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Abstract

Pandharipande–Thomas theory and Donaldson–Thomas theory (PT and DT)
are two branches of enumerative geometry in which particular generating functions
arise that count plane-partition-like objects. That these generating functions differ
only by a factor of MacMahon’s function was proven recursively by Jenne, Webb,
and Young using the double dimer model. We bijectivize two special cases of the
result by formulating these generating functions using vertex operators and applying
a particular type of local involution known as a toggle, first introduced in the form
we use by Pak.
Mathematics Subject Classifications: 05A19

1 Introduction

Plane partitions, along with their many generalizations and their cousins the standard and
semistandard Young tableaux, are frequently-studied objects in combinatorics (see, for
instance, [5]). As is often the case with combinatorial objects of interest, they arise in other
areas of mathematics; relevant to our work is a particular use in computing the equivariant
Calabi–Yau topological vertex in Pandharipande–Thomas theory and Donaldson–Thomas
theory (PT and DT). This generating function is a local contribution to the generating
function of DT (resp. PT) invariants for a Calabi–Yau 3-fold with a torus action. One may
use Atiyah–Bott localization to reduce the computation to one on the fixed loci of the torus
action; the vertex represents the contribution of one fixed point. We refer the interested
reader to [16] for further details. In [24], the authors conjecture that two generating
functions that count DT and PT objects, which are generalizations of standard and reverse
plane partitions, respectively, are equal up to a factor of MacMahon’s function M(q) (i.e.
the generating function for standard plane partitions). The fully general conjecture was
proven in [12] using the double-dimer model; however, this last proof is strikingly involved,
and no combinatorial proof has been given for the general case or any special case. We
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give a combinatorial proof for two special cases, with the goal of eventually extending our
methods to the fully general case.

The generating function for reverse plane partitions was first derived by Stanley [26],
and later bijectivized by Hillman and Grassl [9]. Their map places reverse plane partitions
in bijection with tableaux of the same shape containing nonnegative integers, and the lack
of the plane partition inequalities greatly simplifies the process of working with them. A
second bijection was introduced by Pak [23] (and later independently by Sulzgruber [28]),
using local operations on the diagonals of reverse plane partitions; these local moves were
later independently introduced in [10], and they are the main tool we use.

In Section 2, we discuss plane partitions and a pair of vertex operators that allow us
to build MacMahon’s generating function M(q) one diagonal at a time. In Section 3, we
examine the toggle operation on diagonals and use it to introduce bijective proofs of the
commutation relations of the vertex operators. In Section 4, we define a special case of the
objects counted by the PT and DT generating functions (so-called one-leg objects), and
we give a bijective proof that the PT–DT correspondence holds for them. In Section 5,
we do the same for a more general case (two-leg objects). Finally, in Section 6, we define
the fully general (i.e. three-leg) case of the objects, give an explanation as to why the
correspondence is fundamentally more difficult in this case, and discuss how we hope to
generalize our methods in the future.

2 Plane Partitions

We begin with straightforward integer partitions, which give rise to Young diagrams and
thereby plane partitions. We review several definitions; for further details, we refer the
interested reader to [25], [5], or [1].

Definition 1. A partition λ is a sequence of nonnegative integers λ = (λ1, λ2, . . .) such
that λi ≥ λi+1 for all i ∈ N and only finitely many λi are nonzero1. Since every partition
ends in zeros, we typically write only the nonzero entries. The weight of λ is ∣λ∣ = ∑

∞
i=1 λi,

and the Young diagram corresponding to λ is the subset {(i, j) ∈ N2 ∣ 1 ≤ j ≤ λi}, which
we represent as a set of top-left-justified squares whose row lengths weakly decrease.
Finally, the conjugate partition to λ is the partition λ′ given by the column lengths of
the Young diagram corresponding to λ.

The following definition is slightly unusual, but it is a special case of a more natural
generalization of plane partitions that we introduce later.

Definition 2. Let λ ⊂ N2 be a Young diagram. A Young diagram asymptotic to λ
is the collection of boxes N2 ∖ λ.

While this is a slight abuse of notation, since Young diagrams asymptotic to a partition
λ are not in fact Young diagrams, it is a convenient definition for objects we will define
in Section 4. We also recall the usual notion of a hook of a plane partition, which is a
right-angled collection of cells extending toward the boundary of a Young diagram.

1We use N to denote the set {1,2, . . . ,} of natural numbers, and N≥0 for {0,1,2, . . . ,}.
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Figure 1: A 4-hook with pivot (5,2) in an asymptotic Young diagram N2 ∖λ (dark gray),
and a 4-hook with pivot (1,2) in the Young diagram λ (light gray).

Definition 3. Let λ ⊂ N2 be a Young diagram and let (i, j) ∈ λ. The arm and leg of
(i, j) are

arm(i, j) = {(i, j′) ∣ j < j′ ≤ λi}

leg(i, j) = {(i′, j) ∣ i < i′ ≤ λ′j} .

If (i, j) ∈ N2 ∖ λ, then

arm(i, j) = {(i, j′) ∣ λi < j
′ < j}

leg(i, j) = {(i′, j) ∣ λ′j < i
′ < i} .

The hook of (i, j) is

hook(i, j) = arm(i, j) ∪ leg(i, j) ∪ {(i, j)} ,

and the hook length is h(i, j) = ∣hook(i, j)∣. We often refer to n-hooks of a diagram,
which are hooks with length n, and the pivot of a hook, which is the corner (i, j) from
which it is defined. We will also occasionally have use for the notion of the content of a
box (i, j), which is the quantity j − i; since content is constant along diagonals, we often
refer to the content-c diagonal of a diagram.

With Young diagrams, we can express partitions as both one-dimensional lists of
weakly decreasing nonnegative integers and as two-dimensional sets of boxes; our primary
object of study generalizes partitions by increasing both of these dimensions by one.

Definition 4. A plane partition is a function π ∶ N2 → N≥0 such that π(i, j) ≥ π(i+1, j)
and π(i, j) ≥ π(i, j + 1) for all i, j ∈ N and only finitely many π(i, j) are nonzero. The
weight of π is ∣π∣ = ∑i,j∈N π(i, j). Analogous to a Young diagram, we can associate a plane
partition π with the three-dimensional stack of blocks {(i, j, k) ∈ N3 ∣ 1 ≤ k ≤ π(i, j)}, as
in Figure 2.

The rows and columns of a plane partition π are themselves interrelated partitions,
but the diagonals of π turn out to be a more fruitful source of information. We use
established techniques and terms in the remainder of this section: the definitions and
proofs from here to Section 3 are due to [19, 21, 18, 17, 20]. We first define a partial order
on partitions that governs when two partitions can sit next to one another in a plane
partition.
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Figure 2: A plane partition of weight 31, visualized both as a grid of numbers and a stack
of 31 blocks.
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Figure 3: By placing them as diagonals in a plane partition, we see that (5,3,1,1) ≻

(3,2,1).

Definition 5. Let λ and µ be partitions. We say λ interlaces µ, written λ ≻ µ, if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3⋯.

In other words, λ ≻ µ if and only if λ and µ satisfy the plane partition inequalities when
written side-by-side as diagonal slices with λ coming first, as in Figure 3.

Given a partition µ, the set of partitions λ with λ ≻ µ is a poset product of intervals
in N≥0: each λi is bounded below by µi and above by µi−1 (or unbounded for i = 1), and
critically is independent from every other λi. It is largely for this reason that decomposing
a plane partition into diagonals is more useful than into rows or columns, and it enables
us to express the generating function for plane partitions in terms of operators on the
diagonals.

Definition 6. We define a formal Q-vector space Λ whose basis consists of vectors ∣λ⟩
for partitions λ. We also denote corresponding elements of the dual basis by ⟨λ∣ .

On this vector space, we define a weighing operator Q(q) ∶ Λ→ Λ, given by Q(q) ∣λ⟩ =
q∣λ∣ ∣λ⟩. We also define vertex operators Γ+ and Γ−, each of which accepts a formal variable
as a parameter: Γ±(q) ∶ Λ→ Λ is given by

Γ+(q) ∣λ⟩ = ∑
µ≻λ

q∣µ∣−∣λ∣ ∣µ⟩

Γ−(q) ∣λ⟩ = ∑
µ≺λ

q∣λ∣−∣µ∣ ∣µ⟩ .
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The convention of which operator is denoted Γ+ and which is denoted Γ− differs between
[19] and the other cited papers in which these operators appear; our convention matches
[19]. We think of the subscript + as indicating that Γ+ produces larger partitions, while
Γ− produces smaller ones.

Note that the definition of Γ+ contains an infinite sum, which may fail to converge
even in the ring of formal power series; for example, ⟨∅∣ Γ−(1)Γ+(1) ∣∅⟩ is not defined. In
practice, we avoid these issues by using the weighing operator Q to produce sums with a
formal variable q that do converge. We refer the interested reader to [27, p. 11–13] for
further background.

A product of Γ operators whose arguments are all of the form qi for some i therefore
gives a generating function for plane-partition-like objects, since one partition interlacing
another is equivalent to the two being able to sit next to one another in a plane partition.
The shape of the objects counted is determined by the order of Γ+ operators and Γ−
operators, and its weight is determined by the arguments of the operators; this weight
may or may not be equal to the sum of the entries in the object.

These operators are defined and derived in appendix B of [19] (and ultimately from
[13]) where they are used primarily to compute Schur functions, and they are also used
to great effect in [22] to compute the generating functions of various objects. We first
demonstrate their use in [22] to express MacMahon’s function M(q), i.e. the generating
function for plane partitions.

