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Abstract

Bermond, Jackson and Jaeger [J. Combin. Theory Ser. B, 35: 297–308, 1983]
proved that every bridgeless ordinary graph G has a circuit 4-cover and Fan [J.
Combin. Theory Ser. B, 54: 113–122, 1992] showed that G has a circuit 6-cover
which together implies that G has a circuit k-cover for every even integer k 󰃍 4.
The only left case when k = 2 is the well-known circuit double cover conjecture.
For signed circuit k-cover of signed graphs, it is known that for every integer k 󰃑 5,
there are infinitely many coverable signed graphs without signed circuit k-cover and
there are signed eulerian graphs that admit nowhere-zero 2-flow but don’t admit
a signed circuit 1-cover. Fan conjectured that every coverable signed graph has a
signed circuit 6-cover. This conjecture was verified only for signed eulerian graphs
and for signed graphs whose bridgeless-blocks are eulerian. In this paper, we prove
that this conjecture holds for signed K4-minor-free graphs. The 6-cover is best
possible for signed K4-minor-free graphs.

Mathematics Subject Classifications: 05C22, 05C70

1 Introduction

Graphs or signed graphs considered in this paper are finite and may have multiple edges
or loops. For terminology and notations not defined here we follow [5, 9, 21, 27].

A signed graph is a graph G with a mapping σ : E(G) 󰀁→ {1,−1}. The mapping
σ, called signature, is sometimes implicit in the notation of a signed graph and will be
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specified when needed. An edge e is positive if σ(e) = 1, and otherwise it is negative.
An ordinary graph is a signed graph without negative edges and a circuit is a connected
2-regular graph. A circuit of length k is called a k-circuit. A circuit in a signed graph
is balanced if it has an even number of negative edges and otherwise it is unbalanced. A
signed circuit is a signed graph of one of the following three types: (1) a balanced circuit;
(2) a long barbell, the union of two disjoint unbalanced circuits with a path (called the
barbell-path) that meets the circuits only at its ends; (3) a short barbell, the union of two
unbalanced circuits that meet at a single vertex (also called the barbell-path, for technical
reasons). A barbell is either a long barbell or a short barbell. The edges of a signed circuit
in a signed graph correspond to a minimal dependent set in the signed graphic matroid
(see [30]).

Let G be a signed graph. A family F of signed circuits of G is called a signed circuit
cover of G if every edge is contained in some member of F and is called a signed circuit
k-cover if each edge is contained in precisely k members of F . A signed graph is coverable
if it has a signed circuit cover. Given a coverable signed graph G, the minimum length of
a signed circuit cover of G is denoted by SSC(G).

Note that an ordinary graph contains no unbalanced circuit and thus no barbell. The
circuit covers of ordinary graphs are closely related to some mainstream areas in graph
theory, such as, Tutte’s integer flow theory [1, 4, 13, 16, 19, 24, 31], Fulkerson conjecture
[14], snarks and graph minors [2, 17]. Thus the circuit cover of ordinary graphs has been
studied extensively.

It is proved by Bermond, Jackson and Jaeger [4] that every ordinary graph admitting
a nowhere-zero 4-flow has SCC(G) 󰃑 4

3
|E(G)|. By applying Seymour’s 6-flow theorem

[26] or Jaeger’s 8-flow theorem [18], Alon and Tarsi [1], and Bermond, Jackson and Jaeger
[4] proved that every bridgeless ordinary graph G has SCC(G) 󰃑 5

3
|E(G)|. One of the

most famous open problems in this area was proposed by Alon and Tarsi [1] that every
bridgeless ordinary graph G has SCC(G) 󰃑 7

5
|E(G)|.

Bermond, Jackson and Jaeger [4] proved that every bridgeless ordinary graph G has
a circuit 4-cover and Fan [12] showed that G has a circuit 6-cover which together implies
that G has a circuit k-cover for every even integer k 󰃍 4. The only left case when k = 2
is the well-known circuit double cover conjecture.

For signed graphs, Máčajová, Raspaud, Rollová and Škoviera [23] presented the first
upper bound of SSC(G). They showed that SSC(G) 󰃑 11|E(G)| if G is coverable and
the upper bound was improved by Lu et al. [22] to 14

3
|E(G)|. More improvements were

obtained later in [7, 20, 25, 28, 29].
For k-cover of signed graphs, Fan [15] showed that for every integer k 󰃑 5, there

are infinitely many coverable signed graphs that have no signed circuit k-cover and he
proposed the following conjecture.

Conjecture 1. (Fan [15]) Every coverable signed graph has a signed circuit 6-cover.

The conjecture was verified for signed eulerian graphs in [3] and for signed graphs
whose bridgeless-blocks are eulerian in [8].
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A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from G
by edge contractions, edge deletions and vertex deletions; if not, G is H-minor-free. The
class of K4-minor-free graphs, which includes all series-parallel graphs and outerplanar
graphs, is a very important family of graph class and has been studied by many researchers
for various graph theory problems (for example see [10, 11]). In this paper we study the
signed circuit k-cover for signed K4-minor-free graphs and confirm Conjecture 1 for this
family of signed graphs.

Theorem 2. Every coverable signed K4-minor-free graph has a signed circuit 6-cover.

Note that if a coverable signed graph G containing four distinct degree 3 vertices
x1, x2, y1, y2 such that G[{x1, x2}] is a balanced 2-circuit and G[{y1, y2}] is an unbalanced
2-circuit, then G has no signed circuit k-cover for any 1 󰃑 k 󰃑 5. Thus the 6-cover in
Theorem 2 is tight.

Before proceeding, it is worth pointing out that the problems of flow and signed circuit
cover in signed graphs are significantly more challenging than their counterparts in ordi-
nary graphs. For instance, while ordinary Eulerian graphs trivially allow for a nowhere-
zero 2-flow and a 1-cover, signed Eulerian graphs can have flow values of 2, 3, or even 4,
as shown in [25]. Additionally, there are signed Eulerian graphs that admit nowhere-zero
2-flow but don’t have a 1-cover, as demonstrated in [3]. Unlike ordinary graphs, cover-
able signed graphs may have bridges. The intricate structures of signed graphs, such as
barbells, bridges, and negative loops, add to their complexity in comparison to ordinary
graphs.

This paper is organized as follows. In Section 2, we introduce more notations and
terminology. Some simple cases and reduction lemmas needed in the proof of Theorem 2
are presented in Section 3. In Section 4, we prove Theorem 2 by contradiction.

2 Preliminaries

Let G be a graph. A vertex x is called a cut-vertex of G if G−x has more components than
G. A graph is 2-connected if it is connected and has no cut-vertex. A block of G is either
a maximal 2-connected subgraph, or a cut-edge (with its ends), or an isolated vertex. An
end-block of G is a block containing exactly one cut-vertex. Let Lx represent a loop at x
and L(G) be the set of all loops of G. Let NG(x) and dG(x) denote the neighborhood and
the degree of x in G, respectively, where each loop at x contributes 2 to dG(x). A d-vertex
is a vertex with degree d. For two subsets X, Y ⊆ V (G) (not necessarily disjoint), denote
by EG[X, Y ] the set of edges of G with one end in X and the other end in Y . A path
with ends x and y is called an xy-path.

Let G be a signed graph. For an edge subset or a subgraph S of G, denote the set of
all negative edges of S by EN(S) and define the sign of S to be σ(S) = Πe∈Sσ(e). A path
P in G is positive if σ(P ) = 1, and negative otherwise. The path P is called a subdivided
edge of G if every internal vertex of P is a 2-vertex of G. The suppressed graph of G,
denoted by G, is the signed graph obtained from G by replacing each maximal subdivided
edge P with a single edge e and assigning σ(e) = σ(P ).
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Given a signed graph G, switching at a vertex x is the inversion of the signs of all edges
incident with x. A signed graph G′ is said to be equivalent to G if G′ can be obtained
from G via a sequence of switchings and is denoted by G′ ∼ G. Define the negativeness of
G by 󰂃(G) = min{|EN(G

′)| : G′ ∼ G}. A signed graph is balanced if its negativeness is 0
and otherwise unbalanced. That is, a balanced signed graph is equivalent to an all-positive
signed graph, i.e. an ordinary graph. It is easy to see that a signed graph is balanced if
and only if all of its circuits are balanced.

For two integers n1 󰃑 n2, let [n1, n2] denote the set of integers between n1 and n2

inclusive. A tadpole at a vertex x is the union of an xy-path P and an unbalanced circuit
C with V (P ) ∩ V (C) = {y}. The vertex x is called a tail and the path P is called a
tadpole-path. Note that it is possible that x = y. In this case, the tadpole-path of the
tadpole is a single vertex.

Definition 3. Let F be a family of signed subgraphs of a signed graph G. Let t ∈ [0, 3]
be an integer and x, y be two distinct vertices of G.

(1) For each e ∈ E(G), F(e) denotes the number of members in F containing e.

(2) For an edge subset or a subgraph S of G, F is a signed subgraph k-cover of S if
F(e) = k for each edge e in S. In particular, F is a signed circuit k-cover of G if
every member of F is a signed circuit.

(3) A Ψxy(t)-cover is a signed subgraph 6-cover that consists of t positive xy-paths, t
negative xy-paths, t tadpoles at x, 6− 2t tadpoles at y, and some signed circuits.

