if [Bo(H)| =1

is a signed circuit 6-cover of G, where Cy is a family of signed circuits of Py; U Py UBy(H)
which covers Pj; U Py once and By(H) twice, a contradcition. Hence U N {xg, 21} # 0.

WLOG, assume that o € U. Then Bi(H) = {By} = {z122}, B2(H) = {Bs} and
Bo(H) € {0,{B,}} since |B;(H)|+ |B2(H)| = 2 and |By(H)| > 1. Hence G = B4UP (B U
T1T9, B3)

Note that xoziz120mw9 U {L,,, L.,} has a W, (2)-cover in which no tadpole at z;
contains xo. Since B U 129 is a piece of G at {xg,z2}, by (1la) of Claim 16, we have
either By = woxr1x¢ or xozzixg U {L.}. Since B3 U zyx; is a piece of G at {xg,x1}, it
follows from Claim 17 and (1a) and (1b) of Claim 16 that either B3 has a W} . (2)-cover
or By = Bs(xg,x2) ~ R;i(z,y) for some i € {0,2,4,5}. Therefore, by Lemma 7-(2), G has
a signed circuit 6-cover, a contradiction. This completes the proof of Theorem 2.
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