Let N ∈ N; then the generating function for plane partitions whose nonzero entries are
contained in the N ×N square Young diagram is

⟨∅ ∣ (
N

∏
i=1
QΓ−(1))Q(

N

∏
i=1

Γ+(1)Q) ∣∅⟩ . (1)

The presence of the weighing operators combined with the lack of variables in the inter-
lacing operators seems to suggest that there is room for improvement in this formula, and
indeed the two types of operator have a simple commutation relation that will lead to
just that.

Lemma 7. Let λ and µ be partitions. Then

Q(q)Γ+(a) = Γ+(qa)Q(q)

Γ−(a)Q(q) = Q(q)Γ−(qa).

Proof. Fix partitions λ and µ with µ ≻ λ; then

⟨µ∣ Q(q)Γ+(a) ∣λ⟩ = q∣µ∣a∣µ∣−∣λ∣

= (qa)∣µ∣−∣λ∣q∣λ∣

= ⟨µ∣ Γ+(qa)Q(q) ∣λ⟩ ,

and similarly for the Γ− relation.
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We are now prepared to construct a simpler expression for M(q). We commute each
Q outward from the center in Equation (1), splitting the middle Q into Q1/2Q1/2 to
preserve symmetry. The Q operators are annihilated at both the ∣∅⟩ and the ⟨∅∣ , and so
Equation (1) reduces to

⟨∅ ∣Γ− (q
2N−1

2 )⋯Γ− (q
3
2)Γ− (q

1
2)Γ+ (q

1
2)Γ+ (q

3
2)⋯Γ+ (q

2N−1
2 ) ∣∅⟩ .

Since any plane partition can have only finitely many nonzero entries, taking the limit as
N →∞ produces the following expression for M(q):

M(q) = ⟨∅ ∣⋯Γ− (q
3
2)Γ− (q

1
2)Γ+ (q

1
2)Γ+ (q

3
2)⋯ ∣∅⟩ . (2)

This vertex operator form generalizes to nearly every other object we will discuss, and by
understanding local operations on the Γ operators — the content of the next section —
we can derive substantially simpler and more useful expressions.

3 Toggles

Having explored the commutation relations between the Q and Γ operators, we now turn
to how the Γ operators commute with one another. To explain the relationship bijectively,
we will require a particular local move called a toggle, described independently in [23],
[10], and [2].

Definition 8. Given three partitions λ ≻ ν ≻ µ, the toggle of ν relative to λ and µ is a
partition T (ν) defined in the following manner:

T (ν)i = min{λi, µi−1} +max{λi+1, µi} − νi,

where we take µ0 = ∞. Intuitively, when we write λ, ν, and µ side-by-side, each νi is
bounded above by the minimum of the entries immediately above and to the left and
below by the maximum of the entries immediately below and to the right; toggling is then
just the unique map that is an involution on each entry’s poset of possible values.

We can also define toggles when the middle partition either interlaces both of the
others or is interlaced by them.

Definition 9. If λ ≺ ν ≻ µ, then the toggle of ν relative to λ and µ is a map that produces
a pair (T (ν), n), where λ ≻ T (ν) ≺ µ and n ∈ N≥0. Similarly to Definition 8, T (ν) is given
by

T (ν)i = min{λi, µi} +max{λi+1, µi+1} − νi−1

for i ≥ 2. We handle ν1 separately: we say that the toggle pops off the value n =

ν1 −max{λ1, µ1}. Similarly, if ν is a partition with with λ ≻ ν ≺ µ, and n ∈ N≥0, then the
toggle of ν relative to λ and µ sends (ν, n) to a partition T (ν, n) with λ ≺ T (ν, n) ≻ µ,
defined by

T (ν, n)i = min{λi, µi} +max{λi+1, µi+1} − νi

for i ≥ 2 and T (ν, n)1 = n +min{λ1, µ1}.
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5 3 3 5 5 3
3 2 2 3 3 2

1 1 0 ↔ 1 1 0
1 0 1 0

0 0

5 3 1 3
4 3 2 4 2 2

2 1 1 ↔ 2 2 1
1 1 0 1 0 0

0 0 0 0

Figure 4: Toggling (3,2,1) relative to (5,3,1,1) and (3,2) (middle- and far-left), and
toggling (5,3,1,1) relative to (3,2,1) and (4,2,1) (middle- and far-right).

Example 10. Let λ = (5,3,1,1), µ = (3,2), and ν = (3,2,1), so that λ ≻ ν ≻ µ. Then the
toggle of ν relative to λ and µ is T (ν) = (5,3,1), as shown in the left half of Figure 4.

On the other hand, with η = (4,2,1), η ≺ λ ≻ ν, and we can toggle λ relative to η and ν
to produce the partition (2,2) and the popped-off value 1. This is shown in the right half
of Figure 4 — we write the value of 1 where it was popped off and separate it from the
remaining diagram by a bold border. As we will soon see, this slightly strange notation
will enable us to perform multiple subsequent toggles.

Toggling is a useful local move in many areas of combinatorics surrounding plane
partitions and similar objects (for example, they are used to give an alternate definition
for the RSK algorithm in [10]), but we need them to fully explain how the Γ operators
commute with one another. The commutation relation Γ−(b)Γ+(a) = 1

1−abΓ+(a)Γ−(b) is
given in [19, Appendix B.2], and it turns out to be an algebraic equivalent to toggling,
with the particular type of toggle dependent on the signs of the Γ operators.

Proposition 11. Let λ and µ be partitions. Then there is a bijection between partitions
ν with µ ≺ ν ≻ λ and pairs (ν′, n) of partitions ν′ with µ ≻ ν′ ≺ λ and nonnegative integers
n, given by toggling ν with respect to λ and µ. Moreover, the bijection preserves weight
in the following manner:

∣ν∣ − ∣λ∣ = ∣λ∣ − ∣T (ν)∣ + n and
∣ν∣ − ∣µ∣ = ∣µ∣ − ∣T (ν)∣ + n,

(3)

where n is the entry popped off in the toggle.

Proof. Given such a ν, we first verify that the toggled partition T (ν) is interlaced by both
λ and µ. Let i ≥ 2 and consider νi. Since µ ≺ ν ≻ λ, we have the following inequalities:

νi−1 ≥λi−1

≤ ≤

µi−1 ≥ νi ≥ λi

≤ ≤

µi ≥ νi+1

Equivalently, min(λi−1, µi−1) ≥ νi ≥ max(λi, µi). By negating the inequality and perform-
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ing some simple algebraic moves, we find that

−min(λi−1, µi−1) ≤ − νi ≤ −max(λi, µi)

⇒ 0 ≤ min(λi−1, µi−1) − νi ≤ min(λi−1, µi−1) −max(λi, µi)

⇒max(λi, µi) ≤ min(λi−1, µi−1) +max(λi, µi) − νi ≤ min(λi−1, µi−1)
⇒max(λi, µi) ≤T (ν)i−1 ≤ min(λi−1, µi−1).

Putting this back into grid form, we have that µ ≻ T (ν) ≺ λ, as required:

T (ν)i−2 ≥ λi−1

≤ ≤

µi−1 ≥T (ν)i−1 ≥ λi

≤ ≤

µi ≥T (ν)i

We now show that toggling is weight-preserving in the manner specified in Equa-
tion (3). The crucial observation is that min(λi, µi)+max(λi, µi) = λi +µi. Therefore, the
weight of T (ν) is

∣T (ν)∣ =∑
i≥2

min(λi−1, µi−1) +max(λi, µi) − νi

= −min(λ1, µ1) +∑
i≥1

(λi + µi) −∑
i≥2
νi

= −min(λ1, µ1) + ∣λ∣ + ∣µ∣ − (∣ν∣ − ν1)

= ∣λ∣ + ∣µ∣ − ∣ν∣ + n,

where n is the entry popped off in the process of toggling. This proves both of the claims
regarding weight.

We later became aware that this proposition was stated in [2, Equation 3.1], although
they do not use the term toggle. A similar commutation relation holds for Γ operators
of the same sign and is also given in [19, Appendix B.2]: Γ+(a)Γ+(b) = Γ+(b)Γ+(a), and
identically for Γ−. Again, we give a bijective proof with toggles.

Proposition 12. Let λ and µ be partitions. Then there is a bijection between partitions
ν with µ ≻ ν ≻ λ and partitions ν′ with µ ≻ ν′ ≻ λ, given by toggling ν with respect to λ
and µ, and it is weight-preserving in the following manner:

∣ν∣ − ∣λ∣ = ∣µ∣ − ∣T (ν)∣

∣µ∣ − ∣ν∣ = ∣T (ν)∣ − ∣λ∣

Proof. Given such a ν, the interlacing fact is immediate: the toggling operation necessarily
preserves both directions of interlacing. For the weight preservation, the toggled partition
T (ν) is defined by

T (ν)i = min(λi, µi−1) +max(λi+1, µi) − νi,
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where we take µ0 =∞, so

∣T (ν)∣ =∑
i

(λi + µi − νi) = ∣λ∣ + ∣µ∣ − ∣ν∣,

and so

b∣µ∣−∣T (ν)∣a∣T (ν)∣−∣λ∣ = b∣µ∣−∣λ∣−∣µ∣+∣ν∣a∣λ∣+∣µ∣−∣ν∣−∣λ∣

= b∣ν∣−∣λ∣a∣µ∣−∣ν∣,

as required.

To apply these propositions to produce explicit bijections on objects counted by gen-
erating functions expressed as products of vertex operators, we require one more technical
result.