(4) Let xy be an edge. A Ψ∗
xy(2)-cover is a Ψxy(2)-cover such that for each u ∈ {x, y},

one tadpole at u doesn’t contain the vertex in {x, y} \ {u}, and the tadpole-path of
the other tadpole at u contains the edge xy.

Signed circuit cover and flows are closely related. It is known that a signed graph G is
coverable if and only if it admits a nowhere-zero k-flow for some integer k 󰃍 2. Refining
the results in [6], we have the following characterization.

Proposition 4. A connected signed graph G is coverable if and only if 󰂃(G) ∕= 1 and there
is no cut-edge b such that G− b has a balanced component.

3 Ψxy(t)-covers of two-terminal signed graphs

A two-terminal signed graph H(x, y) is a connected signed nonempty graph H with two
specified vertices, a source terminal x and a target terminal y. In particular, if x = y,
H(x, x) is defined to be a negative loop, i.e., a two-terminal signed graph with the source
and target terminals same is just one vertex with a negative loop. For short, we abbreviate
H(x, y) to H if the terminals are understood from the context.

Let Hi = Hi(xi, yi) be a two-terminal signed graph for each i ∈ [1, n]. When xi ∕=
yi for each i, the parallel connection P(H1, . . . , Hn) of H1, . . . , Hn is the two-terminal
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signed graph obtained from H1 ∪ · · ·∪Hn by identifying x1, . . . , xn into a source terminal
and identifying y1, . . . , yn into a target terminal. When x1 ∕= yn, the series connection
S(H1, . . . , Hn) of H1, . . . , Hn is the two-terminal signed graph with source terminal x1

and target terminal yn obtained from H1 ∪ · · · ∪ Hn by identifying yi−1 and xi for each
i ∈ [2, n]. If G is a series connection of H1, . . . , Hn and n is maximum with this property,
then we call every Hi a part of G. Let B(G) = {H1, . . . , Hn} be the set of all parts of G.
Obviously, B(G) can be partitioned into three subsets as follows:

B0(G) = {Hi ∈ B(G) : xi = yi},
B1(G) = {Hi ∈ B(G) : xi ∕= yi, |E(Hi)| = 1},
B2(G) = {Hi ∈ B(G) : xi ∕= yi, |E(Hi)| 󰃍 2}.

Note that every member of B0(G) is a negative loop and every member of B1(G) is a
positive or negative K2. A series connection is shown in Fig. 1.

H1

H2

H3

H4
H5

H6

H7

Figure 1: A series connection G with B0(G) = {H2, H6}, B1(G) = {H1, H3, H5} and
B2(G) = {H4, H7}. Solid lines are positive; dotted lines are negative.

The next lemma will be applied in the reduction.

Lemma 5. Let Hi = Hi(xi−1, xi) for each i ∈ [1, n] and G = S(H1, . . . , Hn) with n =
|B(G)| and |B2(G)| 󰃍 1. Let θ∗ = (1, 1,−1,−1) if |B2(G)| = 1, and θ∗ = (1, 1,−1,−1) or
(−1,−1,−1,−1) if |B2(G)| 󰃍 2. If every Hi ∈ B2(G) has a Ψxi−1xi

(2)-cover, then G has
a signed subgraph 6-cover

F0 ∪ 2B0(G) ∪ {P1, P2, P3, P4} ∪ {T1, T2, T3, T4},

where

⊲ F0 is a family of signed circuits;

⊲ P1, P2, P3, P4 are four x0xn-paths of G and (σ(P1), σ(P2), σ(P3), σ(P4)) = θ∗;

⊲ T1, T2 are two tadpoles of G at x0 whose unbalanced circuits are in the part of
B0(G) ∪ B2(G) with minimum subscript.

⊲ T3, T4 are two tadpoles of G at xn whose unbalanced circuits are in the part of
B0(G) ∪ B2(G) with maximum subscript.

Proof. Denote Ij = {i : Hi ∈ Bj(G)} for each j ∈ [0, 2], and for each i ∈ I2, let

Fi = Ci ∪ {Pi1, Pi2, Pi3, Pi4} ∪ {Ti1, Ti2, Ti3, Ti4},
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be an arbitrary Ψxi−1xi
(2)-cover of Hi, where Ci is a family of signed circuits, Pi1, Pi2 are

two positive xi−1xi-paths, Pi3, Pi4 are two negative xi−1xi-paths, Ti1, Ti2 are two tadpoles
at xi−1, and Ti3, Ti4 are two tadpoles at xi. Note that every part in B0(G) is a negative
loop and every part in B1(G) is a positive or negative K2.

Let G1 = (∪i∈I2{Pi1, Pi2, Pi3, Pi4}) ∪ 4B1(G). Then G1 can be expressed as a family P
consisting of 4 x0xn-paths P1, P2, P3, P4 such that (σ(P1), σ(P2), σ(P3), σ(P4)) = θ∗ and
G1(e) = P(e) for each e ∈ E(G).

Let G2 = (∪i∈I2{Ti1, Ti2, Ti3, Ti4}) ∪ 4B0(G) ∪ 2B1(G). For the sake of convenience,
let Tij = Hi for each i ∈ I0 and each j ∈ [1, 4] since Hi is a tadpole at xi−1 (=xi), and
I0 ∪ I2 = {i1, i2, . . . , iℓ} with 0 󰃑 i1 󰃑 i2 󰃑 . . . 󰃑 iℓ 󰃑 n. For each j ∈ [1, 2], we construct
a tadpole Tj at x0, a tadpole Tj+2 at xn, and some barbells as follows:

Tj = (x0x1 · · · xi1−1) ∪ Ti1j,

Tj+2 = Tiℓ(j+2) ∪ (xiℓ · · · xn−1xn),

Bkj = Tik(j+2) ∪ (xikxik+1 · · · xik+1−1) ∪ Tik+1j, ∀ k ∈ [1, ℓ− 1].

Let T = {T1, T2, T3, T4} and C = ∪ℓ−1
k=1{Bk1, Bk2}. Obviously, G2(e) = (T ∪ C)(e) for each

e ∈ E(G). Therefore, (∪i∈I2Ci)∪ C ∪ 2B0(G)∪P ∪ T is a desired signed subgraph 6-cover
of G.

By the definition and Lemma 5, the following result is straightforward and its proof
is omitted.

Lemma 6. Let Hi = Hi(xi−1, xi) for each i ∈ [1, n] and G = S(H1, . . . , Hn) with n =
|B(G)| 󰃍 2 and |B2(G)| 󰃍 1. If B0(G) = ∅ and every Hi ∈ B2(G) has a Ψxi−1xi

(2)-cover,
then exactly one of the following statements holds.

(1) G has a Ψx0xn(2)-cover whose tadpoles at x0 and xn don’t contain xn and x0, re-
spectively;

(2) B2(G) = {H1} and any Ψx0x1(2)-cover of H1 has a tadpole at x1 containing x0;

(3) B2(G) = {Hn} and any Ψxn−1xn(2)-cover of Hn has a tadpole at xn−1 containing xn.

The next lemma is another reduction technique in the proof of the main result.

Lemma 7. Let H1, H2, H
′
2 be three two-terminal signed graphs with source terminal x and

target terminal y, where H2 and H ′
2 satisfy one of the following conditions.

(1) H2 has a Ψxy(t)-cover for each t ∈ [0, 3] in which no tadpole at x contains y; H ′
2 is

the signed graph D1(x, y) in Fig. 2.

(2) H2 has a Ψxy(2)-cover whose tadpoles at x and y don’t contain y and x, respectively;
H ′

2 is the signed graph D2(x, y) in Fig. 2.

If P(H1, H
′
2) has a signed circuit 6-cover, then so does P(H1, H2).
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x ye1

e3

e2

D1(x, y)

x ye1 e3e2

e4

D2(x, y)

Figure 2: Two two-terminal signed graphs with terminals x and y.

Proof. Denote G = P(H1, H2) and G′ = P(H1, H
′
2). Let F be a signed circuit 6-cover of

G′.
We only prove the case when H2 satisfies (1) since the augment for the other case is

very similar.
As shown in Fig. 2, it follows from the structure of the signed graph D1(x, y) that, for

any signed circuit C ∈ F ,

E(C) ∩ E(H ′
2) ∈ {∅, {e1, e2}, {e2, e3}, {e1, e3}, {e1, e2, e3}} .

Denote by F1 (resp., F2, F3, F4) the set of signed circuits C ∈ F with E(C) ∩ E(H ′
2) =

{e1, e2} (resp., = {e3, e2}, = {e1, e3}, = {e1, e2, e3}). Since F(e1) = F(e2) = F(e3) = 6,

|F1|+ |F3|+ |F4| = |F1|+ |F2|+ |F4| = |F2|+ |F3|+ |F4| = 6.

Thus there is an integer t ∈ [0, 3] such that |F1| = |F2| = |F3| = t and |F4| = 6− 2t. Let
Fi = {Ci1, . . . , Cit} for each i ∈ [1, 3] and F4 = {C41, . . . , C4(6−2t)}. On the other hand,
by assumption, H2 has a Ψxy(t)-cover

C0 ∪ {P11, . . . , P1t} ∪ {P21, . . . , P2t} ∪ {P31, . . . , P3t} ∪ {P41, . . . , P4(6−2t)},

such that no tadpole at x contains y, C0 is a family of signed circuits, each P1j (resp., P2j)
is a positive (resp., negative) xy-path, and each P3j (resp., P4j) is a tadpole at x (resp.,
y). One can easily check that the family

C0 ∪
󰀃
F \ (∪4

i=1Fi)
󰀄
∪
󰀓
∪4

i=1 ∪
|Fi|
j=1 {(Cij − E(H ′

2)) ∪ Pij}
󰀔

is a signed circuit 6-cover of G = P(H1, H2).

Throughout this paper, we use R0, R1, . . . , R5 to denote the six signed graphs shown
in Fig. 3.

Observation 8. (1) R2 has a Ψyx(t)-cover for each t ∈ [0, 3], and a Ψxy(2)-cover in which
exactly one tadpole at y doesn’t contain x.
(2) R3 has a Ψ∗

xy(2)-cover.
(3) Both R4 and R5 have a Ψxy(2)-cover F satisfying that y /∈ V (T1) ∪ V (T2), x /∈ V (T3)
and xy is in the tadpole-path of T4, where {T1, T2} and {T3, T4} are the sets of tadpoles of
F at x and y, respectively.

For any H = H(u, v), the notation H = Ri(x, y) (resp., H ∼ Ri(x, y)) means that G
is isomorphic (resp., equivalent) to H, u and v correspond to x and y, respectively.
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x y

R0

x y

R1

x y

R2

x y

R3

x y

R4

x y

R5

Figure 3: Six small signed graphs with two specified vertices x and y.

Lemma 9. Let H = H(x, y) and G = P(H ∪ yz, xz) such that xy ∈ E(H) and xyzx is
an unbalanced triangle. If H ∼ Ri(x, y) for some i ∈ {2, 4, 5} or H has a Ψ∗

xy(2)-cover,
then G has a Ψ∗

xz(2)-cover.

Proof. With possible switching, assume that σ(xy) = 1. If H ∼ Ri(x, y) for some i ∈
{2, 4, 5}, then G is a small signed graph and thus it is easy to find a Ψ∗

xz(2)-cover of G.
Now we assume that H has a Ψ∗

xy(2)-cover FH . By the definition of Ψ∗
xy(2)-cover, let

FH = C0 ∪ {P1, P2} ∪ {Q1, Q2} ∪ {Tx1, xy ∪ Ty2} ∪ {Ty1, yx ∪ Tx2},

where C0 is a family of signed circuits, P1, P2 (resp., Q1, Q2) are two positive (resp.,
negative) xy-paths, Tu1, Tu2 are the two tadpoles at u not containing the vertex in {x, y}\
{u} for each u ∈ {x, y}.

Let e0 = xy, e1 = xz and e2 = zy. Since xyzx is unbalanced and σ(e0) = 1, WLOG,
assume that σ(e1) = −1 and σ(e2) = 1. From G and F \ C0, we construct an auxiliary
signed graph G′ shown in Fig. 4. Observe that the family

FG′ ={e3 ∪ e2, e3 ∪ e2} ∪ {e1, e1} ∪ {e5, e1 ∪ e2 ∪ e6} ∪ {e2 ∪ e6, e1 ∪ e0 ∪ e4}
∪ {e1 ∪ e2 ∪ e0 ∪ e5, e1 ∪ e2 ∪ e4}

covers {e1, e2} 6 times and E(G′) \ {e1, e2} twice. Let FG be the family obtained from
FG′ by replacing two e3s with P1, P2, two e4s with Q1, Q2, two e5s with Tx1, Tx2, two e6s
with Ty1, Ty2. One can easily check that FG ∪ C0 is a Ψ∗

xz(2)-cover of G.

x z

y

e1

e2e0
e3

e4

e5

e6

Figure 4: An auxiliary signed graph G′.

By Observation 8, each of {R2, R4, R5} has a Ψxy(2)-cover in which at least one tadpole
at y doesn’t contain x. By this fact and a similar method of the proof of Lemma 9, we
obtain the following lemma.
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Lemma 10. Let Hi = Hi(x, yi) for each i ∈ [1, 2], G = P(H1 ∪ y1z,H2 ∪ y2z) and G′ be
the signed graph obtained from G by adding a new negative loop at x.
(1) If H1 = R0, and either H2 ∼ Rj(x, y) for some j ∈ {0, 2, 4, 5} or H2 has a Ψ∗

xy2
(2)-

cover, then both G and G′ have a signed circuit 6-cover. Moreover, G has a Ψxz(t)-cover
for each t ∈ [0, 3].
(2) If either Hi ∼ Rj(x, y) for some j ∈ {2, 4, 5} or Hi has a Ψ∗

xyi
(2)-cover for each

i ∈ [1, 2], then both G and G′ have a signed circuit 6-cover. Moreover, G has a Ψxz(2)-
cover in which no tadpole at z contains x.

4 Proof of Theorem 2

In this section, we will complete the proof of Theorem 2 by contradiction.
LetG be a counterexample to Theorem 2 with minimum |E(G)|. ThenG is unbalanced

since every coverable graph has a circuit 6-cover (see [12]). By the minimality, G contains
no 2-vertices and can’t be decomposed into two coverable signed subgraphs. The latter
implies that G is connected and contains no positive loops.

4.1 Properties of the smallest counterexample G

In this subsection, we will present some properties of G. For two sets X and Y , the
symmetric difference of X and Y is

X △ Y = (X \ Y ) ∪ (Y \X).

For two signed subgraphs H1 and H2 of a signed graph G, the symmetric difference of H1

and H2, denoted by H1 △H2, is the signed subgraph of G induced by (E(H1) \E(H2))∪
(E(H2) \ E(H1)).

A two-terminal signed graph H = H(x, y) is said to be a piece of G at {x, y} if there
is another two-terminal signed graph H ′ = H ′(x, y) such that G = P(H,H ′) = H ∪H ′.

Claim 11. The following statements hold.

(1) No two negative loops share a common vertex.

(2) G is 2-connected.

(3) Every balanced piece of G is a positive or negative K2.

(4) If R1 is a piece of G at {x, y}, then dG(x) 󰃍 4 and dG(y) 󰃍 4.

(5) G contains no balanced subgraph H = K4− y1y2, where K4 is the complete graph on
vertices x, y1, y2, y3 and x is a 3-vertex of G.

(6) G− L(G) contains no adjacent 2-vertices.
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Proof. (1) Suppose to the contrary that e1, e2 are two negative loops at a vertex. Since
C0 = e1 ∪ e2 is a short barbell, G − {e1, e2} is not coverable and so G − e1 is coverable.
By the minimality of G, G− e1 has a signed circuit 6-cover F . Pick three signed circuits
C1, C2, C3 from F containing e2. Then the family

(F \ {C1, C2, C3}) ∪ {C1 △ C0, C2 △ C0, C3 △ C0} ∪ 3{C0}

is a signed circuit 6-cover of G, a contradiction. This proves (1).

(2) Suppose to the contrary that there are two subgraphs H1, H2 in G such that G =
H1 ∪ H2 and V (H1) ∩ V (H2) = {x}. Since the minimum degree of G is at least three,
|E(Hi)| 󰃍 2 for each i ∈ [1, 2]. Note that if Hi is balanced, then it is coverable and thus
both H1 and H2 are coverable, a contradiction to the minimality of G. Hence neither H1

nor H2 is balanced. Therefore for each i ∈ [1, 2], the signed graph obtained from Hi by
adding a new negative loop Li at x is also coverable and thus has a signed circuit 6-cover
Fi by the minimality of G again. Let Ci = {Ci1, . . . , Ci6} be the six signed circuits in Fi

containing Li. Then the family

(F1 \ C1) ∪ (F2 \ C2) ∪ (∪6
j=1{(C1j \ {L1}) ∪ (C2j \ {L2})})

is a signed circuit 6-cover of G, a contradiction. This proves (2).

(3) Suppose to the contrary that there are two pieces H1, H2 of G at {x, y} such that
G = H1 ∪H2 and H2 is balanced and of size at least 2. Then at least one of H1 and H2

is not coverable.
We first show that H1 is unbalanced. Suppose not. Then either H1 or H2 is not

2-edge-connected and for any cut-edge b of H1 or H2, G − b is balanced, contradicting
that G is coverable by Proposition 4. Hence H1 is unbalanced.

WLOG, assume that H2 has a positive xy-path. Then all xy-paths in H2 are positive
since H2 is balanced.

For each i = 1, 2, let H ′
i be the graph obtained from Hi by adding a new positive edge

ei connecting x and y. Then |E(H ′
1)| < |E(G)| and H ′

2 is balanced. Moreover, both H ′
1

and H ′
2 are 2-connected and K4-minor-free. Obviously, H ′

2 has a balanced circuit 6-cover,
denoted by F2.