Lemma 13. Let z1(q) be a generating function given by

z1(q) = ⟨∅ ∣∏
n∈Z

Γsn (qpn) ∣∅⟩ ,

where each sn = ±1, and we write Γ±1 to mean Γ±, respectively. Let m ∈ Z, and let z2(q)
be equal to z1(q), except with the order of Γsm (qpm) and Γsm+1 (q

pm+1) swapped in the
product. Let S1 and S2 be the sets of objects counted by z1 and z2, with weight marked by
q, as in Definition 6. Since Γsm (qpm) and Γsm+1 (q

pm+1) are adjacent in z1, the objects in
S1 have some diagonal that both of these Γ operators count; call it dm. Then there is a
weight-preserving bijection f ∶ S1 → S2, and it is given by toggling this diagonal dm with
respect to the two diagonals adjacent to it.

Proof. We show the case where sm = −1 and sm+1 = 1; the other cases are exactly analo-
gous. Write z1(q) as

z1(q) = ∑
µ≺ν≻λ

⟨∅ ∣ ∏
n≤m

Γsn (qpn) ∣ν⟩ ⟨ν ∣ ∏
n≥m+1

Γsn (qpn) ∣∅⟩ .

In this presentation, ν is the diagonal counted by both Γsm (qpm) and Γsm+1 (q
pm+1). Ap-

plying Proposition 11, toggling that diagonal gives a bijection between the partitions ν
counted in the sum to pairs (ν′, k) of partitions ν′ satisfying µ ≻ ν′ ≺ λ and integers k ≥ 0
that satisfy Equation (3). The generating function that counts these new objects is then

1

1 − qpm+pm+1 ∑
µ≻ν′≺λ

⟨∅ ∣ (∏
n<m

Γsn (qpn))Γsm+1 (q
pm+1) ∣ν′⟩ ⟨ν′ ∣Γsm (qpm)( ∏

n>m+1
Γsn (qpn)) ∣∅⟩ ,

which is exactly z2(q).
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⋮

1/2

3/2

5/2

7/2

1
2

3
2

5
2

7
2

Figure 5: A cell x ∈ N2 and its hook. The edges of the diagram are labeled with the
exponents of the Γ operators they correspond to. The hook of x intersects the boundary
at edges corresponding to operators Γ+ (q5/2) and Γ− (q3/2), and the hook length of x is
h(x) = 4 = 5

2 +
3
2 .

This lemma bijectivizes the commutation of the Γ operators: given a vertex operator
expression for a generating function f(q), the commutation of two same-sign operators
to form a new generating function g(q) is a weight-preserving bijection of the objects
counted by f to those counted by g, given by toggling the diagonal corresponding to
the commuted operators. Similarly, commuting a Γ+ to the left past a Γ− is a weight-
preserving bijection given by toggling, and it also produces a nonnegative integer based
on the arguments of the Γ operators. These bijections form the bedrock of many of our
subsequent results: if the generating function for a plane-partition-like object has a vertex
operator expansion and an identity can be proven algebraically by performing successive
commutations, then it can be bijectivized by interpreting each successive commutation
as a toggle of a particular diagonal. Our first application of this method is to compute a
bijectivization of the product expansion of MacMahon’s function.

Theorem 14. There is a weight-preserving bijection τ between plane partitions and
tableaux of shape N2 (i.e. functions N2 → N≥0 with no restrictions on outputs) that are
weighted by hook length.

Proof. Our bijection is functionally identical to the Pak–Sulzgruber algorithm [23, 28],
except described on standard plane partitions instead of reverse ones. What is new is the
method by which we derive it, which is generalizable to the objects we discuss in future
sections. We follow the methods in [22, page 11] used to prove that the vertex operator
expansion

M(q) = ⟨∅ ∣⋯Γ− (q5/2)Γ− (q3/2)Γ− (q1/2)Γ+ (q1/2)Γ+ (q3/2)Γ+ (q5/2)⋯ ∣∅⟩ , (4)

can be iteratively commuted into the expression

M(q) = ∏
◻∈N2

1

1 − qh(◻)
.

Consider the first commutation in Equation (4). Define

f0 = ⟨∅ ∣⋯Γ− (q5/2)Γ− (q3/2)Γ− (q1/2)Γ+ (q1/2)Γ+ (q3/2)Γ+ (q5/2)⋯ ∣∅⟩ =M(q)
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and
f1 = ⟨∅ ∣⋯Γ− (q5/2)Γ− (q3/2)Γ+ (q1/2)Γ− (q1/2)Γ+ (q3/2)Γ+ (q5/2)⋯ ∣∅⟩ ,

where the middle two operators have been commuted. Denote the sets of objects counted
by these two generating functions by P0 and P1, respectively. While P0 is simply the set
of plane partitions, weighted as usual, P1 is less well-behaved. Its elements are of the
form of the far-right object in Figure 4: each is a placement of nonnegative integers into
N2 ∖ {(1,1)} that weakly decrease along rows and columns, and the weight of such an
object is given by f1. By Lemma 13, the map τ0 ∶ P0 → P1 × N≥0 given by toggling the
main diagonal is a bijection.

Define fn, Pn, and τn ∶ Pn → Pn+1 × N≥0 for n ≥ 1 similarly; we may enumerate them
in any order compatible with the order in which corners appear when toggling. We will
define our bijection τ from the set of plane partitions to the set of tableaux of shape N2

effectively by composing every τk, but the notation makes this slightly cumbersome. Let
(sn) ⊂ N2 be the sequence of cells such that sn is popped off by τn. The sequence depends
on our ordering of the τn; one possible ordering is by off-diagonals, i.e.

(sn)n∈N = ((1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), ...),

since each subsequent off-diagonal consists entirely of corners after every cell in the pre-
vious off-diagonal has been popped off. More generally, we may choose any ordering so
that for any k ∈ N, the tableau

t ∶ {sn ∣ n ∈ {1,2, ..., k}}→ N

given by t(sn) = n is a standard Young tableau.
Let B be the set of tableaux of shape N2 (i.e. functions N2 → N≥0) and define functions

τ ′n ∶ Pn × B → Pn+1 × B, where τ ′n applies τn to its first argument and leaves its second
argument unchanged, except for setting the value in cell sn to the value popped off by
τn. For a plane partition π and the zero tableau 0, the composition (⋯ ○ τ ′2 ○ τ

′
1 ○ τ

′
0) (π,0)

then produces a tuple (∅, β) for a tableau β of shape N2; we define the map τ ∶ P0 → B by
setting τ(π) = β. This map τ is well-defined since every plane partition has only finitely
many nonzero entries — given a plane partition, we may stop toggling diagonals once
there are no longer any nonzero entries left. Moreover, since each τi is a bijection, τ is
also a bijection.

It remains to show that τ is weight-preserving when its output tableaux are weighted
by hook length. Specifically, if τ ′n(π, β) = (π′, β′) and the number popped off in the
toggle is a, then we wish to show that ∣π∣ = ∣π′∣ + a ⋅ h(sn), where the weights of π and
π′ are as measured by fn and fn+1, respectively. Now fn and fn+1 differ only by a single
commutation that moves some Γ−(qi) to the right past some Γ+(qj), producing a factor
of 1

1−qi+j that corresponds to the number popped off in the toggle. Our claim of weight
preservation then reduces to the claim that h(sn) = i + j.

Set sn = (k, l). In the original square diagram, hook(sn) intersects the boundary
of N2 at a horizontal edge corresponding to Γ+ (ql−

1
2) and a vertical one corresponding
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3 1 0
2 1 0
0 0 0

⋯

⋮

1 1 0
2 0 0
0 0 0

⋯

⋮

1 1 0
2 0 0
0 0 0

⋯

⋮

1 1 0
2 0 0
0 0 0

⋯

⋮

Figure 6: A weight-7 plane partition π (far left) being mapped bijectively to a weight-7
tableau τ(π) that is weighted by hook length (far right). The center-left and center-right
figures are the first two steps in the bijection.

to Γ− (qk−
1
2), as in Figure 5. When we toggle a diagonal and commute a Γ− to the

right past a Γ+, the corresponding edges swap places in the diagram — in effect, the
horizontal edge corresponding to Γ+ moves down, and the vertical edge corresponding
to Γ− moves right. Therefore, no matter the order in which we toggle diagonals before
reaching sn, the horizontal edge corresponding to Γ+ (ql−

1
2) is always above sn and the

vertical one corresponding to Γ− (qk−
1
2) is always to its left. When we finally toggle the

diagonal containing sn after n− 1 previous toggles, those two edges are bordering sn, and
so the values of i and j from the previous paragraph are in fact k − 1

2 and l − 1
2 . Since

h(sn) = k + l − 1 = i + j, our claim is proven.

In short, this map τ sends a plane partition to a tableau weighted by hook length,
given by toggling diagonals until the diagram is empty (i.e. the Γ operators have been
completely commuted) and recording the popped numbers in the locations from which
they were removed. The map is functionally identical to that described in [23, 28], but the
vertex operator description provides an alternate lens through which to view the bijection
and a clear explanation of why it is independent of the order in which we toggle diagonals
(specifically, the commutators of Γ operators that are produced can be freely factored out
of the entire expression).

Example 15. Let π be the plane partition given in Figure 6. In the expression for M(q)
given in Equation (4), π is represented by a term of q7. Commuting the Γ− (q1/2) with
the Γ+ (q1/2) results in

M(q) =
1

1 − q
⟨∅ ∣⋯Γ− (q5/2)Γ− (q3/2)Γ+ (q1/2)Γ− (q1/2)Γ+ (q3/2)Γ+ (q5/2)⋯ ∣∅⟩ ,

and the term of q7 now represents the object second from left in Figure 6: a 1× 1 tableau
with the entry 1, and an object in P1. We draw the two superimposed with a bold dividing
border to emphasize how the process preserves the overall shape of π. The 1×1 tableau is
weighted by hook length (i.e. it has weight 1), and the object on the right has weight 6 as
counted by f1 (in the language of Definition 6), so the combined weight of 7 is preserved.
Note that this weight of 6 is not the sum of the entries; in general, only the starting plane
partition has weight equal to the sum of its entries.