We now show that H ′
1 is coverable. Suppose not. Since H ′

1 is 2-connected, by Propo-
sition 4, there is an edge e in H ′

1 such that H ′
1 − e is balanced. Note that e ∕= e1 since

H1 = H ′
1 − e1 is unbalanced. Since e1 is a positive edge, every xy-path in H1 − e is

positive. Thus G − e = (H1 − e) ∪H2 is balanced, for otherwise there is an unbalanced
circuit C in G − e such that x, y ∈ V (C), and hence exactly one of segments xCy and
yCx is a negative xy-path in H1 − e or H2, a contradiction. Since G is unbalanced, it is
not coverable by Proposition 4, a contradiction. Therefore H ′

1 is coverable.
By the minimality of G, H ′

1 has a signed circuit 6-cover F1. For each i = 1, 2, let
Ci = {Ci1, · · · , Ci6} be the six members of Fi containing ei. Since every member of C2 is
a balanced circuit, the family

(F1 \ C1) ∪ (F2 \ C2) ∪
󰀃
∪6

i=j{(C1j \ {e1}) ∪ (C2j \ {e2})}
󰀄
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is a signed circuit 6-cover of G, a contradiction. This proves (3).

(4) By symmetry, we only need to show that dG(y) 󰃍 4. Suppose by contradiction that
dG(y) = 3. Let H = H(x, y) be a piece of G such that G = H ∪ R1. As shown in Fig. 3,
denote C0 = xyzx and R1 = C0∪Lz. Clearly G−xy is 2-connected and coverable. Thus it
has a signed circuit 6-cover G by the minimality of G. For each C ∈ G, E(C)∩{Lz, xz, yz}
is either {xz, Lz}, or {yz, Lz}, or {xz, yz}, or {xz, yz, Lz}. Denote by G1 (resp., G2, G3,
G4) the set of signed circuits C ∈ G with E(C) ∩ E(R1) = {xz, Lz} (resp., = {yz, Lz},
= {xz, yz}, = {xz, yz, Lz}). Since G(xz) = G(yz) = G(Lz) = 6, we have

|G1|+ |G3|+ |G4| = |G2|+ |G3|+ |G4| = |G1|+ |G2|+ |G4| = 6.

Thus there is an integer t ∈ [0, 3] such that |G1| = |G2| = |G3| = t and |G4| = 6− 2t. Let
Gi = {Ci1, . . . , Cit} for i ∈ [1, 3] and G4 = {C41, . . . , C4(6−2t)}. Then the family

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

(G \ {C41, C42, C43, C44}) ∪ {C41 △ zxy, C42 △ zxy, C43 △ xyz, C44 △ xyz} ∪ 2{C0}
if t ∈ [0, 1];

(G \ {C11, C31, C43, C44}) ∪ {C11 △ C0, C31 △ C0, C43 △ xyz, C44 △ xyz} ∪ 2{C0}
if t = 2;

(G \ {C31, C32, C33}) ∪ {C31 △ C0, C32 △ C0, C33 △ C0} ∪ 3{C0} if t = 3

is a signed circuit 6-cover of G, a contradiction. This proves (4).

(5) Suppose that such a balanced subgraph H exists. Since G is K4-minor-free, y3 is in
all y1y2-paths of G− x and thus y is a cut-vertex of G− x. Let H1, H2 be two subgraphs
of G − x such that G − x = H1 ∪ H2, V (H1) ∩ V (H2) = {y3} and yiy3 ∈ E(Hi) for
i ∈ [1, 2]. Note that dHi

(yi) 󰃍 2. Since G is 2-connected, by (3), either Hi is 2-connected
and unbalanced, or Hi is the union of yiy3 and a negative loop at yi. Hence G − x
is coverable and thus has a signed circuit 6-cover F by the minimality of G. Pick six
distinct members C11, C12, C13, C21, C22, C23 from F such that yiy3 ∈ E(Cij) for i ∈ [1, 2]
and j ∈ [1, 3]. Then the family

(F \ (∪2
i=1 ∪3

j=1 {Cij})) ∪ (∪2
i=1 ∪3

j=1 {Cij △ xyiy3x}) ∪ 3{xy1y3y2x}

is a signed circuit 6-cover of G, a contradiction. This proves (5).

(6) Suppose to the contrary that x, y are two adjacent 2-vertices of G−L(G). If G−Ly is
not coverable, then EN(G−Ly) = {Lx} and G−{Lx, Ly} is balanced. Since G−{Lx, Ly}
is 2-connected, it has a balanced circuit 6-cover F . Pick C1, C2, C3 ∈ F with xy ∈ E(Ci)
for i ∈ [1, 3]. Then the family

(F \ {C1, C2, C3}) ∪ (∪3
i=1{Lx ∪ xy ∪ Ly, Lx ∪ (Ci − xy) ∪ Ly})

is a signed circuit 6-cover of G, a contradiction. Therefore, G − Ly is coverable. Let F ′

be a signed circuit 6-cover of G− Ly by the minimality of G. Similar to the proof of (4),
we can extend F ′ to a signed circuit 6-cover of G, a contradiction. This proves (6) and
thus completes the proof of the claim.
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Claim 12. Let H be a 2-connected piece of G. If 󰂃(H) = 1, then H ∼ Ri for some
i ∈ [0, 5].

Proof. Let H and H ′ be two pieces of G at {x, y} such that G = H ∪H ′. WLOG, assume
that EN(H) = {e0} and the ends of e0 are z1, z2 (possibly z1 = z2). If |V (H)| 󰃑 3, it is
obvious that H ∈ {R0, R1, R2}. Thus we assume that |V (H)| 󰃍 4.

We first show that H is outerplanar. Since H is K4-minor-free, it is sufficient to prove
that H is K2,3-minor-free. Suppose by contradiction that H has a K2,3-minor. Then
there are two distinct vertices u, v and three internally disjoint uv-paths P1, P2, P3 in H
such that each |V (Pi)| 󰃍 3. For each i ∈ [1, 3], let Mi be the component of H − {u, v}
containing V (Pi)\{u, v}, and M ′

i = H[V (Mi)∪{u, v}]−uv. Since H is K4-minor-free, for
{w1, w2} = {x, y} or {z1, z2}, there are at least two members of {M1,M2,M3} containing
neither w1 nor w2. Therefore there is a member of {M1,M2,M3}, say M3, satisfying
{x, y, z1, z2}∩V (M3) = ∅. This implies that M ′

3 is an all-positive piece of G at {u, v}. By
Claim 11-(3), M ′

3 is a positive or negative K2, a contradiction to |E(M ′
3)| 󰃍 |E(P3)| =

|V (Pi) \ {u, v}|+ 1 󰃍 2. This proves that H is outerplanar.
Let C be an outer facial circuit of H. Since G = H ∪ H ′ is K4-minor-free, there

are two pieces H1, H2 of G at {x, y} such that H = H1 ∪ H2, V (H1) = V (xCy) and
V (H2) = V (yCx). Since EN(H) = {e0}, at least one of H1 and H2, say H1, is all-positive
and so H1 is a positive K2 by Claim 11-(3). Therefore, xy ∈ E(C). It follows that
H − e0 remains 2-connected for otherwise the end-block B of H − e0 with xy /∈ E(B) and
V (B) ∩ {z1, z2} ∕= ∅ is a positive K2 by Claim 11-(3). Thus at least one of z1 and z2 is a
2-vertex of G, a contradiction. If e0 is a loop, then z1 = z2 /∈ {x, y} since H − e0 is not a
piece of G at {x, y}. If e0 is not a loop, then there are two pieces H3, H4 of G at {z1, z2}
such that G = H3 ∪ {e0} ∪H4 and V (H ′) ⊆ V (H4). Thus H3 is a positive K2 by Claim
11-(3). Denote the single edge of H3 by e1. Then e0 ∪ e1 is an unbalanced 2-circuit and
E(C) ∩ {e0, e1} ∕= ∅.

WLOG, assume that z1, x, y, z2 appear on C in the cyclic order. Let

P1 = z1Cx = u0u1 · · · up and P2 = yCz2 = vq · · · v1v0

such that C = z1z2∪P1∪xy∪P2, where u0 = z1, up = x, vq = y and v0 = z2. Because H is
outerplanar and the minimum degree of G is at least 3, E(H)\E(C) ⊆ EH [V (P1), V (P2)]
by Claim 11-(3).

If u0 = v0, then e0 is a negative loop not at x or y. Thus u0u1v1u0 ∪ e0 = R1. Since
|V (C)| = |V (H)| 󰃍 4, either dG(u1) 󰃑 3 or dG(v1) 󰃑 3, contradicting Claim 11-(4). Hence
u0 ∕= v0.

Note that there are no two indices i ∈ [0, p] and j ∈ [0, q−2] satisfying {vj, vj+1, vj+2} ⊆
NH(ui), for otherwise H[{ui, vj, vj+1, vj+2}]−e0 = K4−vjvj+2 and dG(vj+1) = dH(vj+1) =
3, where K4 is the complete graph on {ui, vj, vj+1, vj+2}, contradicting Claim 11-(5). By
the symmetry of P1 and P2, it follows that p 󰃍 1, q 󰃍 1 and

󰀝
dH(w) 󰃑 3 if w ∈ {up, vq};
dH(w) 󰃑 4 if w ∈ V (H) \ {up, vq}.

(1)
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Let H∗ = H[{u0, u1, v0, v1}]. According to dH(u0) and dH(v0), we distinguish the
following two cases.

Case 1. dH(u0) = 4 or dH(v0) = 4.
By the symmetry of P1 and P2, assume that dH(v0) = 4. Then dH(u0) = 3, u1v0 ∈

E(H) and H[{u0, u1, v0}] = R1. If p = 1, then H = H∗ = R4 by Eq. (1). Now we assume
p 󰃍 2.

If dH(u1) = 3, then u2u1∪H[{u0, u1, v0}] is a piece of G at {u2, v0} and has a Ψv0u2(t)-
cover for each t ∈ [0, 3] in which no tadpole at v0 contains u2. By Lemma 7-(1) and the
minimality of G, G has a signed circuit 6-cover, a contradiction.

If dH(u1) = 4, then H∗ = R4. Let C0 = u1v0v1u1 and G′ = G− {u1v0, u1v1}. Clearly,
G′ has a signed circuit 6-cover F ′ by the minimality of G. Note that dG′(u1) = 2 and
dG′(u0) = dG′(v0) = 3. By the structure of G′, there are 3 signed circuits C1, C2, C3 in F ′

such that each of C1, C2 contains the tadpole e0 ∪ e1 ∪ v0v1 but not the vertex u1, and C3

contains the path u2u1u0 ∪ e1 ∪ v0v1. Hence the family

(F ′ \ {C1, C2, C3}) ∪ {C1 △ C0, C2 △ C0, C3 △ C0} ∪ 3{C0}

is a signed circuit 6-cover of G, a contradiction.

Case 2. dH(u0) = dH(v0) = 3.
If p = q = 1, then H = R3. If p = 1 and q 󰃍 2, then dH(v1) = 3. Thus q = 2

and H = R5. By the symmetry of P1 and P2, we assume that p 󰃍 2 and q 󰃍 2. Then
u1v1 ∈ E(H).

If dH(u1) = dH(v1) = 3, then H∗ = R3. By Lemma 6-(1) u2u1 ∪ H∗ ∪ v1v2 has a
Ψu2v2(2)-cover satisfying the condition of Lemma 7-(2). Together with the minimality of
G, we can obtain a signed circuit 6-cover of G, a contradiction.

Assume that either dH(u1) 󰃍 4 or dH(v1) 󰃍 4. WLOG assume dH(u1) 󰃍 4. Then
dH(u1) = 4 by Eq. (1) and thus dH(v1) = 3. Let G′ = G − {u1v1, u1v2}. By the
minimality of G, G′ has a signed circuit 6-cover F ′. Note that dG′(u1) = dG′(v1) = 2
and dG′(u0) = dG′(v0) = 3. It follows from the structure of G′ that there are 4 signed
circuits C1, C2, C3, C4 in F ′ such that both C1 and C2 contain the tadpole e0 ∪ e1 ∪ v0v1v2
but not the vertex u1 and both C3 and C4 contain the path u2u1u0 ∪ e1 ∪ v0v1v2. Let
C01 = u1v1v2u1, C02 = u1u0 ∪ e1 ∪ v0v1u1 and C03 = u1u0 ∪ e1 ∪ v0v1v2u1. Then the family

(F ′ \ {C1, C2, C3, C4}) ∪ {C1 △ C01, C2 △ C01, C3 △ C02, C4 △ C03} ∪ 2{C01} ∪ {C02, C03}

is a signed circuit 6-cover of G, a contradiction.
This completes the proof of the claim.

For two distinct vertices x, y ∈ V (G), let tG(x, y) denote the maximum number of
pieces H1, . . . , Ht of G at {x, y} such that G = P(H1, . . . , Ht).

Claim 13. tG(x, y) 󰃑 3 for any two distinct vertices x, y ∈ V (G).
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Proof. Suppose to the contrary that there are two distinct vertices x, y such that t =
tG(x, y) 󰃍 4. Let H1, . . . , Ht be t pieces of G at {x, y} such that G = P(H1, . . . , Ht).
Since G is K4-minor-free, no Hi is 2-connected by the maximality of t.

WLOG, assume that 󰂃(H1) 󰃑 󰂃(H2) 󰃑 · · · 󰃑 󰂃(Ht). Then by Claim 11-(3), 󰂃(H1 ∪
H2) 󰃍 1 and 󰂃(H3) 󰃍 1. Thus if t 󰃍 5, then G can be decomposed into two coverable
subgraphs H1 ∪H2 ∪H3 and H4 ∪ · · · ∪Ht, a contradiction. Hence t = 4.

We first consider the case when 󰂃(H2) = 0. Then H1∪H2 = R0 by Claim 11-(3). Since
G cannot not be decomposed into two coverable subgraphs, Hi ∪Hj is not coverable for
some i ∈ {1, 2} and j ∈ {3, 4}. WLOG, assume that H1 ∪H3 is not coverable and thus
󰂃(H1 ∪H3) = 1. By Claim 12, for some k ∈ [1, 5],

H1 ∪H3 ∼ Rk and H1 ∪H2 ∪H3 ∼ Rk ∪ e, (2)

where e is a negative edge not in Rk with ends x, y. Since H1∪H2∪H3 is coverable, H4 is
not coverable. By Proposition 4, there is an edge b of H4 such that H4− b has a balanced
component M . Since H4 is not 2-connected, it follows from Claim 11-(3) that M is the
single vertex x or y, say y. Then dH4(y) = 1. Let b = yy′. Then H = H1 ∪H2 ∪H3 ∪ b
is a piece of G at {x, y′}. By Eq. (2), it is easy to check that for any t′ ∈ [0, 3], H has a
Ψxy′(t

′)-cover in which no tadpole at x contains y′. By Lemma 7-(1) and the minimality
of G, G has a signed circuit 6-cover, a contradiction.

Now we consider the case when 󰂃(H2) 󰃍 1. Since 󰂃(H2) 󰃍 1, for any {i, j} ⊆ [2, 4],
󰂃(Hi ∪ Hj) 󰃍 󰂃(Hi) + 󰂃(Hj) 󰃍 2. Thus Hi ∪ Hj is coverable. This implies that for each
j ∈ [2, 4], H1 ∪ Hj is not coverable and thus by Claim 12, H1 ∪ Hj ∼ Rkj for some
kj ∈ [1, 5]. With some switchings, assume that H1 is the positive edge xy and thus for
each j ∈ [2, 4],

Hj = Rkj − xy.

One can check directly that G has a signed circuit 6-cover, a contradiction. This proves
the claim.

Claim 14. H − L(H) is unbalanced for every 2-connected piece H of G.

Proof. Prove by contradiction. Let x, y be two distinct vertices and H be a 2-connected
piece of G at {x, y} such that

(i) H − L(H) is balanced;

(ii) subject to (i), |E(H)| is as small as possible.

WLOG, assume that H−L(H) is all-positive. Then EN(H) = L(H). By (ii), no member
of L(H) has its end at x or y. Denote by H ′ another piece of G at {x, y} such that
G = P(H,H ′).

We first show that H = R1. Since G is K4-minor-free and H is 2-connected, there are
two pieces H1, H2 of G at {x, y} such that G = P(H1, H2, H

′) = H1 ∪H2 ∪H ′. Note that
G is 2-connected. By (ii), neither H1 nor H2 is 2-connected, and B2(H1) = B2(H2) = ∅.
This implies that Hi −L(Hi) is an xy-path for i ∈ [1, 2]. Furthermore, the length of each
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Hi −L(Hi) is equal to 1 or 2 by Claim 11-(6). Since G (and thus H −L(H)) contains no
balanced 2-circuit, H−L(H) = (H1−L(H1))∪ (H2−L(H2)) is a 3- or 4-circuit. Suppose
that H − L(H) = xz1yz2x is a 4-circuit. Then H = xz1yz2x ∪ {Lz1 , Lz2} and hence any
signed circuit 6-cover of H ′ ∪ {Lx, Ly} can be extended to a signed circuit 6-cover of G,
where Lu is a new negative loop at u for each u ∈ {x, y}, a contradiction. Thus H−L(H)
is a 3-circuit and H = R1.

Next we show that H ′ has a cut-edge. Suppose to be contrary that H ′ is 2-edge-
connected. Since G = P(H,H ′) and H is 2-connected, tH′(x, y) = tG(x, y)− tH(x, y) 󰃑 1
by Claim 13. Thus H ′ contains cut-vertices separating x from y. This implies that
there are s (󰃍 2) 2-connected subgraphs or negative loops B1, . . . , Bs such that H ′ =
S(B1, . . . , Bs) with x ∈ V (B1) and y ∈ V (Bs). By Claim 11-(3), 󰂃(Bi) 󰃍 1 for each
i ∈ [1, s]. If s 󰃍 3, then both H ∪ B1 and B2 ∪ · · · ∪ Bs are coverable. If 󰂃(Bi) 󰃍 2 for
some i ∈ [1, s], then both H ∪ (∪j∈[1,s]\{i}Bj) and Bi are coverable. In both cases, we get
a contradiction that G has a decomposition into two coverable signed subgraphs. Hence
s = 2 and 󰂃(B1) = 󰂃(B2) = 1. By Claim 12, B1 ∼ Rj1 and B2 ∼ Rj2 for some j1, j2 ∈ [0, 5].
By the structures of R1, Rj1 and Rj2 , it is easy to find a signed circuit 6-cover of G, a
contradiction. Thus H ′ has a cut-edge.

By the above two claims, let H = C0 ∪ Lz where C0 = xzyx and uv be a cut-edge of
H ′. Let M1,M2 be the two components of H ′ − uv with x, u ∈ V (M1) and y, v ∈ V (M2).

Let G′ = G− xy. Then G′ is 2-connected and coverable. By the minimality of G, G′

has a signed circuit 6-cover. Choose a signed graph 6-cover F ′ of G′ such that the number
of balanced circuits and short barbells in F ′ is as large as possible.