We now have two choices of corner to commute — if we choose to commute Γ− (q3/2)
with Γ+ (q1/2), the resulting pair of objects is second from right in Figure 6. The tableau
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now has weight 5, since the box containing 2 has hook length 2, while the object in P2

has weight 2 as counted by f2. After additionally toggling the diagonal containing the
1, there are no more nonzero entries in the plane-partition-like object, and so all future
toggles place a zero into the tableau. The result is the final tableau τ(π) on the far right,
whose weight (accounting for hook length) is correctly equal to 7.

4 One-Leg Objects

The techniques of the previous section apply to far more than just plane partitions: any
object whose generating function is expressible as a product of these Γ operators is a
candidate for a decomposition given by iterative toggling. We begin with two definitions
of plane-partition-like objects — the standard notion of reverse plane partitions, along
with a less standard notion of a skew plane partition (see [22, Section 3.4]) — before
connecting them with a result that we bijectivize.

Definition 16. Let λ ⊂ N2 be a Young diagram.

1 A reverse plane partition, or RPP, of shape (∅,∅, λ) is a function ρ ∶ λ → N≥0
such that ρ(i, j) ≤ ρ(i+ 1, j) and ρ(i, j) ≤ ρ(i, j + 1) for all choices (i, j) where those
quantities are defined. We write the generating function for RPPs of shape (∅,∅, λ)
as W(∅,∅,λ)(q), where q marks the weight (i.e. the sum of all entries), following the
notation of [24].

2 A skew plane partition, or SPP, of shape (∅,∅, λ) is a function σ ∶ N2 ∖ λ→ N≥0
such that σ(i, j) ≥ σ(i + 1, j) and σ(i, j) ≥ σ(i, j + 1) for all (i, j) ∈ N2 ∖ λ and only
finitely many σ(i, j) are nonzero. We write the generating function for SPPs of
shape (∅,∅, λ) as V(∅,∅,λ)(q), where q once again marks the weight.

We call these one-leg objects, again following [24], since only one of the three entries
is nonempty in the shape term (∅,∅, λ). The notation suggests further generalizations
are possible, and this is indeed the case; we discuss the case where at most two of the
entries of the shape term are nonempty in Section 5, and we summarize the fully general
case in Section 6.

For these one-leg objects, the PT–DT correspondence states that

V(∅,∅,λ)(q) =M(q)W(∅,∅,λ)(q), (5)

or that combinatorially, every SPP of weight n and shape (∅,∅, λ) corresponds to an
RPP of shape (∅,∅, λ) and a plane partition whose weights sum to n. This equation was
stated in [24]; throughout this section, we supply details that were omitted and bijectivize
the equation.

We begin by focusing on skew plane partitions. To express V(∅,∅,λ)(q) in terms of the Γ
operators, the middle section of the sequence of Γs contains a mix of Γ+ and Γ− according
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Figure 7: The signs of the Γ operators for λ = (4,2,1).

to the sequence of horizontal and vertical edges in the diagram. With λ = (4,2,1) for
instance, the sequence of signs of the Γ operators is

(. . . ,−,−,+,−,+,−,+,+,−,+, . . .)

when read from bottom-left to top-right, determined from the order of edges in Figure 7.
The generating function V(∅,∅,λ) then has the following expression. To make this sequence
more legible, the Q operator corresponding to the middle diagonal of the diagram is
bolded.

⟨∅∣ ⋯QΓ−(1)QΓ+(1)QΓ−(1)QΓ+(1)QΓ−(1)QΓ+(1)QΓ+(1)QΓ−(1)QΓ+(1)Q⋯ ∣∅⟩ ,

After commuting every Q outward, this results in

⟨∅ ∣ ⋯Γ− (q
7
2)Γ+ (q−

5
2)Γ− (q

3
2)Γ+ (q−

1
2)Γ− (q−

1
2)Γ+ (q

3
2)Γ+ (q

5
2)Γ− (q−

7
2)Γ+ (q

9
2)⋯ ∣∅⟩ .

The pattern of increasing odd-numerator fractions of 2 persists, but now the “out of place”
Γ operators have negative-exponent arguments. This construction will prove quite useful,
and it will be helpful to formalize it.

Definition 17. Let λ ⊂ N2 be a Young diagram and label the edges of N2∖λ from bottom-
left to top-right with consecutive integers so that the two edges adjacent to the content-0
diagonal are labeled −1 and 0. The edge sign sequence of λ, denoted eλ, is the doubly
infinite sequence whose entries are ±1, where eλ(n) = 1 if the edge labeled n is horizontal
and −1 if it is vertical. We also define the edge power sequence of λ as pλ(n), where

pλ(n) =

⎧⎪⎪
⎨
⎪⎪⎩

∣n + 1
2
∣ , eλ(n) = sign (n + 1

2
)

− ∣n + 1
2
∣ , eλ(n) ≠ sign (n + 1

2
)
.

The edge sign sequence is identical to the edge sequence defined in [6, Definition 7.3.1],
except with opposite signs (the authors also use the opposite convention of Γ+ and Γ−).
It is nearly identical to the notion of encoded shape in [2, Figure 3]. It also bears a
resemblance to the word associated with steep domino tilings in [4, Proposition 1], as
well as the sign sequence in [3, Definition 2.1]; both also encode binary data related to
square-shaped objects into signs.
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Figure 8: Hooks and their boundary edges in λ = (4,2,1) and the Young diagram asymp-
totic to it.

Given a Young diagram λ, its edge sign sequence e(n) = eλ(n), and its edge power
sequence p(n) = pλ(n), the generating function V(∅,∅,λ)(q) is

V(∅,∅,λ)(q) = ⟨∅ ∣∏
n∈Z

Γe(n) (qp(n)) ∣∅⟩ , (6)

where Γ1 and Γ−1 are written to mean Γ+ and Γ−, respectively. The exponents serve a
greater purpose than merely defining the shape — they have a more direct interpretation
in terms of hook lengths in the tableau. We first prove a technical lemma regarding the
exponent sign sequence, and then a more substantial result.

Lemma 18. Let λ ⊂ N2 be a Young diagram with edge power sequence pλ(n), let b be a
corner of λ (i.e. a box (i, j) with (i + 1, j) ∉ λ and (i, j + 1) ∉ λ), and suppose that the
bottom and right edges of b have labels pλ(k − 1) and pλ(k) for some k ∈ Z. Let µ be the
Young diagram given by removing b from λ, so that the left and top edges of b have labels
pµ(k − 1) and pµ(k). Then pµ(k − 1) = pλ(k) + 1.

Proof. All edge power sequences are the same in absolute value, so ∣pµ(k − 1)∣ = ∣pλ(k − 1)∣
and ∣pµ(k)∣ = ∣pλ(k)∣. Since the two edge sign sequences eλ and eµ differ only in that
eµ(k − 1) = −eλ(k − 1) and eµ(k) = −eλ(k), we must have that pµ(k − 1) = −pλ(k − 1) and
pµ(k) = −pλ(k).

To finish the proof, we relate pλ(k−1) to pλ(k). We know eλ(k−1) = 1 and eλ(k) = −1
since b is a corner, and what remains is a straightforward computation with three cases.
If k = 0, then pλ(k − 1) = pλ(k) = −1

2 . If k > 0, then pλ(k − 1) = k − 1 + 1
2 and pλ(k) =

− (k + 1
2
). Finally, if k < 0, then pλ(k − 1) = − (k − 1 + 1

2
) and pλ(k) = k + 1

2 . In every case,
pλ(k − 1) + pλ(k) = −1. Therefore,

pµ(k − 1) = −pλ(k − 1)

= − (−1 − pλ(k))

= pλ(k) + 1,

as required.

Theorem 19. Let λ ⊂ N2 be a Young diagram with edge power sequence pλ(n), let (i, j) ∈
N2 ∖ λ, and let k and l be the labels of the vertical edge in row i and the horizontal edge
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in column j of the boundary of λ, respectively. Then the hook length h(i, j) satisfies the
formula

pλ(k) + pλ(l) = h(i, j)

If (i, j) ∈ λ and k and l are as before, then the same result holds, but with an additional
sign:

pλ(k) + pλ(l) = −h(i, j).

In Figure 8, for example, the hook with pivot (2,5) has boundary edges with labels −1
2 and

9
2 and hook length −1

2 +
9
2 = 4, and the hook with pivot (1,1) has boundary edges with labels

−5
2 and −7

2 and hook length − (−5
2 −

7
2
) = 6.

Proof. We prove the result by induction on the size of λ and write hλ for the hook length
function since the induction will require us to consider diagrams of different shape. When
λ = ∅, there are no boxes inside of λ, so we need only show the result for boxes outside.
Given (i, j) ∈ N2, its hook length is hλ(i, j) = i+ j −1, and its hook meets the boundary of
λ — i.e. the boundary of N2 — at a vertical edge with label k = −i and a horizontal edge
with label l = j − 1 (recall that the edges bordering the content-0 diagonal have labels −1
and 0). Both pλ(k) and pλ(l) are then positive, and in particular,

pλ(k) + pλ(l) = ∣−i +
1

2
∣ + ∣j − 1 +

1

2
∣

= −(−i +
1

2
) + (j −

1

2
)

= i + j − 1

= hλ(i, j).

Now suppose the proposition holds for Young diagrams with at most n−1 boxes, let λ be
one with n boxes, and let (i, j) ∈ N2 ∖ λ. If λi = λ′j = 0 (i.e. the hook meets the boundary
of N2 itself), then

pλ(k) + pλ(l) = i + j − 1 = hλ(i, j)

by identical logic to the base case. Otherwise, suppose without loss of generality that
λi ≠ 0. Then the left leg of the hook of (i, j) meets the boundary of λ at the box
b = (i, λi). If λi+1 < λi, then b is a corner, and we may remove it from the Young diagram
to produce a diagram µ with n − 1 boxes. By the induction hypothesis,

pµ(k − 1) + pµ(l) = hµ(i, j).