To complete the proof, we will construct a signed circuit 6-cover F of G from F ′.
With a similar argument of the proof of Claim 11-(4), one can show that there is an

integer t ∈ [0, 3] and four families Fi = {Ci1, . . . , Citi}, i ∈ [1, 4], in F ′ such that t1 = t2 =
t3 = t, t4 = 6 − 2t and for every C ∈ F1 (resp., F2, F3, F4), E(C) ∩ E(H) = {Lz, zx}
(resp., = {Lz, yz}, = {zx, yz}, = {Lz, zx, yz}).

If t ∈ [0, 1], let

F = (F ′ \ {C41, C42, C43, C44}) ∪ {C41 △ zxy, C42 △ zxy, C43 △ xyz, C44 △ xyz} ∪ 2{C0}.

If t = 3, let F = (F ′ \ {C31, C32, C33}) ∪ {C31 △ C0, C32 △ C0, C33 △ C0} ∪ 3{C0}.
If t = 2 and either y /∈ V (C11) ∩ V (C12) or x /∈ V (C21) ∩ V (C22), say y /∈ V (C11), let

F = (F ′ \ {C11, C31, C41, C42}) ∪ {C11 △ C0, C31 △ C0, C41 △ xyz, C42 △ xyz} ∪ 2{C0}.

In each of the above cases, we obtain a signed circuit 6-cover of G, a contradiction.
Finally we consider the case that t = 2, y ∈ V (C11)∩V (C12) and x ∈ V (C21)∩V (C22).
Then uv ∈ ∩2

j=1 (E(C1j) ∩ E(C2j) ∩ E(C4j)) but uv /∈ E(C31) ∪ E(C32). For each
j ∈ [1, 2], denote by P1j (resp., T2j, P

1
4j), the segment of C1j (resp., C2j, C4j) in M1, and

by T1j (resp., P2j, P
2
4j) the segment of C1j (resp., C2j, C4j) in M2. Thus

C1j = Lz∪zx∪P1j∪uv∪T1j, C2j = Lz∪zy∪P2j∪vu∪T2j, C4j = Lz∪zx∪P 1
4j∪uv∪P 2

4j∪yz.

Clearly P1j and P 1
4j are xu-paths, P2j and P 2

4j are vy-paths, and T1j (resp., T2j) is a
tadpole at v (resp., u).
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Since uv /∈ E(C31) and z is a cut-vertex of G′ − uv, C31 is a barbell and z is in the
barbell-path of C31. Hence there are two barbells, denoted by C1

31, C
2
31, in C31 ∪ Lz such

that {C1
31, C

2
31} covers C31 once and Lz twice.

If σ(P1j1)σ(P2j2) ∕= σ(P 1
41)σ(P

2
41) for some j1, j2 ∈ [1, 2], then C1 = zx ∪ P1j1 ∪ uv ∪

P2j2 ∪ yz is a balanced circuit. Let

F ′′ = (F ′ \ {C1j1 , C2j2 , C31}) ∪ {C1, C
1
31, C

2
31, T1j1 ∪ uv ∪ T2j2}.

If σ(P1j1)σ(P2j2) = σ(P 1
41)σ(P

2
41) for any j1, j2 ∈ [1, 2], then both C2 = zx ∪ P11 ∪ uv ∪

P21 ∪ yz and C3 = zx ∪ P12 ∪ uv ∪ P22 ∪ yz are unbalanced circuits. Let

F ′′ = (F ′\{C11, C12, C21, C22, C31})∪{C2∪Lz, C3∪Lz, C
1
31, C

2
31, T11∪vu∪T21, T12∪vu∪T22}.

In both cases, F ′′ is a signed circuit 6-cover of G′ which has a larger number of balanced
circuits and short barbells than F ′, a contradiction to the choice of F ′. This completes
the proof of the claim.

Claim 15. Every balanced 3-circuit is in a piece H of G with H ∼ Ri for some i ∈
{2, 4, 5}.

Proof. Let C = xyzx be a balanced 3-circuit. With possible switchings, assume that C
is all-positive. For any {u, v} ⊆ V (C),

Vuv = {w ∈ V (G) \ V (C) : there is a uv-path containing w but not V (C) \ {u, v} in G}.

Since G is 2-connected and K4-minor-free, {Vxy, Vxz, Vyz} is a partition of V (G) \ V (C).
Let Guv = G[Vuv ∪ {u, v}], where every loop at V (C) belongs to exactly one of G =
{Gxy, Gxz, Gyz}. Then Guv is a piece of G at {u, v} and

G = P(S(Gxz, Gzy), Gxy) = Gxz ∪Gzy ∪Gxy.

WLOG, assume that 󰂃(Gxy) 󰃍 󰂃(Gyz) 󰃍 󰂃(Gxz). Note that, by the definition and Claim
11-(3), every Guv ∈ G is a positive edge if 󰂃(Guv) = 0 and is 2-connected if 󰂃(Guv) 󰃍 1.

If 󰂃(Gxz) 󰃍 1, then 󰂃(Gxy) = 󰂃(Gyz) = 󰂃(Gxz) = 1; otherwise G can be decomposed
into two coverable subgraphs Gxy and Gxz ∪ Gyz, a contradiction. By Claim 12, every
Guv ∈ G is equivalent to Ri for some i ∈ [0, 5]. One can check easily that G has a signed
circuit 6-cover, a contradiction. Therefore 󰂃(Gxz) = 0. By Claim 11-(3), Gxz = xz.

Note that Gyz ∕= yz otherwise z is a 2-vertex of G. Thus 󰂃(Gyz) 󰃍 1.
If 󰂃(Gyz) 󰃍 2, then 󰂃(Gxy) 󰃍 󰂃(Gyz) 󰃍 2. This implies that both Gxy and Gyz are

coverable. By the minimality of G, let F1 and F2 be two signed circuit 6-covers of Gxy

and Gyz, respectively. For each i ∈ [1, 2], pick three members Ci1, Ci2, Ci3 from Fi such
that xy ∈ E(C1j) and yz ∈ E(C2j) for j ∈ [1, 3]. Then

∪2
i=1 ((Fi \ {Ci1, Ci2, Ci3}) ∪ {Ci1 △ C,Ci2 △ C,Ci3 △ C})

is a signed circuit 6-cover of G, a contradiction. Therefore 󰂃(Gyz) = 1.
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Recall that Gyz is 2-connected. By Claims 12 and 14, Gyz ∼ Ri for some i ∈
{0, 2, 3, 4, 5}. By the structure of Ri, there is an edge e ∈ E(Gyz)\{yz} such that Gyz − e
is balanced. Since C is balanced, (Gyz − e)∪C is also balanced. Thus 󰂃(Gyz ∪C) = 1. By
Claims 12 and 14 again, Gyz ∪C ∼ Rj for some j ∈ {2, 4, 5}. This completes the proof of
the claim.

Claim 16. Let Bi = Bi(xi−1, xi) for i ∈ [1, h] and H = S(B1, . . . , Bh) be a piece of G
at {x0, xh} such that h = |B(H)| 󰃍 2, 󰂃(G − E(H)) 󰃍 1, and every Bi ∈ B2(H) has a
Ψxi−1xi

(2)-cover.

(1) If B0(H) = ∅, then either H ∼ D2(x, y) in Fig. 2, or h = 2 and B2(H) ∈
{{B1}, {B2}}. Furthermore, when B2(H) = {B1}, the following statements hold.

(1a) Every Ψx0x1(2)-cover of B1 has a tadpole at x1 containing x0;

(1b) B1 has no Ψx0x1(t)-cover for some t ∈ {0, 1, 3};
(1c) If B1 has a Ψ∗

x0x1
(2)-cover and e = x0xh ∈ E(G − E(H)), then either H ∪ e

has a Ψ∗
x0x2

(2)-cover, or H ∪ e is equivalent to one of R2(y, x), R4(x, y) and
R5(x, y).

(2) If h 󰃍 3, B2(H) = {Bk} and B0(H) = {Bk+1} for some k ∈ [1, h− 2], then Bk has
no Ψ∗

xk−1xk
(2)-cover and Bk is not equivalent to Ri for each i ∈ {2, 4, 5}.

Proof. Let H ′ be a piece of G at {x0, x2} such that G = P(H,H ′). Then E(H ′) =
E(G− E(H)).

(1) Assume that H ∕∼ D2(x, y). If H has a Ψx0xh
(2)-cover whose tadpoles at x0 and

xh don’t contain xh and x0, respectively, then we have |E(H)| 󰃍 5. Since 󰂃(H ′) 󰃍 1,
P(D2(x, y), H

′) has a signed circuit 6-cover by the minimality of G. By Lemma 7-(2), G
has a signed circuit 6-cover, a contradiction. Hence H has no such Ψx0xh

(2)-cover. Since
B0(H) = ∅, h = 2 and B2(H) ∈ {{B1}, {B2}} by Lemma 6.

Assume B1(H1) = {B1}. Clearly, (1a) follows from Lemma 6 and (1b) follows from
Lemma 7-(1).