Now hµ(i, j) = hλ(i, j) + 1, and by Lemma 18, pµ(k − 1) = pλ(k) + 1. Moreover, the edge
labeled l in λ is unchanged in µ and still labeled l, so pµ(l) = pλ(l). In total,

pλ(k) + 1 + pλ(l) = hλ(i, j) + 1,

proving the result.
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m1

k

m2

l

Figure 9: A hook inside λ = (4,4,3,1) (blue) and a corresponding hook in N2 ∖ λ inter-
secting its boundary edges.

If b = (i, λi) is not a corner, the argument is much simpler: let b′ be the corner in
the same column in b, which is then necessarily strictly below b, and let µ be the Young
diagram given by removing it. Then the induction hypothesis guarantees that

pµ(k) + pµ(l) = hµ(i, j),

but pµ(k) = pλ(k), pµ(l) = pλ(l), and hµ(i, j) = hλ(i, j).
It remains to show that the formula holds for a box (i, j) ∈ λ. The labels k and l are

now on the vertical edge of (i, λi + 1) and the horizontal edge of (λ′j + 1, j), respectively.
Both of those boxes, as well as (λ′j + 1, λi + 1), lie outside λ, so the first part of the
proposition applies to them. Suppose the horizontal and vertical boundary edges of the
hook corresponding to the box (λ′j + 1, λi + 1) are labeled m1 and m2, respectively, as in
Figure 9. Then

hλ(i, λi + 1) = pλ(k) + pλ(m1)

hλ(λ
′
j + 1, j) = pλ(m2) + pλ(l)

hλ(λ
′
j + 1, λi + 1) = pλ(m2) + pλ(m1).

On the other hand,

hλ(λ
′
j + 1, λi + 1) − hλ(i, λi + 1) − hλ(λ

′
j + 1, j) = (λ′j + 1 − i − 1) + (λi + 1 − j − 1) + 1

= (λ′j − i) + (λi − j) + 1

= hλ(i, j).

Replacing every hook length expression with a sum of entries in the edge power sequence
results in

pλ(m1) + pλ(m2) − (pλ(k) + pλ(m1) + pλ(l) + pλ(m2)) = hλ(i, j)

⇒ hλ(i, j) = −pλ(k) − pλ(l),

as required.
This shows the result for every box in λ, proving the proposition.

In the Young diagram asymptotic to the empty partition (i.e. N2), there are exactly n
distinct n-hooks: their pivots are the boxes along the off-diagonal from (n,1) to (1, n). In
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λ = (4,2,1) λ4,3 = (1)

Figure 10: A 4-hook in a skew plane partition of shape (∅,∅, λ) and the corresponding
4-hook in λ (left). The corresponding inner and outer corners in the 4-quotient λ4,3 (right).

the more general case of a Young diagram asymptotic to a partition λ, the number of n-
hooks depends also on the number of (down-right) n-hooks in λ. The following proposition
uses the standard notion of n-quotients of a partition; for a thorough reference, see e.g.
[7]. Here, we give a brief treatment of n-quotients that integrates well with our notion of
edge sign sequence.

Definition 20. Let λ be a partition. Given the edge sign sequence eλ(m) for m ∈ Z, the
subsequence eλ(nm + i) consisting of every nth edge sign from eλ(m) corresponds to a
distinct partition λn,i for each i ∈ {0, . . . , n−1}, called the n-quotients of λ. For example,
the object on the right in Figure 10 is the 4-quotient that selects the red, green, and blue
edges.

Proposition 21. Let λ be a partition and let n ∈ N. If there are k distinct n-hooks in λ,
then there are n + k distinct n-hooks in the Young diagram asymptotic to λ.

Proof. Every n-hook in λ corresponds to a + in eλ followed by a − exactly n terms later,
and every n-hook in N2 ∖ λ corresponds to a + edge followed n terms later by a −. For
example, let λ = (4,2,1). Then the box (1,2) ∈ λ has hook length 4 and corresponds
to the green and blue edges in Figure 10, and the box (1,5) also has hook length 4
and corresponds to the green and red edges. There is then a one-to-one correspondence
between corners of λn,i for all i and n-hooks in λ, and similarly between corners of N2∖λn,i
and n-hooks in N2 ∖ λ.

On the other hand, every Young diagram asymptotic to any partition µ contains
exactly one more corner than µ, and so fixing i, there is a one-to-one correspondence
between corners of λn,i and all the corners of N2∖λn,i except for one. Since the two types of
corners alternate from bottom-left to top-right, we can make this correspondence explicit
by associating each corner of λn,i with the corner of N2 ∖λn,i immediately preceding it in
the edge sign sequence. For example, the light and dark gray corners in λ4,3 in Figure 10
are in correspondence.

In total, each of the k distinct n-hooks in λ corresponds to a corner in λn,i for a unique
choice of i, which corresponds to a corner in N2 ∖ λn,i and therefore an n-hook in N2 ∖ λ.
However, there is exactly one unmatched corner in N2 ∖ λn,i for each i, each of which
contributes another n-hook in N2 ∖ λ, resulting in a total of n + k distinct n hooks in
N2 ∖ λ.
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⋮

Figure 11: Pivots of corresponding 3-hooks in the Young diagram asymptotic to λ = (3,3)
and its quotients. In reading order: N2 ∖ λ, N2 ∖ λ3,0, N2 ∖ λ3,1, N2 ∖ λ3,2, λ, N2.

We aim to bijectivize the one-leg PT–DT correspondence Equation (5) on the level of
hooks; that is, to decompose every object involved into a hook-length-weighted tableau
and place the resulting entries in bijection with one another. To that end, we define a
map associating the n + k distinct n-hooks of the asymptotic Young diagram N2 ∖ λ to
the n distinct n-hooks of the asymptotic Young diagram N2 and the k distinct n-hooks
of the Young diagram λ.

Definition 22. For a box b ∈ N2∖λ with hook length h(b) = n, let c be the unique corner
in a quotient N2 ∖λn,i that corresponds to b, and define ϕλ(b) in the following manner. If
c is the upper-right-most corner in N2∖λn,i, then ϕλ(b) is the unique box in N2 with hook
length n that corresponds to the corner in the ith n-quotient of N2 (i.e. the ith box in
the nth off-diagonal of N2 when reading from bottom-left to top-right). Otherwise, ϕλ(b)
is the unique box in λ corresponding to the corner in λn,i immediately following c in the
alternating sequence of corners inside and outside of λn,i when reading from bottom-left
to top-right.

This bijection is, perhaps unsurprisingly, best explained by example.

Example 23. Let λ = (3,3). The Young diagram asymptotic to λ has 5 distinct 3-hooks;
their pivots are shaded in Figure 11.

The three 3-quotients of λ are λ3,0 = ∅, λ3,1 = (1), and λ3,2 = (1). Each colored box
in N2 ∖ λ corresponds to a unique corner in N2 ∖ λ3,i for some i; for example, the box
(4,2) is colored orange, and the two edges where its hook intersects the boundary of the
diagram are present and adjacent in λ3,2 (and therefore no other 3-quotient). It therefore
corresponds to the orange box (2,1) in N2 ∖ λ3,2. Similarly, the box (1,6) ∈ N2 ∖ λ is
colored purple and corresponds to the purple box (1,2) ∈ N2 ∖ λ3,2.

These two corners (2,1) and (1,2) in N2 ∖ λ3,2 necessarily have exactly one corner of
λ3,2 (i.e. (1,1)) occurring between them when reading the edge sequence from bottom-
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left to top right. We therefore associate (2,1) with (1,1) and leave (1,2) temporarily
unassociated.

Repeating this calculation for the remaining quotients λ3,0 and λ3,1 associates the red
box (2,1) ∈ N2 ∖ λ3,1 with (1,1) ∈ λ3,1, and leaves the green, blue, and purple boxes in
the quotients unassociated. The purple box corresponds to a corner in the quotient λ3,2;
in the asymptotic Young diagram N2 = N2 ∖ ∅, the unique box with hook length 3 that
corresponds to a corner in the quotient N2 ∖ ∅3,2 is (1,3), so we define ϕλ(1,6) = (1,3),
and similarly for the green and blue boxes. By the same logic, the red and orange corners
in λ1,3 and λ2,3 correspond to the boxes (2,1) and (1,2) in λ. In total, the map ϕλ has
the following effect on hook-length-3 boxes in N2 ∖ λ:

ϕλ(5,1) = (2,1) ∈ λ ϕλ(4,2) = (1,2) ∈ λ

ϕλ(3,3) = (3,1) ∈ N2 ϕλ(2,5) = (2,2) ∈ N2 ϕλ(1,6) = (1,3) ∈ N2.

At last, we are prepared to bijectivize the one-leg PT–DT correspondence Equation (5).
The proof amounts to a generalization of Theorem 14 to SPPs that is equivalent to the
Pak–Sulzgruber algorithm [23, 28], combined with an application of the ϕλ map.

Theorem 24. Let λ ⊂ N2 be a Young diagram. Then there is a weight-preserving bijection
between SPPs σ of shape (∅,∅, λ) and pairs (ρ, π) of RPPs ρ of shape (∅,∅, λ) and plane
partitions π, where ∣σ∣ = ∣ρ∣ + ∣π∣.

Proof. Recall that V(∅,∅,λ)(q) can be expressed in terms of vertex operators as

V(∅,∅,λ)(q) = ⟨∅ ∣∏
n∈Z

Γe(n) (qp(n)) ∣∅⟩ ,

where e(n) = eλ(n) and p(n) = pλ(n) are the edge sign and edge power sequences, respec-
tively. Analogous to the proof of Theorem 14, we follow the algebraic proof of commuting
every Γ− to the right and every Γ+ to the left, while leaving the order of same-sign op-
erators unchanged (i.e. only commuting operators of opposite sign). By Lemma 13, we
may associate a bijection to each commutation we perform, where each one toggles a
diagonal in the diagram corresponding to a corner. Moreover, each produces a factor of
(1− qh(◻))−1 by Theorem 19 and the same logic as in the proof of Theorem 14. Since any
given SPP contains only finitely many nonzero entries, the composition of these bijections
is well-defined. Algebraically, we have expressed

V(∅,∅,λ)(q) = ∏
◻∈N2∖λ

1

1 − qh(◻)
,

and combinatorially, there is a bijection between SPPs and hook-length-weighted tableaux
of the same shape, given by toggling diagonals until the SPP is empty. We denote it τ ,
since it specializes to the bijection τ given in Theorem 14 when λ = ∅.

We may now complete the proof of the theorem. Given an SPP σ of shape (∅,∅, λ),
we apply the bijection τ to create a hook-length-weighted tableau τ(σ). We then apply
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3 0
4 2 0

5 3 2 0
0 0 0 0

⋯

⋮

Figure 12: A skew plane partition σ of shape (∅,∅, (2,1)).

3 0
4 2 0

5 3 2 0
0 0 0 0

↦

1 0
4 2 0

5 3 2 0
0 0 0 0

↦ ⋯ ↦

1 0
4 2 0

5 3 2 0
0 0 0 0

↦

1 0
1 2 0

5 3 0 0
0 0 0 0

↦

1 0
1 2 0

5 3 0 0
0 0 0 0

↦ ⋯ ↦

1 0
1 2 0

5 3 0 0
0 0 0 0

↦

1 0
1 2 0

2 3 0 0
0 0 0 0

↦

1 0
1 2 0

2 3 0 0
0 0 0 0

↦ ⋯ ↦

1 0
1 2 0

2 3 0 0
0 0 0 0

Figure 13: Decomposing a one-leg SPP into a hook-length-weighted tableau. At each
step, we choose a corner of the asymptotic Young diagram (here, we choose them in
lexicographic order) and toggle its diagonal.

the map ϕλ from Definition 22 that associates the cells of τ(σ) with the cells of two
tableaux R and P of shapes λ and N2, respectively, and preserves hook length.

What remains is to convert these two hook-length-weighted tableaux back into an
RPP of shape (∅,∅, λ) and a plane partition. For the latter, we apply τ−1 to produce a
plane partition π = τ−1(P ). For the former, slightly more care must be taken, since the
hooks in R extend down and right rather than up and left. However, we may rotate R by
180○ to express it as an SPP while preserving cells’ hook lengths; it is exactly this latter
presentation of the bijection that is the Pak–Sulzgruber algorithm [23, 28]. We rotate R,
apply τ−1 to this new SPP, and rotate back, producing an RPP ρ of shape (∅,∅, λ) that
satisfies ∣σ∣ = ∣ρ∣ + ∣π∣.

As in the proof of Theorem 19, one useful property of this bijectivization is that it
cleanly demonstrates the independence of the algorithm from the order in which we toggle
diagonals — each Γ commutation produces a commutator that factors directly out of the
vertex operator product and does not affect any other operators. This independence is
also proven directly in [23].

Example 25. Let λ = (2,1) and let σ be the SPP of shape (∅,∅, λ) in Figure 12. To con-
vert σ into its corresponding tableau τ(σ), we iteratively toggle diagonals beginning with
a corner; one consistent way to accomplish this is to choose those corners in lexicographic
order. With this choice of order, we produce the sequence of diagrams in Figure 13. For
compactness, we omit the ellipses on the right and bottom of the diagrams, and since
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1 0
1 2 0

2 3 0 0
0 0 0 0

⋯

⋮

0 1
2

1 0 0 0
0 2 0 0
3 0 0 0
0 0 0 0

⋯

⋮

Figure 14: Rearranging the entries of the tableau T (σ) (left) into a tableau T (ρ) (center)
of shape λ and a tableau T (π) (right) of shape N2.

0 1
2

4 2 0 0
3 2 0 0
3 2 0 0
0 0 0 0

⋯

⋮

Figure 15: The untoggled RPP ρ = T −1(T (ρ)) (left) and plane partition π = T −1(T (π)).

we record each entry in the tableau in exactly the location we remove it from the plane
partition, we superimpose the two objects, following the convention of [23] by separating
them with a thicker border.

We now apply the map ϕλ to τ(σ), producing the tableaux R and P in Figure 14.
Finally, we apply τ−1 to each of these two tableaux (taking care to rotate R by 180○ before
untoggling so that the usual plane partition inequalities hold), producing a final RPP ρ
and plane partition π in Figure 15. Checking the weights, we have ∣ρ∣+∣π∣ = 3+16 = 19 = ∣σ∣,
as expected.

What is new in this section is neither the bijection τ nor the corresponding algebraic
proof using vertex operators, but the connection between the two of them, along with the
use of n-quotients to bijectivize the one-leg PT–DT correspondence. While the details
are more difficult in future sections, the fundamental approach remains similar.

5 Two-Leg Objects

Both the generating function identity and the bijection of Theorem 24 hold in a different
and in fact more general setting. We begin by generalizing the definitions of skew and
reverse plane partition before stating and proving the new result.

Definition 26. Let λ and µ be partitions. A skew plane partition (SPP) with shape
(λ,µ,∅) is a plane partition σ for which σ(i, j) ≥ max{λj, µi} for all i, j ∈ N, and only
finitely many σ(i, j) satisfy σ(i, j) > max{λj, µi}. The generating function V(λ,µ,∅)(q) is
given by

V(λ,µ,∅)(q) = ⟨λ ∣
0

∏
n=−∞

Γ− (q(−n+1)/2)
∞
∏
n=0

Γ+ (q(n+1)/2) ∣µ⟩ , (7)
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5 4 3 3 3
5 3 2 1 1
3 2 1 0 0
2 2 0 0 0
2 2 0 0 0

⋯

⋮

Figure 16: A two-leg skew plane partition of shape ((2,2), (3,1),∅), visualized both as
a grid of numbers and a stack of 10 weight-contributing blocks (dark gray) on top of
a non-removable “tray” of blocks that contributes weight 1, as measured by the vertex
operator expression Equation (7).

where q marks the weight [22, Equation 3.19]. If V0(λ,µ,∅) denotes the minimal exponent
of q in V(λ,µ,∅)(q), i.e. the weight of the minimal configuration, then the weight ∣σ∣ of a
general SPP σ with shape (λ,µ,∅) is given by

∣σ∣ = V0(λ,µ,∅) + ∑
i,j∈N

(σ(i, j) −max{λj, µi}) .

We call these objects two-leg SPPs in the terminology of [24].

An example of an SPP of weight 11 and shape (λ,µ,∅) for λ = (2,2) and µ = (3,1)
is given in Figure 16. We remark that our convention differs slightly from [22]: their
definition uses the conjugate partition λ′ instead of λ itself, in order to match their
convention for the fully general three-leg case. In [22, Equation 3.20], the authors also
give an expression for three-leg (and thereby two-leg) objects in terms of Schur functions.

The notion of a two-leg RPP is somewhat more complicated. Observe that the def-
inition of a one-leg RPP (Definition 16) can be directly translated into the language of
an SPP without rotating 180○ by treating the entries as counting the number of blocks
removed from the top of a tower that descends downward infinitely (rather than added to
an empty floor), as in Figure 17. This interpretation generalizes more easily — just as the
one leg extends infinitely downward, a two-leg RPP will have legs extending horizontally
backward from which blocks are removed, effectively placing a cap on the maximum value
of each entry.

Definition 27. Let λ and µ be partitions. A reverse plane partition with shape
(λ,µ,∅) is a function ρ ∶ (Z ×N ∪N ×Z)→ N≥0 such that for all i and j for which ρ(i, j)
is defined,
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0 2 2 3
2 3 4
3

Figure 17: A one-leg RPP of shape (∅,∅, (4,3,1)) and weight 19, visualized as 19 boxes
removed from an infinite vertical tower.

1. ρ(i, j) ≥ max{ρ(i + 1, j), ρ(i, j + 1)} (the usual plane partition inequalities).

2. ρ(i, j) ≤ min{λj, µi}, and the inequality is strict for only finitely many pairs (i, j).

Similarly to two-leg SPPs, the generating function W(λ,µ,∅)(q) for RPPs with shape
(λ,µ,∅) is given by

W(λ,µ,∅)(q) = ⟨µ ∣
0

∏
n=−∞

Γ+ (q(−n+1)/2)
∞
∏
n=0

Γ− (q(n+1)/2) ∣λ⟩ , (8)

and if W0(λ,µ,∅) is the minimal exponent of q in this generating function, then the
weight of a general RPP ρ with shape (λ,µ,∅) is given by

∣ρ∣ =W0(λ,µ,∅) +∑ (min{λj, µi} − ρ(i, j)) ,

where the sum ranges over the entire diagram.

A two-leg RPP has the appearance of a tray pressed up against an infinitely tall
building, from which we remove blocks near the corner — Figure 18 gives an example.