We now prove (1c). Suppose to the contrary that H ∪ e has no Ψ∗
x0x2

(2)-cover and
H ∪ e is not equivalent to any of R2(y, x), R4(x, y), and R5(x, y). Furthermore since x2

is a 2-vertex of H ∪ e, H ∪ e ∕∼ Ri for each i ∈ {2, 4, 5}. Since B1 has a Ψ∗
x0x1

(2)-cover,
x0x1 ∈ E(B1) by the definition. With some switchings, assume that x0x1 is positive. By
Lemma 9, C = x0x1x2x0 is a balanced 3-circuit. Note that x1 is a 2-vertex of H ′ ∪C. By
Claim 15, (H ′ ∪ C)(x0, x1) is equivalent to R2(y, x) or Ri(x, y) for some i ∈ {4, 5}, and
thus H ′ ∼ Ri(x, y) for some i ∈ {0, 2, 3}. Since G = P(B1 ∪ x1x2, H

′), by Lemma 10 and
Observation 8-(2), G has a signed circuit 6-cover, a contradiction. This proves (1c).

(2) Suppose to the contrary that either Bk has a Ψ∗
xk−1xk

(2)-cover or Bk ∼ Ri for some
i ∈ {2, 4, 5}. Since Bk+1 is a negative loop at xk (= xk+1), Bk ∪ Bk+1 has a Ψxk−1xk+1

(2)-
cover in which no tadpole at xk+1 contains xk−1. Since k 󰃑 h− 2, we have Bh ∈ B1(H).
Thus H has a Ψx0xh

(2)-cover in which no tadpole at x0 (resp, xh) contains xh (resp., x0).
Since 󰂃(H ′) 󰃍 1, by Lemma 7-(2) and the minimality of G, G has a signed circuit 6-cover,
a contradiction. This prove (2) and thus completes the proof of the claim.
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Claim 17. Suppose that G = P(H1, H2, H3) where each Hi = Hi(x, y) and 󰂃(H3) 󰃍 1. If
H = H1 ∪ H2 ∕∼ Ri for any i ∈ {0, 2, 4, 5} and contains no negative loop at {x, y}, then
the following statements hold.

(1) If either H1 ∼ D1(x, y) or H2 ∼ D1(x, y), then H has a Ψxy(t)-cover for each
t ∈ [0, 3], where D1(x, y) is the two-terminal signed graph in Fig. 2.

(2) If xy ∈ E(H), then H has a Ψ∗
xy(2)-cover.

(3) If xy /∈ E(H) and neither H1 nor H2 is equivalent to D1(x, y), then H has a Ψxy(2)-
cover in which no tadpole at y contains x.

Proof. Suppose that H is a counterexample to the claim with minimum |E(H)|. Re-
call that G is 2-connected and contains no positive loop. By the definition, let Bi =
Bi(xi−1, xi), i ∈ [1, s], such that

H1(x, y) = S(B1, . . . , Bh) = B1 ∪ · · ·∪Bh, H2(y, x) = S(Bh+1, . . . , Bs) = Bh+1 ∪ · · ·∪Bs

and s is maximum with this property, where x = x0 = xs ∈ V (B1)∩ V (Bs) and y = xh ∈
V (Bh) ∩ V (Bh+1). Then, for any B ∈ B2(H1) ∪ B2(H2) with terminals u and v, B is 2-
connected by the maximality of s, and B−L(B) is unbalanced by Claim 14. Furthermore,
it follows from the minimality of H that B has either a Ψuv(t)-cover for each t ∈ [0, 3], or
a Ψ∗

uv(2)-cover, or a Ψuv(2)-cover in which no tadpole at v contains u, unless B ∼ Ri for
some i ∈ {0, 2, 4, 5}. By this fact and Observation 8, B has a Ψuv(2)-cover.

We will find a desired Ψxy(2)-cover of H, contradicting that H is a counterexample to
the claim. To do this, whenHi, i ∈ [1, 2], is not a single edge (that is, |B0(Hi)|+|B2(Hi)| 󰃍
1), we apply Lemma 5 to construct a signed subgraph 6-cover F∗

i of Hi as follows:

F∗
i = Fi0 ∪ 2B0(Hi) ∪ {Pi1, Pi2, Pi3, Pi4} ∪ {Ti1, Ti2, Ti3, Ti4},

where

⊲ Fi0 is a subfamily of signed circuits of Hi;

⊲ Pi1 and Pi2 (resp., Pi3 and Pi4) are two positive (resp., negative) xy-paths of Hi if
|B2(Hi)| 󰃍 1, and otherwise Pi1 = Pi2 = Pi3 = Pi4 = Hi − B0(Hi);

⊲ Ti1, Ti2 (resp., Ti3, Ti4) are two tadpoles ofHi at x (resp., y) such that the unbalanced
circuit in Ti(2i−1) (resp., Ti(2i), Ti(5−2i), Ti(6−2i)) is in the part in B0(Hi)∪B2(Hi) with
minimum (resp., minimum, maximum, maximum) subscript.

Note that P11 ∪ P21 is a circuit and every part in B0(H1) ∪ B0(H2) is a negative loop.
When B0(H1) ∪ B0(H2) ∕= ∅, the signed graph P11 ∪ P21 ∪ B0(H1) ∪ B0(H2) has a family

C0 ∪ {T ′
1, T

′
2}

which covers P11 ∪ P21 once and B0(H1) ∪ B0(H2) twice, where C0 is a set of barbells and
T ′
1, T

′
2 are two tadpoles at x.
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(1) WLOG, assume that H2 = D1(x, y). Then h 󰃍 2 since H ∕∼ R2. Let t ∈ [0, 3].
If B2(H1) = ∅, then H1 = xx1y ∪ Lx1 by Claim 11-(6), and thus it is easy to check

that H = H1 ∪H2 has a Ψxy(t)-cover.
If h = 2 and B2 ∈ B1(H1), then B0(H1) = ∅ and B2(H1) = {B1}. By (1a) and (1b) of

Claim 16, B1 has a Ψ∗
x0x1

(2)-cover. Thus H has a Ψxy(t)-cover by Lemma 10-(1).
Next assume that either h 󰃍 3 and B2(H1) ∕= ∅, or h = 2 and B2 ∈ B2(H1). Then

x /∈ V (T13) ∪ V (T14). We construct a family F∗ as follows.

F∗ = F10 ∪ F20 ∪ {P11 ∪ P21, T11 ∪ T21}∪󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

{P14 ∪ P24, T12 ∪ T22} ∪ {P12 ∪ P23, P13 ∪ P22, T13, T14, T23, T24} if t = 0;
{P14 ∪ P24, T12 ∪ T22} ∪ {P12, P23} ∪ {P13 ∪ P22, T13, T14, T23, T24} if t = 1;
{P14 ∪ P24, T13 ∪ T23} ∪ {P12, P22, P13, P23} ∪ {T12, T22, T14, T24} if t = 2;
{T12 ∪ T22} ∪ {P12, P22, P24 △ Bs, P13, P14, P23} ∪ {Bs, T13 ∪ P24, T14 ∪ P24} if t = 3.

When |B0(H1)| = 0, let F = F∗. When B0(H1) = {Bi} for some i ∈ [2, h− 1], let C0 = ∅
and

F =

󰀝
(F∗ \ {P11 ∪ P21, P14 ∪ P24}) ∪ {P11 ∪ P24 ∪Bi, P14 ∪ P21 ∪Bi} if t ∈ [0, 2];
(F∗ \ {P11 ∪ P21, Bs}) ∪ {Bs ∪ T ′

1} ∪ {T ′
2} if t = 3.

When |B0(H1)| 󰃍 2, let F = (F∗ \ {P11 ∪ P21}) ∪ C0 ∪ {T ′
1 ∪ T ′

2}. In each case, one can
easily check that F is a Ψxy(t)-cover of H by the structure of H2 = D1(x, y).

(2) WLOG, assume that H2 = xy is positive. Then h 󰃍 2 since H ∕∼ R0.
If B2(H1) = ∅, then H1 = xx1y ∪ Lx1 by Claim 11-(6). Thus H = xx1yx ∪ Lx1 is a

short barbell by Claim 14 and has a Ψ∗
xy(2)-cover.

If B0(H1) = ∅, then by Claim 16-(1), either H1 ∼ D2(x, y) in Fig. 2 or h = 2 and
B2(H1) = {B1} or {B2}. In the former case, H ∼ R3 and thus has a Ψ∗

xy(2)-cover. In the
latter case, by the symmetry, assume that B2(H1) = {B1}. Thus B1 has a Ψ∗

x0x1
(2)-cover

by (1a) and (1b) of Claim 16. Since H ∕∼ Ri for each i ∈ {2, 4, 5}, H has a Ψ∗
xy(2)-cover

by (1c) of Claim 16.
Now we assume that B2(H1) ∕= ∅ and B0(H1) ∕= ∅. Then h 󰃍 3. Let Bk (resp., Bℓ) be

the part in B2(H1) ∪ B0(H1) with minimum (resp., maximum) subscript.
If V (Bk) ∩ V (Bℓ) = ∅, then by the choice of F∗

1 , V (T11) ∩ V (T13) = ∅. Thus T11 ∪
{xy} ∪ T13 is a barbell. Therefore, the family

F10 ∪ C0 ∪ {P12 ∪ xy, T11 ∪ xy ∪ T13} ∪ {xy, xy, P13, P14} ∪ {T ′
1, T

′
2, T12 ∪ xy, T14}

is a Ψ∗
xy(2)-cover of H.