Both two-leg objects are in fact generalizations of their one-leg counterparts: for
example, V(λ,∅,∅)(q) = qkV(∅,∅,λ)(q) for some k by a 120○ rotation of the 3-dimensional
box diagrams, and similarly for W(λ,∅,∅)(q). The factor of qk arises since the weights
of the minimal configurations may be different. Specifically, V0(λ,µ,∅) is not zero in
general; as an example, V0((1),∅,∅) = −1

2 .
The vertex operator expressions for two-leg SPPs and RPPs hint at a relationship be-

tween the two: W(λ,µ,∅)(q) is obtained from V(λ,µ,∅)(q) by commuting every Γ− past every
Γ+, then commuting the operators of the same sign so that their order is reversed, and
finally swapping the positions of λ and µ. In the proofs of Theorem 14 and Theorem 24,
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3 1 0
3 1 0
1 1 0

2 2 2 1 0 0
2 2 1 1 0 0
0 0 0 0 0 0

⋮

⋯ ⋯

⋮

Figure 18: A two-leg RPP of shape ((3,1), (2,2),∅) and weight 7, visualized as a tray
with 6 boxes removed (the minimal configuration has weight 1 as measured by the vertex
operators).

the first step alone of these three was sufficient, since regardless of the order of the oper-
ators relative to others of the same sign, the ⟨∅∣ and ∣∅⟩ bounding the operators ensured
that the entire factor counted only the empty partition. As always, commuting a Γ+ with
a Γ− has the effect of toggling the diagonal containing the relevant edges and therefore
changing the shape of the objects counted by the generating function. By Proposition 12
and Lemma 13, commuting two Γ operators of the same sign is still a toggling operation,
but no longer one that changes the shape. Moreover, without the vertical leg, we also no
longer need to handle the bookkeeping of n-quotients and various hook lengths.

Before bijectivizing the two-leg version of the PT–DT correspondence, we require
an additional technical result. If we limit the size of two-leg SPPs or RPPs to some
finite box, effectively limiting V(λ,µ,∅)(q) and W(λ,µ,∅)(q) to finitely many Γ operators,
then constructing a bijection between the two collections of objects is possible directly
from the previous paragraph with little additional work. However, we encounter an issue
attempting to define such a bijection for all two-leg SPPs and RPPs: while performing an
infinite number of commutations of Γ operators does not necessarily present a problem,
performing an infinite number of toggles on a plane-partition-like object does. To ensure
our map is well-defined, we must be able to guarantee that a limiting behavior exists
and can be determined with a finite amount of computation; this is the content of the
following proposition.

Proposition 28. Let λ,µ ⊂ N2 be two Young diagrams and let σ be an SPP of shape
(λ,µ,∅). Given n ∈ N, let σn be the result of toggling diagonals of σ until exactly the cells
in [1, n]2 have been popped off. Then:

1. There is an N ∈ N such that all future toggles of σN pop off zeros.

2. Fix n ≥ N and let α(n, i) be the partition given by the diagonal of σn beginning
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a1
b1 a2
b2 a3
b3 ⋱

⋱

a1 a1
b1 a2 a2
b2 a3 a3
b3 ⋱ ⋱

⋱

a1
b1 b1 a2
b2 b2 a3
b3 b3 ⋱

⋱ ⋱

Figure 19: Three steps of the inductive portion of the proof of Proposition 28. Left:
a = α(3,2) and b = α(3,3) in a diagram that is σ3 with one toggled corner.

at (i, n + 1). Then for all i ∈ {1,2, . . . , n + 1}, α(n + 1, i) = α(n, i). Similarly, if
β(n, i) is the partition given by the diagonal of σn beginning at (n + 1, i), then for
all i ∈ {1,2, . . . , n + 1}, β(n + 1, i) = β(n, i).

3. Let γ = α(n,n + 1) = β(n,n + 1) be the partition on the main diagonal of σn; then
γ = α(n,n) = β(n,n).

Proof. 1. Toggling every diagonal of σ can produce only finitely many nonzero numbers
that are popped off; otherwise, σ would have infinite weight. Therefore, an N ∈ N
exists that satisfies the first condition of the proposition. We may also choose
N large enough so that σ(i, j) = max{λj, µi} (i.e. the minimum possible value)
whenever (i, j) ∈ N2 ∖ [1,N]2, and also large enough so that N ≥ max{λ′1, µ

′
1}. Now

if n ≥ N and (i, j) ∈ N2 ∖ [1, n]2 satisfies σn(i, j) ≠ σ(i, j), then ∣j − i∣ must be at
most n — that is, (i, j) must lie in the diagonals that were toggled to produce σn.
Therefore, for all n ≥ N and all (i, j) with ∣j − i∣ ≥ n, σn(i, j) = max{λj, µi}. In
particular, σn(i, j) = µi whenever n ≥ N and j − i ≥ N .

2. For fixed n ≥ N , we prove the second claim of the proposition by induction on i.
The base case is shown by the previous paragraph: α(n,1) = α(n+1,1) = µ. For the
induction step, suppose i ≥ 2 and α(n, i−1) = α(n+1, i−1). For ease of notation, set
a = α(n, i−1) and b = α(n, i); if we begin with σn and toggle the diagonals beginning
with cells (k,n + 1) for all k ∈ {1, . . . , i − 2}, the result is then the leftmost diagram
of Figure 19. Since the diagonal immediately above a will not change from any
of the remaining toggles that produce σn+1, it is equal to α(n + 1, i − 1); therefore,
the induction hypothesis guarantees that it is in fact equal to a, as in the middle
diagram of Figure 19. When we toggle the next diagonal down, the plane partition
inequalities guarantee that ak ≥ bk for all k ∈ N. Therefore, each ak toggles to

min{ak−1, bk−1} +max{ak, bk} − ak = bk−1 + ak − ak = bk−1,

resulting in the rightmost diagram of Figure 19 and proving the claim. An exactly
symmetric argument shows the result for the β partitions.
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3. The weight of σn is given by the generating function

⟨λ ∣
−n
∏
k=−∞

Γ− (q(−k+1)/2)
n−1
∏
k=0

Γ+ (q(k+1)/2)
0

∏
k=−n+1

Γ− (q(−k+1)/2)
∞
∏
k=n

Γ+ (q(k+1)/2) ∣µ⟩ ,

so the contribution to the weight from the main diagonal γ is given by the middle
two Γ operators; that is,

n

2
(∣α(n,n)∣ − ∣γ∣) +

n

2
(∣β(n,n)∣ − ∣γ∣) .

By the previous part of the proposition,

α(n + 1, n + 1) = α(n,n + 1) = γ

β(n + 1, n + 1) = α(n,n + 1) = γ,

so if
γ′ = α(n + 1, n + 2) = β(n + 1, n + 2)

is the partition on the main diagonal of σn+1, then its contribution to the weight of
σn+1 is

n + 1

2
(∣α(n + 1, n + 1)∣ − ∣γ′∣) +

n + 1

2
(∣β(n + 1, n + 1)∣ − ∣γ′∣)

=
n + 1

2
(∣γ∣ − ∣γ′∣) +

n + 1

2
(∣γ∣ − ∣γ′∣)

= (n + 1) (∣γ∣ − ∣γ′∣) .

However, the weights of σn and σn+1 are equal since no nonzero numbers are popped
off in the toggles producing σn+1. Comparing the two generating functions, the only
difference in weight is exactly the contribution from γ′, so ∣γ∣ = ∣γ′∣. Since γ ≻ γ′,
the only way for this to occur is if γ = γ′.

Theorem 29. Let λ,µ ⊂ N2 be two Young diagrams. Then there is a weight-preserving
bijection between SPPs σ of shape (λ,µ,∅) and pairs (ρ, π) of RPPs ρ of shape (λ,µ,∅)

and plane partitions π, where ∣σ∣ = ∣ρ∣ + ∣π∣.

Proof. As in the proofs of Theorem 14 and Theorem 24, our bijection follows the algebraic
proof. Two-leg RPPs and SPPs do not occur frequently in the literature, but the existence
of an algebraic proof that V(λ,µ,∅)(q) =W(λ,µ,∅)(q)M(q) was mentioned in [24]; we provide
such a proof in full detail here. We begin by commuting the Γ operators of opposite sign
in the expression

V(λ,µ,∅)(q) = ⟨µ ∣
0

∏
n=−∞

Γ− (q(−n+1)/2)
∞
∏
n=0

Γ+ (q(n+1)/2) ∣λ⟩ ,

producing

V(λ,µ,∅)(q) =M(q) ⟨µ ∣
∞
∏
n=0

Γ+ (q(n+1)/2)
0

∏
n=−∞

Γ− (q(−n+1)/2) ∣λ⟩ . (9)
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6 5 3 3 3 3
5 3 3 1 1 1
3 3 2 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

⋯

⋮

Figure 20: An SPP of shape ((2,2), (3,1),∅) and weight 16.

Since the only difference between this vertex operator product and Equation (2) is that
it contains ⟨µ∣ and ∣λ⟩ instead of ⟨∅∣ and ∣∅⟩, these commutations produce a factor of
M(q).

We now “palindromically” commute the operators of the same sign (i.e reverse their
order). This produces no factors — it only reweights the objects that are counted to be
closer to our usual definitions. The result is

V(λ,µ,∅)(q) =M(q)W(µ,λ,∅)(q).

However, W(µ,λ,∅)(q) =W(λ,µ,∅)(q); the transpose is a weight-preserving bijection between
the sets counted by these two generating functions.

Exactly as in the proof of Theorem 14, we define a map τ on SPPs of shape (λ,µ,∅)

by iteratively toggling diagonals. In that proof, we could justify that the map was well-
defined since every plane partition contains only finitely many nonzero entries, but here
we must be more careful. Let σ be an SPP of shape (λ,µ,∅); with the N ∈ N guaranteed
by Proposition 28, we may perform toggles until only every cell in [1,N]2 is popped off,
then use just those values to create an N ×N tableau that we can untoggle into a plane
partition π using Theorem 14.

The remaining toggled object (σN in the parlance of Proposition 28) is constant on di-
agonals with sufficiently small content, and by that proposition, it continues to have that
property as we toggle more and more diagonals. Therefore, we do not need to perform
any further toggles to determine the limiting object, an RPP-like remnant infinitely far
from the origin. We then perform the toggles corresponding to the same-sign commuta-
tions. We first commute Γ− (q1/2) to the left past every other Γ− operator, then Γ− (q3/2)
to the left past every other Γ− except for Γ− (q1/2), and so on. Each of these commuta-
tions nominally involves an infinite number of toggles, but since the RPP-like object is
eventually constant on diagonals, we may determine the output after only a finite number
of toggles. Similarly, we need only commute a finite number of the Γ− (qk/2) to the left
in total, since the final RPP must also eventually be constant on diagonals far enough
away from the origin in order to have finite weight. The result is a two-leg RPP of shape
(µ,λ,∅); exactly as in the algebraic proof, we then transpose the diagram to produce an
RPP ρ of shape (λ,µ,∅), as required.
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6 5 3 3 3 3
5 3 3 1 1 1
3 3 2 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

↦

1 5 3 3 3 3
5 5 3 1 1 1
3 3 1 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

↦

1 0 3 3 3 3
0 5 1 1 1 1
3 2 1 1 0 0
2 2 1 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

↦

1 0 3 3 3 3
0 3 1 1 1 1
3 2 1 1 0 0
2 2 1 1 0 0
2 2 0 0 0 0
2 2 0 0 0 0

↦

1 0 0 3 3 3
0 3 1 1 1 1
1 2 1 1 1 0
2 2 1 1 0 0
2 2 1 0 0 0
2 2 0 0 0 0

↦

1 0 0 3 3 3
0 3 0 1 1 1
1 0 1 1 1 0
2 2 1 1 1 0
2 2 1 1 0 0
2 2 0 0 0 0

↦

1 0 0 3 3 3
0 3 0 1 1 1
1 0 0 1 1 0
2 2 1 1 1 0
2 2 1 1 1 0
2 2 0 0 0 0

↦ ⋯ ↦

1 0 0 0 3 3
0 3 0 0 1 1
1 0 0 0 1 1
0 0 0 0 1 1
2 2 1 1 1 1
2 2 1 1 1 1

Figure 21: Iteratively toggling the diagonals of a two-leg SPP.

1 0 0 0 3
0 3 0 0 1 1
1 0 0 0 1 1
0 0 0 0 1 1

2 2 1 1 1 1
2 1 1 1 1

⋯

⋮

⋯

⋮

Figure 22: The limiting diagram after toggling the SPP in Figure 21.

3
1 1
1 1

1 1
2 2 1 1 1 1

2 1 1 1 1

↦

⋯

⋮

3
3 1
1 1

1 1
2 2 1 1 1 1

2 1 1 1 1

↦ ⋯ ↦

⋯

⋮

3
3 1
3 1

3 1
2 2 1 1 1 1

2 1 1 1 1
⋯

⋮

Figure 23: Commuting the operator Γ− (q1/2) past every other Γ− has the effect of toggling
every diagonal on the right side of the diagram, with the exception of the topmost and
bottommost.
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3
3 1
3 1

3 1
2 2 2 2 1 1

2 2 2 1 1
⋯

⋮

Figure 24: The result of palindromically commuting the Γ operators of the same sign.

2 2
2 2
2 2

3 3 3 1 1
1 1 1 1 1

⋯

⋮

4 3 0 0
3 1 0 0
1 1 0 0
0 0 0 0

⋯

⋮

Figure 25: The two-leg RPP ρ (left; after transposing) and the plane partition π (right;
after untoggling) corresponding to the SPP σ from Figure 20.

Example 30. Let λ = (2,2) and µ = (3,1), and let σ be the SPP of shape (λ,µ,∅) and
weight 16 given in Figure 20. To associate σ with a pair (ρ, π) of an RPP ρ of shape
(λ,µ,∅) and a plane partition π, we begin as in the one-leg case by iteratively toggling the
diagonals of π that begin with corners. In Figure 21, we perform the toggles to produce
squares instead of in lexicographic order — the limiting behavior is easier to observe with
this approach.

In this example, the value ofN guaranteed by Proposition 28 isN = 3, as demonstrated
by the final two objects in the sequence in Figure 21. All future toggles pop off zeros,
and diagonals with sufficiently small content are constantly (1,1). The limiting diagram
resulting from performing all of the toggles is then given by Figure 22. We draw the
bounding partitions λ and µ as diagonals in accordance with the sequence of vertex
operators — the diagram begins at a diagonal of (2,2) and ends at a diagonal of (3,1).
We can easily check at this halfway point that the weights are correct: the tableau in the
top-left is weighted by hook length, so it has weight 13. On the other hand, the RPP-like
object left over from the toggling is counted by the generating function Equation (8),
meaning its weight is 1

2 ⋅ 2 +
1
2 +

3
2 = 3, as expected.

To complete the bijection, we palindromically toggle the remaining diagonals of the
RPP-like object, as described in the proof of Theorem 29. Beginning with the right side
of the vertex operator expression, we commute the Γ− (q1/2) to the left past every other
Γ−, but no Γ+. This corresponds to toggling every diagonal on the right of the diagram
from top to bottom, except the topmost and bottommost, as shown in Figure 23. We
next commute the Γ− (q3/2) left past every Γ− except the Γ− (q1/2), in effect toggling the
diagonals from top to bottom but ignoring the second-to-bottom diagonal as well as the
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5 5 3 3
6 4 3 2 2 2

3 2 2 1
4 3 2 1 1
3 1 1 1
2 1 1
2 1 1
2 1 1

⋯

⋮

Figure 26: A three-leg SPP of shape ((2,1,1), (3,2), (4,2,1)) and weight 17
2 , visualized as

a grid of numbers (left) and a stack of 25 weight-contributing boxes (right; the minimal
configuration has weight −33

2 ).

Figure 27: A plane partition with walls shown (left), each rhombus painted with a dimer
(center), and the configuration formed from those dimers (right).

bottom one. This has no effect on our example, and in fact the rest of the Γ− commutations
proceed without changing the diagram further. Commuting the Γ+ is an analogous task,
and the final diagram is given in Figure 24.

Comparing this object to the minimal configuration, exactly two boxes have been
removed, and the weight of the base RPP of shape (λ,µ,∅) is 1, so this RPP is still
weight 3. All that remains is to transpose the RPP and to convert the tableau produced
in the first step back into a plane partition via Theorem 14, and we have successfully
mapped the SPP σ to an RPP ρ of the same shape and a plane partition π (Figure 25).

the electronic journal of combinatorics 32(2) (2025), #P2.51 31



Figure 28: The minimal configuration for an RPP of shape ((3,2), (2,1,1), (4,2,1)). The
left and middle diagrams are superimposed to create the rightmost diagram; the purple
boxes overlap and are all present with multiplicity two.

6 Discussion and Future Directions

The fully general case of the PT–DT correspondence involves objects that are substan-
tively more complicated than the two special cases we have bijectivized. While three-leg
SPPs are a direct generalization of one- and two-leg ones, as in Figure 26 [22], three-leg
RPPs are a significant departure. Plane partitions are famously in correspondence with
perfect matchings (or dimer configurations) on a hexagon lattice in R2 by drawing a
line in the middle of each rhombus face when the 3-dimensional block expression of a plane
partition is viewed from an isometric perspective, as in Figure 27. We refer the interested
reader to [14] for further details on dimer configurations. Similar bijections hold for all
SPPs and one- and two-leg RPPs. Since each vertex is matched with exactly one other, we
call these single-dimer objects. In contrast, three-leg RPPs are double-dimer objects
[15, 12, 11], meaning every vertex is matched to exactly two others. While a definition in
terms of double-dimer objects is certainly more natural, a description in terms of boxes is
much more conducive to our existing results. Such a description was introduced in [12],
but it is nuanced and technical, involving boxes that can be present with multiplicity
two and a labeling condition that permits only certain adjacency relationships between
boxes in various regions. We sketch the minimal configuration for a three-leg RPP in
Figure 28, coloring the various regions, and depict the corresponding double-dimer object
in Figure 29.

Our methods of proving Theorem 24 and Theorem 29 only partially extend to three-leg
objects. The generating function for three-leg SPPs [22] is given by

V(λ,µ,ν)(q) = ⟨λ ∣∏
n∈Z

Γe(n) (qp(n)) ∣µ⟩ (10)

for the edge sign and power sequences e(n) = eν(n) and p(n) = pν(n); i.e. a combination
of Equation (6) and Equation (7). Iteratively toggling the diagonals of an SPP of shape
(λ,µ, ν) then produces two objects: a hook-length-weighted tableau that we may decom-
pose and untoggle into a plane partition and a one-leg RPP of shape (∅,∅, ν), and an
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Figure 29: By drawing dimers on the faces of the objects in Figure 28, we produce the
corresponding double-dimer configuration.
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object that resembles a two-leg RPP of shape (λ,µ,∅), but whose weight differs due to
the edge sign sequence eν(n).

What remains is to define a bijection from three-leg RPPs to pairs of one-leg RPPs and
these two-leg-RPP-esque objects. However, we are unaware of a vertex-operator descrip-
tion of three-leg RPPs — the global labeling conditions make such operators difficult to
define. In a paper in preparation [8], we prove results that characterize the poset of valid
entries for certain individual cells in a three-leg RPP when all others remain constant,
and we conjecture a minor generalization that would enable us to define such operators.
However, our results suggest that it may be difficult to define a general involution on
the poset of valid entries for a three-leg RPP, precluding a naive generalization of the
toggle map. We plan to define these vertex operators, find and bijectivize their commu-
tation relations, and define a more general toggle using them, with the goal of defining
the bijective decomposition of three-leg RPPs that we seek.
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