If V (Bk) ∩ V (Bℓ) ∕= ∅, then either B2(H1) = {Bk, Bk+2} and B0(H1) = {Bk+1}, or
B2(H1) ∪ B0(H1) = {Bk, Bk+1}. In the former case, by the proof of Lemma 5, there
are 4 negative x0xh-paths P ′

11, P
′
12, P

′
13, P

′
14 in H1 such that (F∗

1 \ {P11, P12, P13, P14}) ∪
{P ′

11, P
′
12, P

′
13, P

′
14} is a signed subgraph 6-cover of H1 and hence the family

F10 ∪ {P ′
11 ∪ xy ∪Bk+1, P

′
12 ∪ xy ∪Bk+1}∪ {xy, xy, P ′

13, P
′
14}∪ {T11, xy ∪T13, yx∪T12, T14}
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is a Ψ∗
xy(2)-cover of H. In the latter case, assume that B2(H1) = {Bk} and B0(H1) =

{Bk+1} by the symmetry. Then k = h− 2 ∈ [1, 2] since H has no negative loop at xh and
G contains no 2-vertex. By Claim 16-(2), Bk has no Ψ∗

xk−1xk
(2)-cover and Bk ∕∼ Ri for

each i ∈ {2, 4, 5}. Hence k = 1; otherwise B2 ∪B1 is a piece of G at {x2, x0} and thus, by
(1a) and (1b) of Claim 16, B1 has a Ψ∗

x2x1
(2)-cover, a contradiction. Since B0(H1) = {B2}

and H2∪H3 is unbalanced, G−E(B1) is coverable. Hence B1 is not coverable. By Claim
12, B1 = R0 and thus H − Lx1 ∼ R2(y, x). Since H has a unique balanced 3-circuit
C = x0x1x2x0, by Claim 15, C ∪H3 ∼ Ri for some i ∈ {2, 4, 5}. Therefore, one can easily
check that G = (H − E(C)) ∪ (C ∪H3) has a signed circuit 6-cover, a contradiction.

(3) Since xy /∈ E(H), both H1 and H2 contain cut-vertices by Claim 13. Thus h 󰃍 2
and s − h 󰃍 2. If |B2(H1)| = |B2(H2)| = 0, then H = x0x1x2x3x0 ∪ {Lx1 , Lx3} by Claim
11-(6) and H − L(H) is unbalanced by Claim 14. Thus one can easily find a desired
Ψxy(2)-cover, a contradiction. Hence |B2(H1)|+ |B2(H2)| 󰃍 1 and, when |B2(Hi)| = 0, we
may assume that Hi − L(Hi) is positive (with possible switchings).

By the construction, we can choose F∗
1 and F∗

2 such that y /∈ V (Ti1) ∩ V (Ti2) and
x /∈ V (Ti3) ∩ V (Ti4) for each i ∈ [1, 2]; otherwise, if either y ∈ ∪2

i=1(V (Ti1) ∩ V (Ti2)) or
x ∈ ∪2

i=1(V (Ti3) ∩ V (Ti4)), say y ∈ V (T11) ∩ V (T12), then (B0(H1),B1(H1),B2(H1)) =
(∅, {B1}, {B2}) and for every Ψx1x2(2)-cover of B2, both its tadpoles at x1 contain x2,
contradicting that B2 has a Ψ∗

x2x1
(2)-cover by (1a) and (1b) of Claim 16. Therefore,

WLOG, assume that y /∈ V (T11) ∪ V (T21) and x /∈ V (T14) ∪ V (T24).
If x /∈ V (T13) or x /∈ V (T23), say x /∈ V (T13), since |B2(H1)|+ |B2(H2)| 󰃍 1, the family

F = F10 ∪ F20 ∪ {T12 ∪ T21, T13 ∪ T23}∪󰀝
C0 ∪ {T11 ∪ T22} ∪ P ∪ {T ′

1, T
′
2, T14, T24} if B0(H1) ∪ B0(H2) ∕= ∅;

{P11 ∪ P21} ∪ P ∪ {T11, T22, T14, T24} if B0(H1) ∪ B0(H2) = ∅.

is a desired Ψxy(2)-cover, where P = {P12, P13, P22, P23}∪ {P14 ∪P24} if |B2(H1)| 󰃍 1 and
|B2(H2)| 󰃍 1, and P = {P13, P14, P23, P24} ∪ {P12 ∪ P22} otherwise.

If x ∈ V (T13) ∩ V (T23), then for each i ∈ [1, 2],

(B0(Hi),B1(Hi),B2(Hi)) = (∅, {Bi+1}, {B3i−2}),

and both B1 and B4 have Ψ∗
xj−1xj

(2)-covers by (1a) and (1b) of Claim 16. Therefore H
has a desired Ψxy(2)-cover by Claim 10-(2). This completes the proof of the claim.

4.2 The final step

Since G− L(G) is 2-connected, loopless, K4-minor-free, and of minimum degree at least
3, it contains a 2-circuit, denoted by C1 = x0x1x0. Let C2 be the circuit of G − L(G)
corresponding to C1 and let

B1 = C2 ∪ {Lz ∈ L(G) : z ∈ V (C2) \ {x0, x1}}.

Obviously, B1 is a 2-connected piece of G at {x0, x1}. By Claims 14 and 11-(6), C2 =
B1 − L(B1) is an unbalanced circuit of length 2 or 3 or 4, denoted by x0x1x0 or x0zx1x0
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or x0z1x1z2x0 depending on its length. Hence B1 = x0x1x0 or B1 = x0zx1x0 ∪ Lz or
B1 = x0z1x1z2x0 ∪ {Lz1 , Lz2}. In each case, B1 has a Ψx0x1(2)-cover

F∗
1 = F10 ∪ {P11, P12, P13, P14} ∪ {T21, T22, T23, T24},

where F10 consists of signed circuits, P11 and P12 (resp., P13 and P14) are two positive
(resp., negative) x0x1-paths, and T11 and T12 (resp., T13 and T14) are two tadpoles at x0

(resp., x1).
Let H = H(x0, x1) such that G = P(B1, H). Choose Bi = Bi(xi−1, xi), i ∈ [2, s], such

that
H(x1, x0) = S(B2, B3, · · · , Bs) = B2 ∪B3 ∪ · · · ∪Bs

and s is maximum with this property, where x1 ∈ V (B2) and xs = x0 ∈ V (Bs). Then
|B2(H)| 󰃍 1; otherwise, by Claim 11-(6), H − L(H) is a positive or negative path with
length 1 or 2, and thus one can easily find a signed circuit 6-cover of G, a contradiction.
Furthermore, |B1(H)|+ |B2(H)| 󰃍 2 by Claim 13, and every Bi ∈ B2(H) has a Ψxi−1xi

(2)-
cover by Claim 17. Applying Lemma 5, we pick a signed subgraph 6-cover F∗

2 of H as
follows:

F∗
2 = F20 ∪ 2B0(H) ∪ {P21, P22, P23, P24} ∪ {T21, T22, T23, T24},

where F20 is a family of signed circuits, P21 and P22 (resp., P23 and P24) are two positive
(resp., negative) x0x1-paths, T21 and T22 (resp., T23 and T24) are two tadpoles in H at
x0 (resp., x1) whose unbalanced circuit is in the part in B0(H) ∪ B2(H) with maximum
(resp., minimum) subscript.

Let U =
󰁗

B∈B0(H)∪B2(H) V (B). We first show U ∩ {x0, x1} = ∅. Otherwise x0 /∈
V (T23) ∩ V (T24) and x1 /∈ V (T21) ∩ V (T22). Thus the family

F10 ∪ F20 ∪ {P12 ∪ P22, P13 ∪ P23} ∪ {T11 ∪ T21, T12 ∪ T22, T13 ∪ T23, T14 ∪ T24}

∪
󰀝

{P14 ∪ P24} ∪ C0 if |B0(H)| ∕= 1;
{P11 ∪ P24 ∪ B0(H), P14 ∪ P21 ∪ B0(H)} if |B0(H)| = 1

is a signed circuit 6-cover of G, where C0 is a family of signed circuits of P11∪P21∪B0(H)
which covers P11 ∪ P21 once and B0(H) twice, a contradcition. Hence U ∩ {x0, x1} ∕= ∅.

WLOG, assume that x0 ∈ U . Then B1(H) = {B2} = {x1x2}, B2(H) = {B3} and
B0(H) ∈ {∅, {B4}} since |B1(H)|+ |B2(H)| 󰃍 2 and |B2(H)| 󰃍 1. Hence G = B4∪P(B1∪
x1x2, B3).

Note that x0z1x1z2x0 ∪ {Lz1 , Lz2} has a Ψx0x1(2)-cover in which no tadpole at x1

contains x0. Since B1 ∪ x1x2 is a piece of G at {x0, x2}, by (1a) of Claim 16, we have
either B1 = x0x1x0 or x0zx1x0 ∪ {Lz}. Since B3 ∪ x2x1 is a piece of G at {x0, x1}, it
follows from Claim 17 and (1a) and (1b) of Claim 16 that either B3 has a Ψ∗

x0x1
(2)-cover

or B3 = B3(x0, x2) ∼ Ri(x, y) for some i ∈ {0, 2, 4, 5}. Therefore, by Lemma 7-(2), G has
a signed circuit 6-cover, a contradiction. This completes the proof of Theorem 2.
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